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Abstract

Background: Leveraging the National COVID-19 Cohort Collaborative (N3C), a nationally
sampled electronic health records repository, we explored associations between individual-level
social determinants of health (SDoH) and COVID-19-related hospitalizations among racialized
minority people with human immunodeficiency virus (HIV) (PWH), who have been
historically adversely affected by SDoH.Methods:We retrospectively studied PWH and people
without HIV (PWoH) using N3C data from January 2020 to November 2023. We evaluated
SDoH variables across three domains in the Healthy People 2030 framework: (1) healthcare
access, (2) economic stability, and (3) social cohesion with our primary outcome, COVID-19-
related hospitalization.We conducted hierarchically nested additive and adjustedmixed-effects
logistic regression models, stratifying by HIV status and race/ethnicity groups, accounting for
age, sex, comorbidities, and data partners. Results: Our analytic sample included 280,441
individuals from 24 data partner sites, where 3,291 (1.17%) were PWH, with racializedminority
PWH having higher proportions of adverse SDoH exposures than racialized minority PWoH.
COVID-19-related hospitalizations occurred in 11.23% of all individuals (9.17% among PWH,
11.26% among PWoH). In our initial additive modeling, we observed that all three SDoH
domains were significantly associated with hospitalizations, even with progressive adjustments
(adjusted odds ratios [aOR] range 1.36–1.97). Subsequently, our HIV-stratified analyses
indicated economic instability was associated with hospitalization in both PWH and PWoH
(aOR range 1.35–1.48). Lastly, our fully adjusted, race/ethnicity-stratified analysis, indicated
access to healthcare issues was associated with hospitalization across various racialized groups
(aOR range 1.36–2.00). Conclusion: Our study underscores the importance of assessing
individual-level SDoH variables to unravel the complex interplay of these factors for racialized
minority groups.
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Introduction

The COVID-19 pandemic has disproportionately affected minor-
ity communities in the United States (U.S.) and exposed long-
standing health-care disparities evident in other diseases, such as
the human immunodeficiency virus (HIV) epidemic. While in the
U.S. alone, the number of COVID-19 cases has surpassed
100 million, with more than 1.1 million deaths [1], both direct
impacts of the infections and subsequent adverse outcomes, as well
as indirect impacts of social and economic consequences of
shutdowns, stay-at-home orders, and more, have differentially
affected persons of racial/ethnic minority, hereafter termed
“racialized minority,” communities[2]. U.S. Black/African
American persons have experienced a higher incidence of
COVID-19, along with increased hospitalization, intensive care
unit admissions, and mortality rates compared to the non-
Hispanic/Latinx White persons [3]. These inequities likely stem
from both health-related and social and structural risk factors.
Racialized minority groups face higher rates of chronic illnesses
and limited healthcare access, compounded by living and working
conditions that increase social vulnerability to severe COVID-19
outcomes [3,4]. Therefore, a deeper understanding of structural
vulnerability risk factors contributing to adverse outcomes in
racialized minority communities is critical.

According to Healthy People 2030, the social determinants,
sometimes also termed drivers, of health (SDoH) encompass various
conditions in which individuals are born, grow, develop, work, play,
worship, and age, significantly influencing an array of health
outcomes, functionality, and risks to quality of life [5]. SDoH factors,
such as education and early childhood development, urban planning
and community development, housing, and employment, often
account for disparities in health outcomes and contribute to health
inequities [6]. Concurrently, heterogeneity in COVID-19 risk exists
due to area-level factors like housing density, occupation, and
structural racism at population levels [7]. These multi-level social
dynamics contribute to the emergence of risk factors influencing
COVID-19 exposure and susceptibility, as well as differences in
treatment-seeking behavior and access to care. Consequently, the
pandemic’s social, psychological, health, and economic conse-
quences disproportionately affect individuals’ health and well-being
based on their overall social vulnerability [8].

Just like in the COVID-19 pandemic, racialized minority
communities have historically faced marked racial/ethnic inequities
in the U.S. HIV epidemic. Among people with HIV (PWH), for
example, Black/African American and Latinx/Hispanic PWH share
a higher burden of the HIV epidemic compared to their White
counterparts. Although Black/African Americans constituted only
12% of the U.S. population, Black/African Americans accounted for
42% of HIV-related mortality in 2021 [9]. SDoH factors likely form
the foundation for these health disparities [10]. Racialized minority
communities face not only inequitable exposure due to social
vulnerability but also a higher prevalence of preexisting chronic
conditions like HIV. These conditions likely heighten the risk of
adverse outcomes from COVID-19, as we have previously shown
that racialized minority PWH experienced a disproportionate
burden of COVID-19 infections and severity compared to racialized
minority people without HIV (PWoH) or White PWH [11]. Given
the disproportionate impact of the COVID-19 pandemic on PWH,
it is crucial to explore the significance of SDoH to understand
potential pathways to mitigate disparities among racial/ethnic
minorities affected by HIV.

Furthermore, SDoH factors are often measured at area-level
exposures, such as at census tract levels, zip codes, or counties [12].
These area-level SDoH exposures offer critical insights into
contextual factors that may be driving underlying individual access
to healthcare, transportation, food, and more. However, aggrega-
tion at the area-level exposures often loses the granularity or
heterogeneity of the subpopulations residing within specific areas.
Given the glaring impact of SDoH on COVID-19-related
outcomes, there has been growing interest in ascertaining and
using individual-level SDoH data. Studies with individual-level
SDoH data with national sampling for COVID-19 are scarce [13]
and, within the overlap of HIV and COVID-19, are non-existent.
Therefore, a critical gap remains in understanding the impact of
individual-level SDoH at the intersections of COVID-19, HIV, and
race/ethnicity, specifically in understanding how individual SDoH
contributes to the severity of COVID-19 among PWH. Given this
context, our research seeks to address three primary questions:

• Are individual-level SDoH, within (1) healthcare access,
(2) economic stability, and (3) social cohesion domains,
associated with COVID-19-related hospitalization, and do
these associations persist after adjustments for demographic
and baseline health covariates?

• How do the observed associations differ between PWH and
PWoH?

• In what ways can the joint contributions of SDoH and HIV
status vary among racialized minority communities con-
cerning the outcome of COVID-19-related hospitalization?

By investigating these questions, our research aims to fill the
crucial gap in understanding how individual-level SDoH variables
influence COVID-19 outcomes in PWH and PWoH using a data-
driven approach. This will contribute to the existing body of
knowledge and inform targeted interventions and policy decisions
aimed at reducing the impact of COVID-19 among this vulnerable
population.

Methods

Overall Structure, Data Sources, and Study Population

We used data from the National COVID-19 Cohort Collaborative
(N3C) Enclave sponsored by the U.S. National Institutes of Health
(NIH) [14]. This data enclave includes harmonized de-identified
clinical data on over 21 million individuals, including over
8.5 million COVID-19-positive individuals, across 80þ data
partner sites from the U.S. Data partner sites contribute
demographic, visit, vital status, medication, laboratory, diagnoses,
and radiography data, with “look back” data back to January 2018
at their site, to a central data repository that is harmonized on a
regular basis according to a common data model.

The N3C cohort includes COVID-19-positive individuals
matched with two COVID-19-negative controls based on up to
four sociodemographic variables (age, sex, race, and ethnicity)
whenever available by data partner site. In this analysis, COVID-19
positivity is defined by: 1) a set of a priori-defined SARS-CoV-2
laboratory tests (that includes polymerase chain reaction (PCR) or
antigen positivity, but not antibody positivity) or 2) a “strong
positive” diagnostic code, with this cohort code available on
GitHub [15]; our study utilized N3C Data Release-v148-2023-11-
02 with Level 3 access granted.
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Ethical reviews

The N3C data transfer to the NIH is performed under a Johns
Hopkins University Reliance Protocol (IRB00249128) or individ-
ual site agreements with NIH. The N3C data Enclave is approved
through the NIH Institutional Review Board (IRB) and each
investigator accessing the Enclave receives institutional IRB from
their respective institution.

Study design and analytic Sample

We conducted a retrospective cohort study using real-time
electronic health record (EHR) data collected from January 1,
2020, through November 2, 2023. We included data from the first
COVID-19 infection recorded for each person in N3C.

We identified PWH within the N3C Enclave using various
Observational Medical Outcomes Partnership concepts, such as
HIV diagnosis (ICD-10, SNOMED), relevant medications
(RxNorm), and specific laboratory measurements (LOINC) [16].
Individuals using pre-exposure prophylaxis (PrEP), solely living
with hepatitis B virus (HBV) infection but receiving HIV-related
medications for HBV treatment or undergoing post-exposure
prophylaxis were excluded from the PWH cohort. For this analysis,
we opted to include PWH classified at our two highest confidence
levels. We detail these confidence levels further in the
Supplementary Text. Individuals not meeting our phenotyping
criteria for HIV were considered PWoH.

Outcome

We defined COVID-19-related hospitalization as a binary
outcome, considering whether the patient was admitted to the
hospital from the day before up to 16 days following the initial
COVID-19 diagnosis [14]. This timeframe aligns with the periods
specified by the Centers for Disease Control and Prevention [17].

Exposures

We ascertained individual-level SDoH in N3C based on mapping
to questions that appeared in the Epic® EHR SDoH Module at
some sites [18,19]. The N3C data harmonization teammapped the
SDoH questions via LOINC for ingestion into the system across
five domains including food insecurity, transportation, financial
strain, social connectedness, and stress categories. Sites that did not
have an Epic SDoHModule but were still collecting information in
a module question set had their data harmonized as above. Each
question was further aligned with its respective Healthy People
2030 domains (i.e., (1) healthcare access & quality, (2) economic
stability, (3) social & community context, (4) education access &
quality, and (5) neighborhood & built environment), with the
exception of stress, as it falls outside this framework [5]. Moreover,
to ensure a comprehensive representation, SDoH experts reviewed
and categorized each response, whether a binary yes/no vs. on a
Likert scale, based on whether it pertained to a social need, risk, or
instability (i.e., a positive response indicated some social
vulnerability). When individuals had more than one question
asked within one of the five Healthy People 2030 domains, we
allowed any positive response within the domain to indicate social
vulnerability. All individual-level SDoH data were ascertained
prior to and up to 30 days after the first incident of COVID-19
infection to capture the most comprehensive and relevant SDoH
information. When multiple data were available over more than
one-time point, we selected the most recent SDoH data prior to the
first incident of COVID-19 infection. Of note, in our analytic

sample, only data for (1) healthcare access & quality, (2) economic
stability, and (3) social & community context were available. The
individual-level SDoH questions, responses, our categorization for
Health People 2030 SDoH domains, and study metadata are
available in Supplementary Table 1.

While responses regarding stress are sometimes included in the
Epic® EHR SDoH Module, for this analysis, we chose to remove
responses related to stress for twomain reasons. First, we note that in
conceptualization of stress in this analysis, stress likely falls within
the pathways between other SDoH domains, HIV, and COVID-19
outcomes.Wenote that stress is not included as a domainwithin our
chosen a priori SDoH framework, the Healthy People 2023, where it
is considered an outcome of adverse SDoH [20]. Additionally, stress
is also challenging to model. For example, research on the impact of
stress onmaternal health outcomes has found inconsistent results, in
part due to how stress is measured [21]. Researchers did find that
analyzing a combination of different kinds of stressors
(e.g., environmental, access to care) provided a more consistent
picture of maternal health outcomes [22]. Hence, incorporating
stress into our framework poses challenges that necessitate a distinct
and separate analysis.

Race/ethnicity was defined for each individual by combining
race and ethnicity variables available in N3C Enclave. Individuals
were classified as either: non-Hispanic (NH)-American Indian or
Alaskan Native (AIAN), NH-Asian American, Native Hawaiian,
or Pacific Islander (AANHPI), NH-Black/African American,
Hispanic/Latinx of any race, and NH-White. Notably, our
stratified model findings by race/ethnicity may have suppressed
results for NH-AIAN individuals, due to small cell counts that
result from cross-classifying the outcome with each unique
combination of covariate values, if we had not employed model
selection steps outlined in the Supplementary Text. However, we
include findings per recommendations for reporting health
research for this population [23]. Those with unknown, missing,
and other NH race/ethnicity were excluded from analysis, due to
both small cell counts and lack of interpretability.

Covariates

We included the covariates of age, sex, and clinical comorbidity
burden in the analysis due to their known associations with
COVID-19 outcomes and data availability and quality within N3C
[24,25].We determined the age of each individual at the time of the
first incident of COVID-19 infection. Age was then categorized
into three categories: <45, 45–64, ≥65 years. Sex is represented as
biological sex at birth. We assessed the clinical comorbidity burden
via a modified Charlson Comorbidity Index (CCI) score,
calculated using a combination of binary flags for comorbidities
prior to each individual’s first incident COVID-19 infection date
and excluded HIV, where comorbidities have been phenotyped
and harmonized using N3C-vetted and -recommended concept
sets. The weights for calculating CCI score follow the same
definition as described in Charlson et al [26]. While a plethora of
data exists regarding clinical factors associated with COVID-19
outcomes, such as COVID-19 vaccination, we purposefully chose
to model our analyses parsimoniously with limited covariates, as
these clinical factors themselves are strongly associated with
specific SDoH factors too. For example, COVID-19 vaccination,
including the number of vaccinations, is strongly associated with
access to healthcare [27]. Additionally, other clinical factors, such
as obesity, are highly correlated with, and act as possible upstream
causes of, clinical comorbidities [28]. Given the pervasive role
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SDoH factorsmay play for various clinical contexts, and until more
sophisticated modeling approaches are developed, such as those
that allow moderation or mediation effects of various clinical
factors, we chose to minimize the number of covariates included in
our analyses. We detail these and other descriptive variables
available in N3C in Supplementary Text.

Statistical analyses

We use descriptive statistics, employing counts and proportions
for categorical variables andmedian with interquartile range (IQR)
for continuous variables, for the groups stratified by HIV status
and race/ethnicity. Our overall analytic approach was to build
stepwise, hierarchically nested additive models, that layered on
additional modeling complexity and helped us address our three
additive research questions. First, we ascertained whether an
adverse association existed between each SDoH factor individually
and COVID-19-related hospitalization and if that association
persisted as we added additional covariates hierarchically to the
model. Second, we analyzed the independent effects of each SDoH
factor by HIV status; these models we call our “HIV-stratified”
models, and they explicitly exclude race/ethnicity so that we can
examine any race/ethnicity relationships more thoroughly in our
third step. Third, we built a final model that comprised all three
SDoH factors and HIV status, to assess their joint additive effects
for COVID-19-related hospitalization, stratified by race/ethnicity
(termed as “race/ethnicity-stratified” models). We stress present-
ing unadjusted, alongside adjusted, estimates as the true influence
of SDoH factors for COVID-19 outcomesmay indeed be pervasive;
as noted earlier, clinical factors themselves may be closely
associated with SDoH, and, thus, when adjusting for clinical
comorbidity burden, which may be intermediate factors on the
causal pathways, some bias may be introduced in our models.

Each of the three steps in our overall analytic approach accounts
for heterogeneity by data partners. The N3C dataset comprises
diverse clinical settings within each healthcare system, resulting in
substantial heterogeneity. To handle this variability, we employed
generalized linear mixed-effects models (GLMMs) tailored to
accommodate and estimate associations within each healthcare
system, by including random (referent log-odds) intercepts, rather
than providing population-wide averages across systems [29].
Analyses were conducted using Apache Spark, SQL, Python
(v3.7.12), R (v3.6.3), along with select R packages: exactci (v1.3);
geepack (v1.3), glmnet (v4.1), lme4 (v1.1); metafor (v.2.4), tidyverse
(v1.3.1) in the N3C Enclave (Palantir Foundry) environment. We
provide specifics of our three step approach, including implemen-
tation details of model-fitting, in Supplementary Text.

Results

Individual-level SDoH reporting distributions within the entire
N3C

Among all the individuals with at least one individual-level SDoH
assessment in their record in the entire N3C system (1.5M), the
source population for this analysis, the proportion of contributing
data partners (n= 28) reporting on each SDoH domain was as
follows: most reported on access to healthcare (e.g., 24 (86%) on
transportation), economic instability (e.g., 25 (89%) on food
insecurity, 21 (75%) on financial strain, and 7 (25%) on housing),
and social cohesion (e.g., 19 (68%) on social connectedness).
Across all individual-level SDoH categories, data partners reported
a median of 8% (IQR 1, 15%) of their included individuals in N3C,

with only one partner reporting for at least one SDoH assessment
for 87% of their included individuals in N3C. Thus, the reporting
on individual-level SDoH assessments was overall sparse in N3C
and heterogeneous among data partners.

Analytic sample characteristics

Of the 20.9million patients in N3C, 15.8million were between 18 and
99 years old and had race/ethnicity and sex data available (Fig. 1). Of
those, 1.1 million (6.80%) had at least one individual-level SDoH
assessment in their record, of which 280,441 (26.05%) had incident
COVID-19 infection. Thus, our analytic sample included 280,441
individuals from 24 data partner sites, where 3,291 (1.17%) were
PWH and 277,150 (98.83%) were PWoH. The percentage of
racialized minority individuals was higher among PWH vs. PWoH
(e.g., 760 (23.09%) vs. 37,358 (13.47%), respectively, being NH-Black/
African American; Table 1 and Supplementary Table 2). Overall,
COVID-19-related hospitalizations occurred in 31,510 (11.23%)
individuals, of which 302 (9.17%) occurred among PWH and 31,208
(11.26%) among PWoH.

Individual-level SDoH reporting distributions among PWH and
PWoH by race/ethnicity and sex

Figure 2a summarizes SDoH factors ascertained for PWH and
PWoH among different race/ethnicity groups. Across each SDoH
domain, PWH had higher proportions of racialized minority
individuals than PWoH. NH-Black/African American PWH
exhibited higher issues with access to healthcare (19.7%), economic
stability (21.8%), and social cohesion (15%) compared to their
counterparts among other PWH and PWoH (e.g., 12.6% access to
health services, 13.1% economic stability, and 10.5% social
cohesion among NH-Black/African American PWoH).

Figure 2b summarizes SDoH factors ascertained individually
for PWH and PWoH among males and females. Females
consistently demonstrated higher proportions for issues with
access to healthcare, economic stability, and social cohesion
compared to males, and these proportions were similar among
PWH and PWoH.

Summary of step 1, hierarchically nested SDoH models for all
individuals

In our first step of the modeling approach, all three SDoH domains
consistently demonstrated statistically significant associations with
COVID-19-related hospitalizations, even after successive, hier-
archically nested adjustments (Table 2). For access to healthcare
issues, the univariate model revealed a significant association with
an odds ratio (OR) of 1.97 (95% confidence interval [CI]: 1.83,
2.11). When adjusted for age, sex, CCI, and HIV, the adjusted OR
was 1.85 (1.72, 1.20), and incrementally adjusting for race/ethnicity
yielded an OR of 1.71 (1.59, 1.85). Similarly, economic instability
(univariate OR [uOR] 1.43 (1.38, 1.50), adjusted for age, sex, CCI,
and HIV OR 1.48 (1.42, 1.54), further adjusted for race/ethnicity
OR 1.36 (1.31, 1.42) and social cohesion (uOR 1.52 (1.47, 1.59),
adjusted for age, sex, CCI, and HIV OR 1.41 (1.36, 1.47), further
adjusted for race/ethnicity OR 1.39 (1.34, 1.45) exhibited notable
associations with hospitalizations.

Summary of step 2, HIV-stratified analyses

In our second step of the analyses stratified by HIV status,
significant associations were found between individual-level
SDoH factors and COVID-19-related hospitalizations (Table 3).
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Figure 1. Study inclusion flowchart for analytic sample from U.S. N3C, January 2020–November 2023. Abbreviations: N3C = National COVID Cohort Collaborative; SDoH = social
determinants of health; PWH = people with HIV; PWoH = people without HIV; HIV = human immunodeficiency virus.
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Table 1. Baseline characteristics by race/ethnicity categories among COVID-19 positive individuals included in analysis in the U.S. National COVID-19 Cohort Collaborative (N3C), January 2020–November 2023 (N= 280,441)

Variable category Category level

NH- American Indian or
Alaska Native (AIAN)

(N= 1,608)

NH-Asian American, Native Hawaiian, or
Pacific Islander (AANHPI)

(N= 6,039)

NH-Black
African

American
(N= 38,118)

Hispanic/Latinx
of any race
(N= 21,990)

NH-White
(N= 212,686)

Overall
[N= 280,441,
n= 24 data
partner sites]

HIV positive status Positive <20 (*) 96 (1.59) 761 (2.00) 213 (0.97) 2212 (1.04) 3291 (1.17)

Sex Male 547 (34.02) 2167 (35.88) 12,329 (32.34) 7768 (35.32) 84,993 (39.96) 107,804 (38.44)

Female 1061 (65.98) 3872 (64.12) 25,789 (67.65) 14,222 (64.67) 127,693 (60.04) 172,637 (61.55)

Age (years) 18-44 561 (34.89) 2855 (47.28) 13,337 (34.99) 10,224 (46.50) 58,784 (27.64) 85,761 (30.58)

45-64 561 (34.89) 1802 (29.84) 12,694 (33.30) 6302 (28.65) 61,584 (28.95) 111,737 (39.84)

>65 486 (30.22) 1382 (22.88) 12,087 (31.71) 5464 (24.85) 92,318 (43.40) 82,943 (29.57)

CCI score0, median (IQR) 2 (0,5) 1 (0,2) 2 (0,5) 1 (0,3) 1 (0,4) 1 (0,4)

Insurance coverage by zip code for
individuals aged 19-641

High (>93.1) 330 (20.52) 2294 (37.99) 4134 (10.84) 3790 (17.23) 79,851 (37.54) 90,399 (32.23)

Medium
(<93.1, >86.0)

406 (25.25) 2005 (33.20) 12,644 (33.17) 8757 (39.82) 73,347 (34.49) 97,159 (34.64)

Low (<86.0) 716 (44.53) 822 (13.61) 19,191 (50.34) 7436 (33.81) 44,433 (20.89) 72,598 (25.89)

Missing 156 (9.70) 918 (15.20) 2149 (5.64) 2007 (9.13) 15,055 (7.08) 20,285 (7.23)

Region of participant resident Northeast 25 (1.55) 511 (8.46) 2976 (7.80) 7458 (33.91) 7141 (3.36) 18,111 (6.46)

Midwest 633 (39.36) 2538 (42.03) 8730 (22.90) 5138 (23.36) 108,091 (50.82) 125,130 (44.62)

South 739 (45.96) 2289 (37.90) 23,928 (62.77) 4716 (21.45) 73,631 (34.62) 105,303 (37.55)

West 119 (7.40) 361 (5.98) 1071 (2.81) 2823 (12.84) 15,924 (7.49) 20,298 (7.24)

Missing 92 (5.72) 340 (5.63) 1413 (3.71) 1855 (8.43) 7899 (3.71) 11,599 (4.13)

BMI2 Underweight <20 (*) 37 (0.61) 174 (0.46) 101 (0.46) 762 (0.36) 1078 (0.38)

Healthy
weight

166 (10.32) 1270 (21.03) 2948 (7.73) 2123 (8.69) 25,574 (12.02) 32,090 (11.44)

Overweight 371 (23.07) 2071 (34.29) 6655 (17.46) 5135 (23.35) 55,381 (26.04) 69,613 (24.82)

Obese 1003 (62.37) 1824 (30.20) 25,932 (68.03) 12,670 (57.62) 121516 (57.13) 162,945 (58.10)

Missing 64 (3.98) 837 (13.86) 2404 (6.31) 1957 (8.90) 9453 (4.44) 14,715 (5.25)

Number of COVID-19 vaccinations 0 876 (54.48) 2277 (37.70) 17,732 (46.52) 13,766 (62.60) 99,395 (46.73) 134,046 (47.80)

1 111 (6.90) 529 (8.76) 2586 (6.78) 1430 (6.50) 17,961 (8.44) 22,617 (8.06)

2 287 (17.85) 1075 (17.80) 6254 (16.41) 3234 (14.71) 34,072 (16.02) 44,922 (16.02)

3 or more 334 (20.77) 2158 (35.73) 11,546 (30.29) 3560 (16.19) 61,258 (28.80) 78,856 (28.12)

Access to healthcare issue Yes 70 (4.35) 97 (1.60) 1516 (3.98) 650 (2.95) 3119 (1.47) 5452 (1.94)

No 1285 (79.91) 4551 (75.36) 25,730 (67.50) 12,440 (56.57) 164,763 (77.45) 208743 (74.43)

Missing 253 (15.73) 1391 (23.03) 10,872 (28.52) 8900 (40.47) 44,830 (21.08) 66,246 (23.62)
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Among PWH, economic stability was significantly associated with
hospitalizations (uOR 1.35 (95% CI: 1.01, 1.82), adjusted OR
[aOR] 1.41 (95% CI:1.37, 1.49)). Among PWoH, access to
healthcare (uOR 1.98 (1.85, 2.13), aOR 1.87 (1.73, 2.02)), economic
instability (uOR 1.43 (1.37, 1.49), aOR 1.48 (1.42, 1.52)), and social
connectedness (uOR 1.53 (1.47, 1.60), aOR 1.42 (1.36, 1.47)) were
significantly associated with hospitalizations. Overall, these results
suggest that the impact of SDoH factors on COVID-19-related
hospitalizations varied between PWH and PWoH, with larger
effect sizes generally observed in PWoH and only economic
stability issues emerging as statistically significant among PWH.
Covariate estimates are found in Supplementary Table 3.

Summary of step 3, race/ethnicity-stratified analyses

In our third step of analyzing the associations between SDoH and
COVID-19-related hospitalizations across various racial/ethnic
groups when accounting for HIV status, distinct patterns emerged
(Fig. 3, Table 4). Below we highlight statistically significant findings.

Access to healthcare issues showed significant association with
hospitalizations among various racialized groups. NH-AANHPI
(uOR 2.00 (95% CI: 1.08, 3.70), aOR 2.00 (CI 1.06, 3.80)) and NH-
White (uOR 1.90 (1.72, 2.10), aOR 1.77 (1.59, 1.96)) groups
exhibited the highest impact. NH-Black/African American (uOR
1.43 (1.26, 1.19), aOR 1.36 (1.19, 1.56)) group had lower impact.

Economic instability showed significant associations with
certain racialized groups, notably among NH-AANHPI (uOR
1.67 (1.21, 2.29), aOR 1.35 (0.97, 1.90)) and NH-White (uOR 1.29
(1.22, 1.36), aOR 1.37 (1.30, 1.45)) groups.

Social cohesion issues showed significant associations only
among NH-White (uOR 1.10 (1.06, 1.14), aOR 1.07 (1.03, 1.11)).
Among NH-Black/African American (uOR 0.94 (0.88, 1.01), aOR
0.91 (0.85, 0.97)) and Hispanic/Latinx (uOR 0.92 (0.82, 1.04), aOR
0.87 (0.77, 0.99)) groups, lower odds existed for hospitalizations.

In these fully adjusted models, living with HIV was only
significantly associated with hospitalizations among NH-Black/
African American groups (uOR 1.43 (1.20, 1.71), aOR 1.26 (1.04,
1.53)). In contrast, living with HIV was protective among NH-White
group (uOR 0.76 (0.64, 0.90), aOR 0.75 (0.62, 0.91)). Covariate
estimates are found in Supplementary Table 4, and intermediate
model estimates in Supplementary Table 5.

Discussion

Our study reveals significant insights into the influence of
individual-level SDoH factors on COVID-19-related hospitaliza-
tions for both PWH and PWoH. In our initial modeling, key SDoH
variables, such as access to healthcare, economic instability, and
social cohesion, uniformly emerged as persistent factors associated
with higher odds of hospitalization across both cohorts. This
underscores the pervasive impact of these factors irrespective ofHIV
status or race/ethnicity groups. Our multivariable analysis showed
that living with HIV increases the likelihood of COVID-19
hospitalization among NH-Black/African Americans, highlighting
their heightened vulnerability, even when factoring in SDoH. Our
analysis, therefore, not only reinforces the importance of addressing
SDoH in public health policies but also calls for a heightened focus
on the specific needs of PWH during pandemic responses. Our
approach of using individual-level SDoH data, departing from
conventional area-level analyses, enhances the granularity of our
understanding of big data and elevates the precision with whichTa
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targeted interventions can be implemented for specific individuals–
this, arguably, is a novel use of big data for precision public health.

In regards to living with HIV, our analyses revealed some
interesting findings. First, SDoH issues were more prevalent
among PWH than PWoH. It is well established that people at risk
of HIV face significant social vulnerabilities (e.g., homelessness),
and living with HIV can engender additional vulnerabilities

(e.g., strained social networks) [30,31]. Second, we observed that
the overall proportions of COVID-19-related hospitalizations
were lower among PWH than PWoH (9.17% vs. 11.26%,
respectively). This is intriguing for several reasons and suggests
that our analytic sample might be biased in various ways, as our
prior work has shown higher risk of adverse COVID-19
outcomes, including hospitalizations, among PWH [24]. It is

(a)

(b)

Figure 2. (a) Distribution of individual-level SDoH data reported by race/ethnicity among people with human immunodeficiency virus (HIV) (PWH) and people without HIV
(PWoH) from the U.S. National COVID-19 Cohort Collaborative (N3C), January 2020–November 2023. (b)Distribution of individual-level social determinants of health data reported
by sex among PWH and PWoH from the U.S. N3C, January 2020–November 2023.
Percentage of Non-Hispanic-American Indian or Alaska Native among PWH is not reported here since cell count is associated with a nonzero count, that is <20. Thus, to align with
N3C agreements, we do not populate the corresponding proportion (%) of the value.
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possible that PWH, who also have individual-level SDoH
recorded in EHR, are more engaged in care than PWoH and
subsequently get their social vulnerability addressed [32]. While
some HIV medications, such as protease inhibitors, have been
hypothesized to help treat COVID-19, and, therefore, prevent
COVID-19-related hospitalizations [33], we do not anticipate
sufficiently large exposures to such medications to account for
these group effects. Third, in the HIV-stratified models,
economic instability was the most impactful SDoH factor among
PWH. Among PWH, there is increased vulnerability to work-
place discrimination, compromised job security, and heightened
barriers to employment opportunities potentially leading to
economic instability issues [34]. Fourth, and most profound
arguably, is that in our multivariable, race/ethnicity-stratified
models, living with HIV, despite accounting for all the SDoH
factors, was associated with hospitalizations only among NH-
Black/African American adults, and, in fact, appeared protective
among NH-White adults. This likely signals the profound
disparities in living with HIV among the NH-Black/African
American communities; NH-Black/African Americans account
for 40% of new infections, compared to 25% among NH-Whites
[9]. Admittedly, that living with HIV was protective among NH-
Whites not only highlights a stark contrast but feels like an affront
to health equity work; potentially NH-White PWH might be
experiencing higher engagement and receiving better quality care
than racialized minority PWH [35]. This situation underscores
ongoing racial inequities in healthcare; despite progress over

three decades, there’s much to do in enhancing care for racialized
minority PWH.

We found that poor access to care and economic instability
independently contributed to higher odds of COVID-19-related
hospitalizations, even when accounting for living with HIV and
other covariates, which carries profound implications for public
health policy and practice. While poor access to care was significant
for NH-AANHPI, NH-Black/African American, and NH-White
populations, it was non-significant for the NH-AIAN andHispanic/
Latinx of any race groups. These latter groups are known to have
significant access to care issues. However, numerous intersecting
factors, which we may have not captured well, affect access to care
for these groups including high rates of rurality, low health literacy,
and healthcare policy [36,37]. Further, significant heterogeneity
exists in Latinx ethnicity groups and among NH-AIAN subpopu-
lations (i.e., by tribe and regionality) and, as such, our inability to
explore subgroup associations may have masked existing inequities
within these groups [38]. Poor access to care is not just a health issue,
but a reflection of broader systemic inequities that can exacerbate the
severity of disease outcomes [39]. Similarly, economic instability,
often a result of and contributing to health disparities, creates a
cascade of challenges that hinder individuals’ ability to seek timely
medical attention and adhere to COVID-19 prevention measures
[40]. The study’s focus on three SDoH domains (access to
healthcare, economic stability, and social cohesion) likely overlooks
other critical factors, such as within other domains of access to and
quality of education and neighborhood and built environment

Table 2. Results of hierarchically nested models for each individual-level social determinants of health (SDoH) factor and COVID-19-related hospitalization for all
individuals with incident COVID-19 infection in the U.S. National COVID-19 Cohort Collaborative (N3C), January 2020–November 2023 (N= 280,441)

Category
Model 1: Univariate OR

(95% CI)

Model 2:
M1 þ age, sex, CCI

OR (95% CI)

Model 3:
M2 þ HIV

OR (95% CI)

Model 4:
M3 þ race/ethnicity

OR (95% CI)

Access to healthcare issue 1.97 (1.83, 2.11) 1.85 (1.72, 2.00) 1.85 (1.72, 1.20) 1.71 (1.59, 1.85)

Economic stability issue 1.43 (1.38, 1.50) 1.48 (1.42, 1.54) 1.48 (1.42, 1.54) 1.36 (1.31, 1.42)

Social cohesion issue 1.52 (1.47, 1.59) 1.41 (1.36, 1.47) 1.41 (1.36, 1.47) 1.39 (1.34, 1.45)

Abbreviations: M1 = Model 1; M2 = Model2; M3 = Model 3; CCI= Charlson Comorbidity Index; OR= odds ratio; CI= confidence interval.
Note: Models are sequentially adjusted for covariates.
M1: Univariate or “unadjusted” odds ratios obtained via modeling each SDoH factor (as exposure) and COVID-19-related hospitalization (as outcome) using mixed-effects logistic regression or
generalized linear mixed-effects models (GLMMs), with random effects restricted to a random intercept, i.e., referent log-odds, for each unique data partner.
M2: Adjusts M1 for age (categorical), sex, and Charlson Comorbidity Index (CCI, continuous).
M3: Further adjusts M2 by including HIV status.
M4: Further adjusts M3 by including race/ethnicity.
Bold text indicates estimates with p-values < 0.05.

Table 3. Results of modeling each individual-level social determinants of health (SDoH) factor and COVID-19-related hospitalization stratified by human
immunodeficiency virus (HIV) status in the U.S. National COVID-19 Cohort Collaborative (N3C), January 2020–November 2023 (N= 280,441)

Category

PWH (n= 3291) PWoH (n= 277,150)

Unadjusted OR1

(95% CI)
Adjusted OR2

(95% CI)
Unadjusted OR1

(95% CI)
Adjusted OR2

(95% CI)

Access to healthcare issue 1.03 (0.60, 1.74) 0.99 (0.56, 1.73) 1.98 (1.85, 2.13) 1.87 (1.73, 2.02)

Economic stability issue 1.35 (1.01, 1.82) 1.41 (1.03, 1.92) 1.43 (1.37, 1.49) 1.48 (1.42, 1.54)

Social cohesion issue 1.04 (0.74, 1.46) 0.99 (0.70, 1.40) 1.53 (1.47, 1.60) 1.42 (1.36, 1.47)

Abbreviations: PWH= people with HIV; PWoH = people without HIV; OR= odds ratio; CI= confidence interval.
Note: Bold text indicates estimates with p-values<0.05.
1Unadjusted odds ratios obtained via modeling each SDoH factor (as exposure) and COVID-19-related hospitalization (as outcome) using mixed-effects logistic regression or generalized linear
mixed-effects models, with random effects restricted to a random intercept, i.e., referent log-odds, for each unique data partner.
2Adjusted odds ratios obtained via modeling each SDoH factor (as exposure) and COVID-19-related hospitalization (as outcome) using mixed-effects logistic regression, with random effects
restricted to a random intercept, i.e., referent log-odds, for each unique data partner, and adding regression terms for age (categorical), sex, and Charlson Comorbidity Index (CCI, continuous).
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characteristics, which highlights the complexity of and the need to
further research to explore a broader range of social vulnerability.
Nonetheless, the independence of these factors from HIV status

shows that societal factors broadly impact health outcomes,
highlighting the need for public health strategies that address both
healthcare and social inequalities.

NH-American Indian or Alaska Native (AIAN): Adjusted odds ratios (95% confidence intervals), N= 1,608

NH-Asian American, Native Hawaiian, or Pacific Islander (AANHPI): Adjusted odds ratios(95% confidence intervals), [N=6,039]

(a)

(b)

Figure 3. Forest plots of adjusted odds ratios frommodeling of individual-level social determinants of health factors, human immunodeficiency virus (HIV) status, and COVID-19-
related hospitalization stratified by race/ethnicity in the U.S. National COVID-19 Cohort Collaborative (N3C), January 2020–November 2023. (A) Non-Hispanic-American Indian or
Alaska Native: Adjusted odds ratios (95% confidence intervals), N= 1,608. (B) NH-Asian American, Native Hawaiian, or Pacific Islander: Adjusted odds ratios (95% confidence
intervals), [N = 6,039]. (C) NH-Black or African American: Adjusted odds ratios (95% confidence intervals), [N= 38,118]. (D) Hispanic/Latinx of any race: Adjusted odds ratios (95%
confidence intervals), [N= 21,990]. (E) NH-White: Adjusted odds ratios (95% confidence intervals), [N= 212,686].
Generated with adjusted mixed-effects logistic regression or generalized linear mixed-effects models, with random effects restricted to a random intercept, i.e., referent log-odds,
for each unique data partner. We thus accounted for data partner sites along with covariates (age, sex, Charlson Comorbidity Index among others reported across Table 3 and
Supplementary Table 3); model implementations use package lme4 v.1.1 while plotting employs package metafor v.2.4 using R v.3.6.3 within the Palantir Foundry hosted N3C
Enclave.
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Our analysis of COVID-19-related hospitalizations among
racial/ethnic minorities unearthed some unintuitive findings. Lack
of social support is known to have an adverse impact on health
outcomes [41]. Some studies have demonstrated that strong social
support networks can significantly improve health, often helping
to narrow racial disparities in health outcomes [42]. However, in
the context of COVID-19, a lack of social support appears to be
acting as a protective factor against hospitalization for some
racialized minorities in our analysis. This paradoxical finding

demands a closer examination of how social support is
conceptualized and measured. In this specific study, social support
was gauged through indicators such as marital status and
membership in social organizations. This approach may not fully
capture the essence of social support within diverse minority
communities. It has long been established that defining and
measuring social support is challenging [43]. There are several
possible explanations for this phenomenon. First, the traditional
measures of social supportmight not adequately reflect the support

NH-Black or African American: Adjusted odds ratios(95% confidence intervals), [N=38,118]

Hispanic/Latinx of any race: Adjusted odds ratios(95% confidence intervals), [N=21,990]

(c)

(d)

Figure 3. (Continued).
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systems within minority communities, which may instead rely
more on informal networks. Second, in the context of a highly
infectious disease like COVID-19, traditional forms of social
support involving close physical contact or group gatherings could
inadvertently increase exposure risk, leading to higher hospitali-
zation rates. Moreover, the cultural context of social support can
vary significantly across different ethnic groups. For example, in
some cultures, social support is not just about having a large social
network, but also about the quality and nature of support
provided [44].

The use of individual-level variables in our study represents a novel
approach to health disparities research. In contrast to studies based on
area-level SDoH, which, for instance, can fail to capture about 42% of
people living in deprived conditions within otherwise privileged areas
[45], our individual-level analysis has the potential to capture a greater
proportion of those with SDoH needs independent of their area-level
data. This methodology allowed us to capture a nuanced picture of
each individual’s social drivers, shedding light on how these factors
interplay with health outcomes. There is growing interest in the use of
big data and analytics to support targeted public health interventions–
named precision public health [46]. This was particularly evident
during COVID-19 in the U.S. [46]. While precision public health has
its supporters and negators [47], the enthusiasm to leverage data from
EHR for public health, not just clinical care, is growing [48]. Ourwork
using individual-level SDoH captured in a large EHR repository
demonstrates the power of using such big data to help develop
targeted interventions for specific populations, such as PWH.

The study, while comprehensive inmany aspects, has limitations.
A primary constraint in our study within the N3C domain is the
limited overlap between the full cohort of COVID-19 individuals
and those with recorded responses to the specific set of SDoH
questions harmonized for our analysis. This gap raises concerns
about the representativeness of the study cohort, potentially
impacting the generalizability of our findings. Furthermore, the

study is inherently limited to individuals who utilize healthcare
services. Hence, those who are likely most vulnerable to adverse
SDoH are not fully captured in EHR cohorts, thus overlooking these
relationships for those most vulnerable. A second limitation regards
the anchoring of our primary outcome, COVID-19-related
hospitalization, on a COVID-19 diagnosis documented with the
EHR; with the advent of home-based COVID-19 testing, it is
possible that incidence of COVID-19 is under-ascertained. We do
not believe this misclassification to be differential by our exposure
groups. Relatedly, despite controlling for several covariates,
unmeasured factors, or residual confounding, such as specific
health behaviors or the quality of healthcare received, could still bias
our findings. A third limitation is that we did not account for any
HIV-related factors, such asCD4 count and viral suppression, which
we have shown to be associated with COVID-19 outcomes [49].
However, as already noted before, clinical measures, including these
for HIV, themselves are strongly associated with SDoH factors in
PWH [50], and additional modeling strategies need to be developed
to better account for the complex relationships between SDoH
factors, clinical variables, and outcomes. Despite its limitations, our
paper is strengthened by the broad U.S. representation from the
N3C repository’s multi-system data, minimizing single-site biases.
Moreover, our study stands out for its individual-level analysis,
encompassing several categories outlined in theHealthy People 2030
framework. This detailed analysis enhances the robustness of our
findings and provides a nuanced understanding of the interplay
between SDoH, HIV, and COVID-19 across diverse populations
and healthcare contexts.

Conclusion

In our study, we examined the impact of individual-level SDoH on
COVID-19-related hospitalizations, with a focus on PWH and
PWoH across racialized communities. Our findings reveal that key

NH-White: Adjusted odds ratios(95% confidence intervals), [N=212,686](e)

Figure 3. (Continued).

12 Vaidya et al.

https://doi.org/10.1017/cts.2024.550
Downloaded from https://www.cambridge.org/core. IP address: 3.144.90.50, on 20 Sep 2024 at 02:32:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/cts.2024.550
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


SDoH factors, such as poorer access to care, economic instability,
and limited social connectedness, are significantly associated with
hospitalizations for both groups, highlighting their pervasive
influence. Crucially, the study also uncovers that living with HIV
independently exacerbates the likelihood of COVID-19-related
hospitalizations within NH-Black/African Americans, even when
accounting for the impact of SDoH variables. This points to a
unique vulnerability among racialized minority PWH in the
context of the COVID-19 pandemic, underscoring the need for
public health policies to address these specific challenges. Lastly,
our innovative approach, moving away from conventional area-
level analyses to a more individualized examination of SDoH
impacts, offers a nuanced and granular understanding of the
interplay between SDoH, living with HIV, and COVID-19
outcomes. Our study advances existing knowledge and signals a
major shift in public health strategies, advocating for personalized,
data-driven methods in crisis management, particularly for highly
vulnerable groups, to ensure responses are customized for diverse
community needs.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2024.550
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IRB:TheN3C data transfer to NCATS is performed under a Johns Hopkins
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NIH. The N3C Data Enclave is managed under the authority of the NIH;
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code used to produce the analyses in this manuscript is available within the N3C
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