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Abstract
The walk matrix associated to an n× n integer matrix X and an integer vector b is defined by W :=
(b,Xb, . . . ,Xn−1b). We study limiting laws for the cokernel of W in the scenario where X is a random
matrix with independent entries and b is deterministic. Our first main result provides a formula for the
distribution of the pm-torsion part of the cokernel, as a group, when X has independent entries from
a specific distribution. The second main result relaxes the distributional assumption and concerns the
Z[x]-module structure.
The motivation for this work arises from an open problem in spectral graph theory, which asks to show
that random graphs are often determined up to isomorphism by their (generalised) spectrum. Sufficient
conditions for generalised spectral determinacy can, namely, be stated in terms of the cokernel of a walk
matrix. Extensions of our results could potentially be used to determine how often those conditions are
satisfied. Some remaining challenges for such extensions are outlined in the paper.
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1. Introduction
What information about a graph is encoded in the spectrum of its adjacencymatrix? Awell-known
conjecture by van Dam and Haemers [24] suggests that the answer to this question is all informa-
tion in the typical case in the sense that almost all graphs are determined up to isomorphism by
their spectrum. Unfortunately, progress towards that conjecture has been fairly limited due to the
fact that there are essentially no known general-purpose methods to prove that a graph is deter-
mined by its spectrum. There are many more proof techniques available to prove that a graph’s
spectrum does not determine it than to show that it does [1, 2, 8, 10, 21].

In view of this, it is intriguing that a sufficient condition for generalised spectral determinacy
was discovered in 2006 by Wang and Xu [29, 30]. The generalised spectrum of a graph G here
refers to the ordered pair (spec(A), spec(Ac)) consisting of the spectra of the adjacency matrix A
ofG and of the adjacency matrixAc of its complement graph. Refinements of the results of [29, 30]
have given rise to an active area of research in recent years; see, for example, [12, 17, 18, 26–28].
For definiteness, let us state a refinement that is particularly insightful and motivates the results
of the current paper.

Define a matrix with integer entries by W := (Aj−1e)nj=1 where e= (1, . . . , 1)T is the all-ones
vector and n is the number of vertices of G. Let coker(W) := Zn/W(Zn) denote the cokernel of
this matrix. Then, the following is an equivalent rephrasing of [27, Theorem 1.1]; see [18, p. 2].
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Theorem 1.1 (Wang, [27]). Let G be a simple graph. Assume that there exists an odd and square-
free integer m such that

coker(W)∼= (Z/2Z)�n/2� ⊕ (Z/mZ)

as an Abelian group. Then, G is determined by its generalised spectrum up to isomorphism.

It is believed that the conditions of Theorem 1.1 are satisfied for a nonvanishing fraction of all
simple graphs [27, Conjecture 2]. For comparison, the best known bound on the non-generalised
problem is due to Koval and Kwan [11], who recently established that there are at least ecn graphs
on n vertices that are determined by their spectrum. The result from [11] represents a significant
improvement relative to the previous long-standing barrier of ec

√
n but still only yields a quickly

vanishing fraction of all (1− o(1))2n(n−1)/2/n! simple graphs. So, a nonvanishing fraction being
determined by (generalised) spectrum would signify a remarkable development.

However, even though criteria for generalised spectral determinacy have been known for
almost 20 years now, it remains an open problem to prove that the criteria are indeed frequently
satisfied. The current state of knowledge on the frequency of satisfaction is mostly limited to
numerical studies [9, 24, 27, 28]. The lack of theoretical work is surprising given that criteria
for generalised spectral determinacy are an active area of research. A possible explanation is that it
is not clear what proof techniques could be used. The current paper develops a novel line of attack
by making a connection to proof techniques [3, 14, 20, 33], which were historically developed in
the context of Cohen–Lenstra heuristics for the class groups of number fields [5] and in the study
of sandpile groups of random graphs [4].

The problem is too challenging to solve in a single step, so we direct our efforts to a vari-
ant which is more convenient for technical reasons. Instead of simple graphs, we study random
directed graphs with random edge weights. Concretely, given a Zn×n-valued random matrix X
with independent entries and a vector b ∈Zn, we study the cokernel of the associated walk matrix
W := (Xj−1b)nj=1. To explain the terminology, note that if X is {0, 1}n×n-valued and interpreted
as the directed adjacency matrix of a directed graph and b= 1S is the indicator vector of a sub-
set S⊆ {1, . . . , n}, then Wi,j counts the number of walks of length j− 1 starting from i with an
endpoint in S. Walk matrices of this kind are also of independent interest due to applications to
control theory [7, 16, 22] and graph isomorphism problems [7, 13, 25].

In future work, it would be interesting to pursue extensions of our results to the setting
of simple graphs where Theorem 1.1 is applicable.1 The adjacency matrix of an undirected
random graph has to be symmetric, so its entries cannot be independent, which makes the prob-
lem more difficult. We expect that our proof techniques will still give insights provided that
appropriate modifications are made, but these modifications pose a nontrivial challenge; see
Section 4.

1.1 Results
Given an Abelian group H and a prime power pm, we denote Hpm := H/pmH. Then, the condi-
tion of Theorem 1.1 is satisfied if and only if coker(W)p2 ∈ {0,Z/pZ} for every odd prime p and
coker(W)22 ∼= (Z/2Z)�n/2�. To determine how frequently Theorem 1.1 is applicable, it hence suf-
fices to study the joint distribution of coker(W)p2 over all primes pwhenX is the adjacency matrix
of an undirected Erdős–Rényi random graph and b= e.

1There is no known analogue of Theorem 1.1 for directed graphs. (See however [17].) Indeed, directed graphs are typically
not determined by their (generalised) spectrum because the transpose of a directed adjacency matrix has the same spectrum
but typically corresponds to a different directed graph.
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In a directed and weighted setting, the following result gives a remarkably simple formula for
the limiting marginal distribution for a single prime p:

Theorem 1.2. Fix a prime p and an integer m≥ 1. For every n≥ 1, let X be a Zn×n-valued
random matrix with independent Unif{0, 1, . . . , pm − 1}-distributed entries, and let b ∈Zn be a
deterministic vector with b �≡ 0 mod p.

Fix some � ≥ 1 and 0= λ0 ≤ λ1 ≤ · · · ≤ λ� ≤m. Let i0 := #{i≤ � : λi =m} and denote δj :=
λ�−j+1 − λ�−j. Then, as Abelian groups,

lim
n→∞ P

(
coker(W)pm ∼=

�⊕
i=1

Z

pλiZ

)
=

∞∏
i=i0

(
1− p−(i+1)

) �∏
j=1

p−jδj .

Note in particular that Theorem 1.2 predicts that coker(W)p2 ∈ {0,Z/pZ} with nonvanish-
ing probability, at least for random directed and weighted graphs. For example, the limiting
probabilities associated with the primes p= 3, 5, and 7 are approximately 0.75, 0.91, and 0.96,
respectively. We here emphasise odd primes because, while Theorem 1.2 also applies when p= 2,
it is known that the distribution of coker(W)2m is very different for simple and non-simple graphs;
see Section 4. It would hence be ill-advised to use directed graphs as a model for the condition
coker(W)22 ∼= (Z/2Z)�n/2�.

The proof of Theorem 1.2 relies on interpretable combinatorial arguments. The downside
is that the distributional assumption on the entries of X plays a crucial role, which makes the
approach unsuitable for the study of unweighted graphs. Fortunately, a different proof approach
allows us to study coker(W) in a general setting, which also covers the case where X has {0, 1}-
valued entries. Additionally, this allows us to gain insight on the joint law across different primes,
and the result even applies to sparse graphs.

For this more general setting, it turns out to be essential to interact with all canonical struc-
ture on coker(W). Equip Zn with the Z[x]-module structure defined by xv := Xv, and note that
W(Zn) is precisely the Z[x]-submodule of Zn generated by b. Hence, the quotient coker(W) is
canonically equipped with the structure of a Z[x]-module. We require some additional notation.
Let Q(x) ∈Z[x] be a monic polynomial and consider a prime power pm. Then, given a Z[x]-
module N, we define a quotient module by Npm,Q := N/(pmN +Q(x)N). We further abbreviate
Rpm,Q := Z[x]/(pmZ[x]+Q(x)Z[x]).

Fix a finite collection of prime numbers P and consider a scalar α > 0. Then, a Z-valued
random variable Y is said to be α-balanced mod P if for all p ∈ P and y ∈Z/pZ,

P(Y ≡ y mod p)≤ 1− α.

Given a ring R, recall that Ext1R(N,M) denotes the set of extensions of an R-modules N by
an R-module M [31, p. 77], and denote AutR(N) and HomR(N,M) for the sets of R-module
automorphisms and homomorphisms, respectively.

Theorem 1.3. Fix a finite set of primes P. For every n≥ 1, let X be a Zn×n-valued random
matrix with independent entries, not necessarily identically distributed, such that each entry Xi,j
is αn-balanced mod P. Further, let b ∈Zn be deterministic with b �≡ 0 mod p for every p ∈ P.

Assume that limn→∞ nαn/ ln (n)= ∞. Then, for every integer m≥ 1, monic polynomial Q ∈
Z[x] of degree ≥ 1, and collection of finite Rpm,Q-modules Npm,Q:

(1) The quotients coker(W)pm,Q associated with different primes p ∈ P are asymptotically
independent. More precisely, as Z[x]-modules,

lim
n→∞ P

(∀p ∈ P : coker(W)pm,Q ∼=Npm,Q
)=

∏
p∈P

μpm,Q(Npm,Q)

for certain probability measures μpm,Q supported on finite Rpm,Q-modules.
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(2) Suppose that Q(x)≡∏rp
i=1 Qi,p(x)qi,p mod p is the unique factorisation of Q mod p into pow-

ers of distinct monic irreducible polynomials Qi,p ∈ Fp[x]. Let di,p := degQi,p denote the
degree of Qi,p. Then, the measure μpm,Q is given by the following identity:

μpm,Q
(
Npm,Q

)= 1
#Npm,Q#AutRpm ,Q(Npm,Q)

rp∏
i=1

∞∏
j=1

×
(
1−

# Ext1Rpm ,Q

(
Npm,Q, Fp[x]/(Qi,p(x)Fp[x])

)
#HomRpm ,Q(Npm,Q, Fp[x]/(Qi,p(x)Fp[x])

p−(1+j)di,p

)
.

So far as it pertains to the group structure, the conclusion of Theorem 1.3 with P = {p}
is weaker than Theorem 1.2, but only slightly. To study coker(W)pm itself, without the addi-
tional quotient by Q(x), it would, namely, be sufficient to have a tightness condition stating that
limC→∞ lim infn→∞ P(#coker(W)pm ≤ C)= 1. Such a condition would yield the limiting law as
a Z[x]-module,2 and the limiting law as a group then follows by summing over all Z[x]-module
structures on ⊕�

i=1Z/pλiZ.
We are not aware of a direct proof that the aforementioned sum recovers the formula in

Theorem 1.2, but this would follow indirectly since Theorem 1.3 also applies to a matrix with
uniform entries as in Theorem 1.2. So, if the tightness condition holds, then the distribution of
coker(W)pm converges to the same limit as in Theorem 1.2, and one has asymptotic independence
for any fixed finite set of primes. Hence, additionally assuming that the restriction to finite sets of
primes can also be removed, we are led to the following:

Conjecture 1.4. For every n≥ 1, let X be a {0, 1}n×n-valued random matrix with independent
entries, and let b= e be the all-ones vector. Assume that there exists a sequence αn satisfying
limn→∞ nαn/ ln (n)= ∞ such that P(Xi,j = 0), P(Xi,j = 1)≤ 1− αn for each entry. Then,

lim
n→∞ P

(
coker(W)p2 ∈ {0,Z/pZ} for every odd prime p

)=
∏

odd primes p

(
1+ p−1) ∞∏

i=0

(
1− p−(i+1)).

Remark 1.5. The restriction that αn � ln (n)/n in Theorem 1.3, which limits how sparse the
matrices are allowed to be, is close to optimal. The conclusion of Theorem 1.3, namely, has to
fail when X has independent entries satisfying P(Xi,j = 0)≥ 1− (1− ε) ln (n)/n for ε > 0.

Indeed, the coupon collector theorem then implies that X has many rows equal to zero so that
rank(X)≤ n− 2 with high probability. The latter implies that X(Fn

p)+ Fpb �= Fn
p . Hence, since

coker(W)p,x ∼=Zn/(W(Zn)+ pZn + xZn) is isomorphic toFn
p/(X(Fn

p)+ Fpb), it would follow that
limn→∞ P(coker(W)p,x = {0})= 0. This is incompatible with the conclusion of Theorem 1.3 since
μp,x({0})=∏∞

j=1 (1− p−1−j) �= 0.

Remark 1.6. The limiting distribution of the Z[x]-module coker(Q(X)) withQ(x) a fixed polyno-
mial was recently studied by Cheong and Yu [3]. Interestingly, the formulas found in Theorem 1.3
and [3, Theorem 1.3] bear a close resemblance, although they are not identical. This resemblance is
not entirely surprising since the studied objects can be related. Indeed, note that coker(Q(X))pm ∼=
Zn/(Q(x)Zn + pmZn) whereas coker(W)pm,Q ∼=Zn/(Q(x)Zn + pmZn +Z[x]b).

One can however not directly recover Theorem 1.3 from [3]. For one thing, [3] only considers
the case P = {p} and does not allow sparse settings where αn → 0. Further, coker(W)pm,Q not

2Indeed, note that the tightness condition would imply that coker(W)pm ,Q ∼= coker(W)pm with high probability for
Q(x) := ∏

i∈{1,...,r}
∏

j∈{1,...,r}\{i} (ti − tj) with r sufficiently large because a finite group can only admit finitely many distinct
endomorphisms.
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only depends on the isomorphism class of coker(Q(X))pm but also on how the reduction of b lies
in coker(Q(X))pm , which is information we do not have access to.

1.2 Proof techniques
The proof of Theorem 1.2 relies on an analysis of the sequence of random vectors (Xt−1b)nt=1,
viewed as a stochastic process. More precisely, we show in Corollary 2.2 that the group structure
of coker(W)pm can be computed in terms of the sequence of random variables 0=U1 ≤U2 ≤
. . . ≤Un ≤ ∞ defined by

Ut := sup
{
j≥ 0 :Xt−1b ∈ spanZ

(
Xi−1b : 1≤ i≤ t − 1

)+ pjZn} . (1.1)

Here, given a ring R and v1, . . . , vt ∈ Rn, we write spanR(v1, . . . , vt) :=
{∑t

i=1 civi : ci ∈ R
}
. The

remaining difficulty is then to study the joint law of the Uj. The distributional assumption in
Theorem 1.2 plays an important role for the latter task: the independence and equidistribution of
the entries imply that X induces a uniform random endomorphism of (Z/pmZ)n, which can be
used to establish Markovian dynamics for min{Ut ,m}; see Lemma 2.4.

This proof yields a direct combinatorial interpretation for the formula in Theorem 1.2. Given
Ut , a counting argument implies that the probability that Ut+1 ≥Ut + δ is p−δ(n−t) for any δ sat-
isfying Ut + δ ≤m. Taking j= n− t then explains the factors of the form p−jδj in Theorem 1.2.
Factors of the form 1− p−j arise when we additionally have to enforce that Ut+1 ≤Ut + δ. A fur-
ther benefit of the approach is that it can also be used to establish the law of coker(W)pm for finite
n; see Proposition 2.5.

The proof of Theorem 1.3 relies on more sophisticated techniques. In particular, we employ
the category-theoretic moment method. In classical probability theory, the moment method allows
one to establish convergence in distribution of a sequence of R-valued random variables (Yi)∞i=1
by showing that the moments E[Yn

i ] converge to those of the desired limiting law provided that
some mild conditions are satisfied. Results of Sawin and Wood [20] similarly allow one to estab-
lish limiting laws for random algebraic objects such as groups and modules by showing that
category-theoretic moments converge. Here, given a ring R and a deterministic R-module N, the
N-moment3 of a random R-module Y is given by E[#SurR(Y ,N)] where SurR(Y ,N) denotes the
set of surjective R-module morphisms from Y to N.

Themain challenge is hence to estimate theN-moments of the randomZ[x]-module coker(W).
To this end, we employ a strategy developed by Wood [32, 33] and Nguyen and Wood [15] for
the estimation of moments of random algebraic objects associated with random matrices with
α-balanced entries. A key difference between our setting and the one in [15, 32, 33] is that we
have little control over the joint law of the entries Wi,j of our matrix of interest since these are
nontrivial algebraic combinations of the entries of X. This is why it is essential to view coker(W)
as a Z[x]-module, not only as a group. That is, the Z[x]-module-theoretic viewpoint allows us to
untangle the algebraic dependencies and hence estimate the category-theoretic moments; see (3.3)
and the subsequent remarks.

The advantage of the category-theoretic approach is that it is robust, as is demonstrated by
the general distributional assumptions in Theorem 1.3. For comparison, the proof approach for
Theorem 1.2 is highly non-robust. Indeed, as mentioned above, that proof uses that X induces a
uniform random endomorphism of (Z/pmZ)n: a property which is only satisfied when X mod pm
has independent and uniformly distributed entries. The robustness of the category-theoretic
approach makes us hopeful that we will be able to generalise it in future work, although this
remains a nontrivial task; see Section 4.

3An explanation for the terminologymoment may be found in [4, Section 3.3].
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1.3 Structure of this paper
The proof of Theorem 1.2 is given in Section 2. We there also give a non-asymptotic variant
of Theorem 1.2. The proof of Theorem 1.3 is given in Section 3. Directions for future work are
outlined in Section 4.

2. Proof of Theorem 1.2
Throughout this section, we fix a prime p and a vector b ∈Zn with b �≡ 0 mod p. Recall from
Section 1.2 that the proof has two main ingredients. The first ingredient is Corollary 2.2, which
shows that the group structure of coker(W)pm can be computed in terms of U1, . . . ,Un. The sec-
ond ingredient is Lemma 2.4, which concerns the joint law of the Ut when X is random as in
Theorem 1.2. We combine these results to establish Theorem 1.2 in Section 2.3.

2.1 Computing coker(W)pm in terms of U1, . . . , Un
Recall the definition of Ut from (1.1). Fix an integer m≥ 1 and abbreviate R := Z/pmZ. The fol-
lowing lemma then produces an R-module basis for Rn which is well-adapted to the computation
of coker(W)pm .

Lemma 2.1. Write �t := min{Ut ,m}. Then, there exist v1, . . . , vn ∈ Rn such that for every t ≤ n
the following properties are satisfied:

(i) The reduction of the matrix (v1, . . . , vt)modulo p has rank t over Fp.
(ii) It holds that spanR

(
Xi−1b mod pm : 1≤ i≤ t

)= spanR
(
p�i vi : 1≤ i≤ t

)
.

Proof. We proceed by induction on t. If t = 1, thenU1 = 0, so v1 ≡ b mod pm satisfies both prop-
erties. Now suppose that t > 1 and assume that there exist v1, . . . , vt−1 such that both properties
are satisfied. We prove the existence of some vt .

First, suppose that Ut ≥m. Then, the definition (1.1) yields spanR
(
Xi−1b mod pm : i≤ t

)=
spanR

(
Xi−1b mod pm : i≤ t − 1

)
and p�t v= pmv= 0 for every v ∈ Rn. Consequently, due to the

induction hypothesis, both properties are satisfied if we let vt ∈ Rn be an arbitrary vector, which is
not in spanR(v1, . . . , vt−1)+ pRn. Such a vector exists because t − 1< n.

Now suppose that Ut <m. By definition of Ut , there then exist w ∈ pUtRn and r ∈
spanR

(
Xi−1b mod pm : i≤ t − 1

)
such that Xt−1b≡w+ r mod pm. Pick some vt ∈ Rn with

pUtvt =w. Then, due to the induction hypothesis, item (ii) is satisfied, and item (i) is equiva-
lent to the statement that vt �∈ spanR(v1, . . . , vt−1)+ pRn. The latter statement is true. Indeed,
if not, then w ∈ spanR

(
pUtv1, . . . , pUtvt−1

)+ pUt+1Rn. Then, considering that spanR(pUtvi : i≤
t − 1)⊆ spanR(Xi−1b mod pm : i≤ t − 1) by item (ii) of the induction hypothesis and the fact that
the Ui are nondecreasing, it follows from Xt−1b≡w+ r mod pm that Xt−1b ∈ spanZ(Xi−1b : i≤
t − 1)+ pUt+1Zn contradicting the maximality of Ut in (1.1). This shows that both properties are
satisfied. �
Corollary 2.2. Adopt the notation of Lemma 2.1. Then, coker(W)pm ∼= ⊕n

t=1Z/p�tZ.

Proof. The case with t = n in item (i) of Lemma 2.1 implies that the vectors v1, . . . , vn ∈ Rn deter-
mine an R-module basis for Rn. Further, item (ii) yields that W(Rn)= spanR

(
p�1v1, . . . , p�nvn

)
.

The claim is hence immediate since coker(W)pm ∼= Rn/W(Rn). �

2.2 Markovian dynamics
Given a matrixM, abbreviate rankp(M) for the rank ofM mod p over Fp. Recall that R=Z/pmZ.
The following lemma provides a partial converse for Lemma 2.1 in the case Ut <m:
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Lemma 2.3. Consider some t ≤ n and integers 0= u1 ≤ u2 ≤ . . . ≤ ut <m. Then, it holds that Ui =
ui for every i≤ t if and only if there exist v1, . . . , vt ∈ Rn with rankp(v1, . . . , vt)= t such that for
every i≤ t one has spanR (Xj−1b mod pm : j≤ i)= spanR (pujvj : j≤ i).

Proof. If Ui = ui for every i≤ t, then the existence of v1, . . . , vt with the claimed properties
follows from Lemma 2.1. Conversely, assume that such v1, . . . , vt exist. Then, for every i≤ t,

spanR
(
Xj−1b mod pm : j≤ i

)= spanR
(
pujvj : j< i

)+ spanR(p
uivi) (2.1)

⊆ spanR
(
Xj−1b mod pm : j< i

)+ puiRn.

Considering that R=Z/pmZ with m≥ ui, it follows that Xi−1b ∈ spanZ(Xj−1b : j< i)+ puiZn.
The definition (1.1) hence yields Ui ≥ ui. On the other hand, since rankp(v1, . . . , vt)= t and ui <
m, we have puivi �∈ spanR(pujvj : j< i)+ pui+1Rn. Hence,

spanR
(
pujvj : j< i

)+ spanR(p
uivi) �⊆ spanR

(
pujvj : j< i

)+ pui+1Rn (2.2)
= spanR

(
Xj−1b mod pm : j< i

)+ pui+1Rn.

Given the equality in (2.1) and the fact that ui + 1≤m, this implies thatXi−1b �∈ spanZ(Xj−1b : j<
i)+ pui+1Zn. This means that Ui ≤ ui. Combine the inequalities Ui ≥ ui and Ui ≤ ui to conclude
the proof. �
Lemma 2.4. Assume that X has independent and Unif{0, 1, . . . , pm − 1}-distributed entries.
Consider some t ≤ n− 1. Then, for every 0= u1 ≤ . . . ≤ ut <m and ut+1 ≤m,

P
(
Ut+1 ≥ ut+1 |Ui = ui, ∀i ∈ {1, . . . , t})= p−(n−t)(ut+1−ut). (2.3)

In particular, if additionally ut+1 <m,

P
(
Ut+1 = ut+1 |Ui = ui, ∀i ∈ {1, . . . , t})= p−(n−t)(ut+1−ut)(1− p−(n−t)). (2.4)

Proof. Two ordered sets of vectors v1, . . . , vt ∈ Rn and w1, . . . ,wt ∈ Rn are said to be equivalent
if spanR(pujvj : j≤ i)= spanR(pujwj : j≤ i) for every i≤ t.

Lemma 2.3 implies that the event {Ui = ui : ∀i≤ t} can be written as a union of events of the
form {spanR(Xj−1b mod pm : j≤ i)= spanR(pujvj : j≤ i), ∀i≤ t} indexed by vectors v1, . . . , vt ∈
Rn with rankp(v1, . . . , vt)= t and spanR(v1)= spanR(b mod pm). Two such events are equal if the
corresponding sets of vectors are equivalent and mutually exclusive otherwise. Hence, by con-
ditioning on the equivalence class, (2.3) follows if we show that for every v1, . . . , vt ∈ Rn with
rankp(v1, . . . , vt)= t and spanR(v1)= spanR(b mod pm),

P
(
Ut+1 ≥ ut+1 | spanR

(
Xj−1b mod pm : j≤ i

)= spanR(p
ujvj : j≤ i), ∀i≤ t

)
(2.5)

= p−(n−t)(ut+1−ut).

Fix v1, . . . , vt and let E := {spanR
(
Xj−1b mod pm : j≤ i

)= spanR(pujvj : j≤ i), ∀i≤ t} denote the
event in the condition of (2.5).

It follows from the definition that Ut+1 ≥ ut+1 if and only if X(spanZ(Xi−1b : i≤ t))⊆
spanZ(Xi−1b : i≤ t)+ put+1Zn. Hence, conditional on E, one has Ut+1 ≥ ut+1 if and only if
X(put vt) ∈ spanR(pujvj : j≤ t)+ put+1Rn. Considering that rankp(v1, . . . , vt)= t and that the ui are
nondecreasing, the latter occurs if and only if X(vt) ∈ spanR(v1, . . . , vt)+ put+1−utRn. Hence,

P
(
Ut+1 ≥ ut+1 | E)= P

(
X(vt) ∈ spanR(v1, . . . , vt)+ put+1−utRn | E). (2.6)

The assumption spanR(v1)= spanR(b mod pm) implies that the event spanR(Xj−1b mod pm : j≤
2)= spanR(pujv1 : j≤ 2) only depends on X(v1). Similarly, continuing in an inductive fashion, the
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event E only depends on X(v1), . . . ,X(vt−1). Hence, by the law of total probability,

P
(
X(vt) ∈ spanR(v1, . . . , vt)+ put+1−utRn | E) (2.7)

=E
[
P
(
X(vt) ∈ spanR(v1, . . . , vt)+ put+1−utRn |X(v1), . . . ,X(vt−1)

) ∣∣ E ].
Recall that the entries of X are independent and Unif{0, 1, . . . , pm − 1}-distributed. This

implies that X induces a uniform random endomorphism of Rn. Hence, since it was assumed
that rankp(v1, . . . , vt)= t, it holds that X(vt) has a uniform distribution on Rn and is independent
of X(v1), . . . ,X(vt−1). Consequently, a counting argument yields that

P
(
X(vt) ∈ spanR(v1, . . . , vt)+ put+1−utRn |X(v1), . . . ,X(vt−1)

)= p−(n−t)(ut+1−ut). (2.8)

Combine (2.6)–(2.8) to establish (2.5). This proves (2.3). Further, (2.4) is an immediate conse-
quence of (2.3) since Ut+1 = ut+1 if and only if Ut+1 ≥ ut+1 and Ut+1 < ut+1 + 1. �

2.3 The law of coker(W)pm
It now only remains to combine Corollary 2.2 and Lemma 2.4. This allows us to also determine
the law of coker(W)pm when n is finite:

Proposition 2.5. Fix some n≥ 1, let X be a Zn×n-valued random matrix with independent
Unif{0, 1, . . . , pm − 1}-distributed entries, and let b ∈Zn be a deterministic vector with b �≡ 0 mod
p. Fix an integer 0≤ i0 ≤ n− 1.

Pick integers 0= λ1 ≤ λ2 ≤ . . . ≤ λn ≤m and denote δi = λn−i+1 − λn−i. Assume that λi <m if
and only if i≤ n− i0. Then, as Abelian groups,

P

(
coker(W)pm ∼=

n⊕
i=1

Z

pλiZ

)
=

n−2∏
i=i0

(
1− p−(i+1)

) n−1∏
j=1

p−jδj .

Proof. By Corollary 2.2 and the assumption that λi <m for every i≤ n− i0 and λi =m for every
i> n− i0,

P
(
coker(W)pm ∼= ⊕n

i=1 Z/pλiZ
)= P

(
Ui = λi, ∀i ∈ {1, . . . , n− i0}

)
(2.9)

× P
(
Ui ≥m, ∀i ∈ {n− i0 + 1, . . . , n} |Ui = λi, ∀i ∈ {1, . . . , n− i0}

)
.

Recall that δi = λn−i+1 − λn−i. Hence, using that U1 = 0 together with (2.4) from Lemma 2.4,
which is applicable due to the assumption that λi <m for every i≤ n− i0,

P
(
Ui = λi, ∀i ∈ {1, . . . , n− i0}

)=
n−2∏
i=i0

P(Un−i =Un−i−1 + δi+1 |Uj = λj, ∀j< n− i)

=
n−2∏
i=i0

(
1− p−(i+1))p−(i+1)δi+1 . (2.10)

If i0 = 0, then the second probability in (2.9) is equal to one since there is no i satisfying n+ 1≤
i≤ n. In this case, the combination of (2.9) and (2.10) concludes the proof.

Now suppose that i0 > 0. Then, it holds thatUi ≥m for all i> n− i0 if and only ifUn−i0+1 ≥m.
Hence, using (2.3) from Lemma 2.4 and recalling thatm= λn−i0 + δi0 ,

P
(
Ui ≥m, ∀i ∈ {n− i0 + 1, . . . , n} |Ui = λi, ∀i ∈ {1, . . . , n− i0}

)
(2.11)

= P(Un−i0+1 ≥m |Ui = λi, ∀i ∈ {1, . . . , n− i0}
)

= p−i0δi0 .
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Remark p−i0δi0 =∏i0
i=1 p−iδi since the assumption that λi =m= λi+1 for all i> n− i0 ensures

that δi = 0 for every i< i0. The combination of (2.9)–(2.11) hence concludes the proof. �
Proof of Theorem 1.2. Let λ̃i := 0 for i ∈ {1, . . . , n− �} and let λ̃i := λi−(n−�) for i≥ n− � +
1. The result then follows by considering the probability that coker(W)pm ∼= ⊕n

i=1Z/pλ̃iZ in
Proposition 2.5 and taking the limit n→ ∞. �

3. Proof of Theorem 1.3
We establish a more general result than Theorem 1.3 and study the limiting law of the Z[x]-
module coker(W̃) where W̃ := (Xj−1B)nj=1 is the n× nkmatrix associated to a deterministic n× k
matrix B for some fixed k. For future reference, let us here state all relevant assumptions:

(A1) For every n≥ 1, let X be a Zn×n-valued randommatrix with independent entries such that
each entry is αn-balanced mod P.

(A2) Fix some k≥ 1. For every n≥ k, let B ∈Zn×k be a deterministic matrix such that B mod p
has rank k over Fp for every p ∈ P. We denote W̃ := (Xj−1B)nj=1 and write coker(W̃) :=
Zn/W̃(Znk).

(A3) Assume that limn→∞ nαn/ ln (n)= ∞.

The desired result, describing the limiting distribution of coker(W̃)pm,Q under these assump-
tions, is given in Proposition 3.13.

As was outlined in Section 1.2, we rely on the category-theoretic moment method. The main
ingredient required for the proof is correspondingly an estimate on the moments of coker(W̃):

Proposition 3.1. Adopt assumptions (A1) to (A3). Then, for every finite Z[x]-module N such that
all prime divisors of #N are in P,

lim
n→∞ E[# SurZ[x] (coker(W̃),N)]= (#N)−k. (3.1)

We prove Proposition 3.1 in Section 3.1 and then use a general-purpose result of Sawin and
Wood [20, Lemma 6.3] to solve the associated moment problem in Section 3.2.

Remark 3.2. The assumption in Proposition 3.1 that all prime divisors of #N are in P cannot be
removed. Indeed, recall that (A1) and (A2) only make assumptions regarding rankp(B) and the
balanced nature of the entries of X at primes p ∈ P.

So, for instance, at p /∈ P it could occur that P(X≡ 0 mod p)= 1 and B= 0 mod p in
which case E[#SurZ[x](coker(W̃),N)]= pn − 1 with N = Fp[x]/xFp[x]. In particular, it then
holds that limn→∞ E[#SurZ[x](coker(W̃),N)]= ∞, which is incompatible with the conclusion
of Proposition 3.1.

Remark 3.3. There is a sense in which coker(W̃) is a fairly natural random algebraic object to
study. Note that W(Znk) is exactly the Z[x]-submodule of Zn generated by the columns of B.
Hence, introducing formal symbols e1, . . . , en, we have

coker (W̃)∼=
(
e1, . . . , en : xej =

n∑
i=1

Xi,jei,
n∑

i=1
Bi,rei = 0, ∀i≤ n, ∀r ≤ k

)
(3.2)

asZ[x]-modules. So, coker(W̃) corresponds to the finitely presentedZ[x]-module, which is found
when one considers n generators, imposes a random action for x specified byX, and imposes k≥ 1
additional deterministic constraints specified by B.
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3.1 Computing the limiting N-moments
Let N be a deterministic Z[x]-module such that all prime divisors of #N are in P. We may
consider X as a random element of HomZ(Zn,Zn), consider B as a deterministic element of
HomZ(Zk,Zn), and consider x as inducing an element of HomZ(N,N). Here, note that HomZ(·, ·)
simply returns the set of group morphisms since a Z-module and an Abelian group are the same
thing.

Now observe that a morphism of Abelian groups F :Zn →N descends to a morphism of Z[x]-
modules F : coker(W̃)→N if and only if the compositions of F withB,X, and x satisfy FB= 0 and
FX= xF. Moreover, every Z[x]-module morphism F : coker(W̃)→N arises from some unique
F :Zn →N in this fashion. Consequently, since surjectivity is conserved,

E[#SurZ[x](coker(W̃),N)]=
∑

F∈SurZ(Zn,N) : FB=0
P(FX= xF). (3.3)

Let us here emphasise that, while (3.3) was relatively easy to prove, the simplification which this
step offers is significant. Indeed, observe that the joint law of the entries of W̃ is not easy to under-
stand since these entries are nontrivial algebraic combinations of the entries of X and B. On the
other hand, FX= xF is a linear equation in terms of X and hence fairly explicit.

The strategy that we use to estimate the N-moments from here on is as follows. We show
that there are approximately (#N)n−k surjections F :Zn →N with FB= 0 in Section 3.1.1.
Subsequently, we show that P(FX= xF)≈ (#N)−n for most terms in (3.3) in Section 3.1.2, and we
show that the remaining terms give a negligible contribution in Section 3.1.3. Finally, we combine
these ingredients to conclude the proof of Proposition 3.1 in Section 3.1.4.

3.1.1. Estimate on the number of surjections satisfying FB= 0
The exponent of a finite Abelian group G is the smallest positive integer exp (G)≥ 1 such that
exp (G)G= 0. Note that p | exp (G) if and only if p | #G.
Lemma 3.4. Let G be a finite Abelian group and let B ∈HomZ(Zk,Zn) be such that rankp(B)= k
for every prime divisor p of exp (G). Then, there exists a constant C > 0 depending only on G such
that for all n≥ k

|#{F ∈ SurZ (Zn,G) : FB= 0} − (#G)n−k| ≤ C
(#G

2

)n
.

Proof. We first argue that we can replace SurZ(Zn,G) by HomZ(Zn,G) up to a negligible error. If
a morphism F :Zn →G is not surjective then there exists some proper subgroupH �G such that
F(Zn)=H. Hence, since #HomZ(Zn,H)= (#H)n,

#(HomZ(Zn,G) \ SurZ(Zn,G))≤
∑
H�G

#HomZ(Zn,H)=
∑
H�G

(#H)n. (3.4)

Denote SG for the number of proper subgroups of G. Then, since #H ≤ #G/2 byH being a proper
subgroup,

|#{F ∈HomZ(Zn,G) : FB= 0} − #{F ∈ SurZ(Zn,G) : FB= 0}| (3.5)

≤ #(HomZ(Zn,G) \ SurZ(Zn,G))≤ SG
(#G

2

)n
.

We next argue that #{F ∈HomZ(Zn,G) : FB= 0} = (#G)n−k. (This is not immediate because the
columns b1, . . . , bk of B are not necessarily part of a Z-module basis for Zn.)

Let B=UDV be the Smith normal form of B. This means that U ∈Zn×n and V ∈Zk×k are
matrices with det (U), det (V) ∈ {−1, 1} and D is an n× k diagonal matrix with integer diagonal
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entries satisfying d1 | d2 | . . . | dk. For brevity, denote a := exp (G). For every p | a, the assump-
tion that rankp(B)= k implies that di �≡ 0 mod p. It follows that the di are multiplicative units for
Z/aZ. Hence, the matrix D′ := diag(d1, . . . , dk) is invertible in (Z/aZ)k×k. Further, note that U
and V are invertible over Z. Hence, if u1, . . . , un are the columns of U, then the reductions to
(Z/aZ)n determine a (Z/aZ)-module basis, and the reduction of D′V to (Z/aZ)k×k is invert-
ible. Consequently, since B= (u1, . . . , uk)D′V, the reductions of b1, . . . , bk together with the
reductions of the ui with i≥ k+ 1 determine a (Z/aZ)-module basis for (Z/aZ)n.

Denote π :Zn → (Z/aZ)n for the reduction map. Then, since a= exp (G), it holds for every
F ∈HomZ(Zn,G) that there is some unique F ∈HomZ/aZ((Z/aZ)n,G) with F = F ◦ π . Recall that
for any ring R an R-module morphism from a free R-module to an arbitrary R-module may be
specified uniquely by arbitrarily specifying the images of the basis elements. Consequently, since
the π(bi) are part of a (Z/aZ)-module basis,

#
{
F ∈HomZ(Zn,G) : FB= 0

}= #
{
F ∈HomZ/aZ((Z/aZ)n,G) : F ◦ π ◦ B= 0

}
= (#G)n−k. (3.6)

Combine (3.5) with (3.6) and set C := SG to conclude the proof. �
We next estimate P(FX= xF). The quality of the estimates will be better when F is ‘very sur-

jective’. To make this precise, we rely on a notion of codes which is due toWood [32] and a notion
of robust morphisms which is due to Nguyen and Wood [15].

3.1.2. Estimate for codes
Let e1, . . . , en ∈Zn be the standard basis vectors. For any σ ⊆ {1, . . . , n}, writeVσ := spanZ(ei:i ∈
σ ) for the Z-submodule of Zn consisting of vectors whose nonzero coordinates are in σ . We
abbreviate V\σ := V{1,...,n}\σ .
Definition 3.5. Let G be an Abelian group. Then, F ∈HomZ(Zn,G) is called a code of distance
w≥ 1 if for every σ ⊆ {1, . . . , n} with #σ <w one has F(V\σ )=G.

The foregoing definition may also be applied to Z[x]-modules since these can be viewed as
Abelian groups through the Z-module structure.

Lemma 3.6. Adopt assumptions (A1) and (A3), and fix a Z[x]-module N such that all prime divi-
sors of #N are in P. Then, for every δ > 0, there exist constants C, c> 0 such that for all n≥ 1

∑
F∈HomZ(Zn,N)

F a code of distance δn

∣∣P(FX= xF)− (#N)−n∣∣≤ Cn−c. (3.7)

Proof. For any code F and any A ∈HomZ(Zn,N), it is shown in [15, Lemma 4.7] that |P(FX=
A)− (#N)−n| ≤ C(#N)−nn−c. Actually, strictly speaking, [15, Lemma 4.7] is stated for matrices
that are αn-balanced at all primes, but only balancedness at primes dividing #N is necessary for
its proof. (Indeed, [15, Lemma 4.7] follows from [15, Lemma 4.5] whose proof may be found in
[33, Lemma 2.1] and only requires the weaker condition; see [33, Definition 1].) The result now
follows since there are at most #HomZ(Zn,N)= (#N)n summands in (3.7). �

3.1.3. Estimate for non-codes
The contribution of terms in (3.3) corresponding to non-codes turns out to be negligible. It is
however delicate to make this rigorous. The estimate that can be achieved on P(FX= xF) for a
generic non-code F is, namely, insufficient to beat the combinatorial factor corresponding to the
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number of non-codes. Hence, a subdivision of the non-codes is required to balance the quality of
the estimates against the combinatorial costs.

For an integer d with prime factorisation d =∏
i p

ei
i , denote �(d) := ∑

i ei. Given a subgroup
H ⊆G, let [G :H] := #G/#H denote the index of H in G.

Definition 3.7. Let G be a finite Abelian group and let δ > 0 be a scalar. Then, F ∈HomZ(Zn,G)
is called δ-robust for a subgroup H ⊆G if H is minimal with the property that

#
{
i ∈ {1, . . . , n} : F(ei) /∈H

}≤ �([G :H])δn (3.8)

That is, H satisfies (3.8), and no strict subgroup H′ �H satisfies (3.8).

The main motivation for Definition 3.7 is the following property: if F is δ-robust for H, then
the restriction of F to Vσ with σ := {i : F(ei) ∈H} is a code of distance δn whenH is viewed as the
codomain of this restriction. Indeed, suppose this were not the case. Then, there existsμ ⊆ σ with
#μ < δn such that H′ := F(Vσ\μ) is a strict subgroup of H. So, since [G :H′]≥ [G :H]+ 1,

#{i ∈ {1, . . . , n} : F(ei) �∈H′} ≤ #{i ∈ {1, . . . , n} : F(ei) �∈H} + #μ (3.9)
≤ �([G :H′])δn

contradicting the minimality of H.
In particular, any F ∈HomZ(Zn,G) that is not a code of distance δn is not δ-robust for G.

However, (3.8) is always satisfied when G=H. This implies that any non-code has to be δ-robust
for some, not necessarily unique, proper subgroup of G. Hence,

{F ∈ SurZ(Zn,G) : F not a code of distance δn} (3.10)

⊆
⋃
H�G

{F ∈ SurZ(Zn,G) : F is δ-robust for H}.

We next establish an estimate onP(FX= xF) when F is δ-robust for someH. The following lemma
generalises [15, Lemma 4.11], which concerns a similar bound for P(F(Y)= 0).

Lemma 3.8. Fix scalars δ, α > 0, an integer n≥ 1, and a finite Abelian group G. Fix a proper
subgroup H �G, denote d := [G :H], and consider a maximal chain of proper subgroups

H =G�(d) � · · ·�G2 �G1 �G0 =G. (3.11)

Consider a δ-robust morphism F ∈HomZ(Zn,G) for H. For every 1≤ j≤ �(d) denote pj :=
[Gj−1 :Gj] and

wj := #
{
i ∈ {1, . . . , n} : F(ei) ∈Gj−1 \Gj

}
. (3.12)

Abbreviate a := exp (G) for the exponent of G. Then, for every g ∈G and every Zn-valued random
vector Y whose entries are independent and α-balanced modulo all prime divisors of a,

P
(
F(Y)= g

)≤ ((#G)−1d + exp
(−αδn/a2

)) �(d)∏
j=1

(
p−1
j + pj − 1

pj
exp

(
−αwj/p2j

))
. (3.13)

Proof. The strategy in this proof is to reduce to the case of codes where estimates are available
from [15, Lemma 4.5]. Again, similar to the remarks in the proof of Lemma 3.6, that lemma is
stated for the case where Y is balanced at all primes, but the case where Y is merely balanced at
prime divisors of a follows from its proof.

For every j ∈ {1, 2, . . . , �(d)}, define a set of indices by
σj :=

{
i ∈ {1, . . . , n} : F(ei) ∈Gj−1 \Gj

}
. (3.14)

Then, for every r ≤ �(d), the set of indices i with F(ei) /∈Gr is given by 
r := ∪r
j=1σj. Write

Y = (y1, . . . , yn) and observe that
∑

i/∈
r yiF(ei) ∈Gr for any r ≤ �(d). Consequently, since F(Y)=
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∑n
i=1 yiF(ei), it is only possible to have F(Y)= g if

∑
i∈
r yiF(ei)− g ∈Gr for all r ≤ �(d). Hence,

by definition of conditional probability,

P
(
F(Y)= g

)= P

⎛
⎝∑

i∈
1

yiF(yi)− g ∈G1

⎞
⎠ P

⎛
⎝F(Y)= g

∣∣∣ ∑
i∈
1

yiF(yi)− g ∈G1

⎞
⎠

=
�(d)∏
j=1

P

⎛
⎝∑

i∈
j

yiF(yi)− g ∈Gj

∣∣∣ ∀r < j :
∑
i∈
r

yiF(yi)− g ∈Gr

⎞
⎠ (3.15)

× P

⎛
⎝F(Y)= g

∣∣∣ ∀r ≤ �(d) :
∑
i∈
r

yiF(yi)− g ∈Gr

⎞
⎠ .

We next bound the probabilities occurring in (3.15). Recall that the yi are independent. Hence, if
we fix some j≤ �(d) and condition on the values achieved by the yi with i ∈ 
j−1, then

P

⎛
⎝∑

i∈
j

yiF(ei)− g ∈Gj

∣∣∣ ∀r < j :
∑
i∈
r

yiF(yi)− g ∈Gr

⎞
⎠ (3.16)

=E

⎡
⎣P(∑

i∈
j

yiF(ei)− g ∈Gj

∣∣∣ yi : i ∈ 
j−1
) ∣∣∣ ∀r < j :

∑
i∈
r

yiF(yi)− g ∈Gr

⎤
⎦

≤ max
h∈Gj−1

P

⎛
⎝∑

i∈σj

yiF(ei)− h ∈Gj

⎞
⎠ .

Here, the final step used that
j \ 
j−1 = σj, and
∑

i∈
j−1 yiF(ei)− g was identified with h. Denote
Fj :Vσj →Gj−1/Gj for themap found by restricting F toVσj and reducingmoduloGj. Recall (3.12)
and note that wj = #σj. We claim that Fj is a code of distance wj; recall Definition 3.5. Indeed, the
maximality of (3.11) ensures that Gj−1/Gj is a cyclic group of prime order and consequently, for
every i ∈ σj, Fj(ei) generatesGj−1/Gj since Fj(ei) �≡ 0 mod Gj by definition of σj; recall (3.14). Now
apply [15, Lemma 4.5] to Fj and use that pj = #(Gj−1/Gj) to find

P

⎛
⎝∑

i∈σj

yiF(ei)− h ∈Gj

⎞
⎠≤ 1

pj
+ pj − 1

pj
exp

(
−αwj

p2j

)
. (3.17)

Using this bound on the product in (3.15) yields the product in (3.13). It remains to bound the
remaining factor. Here, similarly to (3.16), we have

P

⎛
⎝F(Y)= g

∣∣∣ ∀r ≤ �(d) :
∑
i∈
r

yiF(yi)− g ∈Gr

⎞
⎠≤ max

h∈G�(d)
P

⎛
⎝ ∑

i�∈
�(d)

yiF(ei)= h

⎞
⎠ .

By the argument preceding (3.9), the restriction of F to V\
�(d) defines a code of distance δn.
Hence, by [15, Lemma 4.5] and the fact that exp (H) | exp (G),

P

⎛
⎝ ∑

i�∈
�(d)

yiF(ei)= h

⎞
⎠≤ (#H)−1 + exp (− αδn/a2). (3.18)

It was here used that (#H − 1)/#H ≤ 1. Use that #H = #G/d to conclude the proof. �

https://doi.org/10.1017/S0963548324000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000312


144 A. Van Werde

Corollary 3.9. Adopt assumption (A1), and let N be a Z[x]-module such that all prime divisors of
#N are in P. Then, for every subgroup H ⊆N and every F ∈HomZ(Zn,N), which is δ-robust for
H,

P(FX= xF)≤ ((#N)−1d + exp
(−αnδn/a2

))n �(d)∏
j=1

(
p−1
j + pj − 1

pj
exp

(
−αnwj/p2j

))n

where d, pj,wj, and a are defined as in Lemma 3.8 with G=N.

Proof. Since the entries of X are assumed to be independent, one has that P(FX= xF)=∏n
i=1 P(F(Xei)= xF(ei)). The result is hence immediate from Lemma 3.8 applied with Y := Xei

and g := xF(ei). �
Lemma 3.10. Let N be a Z[x]-module such that all prime divisors of #N are in P and adopt
assumptions 1 and 3. Then, there exists δ0 > 0 such that for every δ < δ0, there exist constants
C, c> 0 such that for all n≥ 1

∑
F∈SurZ (Zn,N)

F not a code of distance δn

P(FX= xF)≤ Cn−c.

Proof. By (3.10), one may upper bound the sum as

∑
F∈SurZ(Zn,N)

F not a code of distance δn

P(FX= xF)≤
∑
H�N

∑
F∈SurZ(Zn,N)

F is δ-robust for H

P(FX= xF). (3.19)

Fix some proper subgroup H �N and pick a maximal chain of subgroups Gj as in (3.11) with
G=N. We denote d := [N :H].

By [15, Lemma 4.10], the number of F ∈HomZ(Zn,N) that are δ-robust for H and sat-
isfy that there are exactly wj indices i≤ n with F(ei) ∈Gj−1 \Gj for 1≤ j≤ �(d) is at most

(#H)n−
∑�(d)

j=1 wj ∏�(d)
j=1

( n
wj

)
(#Gj−1)wj . When F is surjective, we have w1 �= 0. Further, when F is δ-

robust forH, we have wj ≤ �(d)δn for all j≤ �(d). Indeed, if this were not the case, then we would
have #{i≤ n : F(ei) �∈H} > �(d)δn, which contradicts (3.8). Now, by the combination of Corollary
3.9 with the aforementioned count on the number of δ-robust morphisms,

∑
F∈SurZ(Zn,N)

F is δ-robust for H

P(FX= xF)≤
∑

0≤w1,...,w�(d)≤�(d)δn
w1 �=0

(#H)n−
∑�(d)

j=1 wj
�(d)∏
j=1

(
n
wj

)
(#Gj−1)wj (3.20)

× (
(#N)−1d + exp

(−αnδn/a2
))n �(d)∏

j=1

(
p−1
j + pj − 1

pj
exp

(
−αnwj/p2j

))n
.

It remains a nontrivial task to compute the right-hand side of (3.20). Fortunately, a related sum
was considered by Nguyen and Wood [15], and we can extract the relevant estimate from their
proofs. More precisely, the sum in (3.20) is a special case of the sum which occurs in the first
centred equation of the proof of [15, Theorem 4.12]: take u= 0 in their notation. Following the
arguments word for word up to the centred inequality at the end of page 23 in [15] now yields the
desired result. �
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Lemma 3.11. Adopt assumptions (A1) and (A3), and fix a Z[x]-module N such that all prime
divisors of #N are in P. Then, there exists δ0 > 0 such that for every δ < δ0, there exist constants
C, c> 0 such that for all n≥ 1 ∑

F∈SurZ (Zn,N)
F not a code of distance δn

|P(FX= xF)− (#N)−n| ≤ Cn−c.

Proof. By Definition 3.5, if F is not a code of distance δn, then we can find some σ ⊆ {1, . . . , n}
and a proper subgroup H �N such that F(V\σ )⊆H and #σ = �δn�. Hence, since F is uniquely
determined by the images of the basis elements of Zn,∑

F∈SurZ(Zn,N)
F not a code of distance δn

(#N)−n ≤
∑
H�N

(
n

�δn�
)
(#H)n−�δn�(#N)−n+�δn�. (3.21)

The binary entropy bound [6, Eq.(7.14), p. 151] implies that
( n
�δn�

)≤ 2nE(�δn�/n) where E(y) :=
−y log2 (y)+ (1− y) log2 (1− y). Note that limy→0 E(y)= 0. We can hence find some sufficiently
small δ0 such that Lemma 3.10 is applicable and δ0 + E(�δ0n�/n)< 1/2 for all n≥ 1. Then, since
#H ≤ #N/2, we have for every δ < δ0 that∑

F∈SurZ(Zn,N)
F not a code of distance δn

(#N)−n ≤ SN2(E(�δn�/n)+δ−1)n ≤ SN2−n/2 (3.22)

where SN is the number of proper subgroups of N. Let C′, c′ > 0 be such that SN2−n/2 ≤ C′n−c′

for all n≥ 1, and use Lemma 3.10 together with the triangle inequality to conclude the proof. �

3.1.4. Combining the estimates
We finally combine all preceding estimates to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. By (3.3) and the triangle inequality,

|E[#SurZ[x](coker(W̃),N)]− (#N)−k| ≤
∑

F∈SurZ(Zn,N) : FB=0

∣∣(#N)−n − P(FX= xF)
∣∣ (3.23)

+
∣∣∣(#N)−n#{F ∈ SurZ(Zn,N) : FB= 0} − (#N)−k

∣∣∣ .
Pick some δ > 0, which is sufficiently small to ensure that Lemma 3.11 is applicable. Then, by

the triangle inequality,∑
F∈SurZ(Zn,N) : FB=0

|(#N)−n − P(FX= xF)| (3.24)

≤
∑

F∈HomZ(Zn,N)
F a code of distance δn

|(#N)−n − P(FX= xF)| +
∑

F∈SurZ(Zn,N)
F not a code of distance δn

|(#N)−n − P(FX= xF)|.

Let c, C > be the constants from Lemma 3.6, and let c′, C′ > 0 be the constants from
Lemma 3.11. Then, the right-hand side of (3.24) is at most Cn−c + C′n−c′ and hence tends to
zero as n tends to infinity. Further, by Lemma 3.4, there exists a constant C′′ > 0 such that∣∣∣(#N)−n#{F ∈ SurZ(Zn,N) : FB= 0} − (#N)−k

∣∣∣≤ C′′2−n. (3.25)

Remark that the right-hand side of (3.25) tends to zero as n tends to infinity to conclude the
proof. �
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3.2 Solving the moment problem
We next apply a general result concerning measures on categories of [20, Theorem 1.6] to invert
the moment problem. Using [20, Lemma 6.1] and [20, Lemma 6.3], that result may be specialised
to our context – namely, to limiting measures on the category of finite modules with N-moments
given by (#N)−k. Let us state this specialisation explicitly for the sake of definiteness:

Lemma 3.12 (Special case of [20, Theorem 1.6]). Let R be a ring and consider a sequence of random
finite R-modules Xn such that for every fixed finite R-module N

lim
n→∞ E[# SurR (Xn,N)]= (#N)−k.

Let S be quotient ring of R with #S< ∞, and let L1, . . . , Lr be representatives of the isomorphism
classes of finite simple S-modules. Further, denote qi for the cardinality of the endomorphism field of
Li for every i≤ r. Then, for every finite S-module N,

lim
n→∞ P(Xn ⊗R S∼=N)= 1

(#N)k#AutS(N)

r∏
i=1

∞∏
j=1

(
1− q−j

i # Ext1S (N, Li)
#HomS(N, Li)(#Li)k

)
.

Let us further remark that it follows from the statement of [20, Theorem 1.6] that the limiting
measure in Lemma 3.12 has N-moments given by (#N)−k. In particular, the N-moment for N =
{0} is equal to one, which implies that the limiting measure is a probability measure.

It now remains to combine Proposition 3.1 with Lemma 3.12 and to simplify the results.
This can be accomplished with a direct computation. Note that the following result implies
Theorem 1.3 as the special case with k= 1.

Proposition 3.13. Adopt assumptions (A1) to (A3). Fix a positive integer m≥ 1, a monic poly-
nomial Q ∈Z[x] of degree ≥ 1, and introduce Qi,p ∈ Fp[x], rp ≥ 1, and di,p = degQi,p using the
factorisation of Q modulo p as in Theorem 1.3.

For every p ∈ P, denote Spm := Z[x]/(pmZ[x]+Q(x)Z[x]). Then, given a finite Spm-module
Npm,Q for every p ∈ P, it holds that

lim
n→∞ P(∀p ∈ P : coker(W̃)pm,Q ∼=Npm,Q)=

∏
p∈P

(
1

(#Npm,Q)k#AutSpm (Npm,Q)

×
rp∏
i=1

∞∏
j=1

(
1−

# Ext1Spm
(
Npm,Q, Fp[x]/(Qi,p(x)Fp[x])

)
#HomSpm

(
Npm,Q, Fp[x]/(Qi,p(x)Fp[x])

)p−(k+j)di,p

)⎞⎠ .

Proof. Denote R := Z[x]/
((∏

p∈P pm
)
Z[x]

)
and note that for any Z[x]-moduleM and any R-

module N, one has a bijection between SurR(M ⊗Z[x] R,N) and SurZ[x](M,N). Consequently, by
Proposition 3.1, we have that for every finite R-module N

lim
n→∞ E[#SurR(coker(W̃)⊗Z[x] R,N)]= (#N)−k. (3.26)

Let S := R/(Q(t)R) and define a finite S-module by N := ⊕p∈PNpm,Q. The Chinese remainder
theorem yields R∼= ⊕p∈PZ[x]/(pmZ[x]), which implies that S= ⊕p∈PSpm and coker(W̃)⊗Z[x]
S∼= ⊕p∈Pcoker(W̃)pm,Q. Consequently, by Lemma 3.12 and the fact that isomorphism occurs if
and only if the corresponding summands are isomorphic,
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lim
n→∞ P

(∀p ∈ P : coker(W̃)pm,Q ∼=Npm,Q
)= lim

n→∞ P
(
(coker(W̃)⊗Z[x] R)⊗R S∼=N

)
= 1

(#N)k#AutS(N)

r∏
i=1

∞∏
j=1

(
1− #Ext1S(N, Li)

#HomS(N, Li)(#Li)k
q−j
i

)
. (3.27)

Simple modules over S are precisely the modules of the form S/m with m a maximal ideal of S.
Further, maximal ideals of Z[x] are of the form m= pZ[x]+ f (x)Z[x] with p a prime and f (x) ∈
Z[x] irreducible modulo p of degree ≥ 1 [19, p. 22]. Hence, since maximal ideals of S are in one-
to-one correspondence with maximal ideals of Z[x], which contain

∏
p∈P pm andQ, the modules

Li in (3.27) are of the form Fp[x]/(Qi,p(x)Fp[x]). Consequently, by (3.27) and the fact that the
endomorphism field of Fp[x]/(Qi,p(x)Fp[x])) is isomorphic to Fp[x]/(Qi,p(x)Fp[x]), which is a
finite field of order pdi,p ,

lim
n→∞ P

(∀p ∈ P : coker(W̃)pm,Q ∼=Npm,Q
)

(3.28)

= 1
(#N)k#AutS(N)

∏
p∈P

rp∏
i=1

∞∏
j=1

(
1− #Ext1S

(
N, Fp[x]/(Qi,p(x)Fp[x])

)
#HomS

(
N, Fp[x]/(Qi,p(x)Fp[x])

)p−(k+j)di,p

)
.

Here, observe that #N =∏
p∈P #Npm,Q, #AutS(N)=∏

p∈P #AutSpm (Npm,Q), and note that
#HomS

(
N, Fp[x]/(Qi,p(x)Fp[x])

)= #HomSpm (Npm,Q, Fp[x]/(Qi,p(x)Fp[x])). Further, since Ext
takes direct sums in the first argument to products [31, Proposition 3.3.4],

#Ext1S
(
N, Fp[x]/

(
Qi,p(x)Fp[x]

))=
∏
q∈P

#Ext1S
(
Nqm,Q, Fp[x]/

(
Qi,p(x)Fp[x]

))
. (3.29)

Finally, using the definition of Ext1 in terms of short exact sequences [31, Theorem 3.4.3] together
with the fact that finite S-modules correspond to tuples of Spm-modules, one can verify that

#Ext1S(Nqm,Q, Fp[x]/(Qi,p(x)Fp[x]))=
{
#Ext1Spm (Npm,Q, Fp[x]/(Qi,p(x)Fp[x])) if p= q,
1 else.

(3.30)

Combine (3.28)–(3.30) to conclude the proof. �

4. Future work
Ultimately, we would like to show that the conditions of Theorem 1.1 are satisfied with nonva-
nishing probability. The current paper makes progress in this direction: we now have concrete
proof techniques that can be used to study cokernels of walk matrices. There are however still a
number of interesting open problems.

For instance, it remains entirely open to understand whether the condition coker(W)22 ∼=
(Z/2Z)�n/2� is often satisfied, even heuristically. This is because the distribution of coker(W)2m
is highly sensitive to the graph being simple, which makes approximation by results for directed
graphs inadequate. Indeed, when X is the adjacency matrix of a simple graph and b= e is the
all-ones vector, then [26, Lemma 14] implies that rank2W≤ �n/2�. Equivalently, it holds that
coker(W)2 ∼= (Z/2Z)� for some � ≥ �n/2�. This is very different behaviour from the distribution
for directed graphs in Theorem 1.2 with p= 2 since the latter is concentrated on small groups.

For odd primes, numerical evidence suggest that the difference is not as severe. Table 1, namely,
suggest that the distribution of coker(W)pm has qualitatively similar behaviour for simple and
directed graphs. Quantitatively, however, a close inspection shows that there is a small but nonzero
difference that does not seem to disappear when n grows large, suggesting that the limiting
distribution for simple graphs differs from the one for random directed and weighted graphs.
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Table 1. Probability that coker(W)p2 ∈ {0,Z/pZ} when X is the adjacency matrix of an undirected Erdős–
Rényi random graph on n nodes and b= e, estimated based on 105 independent samples. The estimated
values have an uncertainty of ±0.002. Also displayed is the limiting probability in the case of directed and
weighted random graphs, which follows from Theorem 1.2 withm= 2. Computation of the group structure of
coker(W)p2 was done using the algorithm smith_form in SageMath [23]

p n= 10 n= 12 n= 15 n= 20 n= 30 n= 40 Theorem 1.2

3 0.495 0.625 0.726 0.757 0.756 0.758 0.746834 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.549 0.725 0.869 0.913 0.914 0.915 0.912399 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.563 0.750 0.906 0.953 0.956 0.957 0.956337 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 0.571 0.765 0.930 0.981 0.983 0.983 0.982726 . . .

Table 2. Probability that coker(W)p2 ∈ {0,Z/pZ} when X∼Unif{0, 1}n×n is the adjacency matrix of an
unweighted directed random graph and b= e. The same comments as in the caption of Table 1 apply: the
estimation used 105 independent samples, there is an uncertainty of±0.002, and SageMath [23] was used

p n= 10 n= 12 n= 15 n= 20 n= 30 n= 40 Theorem 1.2

3 0.650 0.707 0.737 0.746 0.749 0.747 0.746834 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.759 0.844 0.898 0.911 0.911 0.912 0.912399 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.786 0.881 0.940 0.956 0.957 0.956 0.956337 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 0.802 0.901 0.965 0.982 0.983 0.983 0.982726 . . .

For instance, the estimated probabilities that coker(W)p2 ∈ {0,Z/pZ} for p= 3 is 0.758± 0.002,
whereas Theorem 1.2 predicts 0.747.

So, the extension of our results to the setting of simple graphs poses an interesting problem,
both for odd and even primes. We intend to pursue this in future work. Let us finally recall
Conjecture 1.4, and note that a proof of this conjecture would also be valuable since the underlying
challenges are also likely to show up in the study of simple graphs. In support of this conjecture,
we present numerical data in Table 2, which suggests that the conclusion of Theorem 1.2 remains
valid for unweighted directed graphs.

Supplementary material
The supplementary material for this article can be found at https://doi.org/10.1017/
S0963548324000312.
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