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Abstract . An analytical formula for the time transformation T D B - T D T valid over a 
few thousand years around J2000 has been computed with an accuracy at the 1 ns level. 
The coefficients for a formula accurate at the 100 ns level are provided here. The numerical 
and analytical procedures to compute this transformation are discussed. We note that these 
procedures cannot comply with recommendation 5 of the 1976 IAU meeting. Furthermore, 
these procedures yield different units for the corresponding TDB time scales. We also note 
that this transformation is independent of the two PPN parameters 7 and β and of the 3 
most commonly used coordinate systems (isotropic, standard-Schwarzschild, Painlevé) at 
least at the 1 ns level. 

Introduction 

Recommendation 5 of the 1976 IAU meeting in Grenoble (see Winkler and Van Flandern, 
1977) states that: 

the time scales for equations of motions referred to the barycentre of the solar system 
be such that there be only periodic variations between these time scales and that for the 
apparent geocentric ephemerides. 

It should be noted that reference is made to the time scale associated with the geo-
centric ephemerides and not to a topocentric time scale. The complete formulation for 
transforming from a barycentric coordinate time to the time of an observatory located on 
the surface of the Earth is in Guinot (1986). We shall restrict our transformation to the 
time scales of the IAU recommendation. 

A new impetus for the need of an accurate time transformation between the observed 
time of an event in Temps Dynamique Terrestre (TDT) and the corresponding coordinate 
time in Temps Dynamique Barycentrique (TDB) is given by the analysis of timing data of 
the millisecond pulsar PSR1937+214. At present, the precision of these data acquired at 
Arecibo is approximately 0.3 microsecond and is expected to improve to 0.1 microsecond 
soon. Hence, the physical model required to analyse these observations must include a 
time transformation T D B - T D T which is precise at the 0.01 microsecond level (one tenth 
of the expected observation error). We have finally set the requirement that our formula 
be accurate to the 1 nanosecond level for future applications. 

There are two possible procedures to calculate this time transformation. The first 
procedure is numerical. The linear trend is computed by averaging a numerically in-
tegrated "time ephemeris" over less than a century and is then substracted from the 
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"time ephemeris" itself. The resulting tabulated values provide a time transformation 
T D B - T D T which matches only to some extent the IAU recommendation. The second 
procedure is based on analytical theories for the motions of the planets and Moon. The 
planetary theory VSOP82 (Bretagnon, 1982) and the lunar theory ELP2000 (Chapront-
Touzé and Chapront, 1983) developed at the Bureau des Longitudes are used to calculate 
a more accurate analytical formula for this transformation. 

A n A n a l y t i c a l Formula for the T i m e Transformation T D B - T D T 

The Parametrised Post Newtonian (PPN) metric given by equation (4) in Brumberg (1986) 
describes the space-time properties of the solar system. This metric includes the contri-
butions of all the planets and their mutual interactions. It also includes the two physical 
PPN parameters 7 and β and the integer ν (with possible values 0, 1, 2) for selecting one 
of the three most commonly used coordinate systems (isotropic, standard Schwarzschild, 
Painlevé) in celestial mechanics. 

This complete metric was used to derive the differential relation between TDT and 
TDB. The resulting expression is rather voluminous. However, only the terms larger than 
10"" 1 1 in this expression must be kept to have a formula providing a 1 nanosecond accuracy 
after integration. The final differential expression is: 

where mt = , Mx mass of planet i 

Pi = r — r,, fi barycentric position of planet i 

r and ν stand for the position and velocity of the Earth , respectively. 

It is interesting to note that differential equation (1) does not anymore depend explic-
itly either on the two physical PPN parameters 7 and β or on the integer ν selecting the 
coordinates. Hence, at the 1 ns level, the time transformation T D B - T D T is independent 
of the 3 systems of coordinates considered by Brumberg (1986). 

Equation (1) is given by Thomas (1975) and by Moyer (1981) who provides an analyt-
ical solution accurate to 20 μβ. Hirayama and Kinoshita (1986) provide a solution which 
is more precise ( a few μβ). Various typographic errors in the solution as it is printed need 
to be corrected: the sign of the phase of the 2E term should be changed; the argument 
4V - SE + 3M should read 4E - SM + 3 J ; the term 0.468 sin(£ -U + 180.000) should 
read 0.468sin(£ - Ν + 180.000). 

The analytical theories VSOP82 and ELP2000 for the motions of the planets and Moon 
have integration constants which are adjusted on the Jet Propulsion Laboratory ephemeris 
DE200 (Newhall, Standish and Williams, 1983). These analytical theories provide Pi and 
ν as periodic time series. Using these in (1) and keeping all the periodic terms larger than 
1 0 - 1 1 , the equation is integrated and the resulting formula is in the form : 

(1) 
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TDB = TDT + C0T
2 + D0T

S + ...+ 

+ ]TA; s i n ^ T + φαί)+ 
i 

+ Γ Σ Β < « Ι > ( « Κ Γ + * Μ ) + 

< (2) 

+ Γ 2 Σ dsinfaiT + φα)+ 

i 

i where T is in thousands of years from J2000.0 and TDB will be given in microseconds. 
The coefficients are given in Table I. 
We have compared this formula with the one given by Hirayama and Kinoshita (1986) 
and found a good agreement at the 0.04μβ level for the terms present in the two solutions. 
The uncertainty mentioned above (a few μβ) for Hirayama's and Kinoshita's formula arises 
from all the neglected terms; the largest of which has an amplitude of 0.376 μβ. 

As pointed out in Fukushima et ai. (1986) and in Hellings (1986), the use of the TDB 
unit as defined by the IAU implies that the space coordinates be multiplied by a constant 
factor so that, in particular, the speed of light remain constant. This factor partly depends 
on the linear term of the integrated equation which is dropped in formula (2) to conform 
to the IAU recommendation. It has the value 467.308935202 s/10 3 y 

T h e Convent ion P r o b l e m 

The IAU convention, as stated in the introduction, implies that the theory of motions of 
the planets and Moon is constructed with purely periodic terms. However, such a theory 
which is valid over several millions of years is not precise locally in time. Secular variation 
theories are, on the contrary, more precise by construction because long periodic terms of 
périhélie and nodes (with periods between 45 000 and 2 000 000 years) are expanded as 
time polynomials . Integrating (1) analytically with such a theory leads to an expression 
of the time transformation T D B - T D T in the form of a time polynomial, of periodic terms 
and of mixed terms of the form tn sina;£ as in (2). To conform to the IAU recommendation, 
the linear term of the time polynomial is dropped. However, the higher order terms in 
the polynomial and the mixed terms subsist. These terms do not arise from the particular 
analytical representation used but are actually present in the transformation. For example, 
they are partly generated by the long-term variations in the eccentricity of the Earth's 
orbit. Hence, the IAU recommendation cannot be formally complied with. 

At present, the timing data of the fast pulsar PSR1937+214 are analysed using nu-
merical transformations (Backer and Hellings (1986), Davis et ai. (1985)). These trans-
formations are computed over specific spans of time (60 and 100 years ending at J2000.) 
emphasized in the description of the physical model. This precise definition is necessary 
since such numerical transformations depend slightly on the span chosen. As already men-
tioned, the "time ephemeris" is averaged over a few decades though it includes terms with 
periods longer than a few centuries or even a few millenia. Locally, these long period terms 
are analogous to a slope in time. To conform to the IAU recommendation, this linear term 
is dropped and thence long period terms are practically ignored in numerical transforma-
tions. On the contrary, long period terms are kept in the analytical transformation. The 
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index i Ai (ßs) ωαί (rd/10 3y) <t>ai (rd) 

1 1656.6894 6283.0758494 6.2400497 
2 22.4175 5753.3848843 4.2969771 
3 13.8399 12566.1516988 6.1968995 
4 4.7701 529.6909651 0.4444038 
5 4.6767 6069.7767539 4.0211937 
6 2.2566 213.2990954 5.5431320 
7 1.7307 -3.5231591 5.0189615 
8 1.5555 77713.7714679 5.1984671 
9 1.2768 7860.4193937 5.9888233 

10 1.1934 5223.6939192 3.6498063 
11 1.1153 3930.2096968 1.4227456 
12 0.7942 11506.7697686 2.3223126 
13 0.6003 1577.3435443 2.6782570 
14 0.4968 6208.2942508 5.6967011 
15 0.4863 5884.9268358 0.5199988 
16 0.4686 6244.9428137 5.8663983 
17 0.4484 26.2983277 3.6116882 
18 0.4353 -398.1490136 4.3493415 
19 0.4324 74.7815986 2.4358996 
20 0.3755 5507.5532411 4.1034739 
21 0.2431 -775.5226083 3.6519195 
22 0.2307 5856.4776585 4.7740285 
23 0.2037 12036.4607337 4.3339850 
24 0.1734 18849.2275481 6.1537378 
25 0.1591 10977.0788035 1.8900771 
26 0.1440 -796.2980272 5.9574876 
27 0.1379 11790.6290905 1.1359361 
28 0.1200 38.1330356 4.5515858 
29 0.1190 5486.7778222 1.9145317 
30 0.1161 1059.3819302 0.8734863 
31 0.1019 -5573.1428016 5.9845038 
32 0.0984 2544.3144043 0.0927835 
33 0.0802 206.1855484 2.0953827 
34 0.0796 4694.0029541 2.9492402 
35 0.0750 2942.4634179 4.9809276 
36 0.0626 20.7754189 2.6543767 
37 0.0644 5746.2713373 1.2804037 
38 0.0638 5760.4984313 4.1680021 
39 0.0588 426.5981909 4.8396652 
40 0.0571 -0.9804182 0.9252472 
41 0.0541 17260.1546529 3.4110896 
42 0.0482 155.4203227 2.2517971 
43 0.0480 2146.1653907 1.4958314 
44 0.0427 632.7837393 5.7206226 

Table I : Coefficients of equation ( 2 ) . 
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index i Ai (μβ) ωαί (rd/10 3y) Φαΐ (rd) 

45 0.0426 161000.6857375 1.2708377 
46 0.0424 6275.9623024 2.8695872 
47 0.0421 -7.1135470 3.5707209 
48 0.0408 12352.8526033 3.9814932 
49 0.0405 15720.8387873 2.5466120 
50 0.0370 3154.6870886 5.0717851 
51 0.0366 5088.6288086 3.3246566 
52 0.0365 801.8209360 6.2487864 
53 0.0349 522.5774181 5.2100747 
54 0.0335 6062.6632069 4.1452250 
55 0.0335 9437.7629379 2.4047140 
56 0.0324 8827.3902537 5.5414605 
57 0.0324 6076.8903009 0.7495680 
58 0.0302 7084.8967854 3.3896043 
59 0.0299 12139.5535079 1.7701727 
60 0.0293 -71430.6956185 4.1831763 
61 0.0279 -6286.5990085 5.0737086 
62 0.0272 6279.5526903 5.0450074 
63 0.0252 1748.0163771 2.9018643 
64 0.0248 -1194.4470408 1.0870978 
65 0.0226 6133.5126522 3.3080189 
66 0.0225 10447.3878384 1.4607311 
67 0.0217 14143.4952430 5.9526579 
68 0.0209 8429.2412401 0.6522829 
69 0.0203 419.4846439 3.7354887 
70 0.0178 73.2971259 3.4759751 
71 0.0177 6812.7668145 3.1861180 
72 0.0162 10213.2855462 1.3311023 
73 0.0160 -2352.8661526 6.1453853 
74 0.0159 -220.4126424 4.0052889 
75 0.0151 19651.0484841 3.9694831 
76 0.0147 1349.8673635 4.3089139 
77 0.0143 16730.4636878 3.0160582 
78 0.0142 17789.8456180 2.1045498 
79 0.0137 -536.8045121 5.9716728 
80 0.0125 103.0927742 1.7374759 
81 0.0123 3.5903879 1.7853927 
82 0.0124 4690.4797950 4.7340616 
83 0.0119 5643.1785631 5.4893206 
84 0.0119 8031.0922265 2.0533868 
85 0.0117 -4705.7323051 2.6541366 
86 0.0116 5120.6011450 4.8639255 
87 0.0108 553.5693363 0.8427244 
88 0.0104 951.7183499 5.7177869 

Table I (cont.) : Coefficients of equation ( 2 ) . 
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index i Ai (//s) ωαί ( rd / l0 3 y) Φαί (rd) 

89 0.0104 5863.5912055 1.9138804 
90 0.0101 283.8593219 1.9421795 

index i Bi (μβ/10 3γ) α;Μ (rd/10 3y) ΦΗ (rd) 

1 102.1574 6283.0758494 4.2490312 
2 1.7068 12566.1516988 4.2059040 
3 0.2697 213.2990954 3.4002911 
4 0.2659 529.6909651 5.8360513 
5 0.2158 -3.5231591 0.0349384 
6 0.0780 5223.6939192 4.6703356 
7 0.0547 1577.3435443 4.53489% 
8 0.0593 26.2983277 1.0873123 
9 0.0344 -398.1490136 5.9800691 

10 0.0321 18849.2275481 4.1629120 
11 0.0336 5507.5532411 5.9801641 
12 0.0292 5856.4776585 0.6238510 
13 0.0277 155.4203227 3.7453675 
14 0.0252 5746.2713373 2.9803823 
15 0.0230 -796.2980272 1.1743887 
16 0.0250 5760.4984313 2.4679632 
17 0.0218 206.1855484 3.8547865 
18 0.0179 -775.5226083 1.0918412 
19 0.0138 426.5981909 2.6998356 
20 0.0133 6062.6632069 5.8459339 
21 0.0118 12036.4607337 2.2928350 
22 0.0129 6076.8903009 5.3335561 
23 0.0122 1059.3819302 6.2228683 
24 0.0106 -7.1135470 5.1924310 
25 0.0101 4694.0029541 4.0451363 
26 0.0101 522.5774181 0.7493158 

index i d (μ 8 /10 β χ) ωοί (rd/10 3y) Φαί (rd) 

1 4.3230 6283.0758494 2.6428936 
2 0.1226 12566.1516988 2.4381357 
3 0.1648 0.0000000 4.7123890 
4 0.0195 213.2990954 1.6421878 
5 0.0169 529.6909651 4.5109594 
6 0.0131 -3.5231591 1.3410365 

index i Di (/is/10 9y) ωάί (rd/10 3y) Φ* (rd) 

1 0.1434 6283.0758494 1.1314526 

Table I (end.) : Coefficients of equation (2). 

difference is small but nevertheless significant as it corresponds fundamentally to a change 
of unit between the TDB time scales generated. 

As an example, the period of the 7th periodic term in f o r m u l a ( 2 ) , with coefficient 
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F ig . 1: the continuous curve represents the sum of all the terms with periods longer than 
100 years in the time transformation T D B - T D T . The two dashed straight lines represent 
the averages of this sum over 60 and 100 years ending at J2000. 

A7, is 1800 years and it can be expanded locally around J2000 as a + bt -f ct2 + ... , where 
α = -16500 x 1 0 - 1 0 s , 6 = -5.831 χ Ι Ο " 1 7 ^ " 1 and c = 1.0283 χ l O " 2 6 ^ " 2 . In the case 
of the fast pulsar PSR1937+214, dropping 6 in the numerical procedure is equivalent to 
a relative change of the TDB unit of -5.831 χ 10~ 1 7 . Therefore, the measured period of 
PSR1937-H214 ( « 1.56ms) would differ by a* 10~ 1 9 s if compared to its value determined 
with an analytical formula. At present, the period of PSR1937+214 is measured at the 
10~ 1 6 s level. In reality, the total effect arises from many long period terms and we have 
plotted in figure 1 the time function summing all the terms with periods longer than 100 
years and fitted 2 slopes to this function over the 2 time intervals used by Backer and 
Hellings (1986) and Davis et al. (1985). The slopes differ by 16 χ 10~17s/s when the time 
span is changed for these two numerical transformations. 

Conclus ion 

The integration of a "time ephemeris" over a time interval spanning just a few decades 
implies that the resulting numerical time transformations T D B - T D T are only valid for 
that particular time interval. This difficulty vanishes when one uses an analytical expres-
sion of this time transformation even if one considers an interval as long as a few thousand 
years around J2000. The expression (2) above provides a time transformation T D B - T D T 
accurate at the 100 ns level; however we have computed a complete expression accurate at 
the 1 ns level which is available on request. 
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