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Transition to turbulence in hypersonic flow over
a compression ramp due to upstream forcing
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Several transition scenarios are present in a hypersonic compression-ramp flow. In our
previous work (Cao et al., J. Fluid Mech., vol. 941, 2022, p. A8), a complete transition
process induced by the global instability of a compression-ramp flow was revealed. In a
globally stable flow, however, the transition to turbulence can be promoted by convective
instabilities, which is the focus of this work. The same flow conditions as in our previous
work (Mach number 7.7, Reynolds number 8.6 × 105 based on the flat-plate length) are
considered here. Owing to a smaller ramp angle, a weakly separated flow forms on the
compression ramp, which supports no global instability. Resolvent analysis identifies
low-frequency streamwise streaks as the optimal response of base flow to upstream forcing.
Local stability analysis reveals Mack’s second mode in the boundary layer downstream
of reattachment. By introducing random disturbances upstream of separation in direct
numerical simulations, we observe breakdown to turbulence downstream of reattachment.
Two transition scenarios are revealed, and they are highly dependent on the amplitude
of upstream disturbances. For a large amplitude, strong streamwise streaks develop near
the reattachment region, which break down to turbulence quickly. However, when the
disturbance amplitude is reduced, the second-mode instability dominates the transition
to turbulence.

Key words: transition to turbulence, shock waves, boundary layer separation

1. Introduction

Laminar–turbulent transition in supersonic and hypersonic boundary layers has been
studied for several decades, owing to its importance to the development of high-speed
vehicles. However, the boundary layer in external or internal flows of a vehicle may
frequently encounter shock waves generated by an adjacent or opposite surface (Gaitonde
2015). This shock–boundary layer interaction (SBLI) can significantly alter the transition
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process in the flow, especially when the adverse pressure gradient induced by shock causes
flow separation.

In a typical SBLI, such as a compression-ramp flow, instabilities that trigger transition to
turbulence can be classified into two groups. The first type originates from the self-excited,
intrinsic instability that is supported by the recirculation flow in the separated region. Since
the linear behaviour of the self-excited instability can be described by global stability
analysis (GSA) (Theofilis 2011), it is also called global instability. In addition to the
intrinsic dynamics, a SBLI can also behave as a noise amplifier, and the response to
extrinsic disturbances (forcing) may be associated with several convective instabilities.
In many wind tunnel experiments, both global instability and convective instability are at
play. Thus, a comprehensive understanding of instabilities in SBLI is of great importance
to transition prediction and flow control.

The dynamics of global instability has been studied intensively in recent years. When
the recirculation of the separated flow is strong enough, onset of three-dimensionality
can be observed in several SBLI configurations. Examples are shock impingement on
a flat plate boundary layer (Robinet 2007; Hildebrand et al. 2018), double-wedge flow
(Sidharth et al. 2018), double-cone flow (Hao et al. 2022), compression-ramp flow (Hao
et al. 2021), hollow-cylinder–flare flow (Li & Hao 2023). After nonlinear saturation, the
self-excited instability usually induces low-frequency streamwise streaks in the vicinity of
reattachment (Cao et al. 2021b), which then break down to turbulence farther downstream
(Cao et al. 2022).

On the other hand, the convective instability is much more complicated than the global
instability. Firstly, disturbances in the incoming flow may evolve into first (Mack) mode,
second (Mack) mode, streamwise streaks, etc. in the boundary layers ahead of a SBLI.
Secondly, multiple amplification mechanisms are possible in the interaction region, such
as Görtler instability (Hao et al. 2023), nonlinear effects (Lugrin et al. 2021b; Dwivedi,
Sidharth & Jovanović 2022) and baroclinic effects (Dwivedi et al. 2019). Additionally,
the disturbance environment (e.g. its nature, frequency and wavenumber) may have a
significant influence on the transition scenarios ‘selected’ by the flow.

Recently, numerous studies focused on Mach 6 flows over a cone–cylinder–flare
geometry, where both second mode and shear-layer instability contribute to the transition
process (Benitez et al. 2023a,b; Caillaud et al. 2024), and Mach 5 flows over a
hollow-cylinder–flare geometry, for which oblique modes (first mode in nature) play a
dominant role and their nonlinear interaction leads to streamwise streaks (Lugrin et al.
2021a,b; Threadgill et al. 2024). Furthermore, the response of compression-ramp flows at
Mach 7.7 (Cao et al. 2023; Hao et al. 2023) and Mach 8 (Dwivedi et al. 2019) to upstream
forcing were studied using resolvent analysis (also called input–output analysis). It was
shown that low-frequency (including steady) streamwise streaks are the dominant modes,
though the second mode are important in certain circumstances. It can be concluded
from the above studies that, as a noise amplifier, the shock-induced separated flow not
only supports the growth of first and second modes, but also promotes the occurrence of
streamwise streaks via several mechanisms.

In spite of the rich discussions on global and convective instabilities, complete
laminar–turbulent transition data are still lacking. In fact, transition to turbulence in
SBLI has been observed in some experiments (Simeonides & Haase 1995; Chuvakhov
& Radchenko 2020; Lugrin et al. 2022; Benitez et al. 2024). But multiple instabilities
may coexist in one experiment, making it difficult to identify the dominant mechanism
or the interaction between different instabilities. On the other hand, the transition onset
may differ significantly between facilities, especially those with different disturbance
levels. In a noisy wind tunnel, transition can occur near a reattachment region or even
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inside the separation bubble (Simeonides & Haase 1995; Benay et al. 2006; Sandham
et al. 2014; Currao et al. 2020; Davami et al. 2023). This flow is usually referred
to as transitional SBLI. In a wind tunnel producing low disturbances, however, the
experimental flow is more likely to be laminar, and transition is found downstream of
reattachment (Benitez et al. 2023b). Although quiet wind tunnels may produce low-level
disturbances, experiments performed in these tunnels are relatively rare. However,
high-fidelity numerical simulations and comprehensive stability analyses may shed more
light on transition mechanisms in SBLIs, especially for low-disturbance flows (Cao et al.
2022; Paredes et al. 2022; Caillaud et al. 2024). In this way, the main motivation
of the present work is to make contribution to understanding transition scenarios in a
low-disturbance flow that may occur in quiet tunnels or flight.

This paper addresses the influence of disturbance amplitude on the transition scenarios
in a hypersonic compression-ramp flow with laminar separation. Several stability analysis
tools are used to identify instability mechanisms that may trigger transition to turbulence
in the considered flow. Direct numerical simulation (DNS) is then employed to show
that not only the transition onset, but also the transition mechanism is sensitive to the
disturbance amplitude. The considered disturbances are weak enough to ensure that the
transition to turbulence takes place downstream of reattachment. It will be demonstrated
that for a moderate disturbance amplitude, the transition to turbulence is dominated by
low-frequency streamwise streaks. When the amplitude is reduced by a factor of four, the
high-frequency second mode experiences large growth and predominates the transition
process.

2. Stability analysis of the base flow

2.1. Two-dimensional base flow
The flow conditions considered in the present paper are the same as our previous work
(Cao et al. 2022). The free stream Mach number (M∞), Reynolds number (Re∞) and
temperature (T∞) are 7.7, 8.6 × 106 m−1 and 125 K, respectively. To study the transition
scenarios in a globally stable flow, a smaller ramp angle 10◦, instead of 15◦ in Cao et al.
(2022), is used here. The length of flat plate and ramp are L = 100 mm and Lr = 180 mm,
respectively.

For the DNS, the Navier–Stokes equations for unsteady, compressible flow are
solved using a finite-difference method that achieves high-order accuracy in space and
time. A fifth-order WENO (weighted essentially non-oscillatory) scheme, a sixth-order
central-difference scheme and a third-order Runge–Kutta scheme are used for the
discretisation of inviscid fluxes, viscous fluxes and time derivatives, respectively. Details
about the numerical schemes may be found in Cao (2021). The DNS solver has been
validated and used in our previous studies (Cao, Klioutchnikov & Olivier 2020; Cao et al.
2021a,b, 2022).

In the simulation of two-dimensional (2-D) base flow, the number of grid points in
the streamwise (x) and wall-normal (y) directions is 3360 and 320, respectively. In the y
direction, the mesh is clustered near the wall, and the minimum mesh spacing is �yw =
4 × 10−6 m. Free stream parameters are imposed at the inflow and upper boundaries. An
isothermal condition is specified at the no-slip wall, and the wall temperature is set at
293 K. A grid-independence study showed a converged solution for the base flow (see the
Appendix).

Figure 1 shows the Mach number contour and density gradient contour (∇(ρ/ρ∞) =
∇ρ̄ =

√
(∂ρ̄/∂ x̄)2 + (∂ρ̄/∂ ȳ)2) of the base flow. Because of the small ramp angle, the
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Figure 1. (a) Mach number contour and (b) density gradient contour of the 2-D base flow.

shock-induced pressure rise only leads to a small separation bubble around the corner. No
secondary separation is found in the separation bubble. The separation and reattachment
points are located at x/L = 0.84 and x/L = 1.14, respectively. In the following, several
stability analysis tools are utilised to study the stability of flow inside the separation
bubble, near the reattachment region and downstream of reattachment.

2.2. Global stability analysis
The first step is to show that the base flow supports no self-excited instability (global
instability). To this end, GSA is employed to study the temporal stability of the 2-D
base flow with respect to three-dimensional (3-D) small-amplitude perturbations. The
linearised Navier–Stokes equations can be written in the following operator form:

∂U ′

∂t
= AU ′, (2.1)

where U ′ includes the perturbation variables and A is the linearised Navier–Stokes
operator. The perturbation U ′ is assumed to be in the form

U ′(x, y, z, t) = Û(x, y) exp
[

i
2π

λ
z − i(ωr + iωi)t

]
, (2.2)

where Û is the 2-D eigenfunction, λ denotes the spanwise wavelength, ωr is the angular
frequency and ωi is the temporal growth rate. The resulting eigenvalue problem is solved
using an in-house GSA solver as described in Hao et al. (2021). To reduce the memory
requirement of the GSA and the following resolvent analysis, we restrict the computational
domain to x/L = 0.4–2.5.

In addition to the 10◦ ramp angle case, a base flow for 11◦ ramp angle is also considered
to clarify the global stability boundary. Figure 2 provides the growth rates of the least
stable mode as a function of λ for the 10◦ and 11◦ cases. It is seen that the 11◦ case
is marginally stable with the peaking growth rate being slightly smaller than zero. The
spanwise wavelength for the mode with largest growth rate is λ/L = 0.140. In contrast, the
10◦ case is much more stable, and the growth rate peaks at λ/L = 0.105. The eigenvalue
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Figure 2. The GSA results for 10◦ and 11◦ cases: growth rates of the least stable mode as a function of
spanwise wavelength.

spectrum for the least stable mode at λ/L = 0.105 is shown in the Appendix, together with
a grid-independence study for the GSA. It is noted that the behaviour of the least stable
mode, that is, the dominant mode shifts to a longer wavelength and a short-wavelength
mode occurs as the ramp angle is increased, is consistent with the results of Hao et al.
(2021). The above GSA results justify the choice of base flow as the aim of this paper is to
study convective instability, rather than global instability. In the following, we investigate
the response of base flow (10◦ case) to upstream forcing.

2.3. Resolvent analysis
Here, resolvent analysis is employed to identify the response of the globally stable base
flow to external small-amplitude disturbances d′ that are periodic in time and in the
spanwise direction. Hence, a forcing term is added to (2.1) as

∂U ′

∂t
= AU ′ + Bd′, (2.3)

where operator B constrains the forcing to a specific location. To be consistent with the
following DNS, the forcing is added on a wall-normal plane at x/L = 0.5. Here d′ is given
by

d′(x, y, z, t) = d̂(x, y) exp
(

i
2π

λ
z − iωrt

)
. (2.4)

As a globally stable flow is considered, the long-time solution of (2.3) takes the same form

U ′(x, y, z, t) = Û(x, y) exp
(

i
2π

λ
z − iωrt

)
. (2.5)

Substituting (2.4) and (2.5) into (2.3) gives

Û = RBd̂, R = (−iωrI − A)−1, (2.6)

where R is the resolvent matrix and I is the identity matrix.
In the present analysis, we aim to find the forcing and response pair that maximises

the energy amplification. The maximum amplification is referred to as optimal gain and
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Figure 3. (a) Optimal gain as a function of spanwise wavelength for the steady streaks. (b) Optimal gain as a
function of angular frequency at λ/L = 0.018.

defined by

σ 2(λ, ωr) = max
d̂

‖Û‖E

‖Bd̂‖E
, (2.7)

where the energy norm is evaluated according to Chu energy (Chu 1965). The optimisation
problem (2.7) is then converted to an eigenvalue problem and solved using an in-house
code. Details about the numerical treatment can be found in Hao et al. (2023).

According to previous studies on the compression-ramp flow (Dwivedi et al. 2019; Cao
et al. 2023; Hao et al. 2023), the optimal response of hypersonic flow over a compression
ramp is low-frequency (including steady) streamwise streaks with a specific spanwise
wavelength. Therefore, we first perform resolvent analysis to find the most amplified
streaks. The optimal gain as a function of spanwise wavelength for steady streaks is shown
in figure 3(a). It is clear that the maximum optimal gain is achieved at λ/L = 0.018.
Subsequently, we consider the frequency response of base flow to the streamwise streaks
with a wavelength of λ/L = 0.018. As shown in figure 3(b), the optimal gain remains
constant at low frequencies and drops quickly when ωrL/U∞ > 1. This low-pass feature
is consistent with other studies for SBLI (Dwivedi et al. 2019; Bugeat et al. 2022). It
has been proved by Hao et al. (2023) and Cao et al. (2023) that the main amplification
mechanism of streamwise streaks is Görtler instability that is supported by the streamline
curvature near separation and reattachment positions. In other words, streamwise streaks
can experience large amplification in the SBLI region.

2.4. Local stability analysis
In the considered compression-ramp flow, SBLI only takes place near the corner. For the
downstream flow over the ramp, its behaviour resembles a flat-plate boundary layer. Hence,
typical convective instabilities such as Mack’s first/second mode may be present here.

Lastly, we use linear stability theory (LST) to identify local convective instability in the
reattached boundary layer on the ramp. The considered small-amplitude disturbance is in
the following form:

φ′(x, y, z, t) = ϕ( y) exp(i(αx + βz − ωt)), (2.8)

where ϕ = (ρ̂, û, v̂, ŵ, T̂)T is the eigenfunction, α = αr + iαi, β and ω denote the
spanwise wavenumber and the angular frequency, respectively. Here αr is the streamwise

999 A37-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.979


Transition to turbulence in hypersonic compression-ramp flow

f (kHz)

–
α
i (

m
–1

)

500 600 700 800

0

50

100
x/L = 1.4
x/L = 1.8
x/L = 2.5

Figure 4. Spatial growth rates as a function of frequency for the most unstable second mode at different
streamwise locations.

wavenumber, and −αi is the spatial growth rate. The numerical details of the LST code
may be found in Cao et al. (2023) and Guo, Hao & Wen (2023). Three boundary layer
profiles at x/L = 1.4, 1.8 and 2.5 are used as the base flow for LST analysis. To find the
most unstable second mode, the spanwise wavenumber β is set to zero. The resulting
spatial growth rate as a function of frequency is shown in figure 4. As expected, the
most significant frequency drops quickly as the boundary layer evolves in the streamwise
direction. The growth rate peaks at 775, 660 and 525 kHz for x/L = 1.4, 1.8 and 2.5,
respectively. These values are used to compare with the DNS data later. In addition, LST
analysis is carried out for non-zero spanwise wavenumber, and no unstable first mode is
found for the boundary layer over the ramp. Necessary LST analysis is also performed
below to facilitate the understanding of instabilities associated with the transition process.

3. Transition to turbulence in the presence of random disturbances

On the basis of previous stability analysis results, we then explore transition scenarios
in the compression-ramp flow using DNS. As the main destabilising mechanisms are
low-frequency streamwise streaks and high-frequency second mode, it is conjectured
that their contribution to transition lies in different regions, that is, near reattachment
and far downstream of reattachment. To this end, external disturbances with different
amplitudes are introduced in DNS to investigate the transition process associated with
different instabilities.

According to the resolvent analysis, the spanwise wavelength of the most amplified
streaks is λ/L = 0.018 (λ = 1.8 mm). Hence, the width of compression ramp is set as
14.4 mm, which allows the DNS to capture eight streaks. Accordingly, 220 grid points are
equispaced in the spanwise (z) direction. To study the ‘natural’ transition process that may
occur in wind tunnel experiments or during flights, random disturbances are introduced
in the incoming laminar flow. Similar to Hader & Fasel (2018) and Cao et al. (2023), the
random forcing takes the following form:

w′
j,k/U∞ = Anoise(2r − 1), (3.1)

where the j and k refer to the grid point indices in the y and z directions, Anoise denotes
the amplitude of perturbations and r is a pseudorandom number (ranging from 0 to 1)
generated by the rand() function in C. Specifically, random spanwise velocity perturbations
(w′/U∞) are superimposed on the y–z plane at x/L = 0.5 (i.e. for 1 � j � 320 and
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Figure 5. Streamwise distribution of Stanton number for cases A6, A3 and A1.5. Solid lines represent the
spanwise-averaged St for an instantaneous flow. Blue dashed lines correspond to time- and spanwise-averaged
values.

1 � k � 220). Three noise levels are considered in this paper, Anoise = 6 %, 3 % and
1.5 %. For convenience, the three cases are labelled as A6, A3 and A1.5. To ensure a
sufficient time for the convection of disturbances through grid points, the perturbation
is updated every 50 time steps. Because the time step size for these cases is set to
4 × 10−9 s to ensure a stable computation, the time interval for updating the spanwise
velocity becomes �t = 2 × 10−7 s (or �tU∞/L = 0.0035). Accordingly, the sampling
frequency for collecting data is 4.93 MHz. As shown by Hader & Fasel (2018) and Cao
et al. (2023), the induced disturbances have a broadband spectrum in both frequency and
wavelength, which allows the flow to ‘naturally’ select preferred modes.

After the flow is fully developed, transition to turbulence is observed for all three cases.
It should be mentioned that, to capture a complete transition process for case A1.5, the
ramp length and the number of streamwise grid points are increased to 250 mm and 3920,
respectively. Figure 5 shows the streamwise distributions of Stanton number for the three
cases, which is defined as

St = qw

ρ∞U∞cp(Taw − Tw)
. (3.2)

Here, qw denotes the surface heat flux, cp is the specific heat capacity and Taw is
the adiabatic wall temperature. The solid lines correspond to spanwise-averaged values,
whereas the dashed lines represent the time- and spanwise-averaged St. As shown in
figure 5, the length of separated region is not affected by the considered disturbance
amplitudes, and the flow upstream and inside the separation bubble remains laminar
for all cases. However, transition to turbulence occurs downstream of reattachment. As
expected, the transition onset moves downstream with decreasing disturbance amplitude.
Interestingly, the transition length for case A1.5 is much larger than cases A6 and A3,
which may indicate a different transition scenario for case A1.5. It can be estimated that
the Stanton number in the turbulent region rises by a factor of four in comparison with the
undisturbed laminar flow.

Figure 6 provides an instantaneous flow field for case A6 showing the complete
laminar–turbulent transition process. The introduced disturbances decay rapidly on the
flat plate but experience large amplification in the vicinity of separated region (Cao et al.
2023). Downstream of reattachment, distinct streamwise heat-flux streaks can be observed,
which are the footprint of spanwise-modulated boundary layers (i.e. boundary-layer
streaks). It can be estimated that the spanwise wavelength of the streaks is approximately
1.8 mm, which agrees well with the resolvent analysis. Note that the streaks are unsteady

999 A37-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.979


Transition to turbulence in hypersonic compression-ramp flow

300

1.6

0.002
St

y
x

z

0.001

0

1.4

1.14 (reattachment point)

0.84 (separation point)

x/L = 0.5 (forcing position)

0∇(ρ/ρ∞)

Figure 6. Instantaneous flow for case A6. Stanton number is shown on the surface, together with isolines of
zero skin friction coefficient. Density gradient at z/L = 0 is shown to indicate the SBLI. The Q-criteria is used
to visualise the transitional and turbulent flow.

and exhibit a low-frequency feature, as shown below. Farther downstream, the streaks
break down to turbulence quickly.

Figure 7 presents the temporal history and the corresponding power spectra
density (PSD) of the Stanton number and surface pressure at (x/L, z/L) = (1.4, 0.072),
which is slightly upstream of transition onset (x/L ≈ 1.5). The Stanton number signal
mainly exhibits a low-frequency feature with the most energetic components being less
than 40 kHz. Although a local peak can be found around 700 kHz, it is very weak
compared with the low-frequency parts. The low-frequency characteristic is consistent
with the resolvent analysis and our previous studies (Cao et al. 2023). It should be
mentioned that although the spanwise- or time-averaged St is approximately 2 × 10−3 (see
figure 5), the instantaneous St can reach as high as 5 × 10−3. In fact, the relative standard
deviation for the Stanton number signal in figure 7(a) is 77 %. For the pressure signal, the
peaking frequency is close to the frequency of the most unstable second mode (775 kHz)
revealed by LST. But the high-frequency part is not significant in comparison with cases
A3 and A1.5 (see below). Figure 8 shows the PSD contour for Stanton number and pressure
signals along the centreline of wall. It is seen that upstream of transition onset, the Stanton
number signal is dominated by low-frequency components, and no evident peak is found
for the pressure signal. Therefore, it can be concluded that the transition to turbulence
in case A6 is dominated by low-frequency streamwise streaks. As this transition scenario
corresponds to a relatively high-amplitude forcing (but not as high as transitional SBLI),
the streak-induced transition observed in some experiments (e.g. Chuvakhov et al. 2017;
Chuvakhov & Radchenko 2020) has close similarity to case A6.

For case A3, the transition onset moves downstream to x/L ≈ 1.9. As illustrated in
figure 9, due to a smaller disturbance amplitude, the streamwise heat-flux streaks are
weaker than case A6. In addition, the reattachment line is less distorted. On the other
hand, the spanwise wavelength of streaks is still 1.8 mm.

The temporal history and corresponding PSD of Stanton number and surface pressure
at (x/L, z/L) = (1.8, 0.072) for case A3 are shown in figure 10. For the Stanton number
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Figure 7. (a,b) Temporal history of Stanton number and surface pressure at (x/L, z/L) = (1.4, 0.072) for
case A6. (c,d) The PSD of the signal shown in panels (a,b).
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coefficient. Density gradient at z/L = 0 is shown to indicate the SBLI. The Q-criteria is used to visualise the
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Figure 10. (a,b) Temporal history of Stanton number and surface pressure at (x/L, z/L) = (1.8, 0.072) for
case A3. (c,d) The PSD of the signal shown in panels (a,b).

signal, although low-frequency components are still dominant, a noticeable local peak
can be observed around 760 kHz (see figure 10c). However, the surface pressure signal
is dominated by high frequencies, which also peaks at 760 kHz. This is reasonable
as the boundary-layer streaks have an insignificant influence on the surface pressure.
Additionally, higher harmonics of the peaking frequency can be found in figure 10(d).
These facts are typical of the second-mode instability of the boundary layer on the
ramp. The reason for the discrepancy in the peaking frequency obtained from DNS and
LST may be as follows. In the DNS, the occurrence of streamwise streaks modifies the
profile of boundary layer. For instance, the boundary layer thickness is modulated in the
spanwise direction. As a result, the second modes evolving in the distorted boundary
layer are different from those in a spanwise homogeneous base flow. Nevertheless, it
can be concluded that both low-frequency streamwise streaks and second-mode instability
waves exist in the transitional flow for case A3. Figure 11 provides the PSD contour for
Stanton number and pressure signals along the centreline of wall. It can be observed that
low-frequency streamwise streaks grow rapidly downstream of reattachment and remain
strong until transition onset (x/L = 1.9). For the second mode, however, it is remarkable
only downstream of x/L = 1.7, as seen in figure 11(b). To fully understand the breakdown
mechanism in case A3, a thorough examination of the interaction between second mode
and streamwise streaks may be necessary (Chen, Zhu & Lee 2017; Paredes, Choudhari &
Li 2019).

When the disturbance amplitude is further reduced to 1.5 %, the transition scenario
tends to be different. Figure 12 presents an instantaneous flow for case A1.5. Because
of the low amplitude, the streamwise streaks become much weaker than cases A6 and
A3, and the reattachment line is almost straight. Nevertheless, the spanwise wavelength of
streaks remains at 1.8 mm. It is conceivable that the weak streaks may decay and transition
may not take place downstream if there are no other modes. However, the second-mode
instability waves grow rapidly in the boundary layer at a large distance downstream of
reattachment, as shown in the surface heat flux distribution at x/L = 2.0–3.0. It is noted
that the occurrence of second mode is influenced by the streamwise streaks. Consequently,
turbulent spots are randomly distributed ahead of the fully turbulent flow.
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visualise the transitional and turbulent flow.

The Stanton number and surface pressure signals at (x/L, z/L) = (2.5, 0.072) and the
corresponding PSD are given in figure 13. In comparison with cases A6 and A3, though
both high-frequency and low-frequency peaks are present in the Stanton number signal,
the low-frequency parts have a smaller PSD. It is reasonable due to the smaller disturbance
amplitude. Interestingly, the low-frequency part in figure 13(c) matches well with the
resolvent analysis. Note that the green curve is taken from figure 3(b) but has been
premultiplied. This agreement again verifies the resolvent analysis results. For the surface
pressure signal, it peaks at 470 kHz, which is close to the frequency of the most unstable
planar second mode at x/L = 2.5 (525 kHz). It is noted that the intermittently occurring
high-frequency packets (figure 13b) are a result of the low-frequency boundary-layer
streaks.

Figure 14 illustrates the PSD contour for Stanton number and pressure signals along
the centreline of wall. For the Stanton number, its low-frequency components virtually
remain neutral until transition onset (x/L ∼ 2.6), whereas its high-frequency part starts
growing at x/L ≈ 1.5. This high-frequency component results from the second-mode
instability. As shown in the pressure data (figure 14b), the second mode grows rapidly
downstream of x/L = 1.5. To identify the frequency of the most unstable planar second
mode along streamwise direction, LST analysis is performed from x/L = 1.5 to 3.0 using
the 2-D base flow. The black line represents the obtained frequencies. It is apparent that
the peak frequencies in the DNS data agree well with LST results, especially upstream
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in figure 3(b) with a different magnitude.
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of x/L = 2.2. This is because the boundary layer is less distorted by the weak streaks
there. The slight discrepancy in the downstream region may be again attributed to the
deviation of boundary layer in the 3-D simulation to that in the 2-D base flow. The above
findings confirm the dominance of the planar second mode in the boundary layer transition
for case A1.5. Owing to a very low-level forcing, this transition scenario is more likely
observed in quiet wind tunnels (Benitez et al. 2023b).

4. Conclusion

In the present paper, the transition to turbulence in a Mach 7.7 compression-ramp flow
excited by upstream forcing was studied. A small ramp angle was used to produce a
weakly separated flow. Global stability analysis was firstly performed to identify the global
instability of two compression-ramp flows and justify the choice of base flow. Then,
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resolvent analysis was carried out to reveal the response of base flow to upstream forcing. It
was shown that the optimal response is low-frequency streamwise streaks with a specific
spanwise wavelength. Subsequently, LST was utilised to analyse the local second-mode
instability in the boundary layer downstream of reattachment.

A DNS was then performed to explore the transition scenarios associated with the
instabilities identified by stability analyses. By introducing random disturbances with
different amplitudes upstream of separation, several transition scenarios were revealed.
For a large amplitude (case A6), strong streamwise streaks emerge near the reattachment
region. The streaks have a spanwise wavelength of 1.8 mm and exhibit a low-frequency
response, which are consistent with the resolvent analysis. Transition to turbulence is
accomplished via the breakdown of streamwise streaks. When the disturbance amplitude
was reduced to 3 % (case A3), the transition onset moves downstream, and high-frequency
second mode becomes significant in the surface heat flux and pressure signals. Hence,
both low-frequency streamwise streaks and a high-frequency second mode contribute to
the transition process for case A3. When the amplitude was further decreased to 1.5 %
(case A1.5), the streamwise streaks become much weaker, but the second mode grows
rapidly in the downstream region. Although its growth is affected by the low-frequency
streamwise streaks, the second mode plays a dominant role in the transition to turbulence
for case A1.5. Therefore, it can be concluded that for the considered compression-ramp
flow, not only the transition onset, but also the transition mechanism is sensitive to
upstream disturbance amplitude.

In our previous work (Cao et al. 2022), the ramp angle is larger than the present
cases, which causes the flow to be globally unstable. Thus, the transition to turbulence
is completely induced by the global instability, and the transition process is independent
of initial disturbances and can be accomplished without external forcing. However, this
paper demonstrates that for a globally stable flow, the transition scenarios with respect to
convective instability are highly dependent on the amplitude of external disturbances. It
is reminiscent of recent experimental studies on Mach 6 flows over a cone–cylinder–flare
geometry (Benitez et al. 2023b, 2024), where the transition onset differed in different
facilities under the same flow condition or in the same facility with different noise levels.
It is finally noted that for the above Mach 6 flow, first mode, second mode and streaks may
coexist, whereas only second mode and streaks appear in the present Mach 7.7 cold-wall
flow. Nevertheless, both studies showed multiple possible transition paths to turbulence in
low-disturbance flows.
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Appendix. Grid independence

A grid-independence study for the base flow is firstly conducted. Two mesh resolutions
are considered, i.e. 2240 × 240 and 3360 × 320. Figure 15 provides the streamwise
distributions of surface pressure coefficient Cp = ( p − p∞)/(0.5ρ∞U2∞) and Stanton
number for the two meshes. It is clear that a converged solution for the base flow is
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achieved. Nevertheless, the fine mesh is used in the DNS to accurately capture the
transition process.

To examine grid independence for the GSA, we consider the least stable mode at λ/L =
0.105 for the 10◦ case (see figure 2). Figure 16 shows the eigenvalue spectra for this mode
with two mesh resolutions. The overlap of leading modes verifies the grid independence
for the GSA.

Subsequently, grid independence for the resolvent analysis is studied for the streaks at
λ/L = 0.018. For the fine mesh, the optimal gain at frequencies ωrL/U∞ = 0.1, 1 and
10 is shown in figure 17 together with results for the coarse mesh. The almost identical
solution indicates that the coarse mesh is sufficient for resolvent analysis.
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