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In this paper, we consider the following Hardy–Littlewood–Sobolev inequality with
extended kernel∫

R
n
+

∫
∂R

n
+

xβ
n

|x − y|n−α
f(y)g(x)dydx � Cn,α,β,p‖f‖Lp(∂R

n
+)‖g‖Lq′ (R

n
+)

, (0.1)

for any nonnegative functions f ∈ Lp(∂R
n
+), g ∈ Lq′

(Rn
+) and p, q′ ∈ (1, ∞), β � 0,

α + β > 1 such that n−1
n

1
p

+ 1
q′ − α+β−1

n
= 1.

We prove the existence of all extremal functions for (0.1). We show that if f and g
are extremal functions for (0.1) then both of f and g are radially decreasing.
Moreover, we apply the regularity lifting method to obtain the smoothness of
extremal functions. Finally, we derive the sufficient and necessary condition of the
existence of any nonnegative nontrivial solutions for the Euler–Lagrange equations
by using Pohozaev identity.
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1. Introduction

The classical Hardy–Littlewood–Sobolev inequality that was obtained by Hardy
and Littlewood [36] for n = 1 and by Sobolev [50] for general n states that∫

Rn

∫
Rn

|x− y|−(n−α)f(x)g(y)dxdy � Cα,n,p‖f‖Lp(Rn)‖g‖Lq′ (Rn) (1.1)

with 1 < p, q′ <∞, 0 < α < n and 1
p + 1

q′ + n−α
n = 2.

Lieb [39] employed the rearrangement inequalities to obtain the existence of the
extremal functions of inequality (1.1). Furthermore, they also classified extremals
of the inequality (1.1) and computed the sharp constant Cα,n,p only when one of p
and q′ is equal to 2 or p = q′.
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1684 Z. Liu

Through the inequality (1.1), we can deduce many important geometrical
inequalities such as the Gross logarithmic Sobolev inequality [31] and the
Moser–Onofri–Beckner inequality [1]. It is also well-known that if we pick α =
2, p = q′ = 2n/(n+ 2), then the Hardy–Littlewood– Sobolev inequality is in fact
equivalent to the Sobolev inequality by Green’s representation formula. By using
the competing symmetry method, Carlen and Loss [8] provided a different proof
from Lieb’s of the sharp constants and extremal functions in the diagonal case
p = q′ = 2n/(n+ α) and Frank and Lieb [25] offered a new proof using the reflec-
tion positivity of inversions in spheres in the special diagonal case. Frank and Lieb
[26] further employed a rearrangement-free technique developed in [27] to recapture
the best constant of inequality (1.1). Folland and Stein [24] extended the inequal-
ity (1.1) to the Heisenberg group and established the Hardy–Littlewood–Sobolev
inequality on Heisenberg group. Frank and Lieb [27] classify the extremals of this
inequality in the diagonal case. This extends the earlier work of Jerison and Lee
[38] for sharp constants and extremals for the Sobolev inequality on the Heisenberg
group in the conformal case in their study of CR Yamabe problem. Furthermore,
Han et al. [34] established the double-weighted Hardy–Littlewood–Sobolev inequal-
ity (namely, Stein–Weiss inequality) on the Heisenberg group and discussed the
regularity and asymptotic behaviour of the extremal functions. Recently, Chen
et al. [13] used the concentration-compactness principle to obtain existence of
extremals of the Stein–Weiss inequality on the Heisenberg group for all indices.
We also mention that when p = q′ = 2n/(n+ α), Euler–Lagrange equation of the
extremals to the Hardy–Littlewood–Sobolev inequality in the Euclidean space is
a conformal invariant integral equation. The inequality (1.1) and its extensions
have many applications in partial differential equations. Some remarkable exten-
sions have already been obtained on the upper half space by Dou and Zhu [22], on
compact Riemannian manifolds by Han and Zhu [35] and the reversed (weighted)
Hardy–Littlewood–Sobolev inequality in [10, 23, 48, 49]. For more results about
the (weighted) Hardy–Littlewood–Sobolev inequality, the general weighted inequal-
ities and their corresponding Euler–Lagrange equations, refer to e.g. [2, 3, 9, 15–20,
28, 32, 37, 42–45, 47, 51] and the references therein.

Recently, Gluck [30] proved the following sharp Hardy–Littlewood–Sobolev
inequality with extended kernel in the conformal invariant case (p = 2(n−1)

n+α−2 , q′ =
2n

n+α+2β )

∣∣∣ ∫
R

n
+

∫
∂R

n
+

K(x′ − y, xn)f(y)g(x)dydx
∣∣∣ � Cn,α,β,p‖f‖Lp(∂R

n
+)‖g‖Lq′ (Rn

+). (1.2)

where K is a kernel of the form

K(x′, xn) = Kα,β(x′, xn) =
xβ

n

(|x′|2 + x2
n)(n−α)/2

, x = (x′, xn) ∈ R
n−1 × (0,∞),

and α, β satisfy β � 0, 0 < α+ β < n− β,

n− α− 2β
2n

+
n− α

2(n− 1)
< 1. (1.3)
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In fact, for α = 0, β = 1, the kernel Kα,β is the classical Poisson kernel.
Hang et al. [33] derived the Hardy–Littlewood–Sobolev inequality with the Pois-
son kernel and proved the existence of extremals for this inequality by the
concentration-compactness principle [40, 41]. For the conformal invariant case,
they classified the extremal functions of the inequality, and computed the sharp
constant. Integral inequality with the Poisson kernel is highly related to Carle-
man’s proof of isoperimetric inequality in the plane (see [7]). For α ∈ (0, 1), β =
1 − α, the kernel Kα,β is related to the divergence form operator u �→ div(xα

n∇u)
(the poly-harmonic extension operator) on the half space. Chen [14] established
sharp Hardy–Littlewood–Sobolev inequality (1.2). He also generalized Carleman’s
inequality for harmonic functions in the plane to poly-harmonic functions in
higher dimensions. Dou and Zhu [22] studied the sharp Hardy–Littlewood–Sobolev
inequality on the upper half space and the existences of extremal functions for
β = 0. Dou et al. [21] investigated the integral inequality (1.2) in the special index
through the methods based on conformal transformation for β = 1. Different from
Dou et al. [21], Chen et al. [12] derived the Hardy–Littlewood–Sobolev inequality
to all critical index for β = 1. Furthermore, Chen et al. [11] extended it to the
weighted Hardy–Littlewood–Sobolev inequality.

In this paper, we extended the Hardy–Littlewood–Sobolev inequality with
extended kernel in the conformal invariant case to all critical index. That is,

Theorem 1.1. Let n � 2, 1 < p, q′ <∞, β � 0, α+ β > 1 and suppose that α, β,
p, q′ satisfy

n− 1
n

1
p

+
1
q′

− α+ β − 1
n

= 1.

Then there is a constant Cn,α,β,p > 0 such that for any nonnegative functions f ∈
Lp(∂R

n
+), g ∈ Lq′

(Rn
+),

∫
R

n
+

∫
∂R

n
+

xβ
n

|x− y|n−α
f(y)g(x)dydx � Cn,α,β,p‖f‖Lp(∂R

n
+)‖g‖Lq′ (Rn

+). (1.4)

We remark that the constant Cn,α,β,p above can be considered as the least one
such that the above inequality holds for all nonnegative functions f ∈ Lp(∂R

n
+),

g ∈ Lq′
(Rn

+). This constant Cn,α,β,p is often referred as the best constant for the
Hardy–Littlewood–Sobolev inequality with extended kernel.

Define

Tf(x) =
∫

R
n
+

xβ
n

|x− y|n−α
f(y)dy, T ′g(y) =

∫
∂R

n
+

xβ
n

|x− y|n−α
g(x)dx.

Throughout this paper, we always assume that q and q′ are conjugate numbers. That
is, q and q′ satisfy 1

q + 1
q′ = 1. By duality, it is easy to verify that the inequality

(1.4) is equivalent to the following two corollaries.
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Corollary 1.2. Assume that n � 2, β � 0, α+ β > 1, 1 < p < n−1
α+β−1 , and

1
q

=
n− 1
n

(
1
p
− α+ β − 1

n− 1

)
.

Then there is a constant Cn,α,β,p > 0 such that

‖Tf‖Lq(Rn
+) � Cn,α,β,p‖f‖Lp(∂R

n
+). (1.5)

Corollary 1.3. Assume that n � 2, β � 0, α+ β > 1, 1 < q′ < n
α+β , and

1
p′

=
n

n− 1

(
1
q′

− α+ β

n

)
.

Then there is a constant Cn,α,β,q′ > 0 such that

‖T ′g‖Lp′ (∂R
n
+) � Cn,α,β,p‖g‖Lq′ (Rn

+). (1.6)

Once we establish the Hardy–Littlewood–Sobolev inequality with extended ker-
nel, it is natural to ask whether the extremal functions for inequality (1.4) actually
exist. To answer this question, we turn to consider the following maximizing problem

Cn,α,β,p := sup{‖Tf‖Lq(Rn
+) | ‖f‖Lp(∂R

n
+) = 1, f � 0}, (1.7)

where p, q satisfy

1
q

=
n− 1
n

(
1
p
− α+ β − 1

n− 1

)
.

It is not hard to verify that the extremals of inequality (1.5) are those solving
the maximizing problem (1.7). We use the rearrangement inequality to prove the
attainability of maximizers for the maximizing problem (1.7).

Theorem 1.4. Let n � 2, 1 < p, q <∞, β � 0, α+ β > 1, and suppose that α, β,
p, q satisfy

1
q

=
n− 1
n

(
1
p
− α+ β − 1

n− 1

)
.

Then there exists some function f ∈ Lp(∂R
n
+) such that f � 0, ‖f‖Lp(∂R

n
+) = 1, and

‖Tf‖Lq(Rn
+) = Cn,α,β,p. Moreover, all extremal functions are radially symmetric and

strictly decreasing about some point y0 ∈ ∂R
n
+.

We now turn our attention to study the regularity of the extremal functions
for inequality (1.5), the Euler–Lagrange equation for extremal functions, up to a
constant multiplier, is given by

fp−1(y) =
∫

R
n
+

xβ
n

|x− y|n−α
(Tf(x))q−1dx. (1.8)
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We prove

Theorem 1.5. Let n � 2, β � 0, α+ β > 1 and 1 < p < n−1
α+β−1 . Suppose that f ∈

Lp
loc(∂R

n
+) is nonnegative solution to (1.8) with 1

q = n−1
n ( 1

p − α+β−1
n−1 ). Then f ∈

C∞(∂R
n
+).

Assume that

u(y) = fp−1(y), v(x) = Tf(x).

Denote

θ =
1

p− 1
, κ = q − 1.

Euler–Lagrange equation (1.8) can be rewritten as the following integral system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(y) =

∫
R

n
+

xβ
n

|x− y|n−α
vκ(x)dx, y ∈ ∂R

n
+,

v(x) =
∫

∂R
n
+

xβ
n

|x− y|n−α
uθ(y)dy, x ∈ R

n
+.

(1.9)

We use the Pohozaev identity to prove the following theorem.

Theorem 1.6. For n � 2, β � 0, α+ β > 1, θ > 0, κ > 0, assume that (u, v) ∈
Lθ+1(∂R

n
+) × Lκ+1(Rn

+) is a pair of nonnegative nontrivial C1 solutions of (1.9),
then a necessary condition for θ and κ is

n− 1
θ + 1

+
n

κ+ 1
= n− α− β.

Obviously, extremals (f, g) of inequality (1.4) satisfies the integral system (1.9).
In light of theorems 3.1, 4.1 and 5.1, we obtain the sufficient and necessary
condition for existence of positive solutions to the integral system (1.9).

Theorem 1.7. For θ > 0, κ > 0, let n, α, β, p, q satisfy all the hypotheses of theo-
rems 3.1, 4.1 and 5.1, then the sufficient and necessary condition for the existence
of a pair of nonnegative nontrivial solutions (u, v) ∈ Lθ+1(∂R

n
+) × Lκ+1(Rn

+) to
system (1.9) is

n− 1
θ + 1

+
n

κ+ 1
= n− α− β.

The following Liouville type theorem was proved by Gluck.

Theorem 1.8 (see [30]). Let n � 2 and suppose α, β satisfy β � 0, 0 < α+ β <
n− β and (1.3). If u ∈ Lθ+1(∂R

n
+) and v ∈ Lκ+1(Rn

+) are positive solutions of (1.9)
with θ = n+α−2

n−α and κ = n+α+2β
n−α−2β . Then there exists c1 > 0, d > 0 and y0 ∈ ∂R

n
+

such that

u(y) =
c1(

d2 + |y − y0|2
)(n−α)/2

for all y ∈ ∂R
n
+.
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With the help of theorem 1.7, we use weaker assumption (1.10) to obtain theorem
1.9 instead of the conformal invariant case.

Theorem 1.9. Let n � 2 and suppose α, β satisfy β � 0, 0 < α+ β < n− β. If
u ∈ Lθ+1(∂R

n
+) and v ∈ Lκ+1(Rn

+) are nonnegative nontrivial solutions of (1.9) with

0 < θ � n+ α− 2
n− α

, 0 < κ � n+ α+ 2β
n− α− 2β

. (1.10)

Then

θ =
n+ α− 2
n− α

, κ =
n+ α+ 2β
n− α− 2β

.

Moreover, there exists c1 > 0, d > 0 and y0 ∈ ∂R
n
+ such that

u(y) =
c1(

d2 + |y − y0|2
)(n−α)/2

for all y ∈ ∂R
n
+.

From theorem 1.7, we must have θ = n+α−2
n−α and κ = n+α+2β

n−α−2β . Then, the proof
is completely similar to the proof by Gluck in [30], so we omit the details.

This paper is organized as follows. In § 2, we prove the Hardy–Littlewood–Sobolev
inequality with the extended kernel. In § 3, by the rearrangement inequality, we
obtain the existence of extremals of the inequality. Section 4 is devoted to the
regularity estimate of the extremal functions of the Hardy–Littlewood–Sobolev
inequality with the extended kernel. In § 5, using the Pohozaev identity in integral
forms, we give sufficient and necessary conditions for the existence of nonnegative
nontrivial solutions.

2. The proof of theorem 2.1

In this section, we use the Marcinkiewicz interpolation theorem and weak type
estimate to establish the Hardy–Littlewood–Sobolev inequality with the extended
kernel.

Theorem 2.1. Let n � 2, 1 < p, q′ <∞, β � 0, α+ β > 1 and suppose that α, β,
p, q′ satisfy

n− 1
n

1
p

+
1
q′

− α+ β − 1
n

= 1.

Then there is a constant Cn,α,β,p > 0 such that for any nonnegative functions f ∈
Lp(∂R

n
+), g ∈ Lq′

(Rn
+),

∫
R

n
+

∫
∂R

n
+

xβ
n

|x− y|n−α
f(y)g(x)dydx � Cn,α,β,p‖f‖Lp(∂R

n
+)‖g‖Lq′ (Rn

+). (2.1)
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Proof. For t > 0 and x′ ∈ R
n−1, define

Kt(x′) =
tβ

(|x′|2 + t2)(n−α)/2
.

Then, for x = (x′, xn) ∈ R
n
+, y ∈ ∂R

n
+, we have

K(x′ − y, xn) = Kxn
(x′ − y), T f(x) = (Kxn

∗ f)(x′).

We are ready to prove theorem 2.1 via proving inequality (1.5). For p ∈ (1, n−1
α+β−1 )

and q given by 1
q = n−1

n ( 1
p − α+β−1

n−1 ). By the Marcinkiewicz interpolation theorem
(see [52]), we only need to prove the following weak-type estimate:

‖Tf‖Lq
w(Rn

+) � Cn,α,β,p‖f‖Lp(∂R
n
+). (2.2)

That is, we need to show that there is a constant Cn,α,β,p > 0 such that

λ|{x ∈ R
n
+||Tf(x)| > λ}|1/q � Cn,α,β,p‖f‖Lp(∂R

n
+), ∀f ∈ Lp(∂R

n
+), ∀λ > 0.

Without the loss of generality, we may assume that ‖f‖Lp(∂R
n
+) = 1. Assume that

r, s satisfy

r ∈
(

(n− 1)p
(1 − α)p+ n− 1

,
np

(1 − α− β)p+ n− 1

)
,

1
r

+ 1 =
1
p

+
1
s
, s � 1. (2.3)

It follows from the Young equality that∫
x∈R

n
+

0<xn<a

|Tf(x)|rdx

=
∫ a

0

∫
Rn−1

|(Kxn
∗ f)(x′)|rdx′dxn

� ‖f‖Lp(Rn−1)

∫ a

0

‖Kxn
‖r

Ls(Rn−1)dxn

=
∫ a

0

(∫
Rn−1

xβs
n

(|x′|2 + x2
n)((n−α)s)/2

dx′
)r/s

dxn

�
∫ a

0

x((n−1)r)/s+(α+β−n)r
n dxn

(∫
Rn−1

1
(|x′|2 + 1)((n−α)s)/2

dx′
)r/s

.

One can deduce from (2.3) that

(n− 1)r
s

+ (α+ β − n)r > −1, (n− α)s > n− 1.

Then, we have ∫
x∈R

n
+

0<xn<a

|Tf(x)|rdx � C1a
((n−1)r)/s+(α+β−n)r+1.
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In view of the Hölder inequality and the integration of the extended kernel, we can
see that

‖Kxn
∗ f(x′)‖L∞(Rn−1) � Cx(n−1)/p′+(α+β−n)

n .

Since p ∈ (1, n−1
α+β−1 ), we know that n−1

p′ + (α+ β − n) < 0. Then, we derive that

|{x ∈ R
n
+||Tf(x)| > λ}|

=
∣∣∣{x ∈ R

n
+|0 < xn < Cλp′/(n−1+p′(α+β−n)), |Tf(x)| > λ

}∣∣∣
� 1
λr

∫
x∈R

n
+, 0<xn<Cλp′/(n−1+p′(α+β−n))

|Tf(x)|rdx

� C ′λnp/((α+β−1)p−n+1)

� C ′λ−q,

which implies that

‖Tf‖Lq
w(Rn

+) � Cn,α,β,p‖f‖Lp(∂R
n
+). (2.4)

Note that inequality (2.4) implies, via the Marcinkiewicz interpolation [52], that

‖Tf‖Lq(Rn
+) � Cn,α,β,p‖f‖Lp(∂R

n
+).

or even slight stronger inequality

‖Tf‖Lq(Rn
+) � Cn,α,β,p‖f‖Lp,q(∂R

n
+). (2.5)

where Lorentz norm ‖ · ‖Lp,q is defined by

‖u‖Lp,q = p1/q

(∫ ∞

0

tq | |u| > t|q/p dt
t

)1/q

.

�

3. The proof of theorem 3.1

In the following, we will employ rearrangement inequality to investigate the
existence of maximizers for the maximizing problem

Cn,α,β,p := sup{‖Tf‖Lq(Rn
+) | ‖f‖Lp(∂R

n
+) = 1, f � 0}. (3.1)

We prove

Theorem 3.1. Let n � 2, 1 < p, q <∞, β � 0, α+ β > 1 and suppose that α, β,
p, q satisfy

1
q

=
n− 1
n

(
1
p
− α+ β − 1

n− 1

)
.

Then there exists some function f ∈ Lp(∂R
n
+) such that f � 0, ‖f‖Lp(∂R

n
+) = 1, and

‖Tf‖Lq(Rn
+) = Cn,α,β,p. Moreover, all extremal functions are radially symmetric and

strictly decreasing about some point y0 ∈ ∂R
n
+.
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Proof. Using symmetrization argument, we first show that the supremum of (3.1)
is attained by radially symmetric functions. Now, we recall the important Riesz
rearrangement inequality. Let u be a measurable function on R

n, the symmet-
ric rearrangement of u is the nonnegative lower semi-continuous radial decreasing
function u∗ that has the same distribution as u. Then, we have∫

Rn

dx
∫

Rn

u(x)v(y − x)w(y)dy �
∫

Rn

dx
∫

Rn

u∗(x)v∗(y − x)w∗(y)dy.

Using the fact ‖w‖Lp(Rn) = ‖w∗‖Lp(Rn) for p > 0 and the standard duality argu-
ment, we see, for 1 � p � ∞,

‖u ∗ v‖Lp(Rn) � ‖u∗ ∗ v∗‖Lp(Rn).

Moreover, if u is nonnegative radially symmetric and strictly decreasing in the radial
direction, v is nonnegative, 1 < p <∞ and

‖u ∗ v‖Lp(Rn) = ‖u∗ ∗ v∗‖Lp(Rn) <∞,

then from Brascamp et al. [4], we have,

v(x) = v∗(x− x0), (3.2)

for some x0 ∈ R
n.

Now, assume fi is a maximizing sequence in (3.1). Since

‖f‖Lp(∂R
n
+) = ‖f∗‖Lp(∂R

n
+) = 1

and

‖Tfi‖q
Lq(Rn

+) =
∫ ∞

0

‖Kxn
∗ fi‖q

Lq(Rn−1)dxn

�
∫ ∞

0

‖Kxn
∗ f∗i ‖q

Lq(Rn−1)dxn

= ‖Tf∗i ‖q
Lq(Rn

+).

We know that f∗i is also a maximizing sequence. Hence, we may assume fi is a
nonnegative radial decreasing function.

For any f ∈ Lp(∂R
n
+) and any λ > 0, we let fλ(y) = λ−((n−1)/p)f( y

λ ), then it is
easy to check that

‖fλ‖Lp(∂R
n
+) = ‖f‖Lp(∂R

n
+), ‖Tfλ‖Lq(Rn

+) = ‖Tf‖Lq(Rn
+).

For convenience, denote e
′
1 = (1, 0, . . . , 0) ∈ R

n−1 and

ai = sup
λ>0

fλ
i (e

′
1) = sup

λ>0
λ−((n−1)/p)fi

(
e
′
1

λ

)
.

It follows that

0 � fi(y) � ai|y|−((n−1)/p)
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and hence

‖fi‖Lp,∞(∂R
n
+) � ω

1/p
n−1ai.

Thus, by (2.5), we have

‖Tfi‖Lq(Rn
+) � Cn,α,β,p‖fi‖Lp,q(∂R

n
+)

� Cn,α,β,p‖fi‖1−p/q
Lp,∞(∂R

n
+)‖fi‖p/q

Lp(∂R
n
+)

� Cn,α,β,pa
1−p/q
i ,

which implies ai � c(n, α, β, p) > 0. We may choose λi > 0 such that fλi
i (e

′
1) �

c(n, α, β, p) > 0. Replacing fi by fλi
i , we may assume fi(e

′
1) � c(n, α, β, p) > 0.

On the other hand, since fi is nonnegative radially decreasing and fi ∈ Lp(∂R
n
+) =

1, it is obvious that

fi(y) � ω
1/p
n−1|y|−((n−1)/p).

Hence after passing to a subsequence, we may find a nonnegative radially decreasing
function f such that fi → f a.e. It follows that f(y) � c(n, α, β, p) > 0 for |y| � 1,
and ‖f‖Lp(∂R

n
+) � 1. From Brezis and Lieb’s Lemma [6], we see

∫
∂R

n
+

∣∣|fi(y)|p − |f(y)|p − |fi(y) − f(y)|p∣∣dy → 0, as i→ ∞.

It follows that

‖fi − f‖p
Lp(∂R

n
+) = ‖fi‖p

Lp(∂R
n
+) − ‖f‖p

Lp(∂R
n
+) + o(1)

= 1 − ‖f‖p
Lp(∂R

n
+) + o(1).

(3.3)

On the other hand, since Tfi(x) → Tf(x) for x ∈ R
n
+ and ‖Tfi‖Lq(Rn

+) � Cn,α,β,p,
we see

‖Tfi‖q
Lq(Rn

+) = ‖Tf‖q
Lq(Rn

+) − ‖Tfi − Tf‖q
Lq(Rn

+) + o(1)

� Cq
n,α,β,p‖f‖q

Lp(∂R
n
+) + Cq

n,α,β,p‖fi − f‖q
Lp(∂R

n
+) + o(1).

Hence,

1 � ‖f‖q
Lp(∂R

n
+) + ‖fi − f‖q

Lp(∂R
n
+) + o(1). (3.4)

By (3.3) and (3.4) and letting i→ ∞, we derive

1 � ‖f‖q
Lp(∂R

n
+) + (1 − ‖f‖p

Lp(∂R
n
+))

q/p.

Since q > p and f 
= 0, we deduce that ‖f‖Lp(∂R
n
+) = 1. Hence, fi → f in Lp(∂R

n
+)

and f is a maximizer. This implies the existence of an extremal function.
Assume f ∈ Lp(∂R

n
+) is a maximizer, then so is |f |. Hence ‖Tf‖Lq(Rn

+) =
‖T |f |‖Lq(Rn

+), which implies either f � 0 or f � 0. Without loss of generality, we
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only consider the case of f � 0, then the Euler–Lagrange equation after scaling by
a positive constant is given by equation (3.1)

fp−1(y) =
∫

R
n
+

xβ
n

(|x′ − y|2 + x2
n)(n−α)/2

(Tf(x))q−1dx. (3.5)

On the other hand, for xn > 0,

‖Kxn
∗ f‖Lq(Rn

+) = ‖Kxn
∗ f∗‖Lq(Rn

+).

By (3.2), we deduce that

f(y) = f∗(y − y0) = f∗(|y − y0|),
for some y0 ∈ ∂R

n
+. It follows from the Euler–Lagrange equation (3.5) and lemma

2.2 of Lieb [39] that f must be strictly decreasing along the radial direction. �

4. The proof of theorem 4.1

In this section, we establish the regularity properties of solutions to the following
Euler–Lagrange equation:

fp−1(y) =
∫

R
n
+

xβ
n

(|x′ − y|2 + x2
n)(n−α)/2

(Tf(x))q−1dx. (4.1)

We prove

Theorem 4.1. Let n � 2, β � 0, α+ β > 1 and 1 < p < n−1
α+β−1 . Suppose that f ∈

Lp
loc(∂R

n
+) is nonnegative solution to (4.1) with 1

q = n−1
n ( 1

p − α+β−1
n−1 ). Then f ∈

C∞(∂R
n
+).

Let u(y) = fp−1(y), v(x) = Tf(x), θ = 1
p−1 and κ = q − 1. Then Euler–Lagrange

equation (4.1) can be rewritten as the following integral system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(y) =

∫
R

n
+

xβ
n

|x− y|n−α
vκ(x)dx, y ∈ ∂R

n
+,

v(x) =
∫

∂R
n
+

xβ
n

|x− y|n−α
uθ(y)dy, x ∈ R

n
+,

(4.2)

with 1
κ+1 = n−1

n (n−α−β
n−1 − 1

θ+1 ). If f ∈ Lp
loc(∂R

n
+), then u ∈ Lθ+1

loc (∂R
n
+). Therefore,

to prove theorem 4.1, it is sufficient to prove the following lemma.

Lemma 4.2. Assume that β � 0, α+ β > 1 and α+β−1
n−1 < θ <∞, and 0 < κ <∞

given by

1
κ+ 1

=
n− 1
n

(
n− α− β

n− 1
− 1
θ + 1

)
.

Suppose that (u, v) is a pair of nonnegative solutions of (4.2) with u ∈ Lθ+1
loc (∂R

n
+).

Then u ∈ C∞(∂R
n
+) and v ∈ C∞(Rn

+).
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To prove lemma 4.2, we first establish two local regularity results, which are
spirited by Brezis and Kato’s lemma A.1 in [5], Hang et al.’s propositions 5.2 and
5.3 in [33], Li’s theorem 1.3 in [44], Dou and Zhu’s propositions 4.3 and 4.4 in [22].

For R > 0, define

BR(x) = {y ∈ R
n | |y − x| < R, x ∈ R

n},
Bn−1

R (x) = {y ∈ ∂R
n
+||y − x| < R, x ∈ ∂R

n
+},

B+
R(x) = {y = (y1, y2, . . . , yn) ∈ BR(x) | yn > 0, x ∈ ∂R

n
+}.

For x = 0, we write

BR = BR(0), Bn−1
R = Bn−1

R (0), B+
R = B+

R(0).

Lemma 4.3. Assume that α+ β > 1, 1 < a, b � ∞, 1 � r <∞, and n
n−α−β < p <

q <∞ satisfy

α+ β

n
<
r

q
+

1
a
<
r

p
+

1
a
< 1,

n

ar
+
n− 1
b

=
α+ β

r
+ (α+ β − 1). (4.3)

Suppose that v, h ∈ Lp(B+
R), V ∈ La(B+

R), and U ∈ Lb(Bn−1
R ) are all nonnegative

functions with h|B+
R/2

∈ Lq(B+
R/2), and

v(x) �
∫

Bn−1
R

xβ
nU(y)

|x− y|n−α

[ ∫
B+

R

zβ
nV (z)vr(z)
|z − y|n−α

dz
]1/r

dy + h(x), ∀x ∈ B+
R .

There is a ε = ε(n, α, β, p, q, r, a, b) > 0, and C = C(n, α, β, p, q, r, a, b, ε) > 0
such that if

‖U‖Lb(Bn−1
R )‖V ‖1/r

La(B+
R)

� ε(n, α, β, p, q, r, a, b),

then,

‖v‖Lq(B+
R/4)

� C(n, α, β, p, q, r, a, b, ε)
(
Rn/q−n/p‖v‖Lp(B+

R) + ‖h‖Lq(B+
R/2)

)
.

Proof. By scaling, we may assume R = 1. Assume that v, h ∈ Lq(B+
1 ). For y ∈

Bn−1
1 , denote

u(y) =
∫

B+
1

xβ
nV (x)vr(x)
|x− y|n−α

dx.

Let p1 and q1 be the numbers defined by

1
p1

=
n

n− 1

(
r

p
+

1
a
− α+ β

n

)
,

1
q1

=
n

n− 1

(
r

q
+

1
a
− α+ β

n

)
. (4.4)

Then, it follows from inequality (1.6) that

‖u‖Lp1 (Bn−1
1 ) � C(n, α, β, p, r, a, b, ε)‖V ‖La(B+

1 )‖v‖r
Lp(B+

1 )
, (4.5)

‖u‖Lq1 (Bn−1
1 ) � C(n, α, β, q, r, a, b, ε)‖V ‖La(B+

1 )‖v‖r
Lq(B+

1 )
. (4.6)
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Given 0 < δ1 < δ2 � 1
2 , for x ∈ B+

δ2
, we have

v(x) �
∫

Bn−1
(δ1+δ2)/2

xβ
nU(y)u1/r(y)
|x− y|n−α

dy +
∫

Bn−1
1 \Bn−1

(δ1+δ2)/2

xβ
nU(y)u1/r(y)
|x− y|n−α

dy + h(x)

:= I1(x) + I2(x) + h(x).

By (4.3) and (4.4), we deduce that

1
q

=
n− 1
n

(
1
b

+
1
q1r

− α+ β − 1
n− 1

)
,

which combines with (1.5) and the Hölder inequality, it yields that

‖I1‖Lq(B+
δ1

) � C(n, α, β, p, r, a, b)‖U‖Lb(Bn−1
1 )‖u‖1/r

Lq1 (Bn−1
(δ1+δ2)/2)

.

Since p > n
n−α−β , it follows from the Hölder inequality and (4.5) that

I2(x) � C(n, α, β)
(δ2 − δ1)n−α−β

‖U‖Lb(Bn−1
1 )‖u‖1/r

Lp1 (Bn−1
1 )

� C(n, α, β, p, r, a, b)
(δ2 − δ1)n−α−β

‖U‖Lb(Bn−1
1 )‖V ‖1/r

La(B+
1 )
‖v‖Lp(B+

1 ).

Then, we have

‖v‖Lq(B+
δ1

) � C(n, α, β, p, r, a, b)‖U‖Lb(Bn−1
1 )‖u‖1/r

Lq1 (Bn−1
(δ1+δ2)/2)

+
C(n, α, β, p, r, a, b)

(δ2 − δ1)n−α−β
‖U‖Lb(Bn−1

1 )‖V ‖1/r

La(B+
1 )
‖v‖Lp(B+

1 ) + ‖h‖Lq(B+
1/2)

.

(4.7)

On the other hand, for y ∈ Bn−1
(δ1+δ2)/2, we derive

u(y) =
∫

B+
δ2

xβ
nV (x)vr(x)
|x− y|n−α

dx+
∫

B+
1 \B+

δ2

xβ
nV (x)vr(x)
|x− y|n−α

dx

�
∫

B+
δ2

xβ
nV (x)vr(x)
|x− y|n−α

dx+
C(n, α, β)

(δ2 − δ1)n−α−β

∫
B+

1 \B+
δ2

V (x)vr(x)dx

�
∫

B+
δ2

xβ
nV (x)vr(x)
|x− y|n−α

dx+
C(n, α, β, a, b, p, r)

(δ2 − δ1)n−α−β
‖V ‖La(B+

1 )‖v‖r
Lp(B+

1 )
.

Combining this and inequality (4.6), we obtain

‖u‖Lq1 (Bn−1
(δ1+δ2)/2)

� C(n, α, β, a, b, p, r)‖V ‖La(B+
1 )‖v‖r

Lq(B+
1 )

+
C(n, α, β, a, p, r)
(δ2 − δ1)n−α−β

‖V ‖La(B+
1 )‖v‖r

Lp(B+
1 )
.

(4.8)
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By (4.7) and (4.8), we see

‖v‖Lq(B+
δ1

) � C(n, α, β, p, r, a, b, ε)
(

1
(δ2 − δ1)n−α−β

+
1

(δ2 − δ1)n−α−β

)
‖v‖Lp(B+

1 )

+
1
2
‖v‖Lq(B+

δ2
) + ‖h‖Lq(B+

1/2)
,

if ε is small enough. One can employ the usual iteration procedure (see [32]) to
obtain

‖v‖Lq(B+
1/4)

� C(n, α, β, p, r, a, b, ε)
(‖v‖Lp(B+

1 ) + ‖h‖Lq(B+
1/2)

)
. (4.9)

For v, h ∈ Lp(B+
1 ), we will show inequality (4.9) still holds. Let 0 � η(x) � 1 be

the measurable function such that

v(x) � η(x)
∫

Bn−1
1

xβ
nU(y)

|x− y|n−α

[ ∫
B+

1

zβ
nV (z)vr(z)
|z − y|n−α

dz
]1/r

dy + η(x)h(x), ∀x ∈ B+
1 .

Define a map T1 by

T1(ϕ)(x) � η(x)
∫

Bn−1
1

xβ
nU(y)

|x− y|n−α

[∫
B+

1

zβ
nV (z)|ϕ(z)|r
|z − y|n−α

dz

]1/r

dy.

Choosing small enough ε(n, α, β, p, q, r, a, b), in view of the integral inequality
(1.5), we have

‖T1(ϕ)‖Lp(B+
1 )

� C(n, α, β, p, r, a, b)‖U‖Lb(Bn−1
1 )‖V ‖1/r

La(B+
1 )
‖ϕ‖Lp(B+

1 ) � 1
2
‖ϕ‖Lp(B+

1 ),

‖T1(ϕ)‖Lq(B+
1 )

� C(n, α, β, p, r, a, b)‖U‖Lb(Bn−1
1 )‖V ‖1/r

La(B+
1 )
‖ϕ‖Lq(B+

1 ) � 1
2
‖ϕ‖Lq(B+

1 ).

Furthermore, one can utilize the Minkowski inequality to obtain that for ϕ, ψ ∈
Lp(B+

1 ),

|T1(ϕ)(x) − T1(ψ)(x)| � T1(|ϕ− ψ|)(x), x ∈ B+
1 ,

which implies

‖T1(ϕ) − T1(ψ)‖Lp(B+
1 ) � ‖T1(|ϕ− ψ|)‖Lp(B+

1 ) � 1
2
‖ϕ− ψ‖Lp(B+

1 ).

Similarly, we also obtain

‖T1(ϕ) − T1(ψ)‖Lq(B+
1 ) � 1

2
‖ϕ− ψ‖Lq(B+

1 ).

for any ϕ, ψ ∈ Lq(B+
1 ).

https://doi.org/10.1017/prm.2022.69 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.69


Hardy–Littlewood–Sobolev inequality 1697

Set hj(x) = min{v(x), j}, using the regular lifting theorem with contracting oper-
ators which can be seen in [16, 46], we may find a unique uj ∈ Lq(B+

1 ) such
that

vj(x) = T1(vj)(x) + η(x)hj(x)

= η(x)
∫

Bn−1
1

xβ
nU(y)

|x− y|n−α

[∫
B+

1

zβ
nV (z)vr

j (z)
|z − y|n−α

dz

]1/r

dy + η(x)hj(x), ∀x ∈ B+
1 .

Applying a priori estimate to vj , we obtain

‖vj‖Lq(B+
1/4)

� C(n, α, β, p, r, a, b, ε)
(‖vj‖Lp(B+

1 ) + ‖hj‖Lq(B+
1/2)

)
. (4.10)

Observing that

v(x) = T1(v)(x) + η(x)h(x),

then we see that

‖vj − v‖Lp(B+
1 ) � ‖T1(vj) − T1(v)‖Lp(B+

1 ) + ‖hj − h‖Lp(B+
1 )

� 1
2
‖vj − v‖Lp(B+

1 ) + ‖hj − h‖Lp(B+
1 ).

Hence,

‖vj − v‖Lp(B+
1 ) � 2‖hj − h‖Lp(B+

1 ) → 0, as j → ∞.

Taking a limit process in inequality (4.10), we conclude that

‖v‖Lq(B+
1/4)

� C(n, α, β, p, r, a, b, ε)
(
‖v‖Lp(B+

1 ) + ‖h‖Lq(B+
1/2)

)
.

This completes the proof of lemma 4.3. �

Similarly, we also can obtain the following local regularity lemma.

Lemma 4.4. Assume that α+ β > 1, 1 < a, b � ∞, 1 � r <∞, and n−1
n−α−β < p <

q <∞ satisfy

α+ β − 1
n− 1

<
r

q
+

1
a
<
r

p
+

1
a
< 1,

n− 1
ar

+
n

b
=
α+ β − 1

r
+ (α+ β). (4.11)

Suppose that u, g ∈ Lp(Bn−1
R ), V ∈ Lb(B+

R) and U ∈ La(Bn−1
R ) are all nonnegative

functions with g|Bn−1
R/2

∈ Lq(Bn−1
R/2 ), and

u(y) �
∫

B+
R

xβ
nV (x)

|x− y|n−α

[∫
Bn−1

R

xβ
nU(z)ur(z)
|z − x|n−α

dz

]1/r

dx+ g(y), ∀y ∈ Bn−1
R .

There is a ε = ε(n, α, β, p, q, r, a, b) > 0, and C = C(n, α, β, p, q, r, a, b, ε) > 0
such that if

‖U‖1/r

Lb(Bn−1
R )

‖V ‖La(B+
R) � ε(n, α, β, p, q, r, a, b),
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then,

‖u‖Lq(Bn−1
R/4 )

� C(n, α, β, p, q, r, a, b, ε)
(
R(n−1)/q−(n−1)/p‖u‖Lp(Bn−1

R ) + ‖g‖Lq(Bn−1
R/2 )

)
.

Based on lemmas 4.3 and 4.4, we prove lemma 4.2. For R > 0, define

uR(y) =
∫

R
n
+\B+

R

xβ
nv

κ(x)
|x− y|n−α

dx, vR(x) =
∫

∂R
n
+\Bn−1

R

xβ
nu

θ(y)
|x− y|n−α

dy.

By (4.2), we have

u(y) =
∫

B+
R

xβ
nv

κ(x)
|x− y|n−α

dx+ uR(y), v(x) =
∫

Bn−1
R

xβ
nu

θ(y)
|x− y|n−α

dy + vR(x).

We first verify that if u ∈ Lθ+1
loc (∂R

n
+), then

v ∈ Lκ+1
loc (Rn

+), vR ∈ L∞
loc(B

+
R ∪Bn−1

R ).

Indeed, since u ∈ Lθ+1
loc (∂R

n
+), we see u <∞, a.e. on ∂R

n
+. This implies v <∞, a.e.

on R
n
+. Hence there exists an x0 = (x0

1, x
0
2, . . . , x

0
n) ∈ B+

R and x0
n >

R
4 such that

v(x0) <∞. It follows that∫
∂R

n
+\Bn−1

R

uθ(y)
|y|n−α

dy � c

∫
∂R

n
+\Bn−1

R

(x0
n)βuθ(y)

|x0 − y|n−α
dy

� cv(x0) <∞.

For 0 < δ < 1, x ∈ B+
δR, it holds,

vR(x) � cRβ

(1 − δ)n−α

∫
∂R

n
+\Bn−1

R

uθ(y)
|y|n−α

dy,

which implies that

vR ∈ L∞
loc(B

+
R ∪Bn−1

R ).

Thanks to the integral inequality (1.5) with 1
κ+1 = n−1

n (n−α−β
n−1 − 1

θ+1 ), we derive
that ⎡

⎣∫
R

n
+

(∫
Bn−1

R

xβ
nu

θ(y)
|x− y|n−α

dy

)κ+1

dx

⎤
⎦

1/(κ+1)

� ‖u‖θ
Lθ+1(Bn−1

R )
<∞.

Hence,

v ∈ Lκ+1
loc (B+

R ∪Bn−1
R ).

Since R is arbitrary, we deduce that

v ∈ Lκ+1
loc (Rn

+).

https://doi.org/10.1017/prm.2022.69 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.69


Hardy–Littlewood–Sobolev inequality 1699

We now turn to verify that uR ∈ L∞
loc(B

n−1
R ). Since u ∈ Lθ+1

loc (∂R
n
+), there is a y0 ∈

Bn−1
R/2 such that u(y0) <∞. Thus,

∫
R

n
+\B+

R

xβ
nv

κ(x)
|x|n−α

dx � c

∫
R

n
+\B+

R

xβ
nv

κ(x)
|x− y0|n−α

dx

� cu(y0) <∞.

For 0 < δ < 1, x ∈ Bn−1
δR , one can calculate that

uR(y) =
c

(1 − δ)n−α

∫
R

n
+\B+

R

xβ
nv

κ(x)
|x|n−α

dx <∞,

which leads to uR ∈ L∞
loc(B

n−1
R ).

To prove the regularity of u, we discuss two cases.

Case 1. α+β−1
n−α−β < θ < n+α+β−2

n−α−β .
Since 1

κ+1 = n−1
n (n−α−β

n−1 − 1
θ+1 ) and θ < n+α+β−2

n−α−β , we have κ > n+α+β
n−α−β . Then

one can deduce that

κ− α+ β

n
(κ+ 1) >

1
θ
, and κ− α+ β

n
(κ+ 1) > 1.

Hence, we choose a fixed number r such that

1 < κ− α+ β

n
(κ+ 1) � r � κ, and r >

1
θ
,

then it follows that

u1/r(y) �
(∫

B+
R

xβ
nv

κ(x)
|x− y|n−α

dx

)1/r

+ u
1/r
R (y).

Then,

v(x) �
∫

Bn−1
R

xβ
nu

θ−1/r(y)
|x− y|n−α

(∫
B+

R

zβ
nv

κ−r(z)vr(z)
|z − y|n−α

dz

)1/r

dy + hR(x),

where

hR(x) =
∫

Bn−1
R

xβ
nu

θ−1/r(y)u1/r
R (y)

|x− y|n−α
dy + vR(x).

Since u ∈ L∞
loc(∂R

n
+), for any x ∈ B+

R , it holds,

∫
Bn−1

R

xβ
nu

θ−1/r(y)u1/r
R (y)

|x− y|n−α
dy � ‖uR‖L∞(Bn−1

R )

∫
Bn−1

R

xβ
nu

θ−1/r(y)
|x− y|n−α

dy.

It follows from inequality (1.5) and u ∈ Lθ+1
loc (∂R

n
+) that

hR ∈ Lq0(B+
R ∪Bn−1

R ),
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where 1
q0

= 1
κ+1 − n−1

n
1

r(θ+1) . For ε > 0 small enough, one can choose κ− α+β
n (κ+

1) + ε > 1 + ε such that

q0 =
rn(κ+ 1)

rn− (k + 1)(n− 1)(1/(θ + 1))
=
rn(κ+ 1)

nε
>
κ+ 1
ε

can be any large number when we choose ε small enough. Hence, it follows that
hR ∈ Lq(B+

R ∪Bn−1
R ) for any q <∞.

Let

a =
κ+ 1
κ− r

, b =
θ + 1
θ − 1/r

, p = κ+ 1 >
n

n− α− β
,

which combines with 1
κ+1 = n−1

n (n−α−β
n−1 − 1

θ+1 ), we obtain

n

ar
+
n− 1
b

=
α+ β

r
+ (α+ β − 1),

r

p
+

1
a

=
κ

κ+ 1
< 1.

Since u ∈ Lθ+1
loc (∂R

n
+) and v ∈ Lκ+1

loc (Rn
+), one can choose q such that q ∈ (κ+

1, rn(κ+1)
(α+β)(κ+1)−n(k−r) ), then it is easy to check that r

q + 1
a >

α+β
n . It follows from

lemma 4.3 that v|B+
R/4

∈ Lq(B+
R/4). Notice that nκ

α+β < rn(κ+1)
(α+β)(κ+1)−n(k−r) . For

q ∈ ( nκ
α+β ,

rn(κ+1)
(α+β)(κ+1)−n(k−r) ), we have

u(y) � Rβ

(∫
B+

R/4

|x− y|((α−n)q)/(q−κ)dx

)(q−κ)/q

‖v‖κ
Lq(B+

R/4)
+ uR/4(y)

� cRα+β−n+((n(q−k))/q)‖v‖κ
Lq(B+

R/4)
+ uR/4(y) <∞,

which implies that

u|Bn−1
R/8

∈ L∞(Bn−1
R/8 ).

Since every point may be viewed as a centre, we see u ∈ L∞
loc(∂R

n
+), and hence

v ∈ L∞
loc(R

n
+).

For any R > 0, one can apply

∫
∂R

n
+\Bn−1

R

uθ(y)
|y|n−α

dy <∞, and
∫

R
n
+\B+

R

xβ
nv

κ(x)
|x− y0|n−α

dx <∞

to obtain vR ∈ C∞(B+
R ∪Bn−1

R ) and uR ∈ C∞(Bn−1
R ) which yields that u ∈

Cγ
loc(∂R

n
+) for 0 < γ < 1. By the standard potential theory (see [29], chap. 4) and

bootstrap method, we see that (u, v) ∈ C∞(∂R
n
+) × C∞(Rn

+).
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Case 2. n+α+β−2
n−α−β � θ <∞.

Since 1
κ+1 = n−1

n (n−α−β
n−1 − 1

θ+1 ), it is easy to check that

θ − α+ β − 1
n− 1

(θ + 1) >
1
κ
, and θ − α+ β − 1

n− 1
(θ + 1) � 1.

Choosing a fixed number r satisfying

1 � θ − α+ β − 1
n− 1

(θ + 1) � r � θ, and r >
1
κ
,

then it follows that

v1/r(x) �
(∫

Bn−1
R

xβ
nu

θ(y)
|x− y|n−α

dy

)1/r

+ v
1/r
R (x).

Hence,

u(y) �
∫

B+
R

xβ
nv

κ−1/r(x)
|x− y|n−α

(∫
Bn−1

R

xβ
nu

θ(z)
|x− z|n−α

dz

)1/r

dx+ gR(y),

where

gR(y) =
∫

B+
R

xβ
nv

κ−1/r(x)v1/r
R (x)

|x− y|n−α
dx+ uR(y).

For any y ∈ Bn−1
R , it holds,∫

B+
R

xβ
nv

κ−1/r(x)v1/r
R (x)

|x− y|n−α
dx � ‖vR‖L∞(B+

R)

∫
B+

R

xβ
nv

κ−1/r(x)
|x− y|n−α

dx.

It follows from inequality (1.6) that gR ∈ Lq1(Bn−1
R ) with q1 given by

1
q1

=
1

θ + 1
− n

n− 1
1

r(κ+ 1)
.

Let

a =
θ + 1
θ − r

, b =
κ+ 1
κ− 1/r

, p = θ + 1 >
n− 1

n− α− β
,

which combines with 1
κ+1 = n−1

n (n−α−β
n−1 − 1

θ+1 ), we obtain

n− 1
ar

+
n

b
=
α+ β − 1

r
+ (α+ β),

r

p
+

1
a

=
θ

θ + 1
< 1.

Since u ∈ Lθ+1
loc (∂R

n
+) and v ∈ Lκ+1

loc (Rn
+), one can choose q such that

q ∈
(
θ + 1,

r(n− 1)(θ + 1)
(α+ β − 1)(θ + 1) − (n− 1)(θ − r)

)
,

then it is easy to check that r
q + 1

a >
α+β−1

n−1 . It follows from lemma 4.4 that u|Bn−1
R/4

∈
Lq(Bn−1

R/4 ). Arguing this as we did in case 1, and by the standard bootstrap method,
we conclude that (u, v) ∈ C∞(∂R

n
+) × C∞(Rn

+).
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5. The proof of theorem 1.7

In this section, we investigate the necessary and sufficient condition for the existence
of nonnegative nontrivial solutions to the following integral system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(y) =

∫
R

n
+

xβ
n

|x− y|n−α
vκ(x)dx, y ∈ ∂R

n
+,

v(x) =
∫

∂R
n
+

xβ
n

|x− y|n−α
uθ(y)dy, x ∈ R

n
+.

(5.1)

From theorems 3.1 and 4.1, to obtain the proof of theorem 1.7, it is sufficient to
prove the following theorem.

Theorem 5.1. For n � 2, β � 0, α+ β > 1, θ > 0, κ > 0, assume that (u, v) ∈
Lθ+1(∂R

n
+) × Lκ+1(Rn

+) is a pair of nonnegative nontrivial C1 solutions of (5.1),
then a necessary condition for θ and κ is

n− 1
θ + 1

+
n

κ+ 1
= n− α− β.

Proof. Assume that (u, v) ∈ Lθ+1(∂R
n
+) × Lκ+1(Rn

+) is a pair of nonnegative non-
trivial solutions of the integral system (5.1). One can apply the integration by parts
to obtain ∫

Bn−1
R

uθ(y)(y∇u(y))dy

=
1

θ + 1

∫
Bn−1

R

y∇(uθ+1(y))dy

=
R

θ + 1

∫
∂Bn−1

R

uθ+1(y)dσ − n− 1
θ + 1

∫
Bn−1

R

uθ+1(x)dx.

Similarly, one can also derive that

∫
B+

R

vκ(x)(x∇v(x))dx

=
R

κ+ 1

∫
{∂B+

R∩xn>0}
vκ+1(x)dσ − n

κ+ 1

∫
B+

R

vκ+1(x)dx.

It follows from (u, v) ∈ Lθ+1(∂R
n
+) × Lκ+1(Rn

+) that there exists R = Rj → +∞
such that

Rj

∫
∂Bn−1

Rj

uθ+1(y)dσ → 0, Rj

∫
{∂B+

Rj
∩xn>0}

vκ+1(x)dσ → 0.
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Therefore, we get

∫
∂R

n
+

uθ(y)(y∇u(y))dy +
∫

R
n
+

vκ(x)(x∇v(x))dx

= −n− 1
1 + θ

∫
∂R

n
+

u1+θ(x)dx− n

1 + κ

∫
R

n
+

v1+κ(x)dx.
(5.2)

On the other hand, one can calculate that

∇u(y)y =
d[u(ρy)]

dρ

∣∣∣
ρ=1

= −(n− α)
∫

R
n
+

xβ
n

|x− y|n+2−α
[(y − x)y]vκ(x)dx,

and

∇v(x)x =
d[v(ρx)]

dρ

∣∣∣∣∣
ρ=1

= −(n− α)
∫

∂R
n
+

xβ
n

|x− y|n+2−α
[(y − x)x]uθ(y)dy

+ β

∫
∂R

n
+

xβ
n

|x− y|n−α
uθ(y)dy.

It follows from Fubini’s theorem that∫
∂R

n
+

uθ(y)(y∇u(y))dy +
∫

R
n
+

vκ(x)(x∇v(x))dx

= (α+ β − n)
∫

R
n
+

∫
∂R

n
+

xβ
n

|x− y|n−α
uθ(y)vκ(x)dydx

= (α+ β − n)
∫

∂R
n
+

uθ+1(y)dy

= (α+ β − n)
∫

R
n
+

vκ+1(x)dx.

This together with (5.2) implies that n−1
θ+1 + n

κ+1 = n− α− β. �
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