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The trajectory of surface gravity waves in the potential flow regime is affected by the
gravitational acceleration, water density and sea bed depth. Although the gravitational
acceleration and water density are approximately constant, the effect of water depth on
surface gravity waves exponentially decreases as the water depth increases. In shallow
water, cloaking an object from surface waves by varying the sea bed topography is
possible, however, as the water depth increases, cloaking becomes a challenge because
there is no physical parameter to be engineered and subsequently affects the wave
propagation. In order to create an omnidirectional cylindrical cloaking device for
finite-depth/deep-water waves, we propose an elastic composite plate that floats on the
surface around a to-be-cloaked cylinder. The composite plate is made of axisymmetric,
homogeneous and isotropic annular thin rings which provide adjustable degrees of
freedom to engineer and affect the wave propagation. We first develop a pseudo-spectral
method to efficiently determine the wave solution for a floating composite plate. Next, we
optimise the physical parameters of the plate (i.e. flexural rigidity and mass of every ring)
using an evolutionary algorithm to minimise the energy of scattered waves from the object
and therefore cloak the inner cylinder from incident waves. We show that the optimised
cloak reduces the energy of scattered waves as high as 99 % for the target wave number.
We quantify the effectiveness of our cloak with different parameters of the plate and show
that varying the flexural rigidity is essential to control wave propagation and the cloaking
structure needs to be at least made of four rings with a radius of at least three times of the
cloaked region. We quantify the wave drift force exerted on the structures and show that
the optimised plate reduces the exerted force by 99.9 %. The proposed cloak, due to its
structural simplicity and effectiveness in reducing the wave drift force, may have potential
applications in cloaking offshore structures from water waves.
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1. Introduction

To safely operate and maintain offshore structures in water waves, such as column-based
(spar-type) wind turbines or floating platforms, over a long period, the reduction of the
wave drift force (time-averaged second-order hydrodynamic force) is essential. In addition,
creating a calm and cloaked region on the ocean surface in the presence of surface
waves facilitates the installation of these offshore structures. The concept of cloaking
objects from incident waves was initially developed for electromagnetic waves (Leonhardt
2006; Pendry, Schurig & Smith 2006; Schurig et al. 2006). A cloak is a structure that
encloses a to-be-cloaked object and results in no reflection or scattering of incident waves
from the object. The downstream waves bear no information about the object’s presence
and the cloaked region is secluded from incident waves. The cloaks proposed for the
electromagnetic waves are based on the idea of transformation optics and exploit the
form invariance of governing equations. The material properties of the cloak are found
using spatial transformations of governing equations. The obtained material properties are
usually inhomogeneous and orthotropic and implementing such properties results in the
desired trajectory of the incoming waves. Since the only property used in this technique
is the form invariance of the governing equations under spatial coordinate transformation,
this method has been extended to other areas of physics with form-invariant governing
equations, such as acoustics (Chen & Chan 2007; Cummer & Schurig 2007; Huang, Zhong
& Liu 2014; Darabi et al. 2018a; Zareei et al. 2018), elastic waves (Farhat, Guenneau
& Enoch 2009; Stenger, Wilhelm & Wegener 2012; Zareei & Alam 2017; Darabi et al.
2018b) or seismic waves (Brûlé et al. 2014). In addition to transformation techniques, an
alternative method to achieve cloaking is to minimise the scattering cross-section (or the
energy of scattered waves) of an object (Alù & Engheta 2005). This method has also been
successfully applied to different types of waves such as acoustic waves (Guild, Alu &
Haberman 2011) or water waves (Porter 2011; Porter & Newman 2014).

In shallow water, cloaking has been realised using the coordinate transformation
technique (Berraquero et al. 2013; Zareei & Alam 2015). The governing equation of
shallow-water gravity waves is form invariant under the coordinate transformation. The
physical parameters controlling wave propagation in shallow water are the sea bed
topography and gravitational acceleration (e.g. Berraquero et al. 2013; Zareei & Alam
2015). Clearly, varying the gravitational acceleration is unrealistic. The use of nonlinear
transformation of a cylindrical region can keep the gravitational acceleration at a constant
value, and only change in the sea bed topography is used to achieve cloaking from
shallow-water waves (Zareei & Alam 2015). Alternative approaches are to use an array
of bottom-mounted objects for implementing a cloaking device for shallow-water surface
gravity waves using the coordinate transformation technique (Dupont et al. 2016; Iida &
Kashiwagi 2018) or capillary-gravity waves (Farhat et al. 2008).

As the water depth increases, the effect of the bottom topography exponentially
decreases, and as a result, engineered sea bed topography does not affect the wave
propagation. In addition, the governing equation of deep-water waves in the potential flow
regime is not form-invariant under the coordinate transformation, and therefore it is hard
to apply the transformation technique to make a cloak for deep-water waves. To achieve
cloaking in a finite depth, a scattering cancellation is proposed (Porter 2011; Porter &
Newman 2014). Specifically, a sea bed topography is designed to cancel the energy of
scattered waves of a bottom-mounted cylinder (Porter & Newman 2014). Multiple floating
cylinders (or a ring) are used which shows cloaking performance even for deep-water
waves (Newman 2014). This cloaking method is validated by numerical computations
using a higher-order boundary element method (Iida, Kashiwagi & He 2014) and a model
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Figure 1. Schematic representation of bottom-mounted cylinder and floating composite plate. The plate is
assumed elastic and thin. All values are normalised by the radius of the cylinder, wave amplitude, fluid density
and gravitational acceleration. The sea bottom is flat at z = −h. Thecomposite plate consists of K horizontally
concentric annular rings, and the outermost radius of plate is b. Waves are incident from negative x-direction
(θ = π).

experiment (Iida, Kashiwagi & Miki 2016). As an asymmetrical array of the cylinder is
utilised, the performance of the cloak depends on the wave direction (Zhang et al. 2019).
A concentric annular elastic plate is optimised to reduce the wave drift force
(Loukogeorgaki & Kashiwagi 2019), however, the reduction of the energy of scattered
waves is not observed because the plate’s flexural rigidity is the only controllable
medium property. In addition, because the flexural waves in thin elastic plates are not
form invariant (Zareei & Alam 2017), the floating elastic plate cannot be used for the
transformation-based cloaking in deep water.

Here, we present a design of a surface gravity wave cloak achieved through a floating
composite elastic plate that surrounds a to-be-cloaked cylinder. The cloaking plate consists
of concentric annular plates (axisymmetric, homogeneous and isotropic) that provide
required adjustable degrees of freedom to affect and control the propagation direction of
waves (see figure 1). Cloaking plate parameters (i.e. number of annular plates, size, flexural
rigidity and the mass) are optimised to minimise the energy of scattered waves from the
cylinder. We develop here a numerical scheme based on pseudo-spectral and eigenvalue
matching methods (Peter, Meylan & Chung 2004) to solve this problem, and this is
extended to the calculation of the floating composite plate. Next, we use an evolutionary
strategy to find the optimum parameters for the plate. Here, we demonstrate deep-water
cloaking because cloaking in deep-water waves is especially challenging. We quantify the
effectiveness of our cloak and show that the energy of scattered waves is reduced as high as
99.2 % at the target wave number. In addition, we study the effect of different parameters
on the optimum solution and show that varying the flexural rigidity is essential to cloaking
performance, and the cloaking structure needs to be at least made of four rings with a
radius of at least three times of the cloaked cylinder. By quantifying the wave drift force
exerted on the cylinder, we show that the optimised plate reduces the drift force by 99.9 %
at the target wave number.
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2. Formulation of the problem

2.1. Governing equation and boundary conditions
We consider a bottom-mounted cylinder with radius a surrounded by a thin elastic
composite plate, with its inner radius a and outer radius b, floating on the surface of the
water. The plate is composed of K concentric annular plates (we call each annular plate a
‘ring’ from here on), and is expected to effectively cloak the cylinder from incident water
waves (see figure 1). Adjacent rings are rigidly connected (such as by welding). The plate
is always in contact with the free surface, and rings are thin enough such that Kirchhoff’s
thin plate theory is valid. We number the rings from the outer (ring 1), to the inner (ring
K). The outer radius of ring 1 is denoted by R(1), and similarly until the inner radius of
the ring K which is denoted by R(K+1). We consider a Cartesian coordinate system with
origin O at the centre of the cylinder where z = 0 plane coincides with the undisturbed free
surface of the water and the positive z-axis pointing upward. We assume that the fluid is
incompressible, homogeneous, and inviscid, and that the flow is irrotational. Under these
assumptions, the linearised governing equation and boundary conditions in terms of the
velocity potential Φ(x, t) is

∇2Φ = 0 − h � z � 0, (2.1)

∂Φ

∂z
= 0 z = −h, (2.2)

g
∂Φ

∂z
+ ∂2Φ

∂t2
= 0 z = 0, r � b, (2.3)

(
D(k)∇4

⊥ + m(k)p
∂2

∂t2
+ ρwg

)
∂Φ

∂z
+ ∂2Φ

∂t2
= 0 z = 0,R(k+1) � r < R(k), (2.4)

where g is the gravitational acceleration, ρw is the fluid density, D(k) is the flexural rigidity
of the kth ring, m(k)p is mass per unit area of the kth ring, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is
the spatial gradient operator, and ∇⊥ = (∂/∂x, ∂/∂y) is the horizontal gradient operator.
Subscript p denotes the parameters of the plate. Flexural rigidity and mass of the plate
are calculated as D(k) = E(k)t(k)3p /12(1 − ν2) and m(k)p = ρ

(k)
p t(k)p where E(k) is the kth

ring Young’s modulus, ν is the Poisson’s ratio and ρ(k)p and t(k)p are the density and
thickness of the kth ring, respectively. In these equations, (2.1) is the mass conservation,
(2.2) is the kinematic boundary condition on the bottom, (2.3) is a linearised free surface
condition and (2.4) is the linearised equation for the kth ring of the plate. Equation (2.4)
is derived assuming that each ring is a thin plate, and is always in touch with the water
underneath. Details of derivation and discussion of assumption can be found in Meylan
(2002).

Next, we non-dimensionalise equations (2.1)–(2.4) using the radius of the cylinder
a as the scaling factor in the horizontal direction and the incident wave amplitude
ζw as the scaling factor for amplitudes. Specifically, we define x̄ = x/a, t̄ = t

√
g/a,

and Φ̄ = Φ/(ζw
√

ag). We further assume a harmonic solution in time and, therefore,
the velocity potential is expressed by Φ̄(x̄, t̄) = Re[φ̄(x̄) exp(−i

√
αt̄)] where

√
α is the
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dimensionless frequency. Dropping overbars, (2.1)–(2.4) turn into (e.g. Meylan 2002)

∇2φ = 0 − h � z � 0, (2.5)

∂φ

∂z
= 0 z = −h, (2.6)

∂φ

∂z
− αφ = 0 z = 0, r � b, (2.7)

(
β(k)∇4

⊥ − αγ (k) + 1
) ∂φ
∂z

− αφ = 0 z = 0,R(k+1) � r < R(k), (2.8)

where β(k) = D(k)/(ρwga4) and γ (k) = m(k)p /(ρwa) are dimensionless flexural rigidity and
mass of kth ring, respectively.

2.2. Spectral decomposition of velocity potential
In order to derive a spectral method solution for the above system of equations
(i.e. (2.5)–(2.8)), we use the separation of variables to express the velocity potential (e.g.
Newman 1977) as,

φ(r, θ, z) = R(r)Θ(θ)Z(z). (2.9)

Substituting (2.9) into (2.5)–(2.8), the dispersion relations of water waves and elastic waves
on the plate are obtained as

α =
{

k0 tanh k0h n = 0,
−kn tan knh n > 0,

(2.10)

and

α

β(k)μ
(k)4
n − αγ (k) + 1

=
{
μ
(k)
0 tanhμ(k)0 h n = 0,

−μ(k)n tanμ(k)n h n = −1,−2, n > 0.
(2.11)

Equation (2.10) is the dispersion relation of water waves, where kn (n = 0, 1, 2, . . .) is the
wave number of water waves. The wave number kn in (2.10) has an infinite number of
positive and real solutions, where k0 denotes progressive waves, and k1, k2 . . . correspond
to local waves (i.e. evanescent waves). Equation (2.11), on the other hand, is the dispersion
relation of elastic waves for the kth ring of the plate, where μ(k)n is the wave number.
Similarly, the wave number μ(k)n in (2.11) has an infinite number of positive and real
solutions μ(k)0 , μ

(k)
1 , μ

(k)
2 . . ., and additionally two complex solutions μ(k)−2 and μ(k)−1 where

μ
(k)
−1 = (μ

(k)
−2)

∗ and the real parts are positive. Here, μ(k)0 indicates progressive waves,

μ
(k)
1 , μ

(k)
2 . . . are wave numbers of local waves, and μ(k)−2 and μ(k)−1 represent damped waves

(e.g. Fox & Squire 1994). Using these dispersion relations, the solutions for Z(z) are given
as

Z(z) = fn(z) =

⎧⎪⎪⎨
⎪⎪⎩

cosh k0(z + h)
cosh k0h

n = 0,

cos kn(z + h)
cos knh

n > 0,
(2.12)
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and

Z(z) = F(k)n (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

coshμ(k)0 (z + h)

coshμ(k)0 h
n = 0,

cosμ(k)n (z + h)

cosμ(k)n h
n = −1,−2, n > 0,

(2.13)

where fn(z) is the z-function of the water wave region (r � b), and F(k)n (z) is the z-function
of the kth ring region (R(k+1) � r < R(k)). Next, the solution forΘ(θ) is given asΘ(θ) =
exp(±imθ) for m = 0, 1, . . .. Lastly, solutions for r are given from Bessel differential
equations. As solutions are bound by the radiation condition (i.e. only progressive waves
survive at the far-field), the velocity potential of water wave region φw is given as

φw(r, θ, z) = 1
i
√
α

∞∑
m=−∞

{
am0H(1)m (k0r)f0(z)+

∞∑
n=1

amnKm(knr)fn(z)

}
eimθ , (2.14)

where H(1)m (·) is the Hankel function of the first kind, Km(·) is the modified Bessel function
of the second kind and amn is an unknown coefficient of the velocity potential φw. The
coefficient 1/i

√
α is used for normalising φw and that of incident waves. On the other

hand, the velocity potential of the kth ring region φ(k)p is

φ(k)p (r, θ, z) = 1
i
√
α

∞∑
m=−∞

⎧⎨
⎩b(k)m0Jm(μ

(k)
0 r)F(k)0 (z)+

∞∑
n=−2,n /= 0

b(k)mnIm(μ
(k)
n r)F(k)n (z)

⎫⎬
⎭

+ c(k)m0H(1)m (μ
(k)
0 r)F(k)0 (z)+

∞∑
n=−2,n /= 0

c(k)mnKm(μ
(k)
n r)F(k)n (z)

⎫⎬
⎭ eimθ , (2.15)

where Jm(·) is the Bessel function of the first kind, Im(·) is the modified Bessel function
of the first kind and b(k)mn and c(k)mn are unknown coefficients. Considering incident waves
coming from θ = π as ηinc = Re[exp(ik0x) exp(−i

√
αt)], the corresponding velocity

potential φinc becomes

φinc(r, θ, z) = 1
i
√
α

eik0xf0(z) = 1
i
√
α

∞∑
m=−∞

imJm(k0r)f0(z)eimθ . (2.16)

In summary, the solution φ to this problem, using the spectral method (e.g. Peter et al.
2004), is given as

φ(r, θ, z) =
{
φinc + φw r � b,

φ(k)p R(k+1) � r < R(k).
(2.17)

The unknown coefficients amn, b(k)mn and c(k)mn are numerically determined to satisfy further
boundary conditions. A numerical approach for solving this problem is discussed in the
numerical approach section (§ 3).
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2.3. Energy of scattered waves at the far-field
The performance of the plate as a cloaking device is quantified by the energy of scattered
waves (Iida et al. 2014). To obtain the energy of scattered waves, we consider a control
surface S∞ at the far-field that surrounds the cylinder and the plate and then calculate the
flow of energy passing through this surface. The non-dimensional energy W is obtained
(Maruo 1960; Kashiwagi, Endo & Yamaguchi 2005) as

W = −
∫∫

S∞

∂Φ

∂t
∂Φ

∂n
dS � −

∫ 0

−h
dz

∫ 2π

0

∂Φ

∂t
∂Φ

∂r
r dθ. (2.18)

As the control surface is far from the cylinder and the plate, local waves created by
structures are fully attenuated, and as a result, the velocity potential at far-field Φfar
becomes

Φfar(r, θ, z, t) = Re
[
φfar(r, θ, z)e−i

√
αt

]
, (2.19)

where

φfar(r, θ, z) = 1
i
√
α

∞∑
m=−∞

{
imJm(k0r)+ am0H(1)m (k0r)

}
f0(z)eimθ . (2.20)

Substituting (2.19) into (2.18), we find the energy

W = − ik0

8C0
√
α

∫ 2π

0

∞∑
p=−∞

∞∑
q=−∞

{(
(−i)qJq + a∗

q0H(2)q

) (
ipJ′

p + ap0H(1)
′

p

)

−
(

ipJp + ap0H(1)p

) (
(−i)qJ′

q + aq0H(2)
′

q

)
eipθe−iqθ

}
r dθ, (2.21)

where

C0 = k2
0

α + (k2
0 − α2)h

. (2.22)

Note that the orthogonal relations and Wronskian formulae are (see Abramowitz & Stegun
1964; Kashiwagi & Yoshida 2001)∫ 2π

0
eipθe−iqθ dθ = 2πδpq, (2.23)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

JmH(1)
′

m − J′
mH(1)m = 2i

πk0r
,

J′
mH(2)m − JmH(2)

′
m = 2i

πk0r
,

H(1)
′

m H(2)m − H(1)m H(2)
′

m = 4i
πk0r

,

(2.24)

where δpq is the Kronecker delta. Using (2.23) and (2.24), we can simplify the energy term
to

W = 1
C0

√
α

∞∑
m=−∞

{
Re[ima∗

m0] + |am0|2
}

= 0. (2.25)

The expression for W is the energy balance equation and thus it must be identically zero
(we later use this equation for the validation of our numerical scheme in Appendix B).
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Note that because am0 is the amplitude of scattered waves, the second term in (2.25)
indicates the energy transferred to scattered waves. As a result, the energy of scattered
waves Ws is given as

Ws = 1
C0

√
α

∞∑
m=−∞

|am0|2. (2.26)

The energy of scattered waves obtained here (2.26) is equal to the form of the Kochin
function in Newman (2014). We define the cloaking factor Fclk by the ratio of the energy
of scattered waves of the cylinder with the cloak Wclk to that of the isolated cylinder Wcyl
(Porter & Newman 2014), i.e.

Fclk = Wclk

Wcyl
. (2.27)

If Fclk < 1, then the energy scattered by the cylinder is decreased by the cloak and clearly,
the perfect cloaking is achieved as Fclk = 0.

To evaluate the cloaking performance with angular directions, a scattering coefficient is
also introduced. The complex amplitude of the progressive component of scattering waves
is given as

ζps(r, θ) =
∞∑

m=−∞

∞∑
n=1

am0H(1)m (k0r)eimθ . (2.28)

Then, the ratio of the amplitude of the cylinder with the cloak |ζclk(b, θ)| to that of the
isolated cylinder |ζcyl(1, θ)|, namely a scattering coefficient Sclk, is defined as

Sclk(θ) = |ζclk(b, θ)|
|ζcyl(1, θ)| , (2.29)

where these amplitudes are given at the outermost water line of the structures.
Next, we calculate the wave drift force acting on the cylinder. The wave drift force is

the time-averaged second-order hydrodynamic force calculated by the first-order velocity
potential. Considering the control surface at the far-field, the wave drift force can be
calculated by the momentum conservation principle (Maruo 1960) as

Fx =
∫∫

SH

pnx dS = −
∫∫

S∞

(
pnx + ∂Φ

∂x
un

)
dS, (2.30)

where Fx is the non-dimensional wave drift force, SH is the surface of the body, p is
pressure, nx is the x-component of the normal vector and un is the velocity in the direction
of the normal vector. Using similar analytical expansion to the energy of scattered waves,
the formula for the wave drift force is obtained (Kashiwagi & Yoshida 2001) as

Fx = k0

2C0α

∞∑
m=−∞

Im[2am0a∗
m+1,0 + ima∗

m+1,0 + (−i)m+1am0]. (2.31)

As the wave drift force is calculated by the amplitude of scattered waves am0, the wave
drift force acting on bodies becomes very small when there is no scattered wave.
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Water wave cloaking using a floating composite plate

3. Numerical approach

The spectral solution (i.e. (2.14) and (2.15)) to this problem (2.5)–(2.8) has unknown
coefficients (i.e. amn, b(k)mn and c(k)mn) that can be found by satisfying the boundary conditions.
At first, we approximate the solution by truncating the infinite number of modes in (2.17)
to orders M and N for azimuthal and radial terms, respectively. The numbers M and N are
decided such that the solution is converged and the results do not change by increasing
M and N any further. For each azimuthal mode, we have N + 1 unknowns in the water
wave region (i.e. amn for n = 0, 1, 2, . . . ,N), and 2K(N + 3) unknowns in the plate region
(i.e. b(k)mn and c(k)mn for k = 1, 2, . . . ,K and n = −2,−1, 0, 1, . . . ,N). In total, the number
of unknown coefficients is N + 1 + 2K(N + 3), and thus the same number of boundary
conditions are required to solve the problem.

We utilise an eigenvalue matching method (Peter et al. 2004) to determine the unknown
coefficients. The form of the velocity potential in (2.17) depends on the radial direction
r, and matching of each quantity at the boundaries should be considered. Since these
matching boundary conditions are valid throughout the depth, z-function f�(z) (� =
0, 1, . . . ,N) is selected as a set of basis functions. These functions are multiplied by the
velocity potential, and these are integrated throughout the water depth. Resultant functions
with respect to z are defined as

An� ≡
∫ 0

−h
fn(z)f�(z) dz = 1

2

(
cos knh sin knh + knh

kn cos2 knh

)
δn�, (3.1)

B(k)n� ≡
∫ 0

−h
F(k)n (z)f�(z) dz = k� sin k�h cosμ(k)n h − μ

(k)
n cos k�h sinμ(k)n h

(k2
� − μ

(k)2
n ) cos k�h cosμ(k)n h

. (3.2)

Note that wave numbers in (3.1) and (3.2) must be replaced as k0 → ik0 and μ(k)0 → iμ(k)0
when n = 0. Using (3.1) and (3.2) for each boundary condition, the number of conditions
becomes N + 1. Next, we need to satisfy the following boundary conditions.

(i) Matching conditions of the velocity potential between the free surface and the plate
(N + 1 equations).

(ii) Matching conditions of the radial derivative of the velocity potential between the
free surface and the plate (N + 1 equations).

(iii) Matching conditions of the velocity potential between adjacent rings ((K − 1)(N +
1) equations).

(iv) Matching conditions of the radial derivative of the velocity potential between
adjacent rings ((K − 1)(N + 1) equations).

(v) No flux conditions at the surface of the cylinder (N + 1 equations).
(vi) Matching conditions of the wave elevation between adjacent rings (K − 1

equations).
(vii) Matching conditions of the radial derivative of the wave elevation between adjacent

rings (K − 1 equations).
(viii) Matching conditions of the bending moment between adjacent rings (K − 1

equations).
(ix) Matching conditions of the shear force between adjacent rings (K − 1 equations).
(x) Free–free beam conditions; zero bending moment and shear force (4 equations).

Here, the plate is not fixed to the cylinder, and the inner edge of the plate vertically moves
with the free surface. We assume no gap between the cylinder and the plate. In practice, as
long as the gap is small compared with the width and the thickness of the innermost ring,
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the analysis is still valid. This may be achieved through the use of sliders or lubricated
bushings. Here, we neglect friction between the innermost ring and the cylinder.

Matching the list of boundary conditions, we obtain N + 1 + 2K(N + 3) equations
which are the same as the number of unknowns. Solving these equations, all unknown
coefficients are found. Details of these boundary conditions are given in Appendix A. For
completeness here, we calculate the bending moment M(k)

r and equivalent shear force V(k)r
on the plate using the surface elevation of the plate. These quantities for the radial direction
acting on the kth ring are given as

M(k)
r (r, θ, t) = Re

[ ∞∑
m=−∞

M(k)
m (r)eimθe−i

√
αt

]
, (3.3)

V(k)r (r, θ, t) = Re

[ ∞∑
m=−∞

V(k)m (r)eimθe−i
√
αt

]
, (3.4)

where M(k)
m (r) and V(k)m (r) are written as

M(k)
m (r) = −

[
∇2

⊥−1 − ν

r

(
∂

∂r
− m2

r

)]
ψ(k)(r), (3.5)

V(k)m (r) = −
[
∂

∂r
∇2

⊥−m2 1 − ν

r2

(
∂

∂r
− 1

r

)]
ψ(k)(r). (3.6)

In these equations, note that

ψ(k)(r) = b(k)m0G(k)0 Jm(μ
(k)
0 r)+

∞∑
n=−2,n /= 0

b(k)mnG(k)n Im(μ
(k)
n r)

+ c(k)m0G(k)0 H(1)m (μ
(k)
0 r)+

∞∑
n=−2,n /= 0

c(k)mnG(k)n Km(μ
(k)
n r), (3.7)

where

G(k)n = β(k)

β(k)μ
(k)4
n − αγ (k) + 1

. (3.8)

4. Evolutionary optimisation of the plate

Our goal here is to cancel the energy of scattered waves from the cylinder by optimising
the floating plate parameters. In other words, we optimise the parameters of the plate to
minimise the energy of scattered waves. We use an evolutionary optimisation method,
specifically, the real-coded genetic algorithm (RGA) based on the unimodal normal
distribution crossover and minimal generation gap (Ono, Kita & Kobayashi 1999). One
motivation behind the choice of a meta-heuristic approach for the optimisation is that the
gradient of energy with respect to the optimising parameters becomes complex and tedious
to work with, and also we avoid getting trapped in potential local minima. We rewrite the
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problem here as

minimise Wclk,

subject to 0.01 � β(k) � 0.5 k = 1, 2, . . . ,K,
0.01 � γ (k) � 0.5 k = 1, 2, . . . ,K,

(4.1)

where optimum non-dimensional flexural rigidity β(k) and mass γ (k) are sought under
selected numerical conditions: the wave number k0, the water depth h, the outermost radius
of the plate b, the number of rings K and the Poisson’s ratio of the plate ν. Note that we
set a constant value of the Poisson’s ratio as cloaking can be achieved even if we assume
it. The minimisation is done at a certain wave number of incident waves. The termination
condition is based on the upper limit on the number of generations (usually O(10,000)),
and several optimisations with different number of generations are performed to ensure
the convergence of the result.

5. Results and discussion

To show the effectiveness of the proposed cloak, numerical simulations are carried out.
As the cloaking in deep water is a challenge due to the absence of the water depth effect,
we demonstrate the cases of deep-water waves. To assume deep-water waves throughout
frequencies, h/λ = 1.0 is considered where λ is the wavelength. We fix the Poisson’s
ratio of the plate ν = 0.25 and also consider the same radial width for each ring of the
composite plate, i.e. R(k) − R(k+1) = const., k = 1, 2, . . . ,K where K is the total number
of the plate’s rings. Here, we aim to cloak the cylinder at the wave number k0 = 1.0. The
energy of scattered waves of the isolated cylinder at this wave number is Wcyl = 0.500.
To suppress this energy, we optimise plate parameters, i.e. flexural rigidity β(k) and mass
γ (k), using an evolutionary strategy (§ 4). In order to optimise the plate parameters, we
consider three different cases: (1) optimising both flexural rigidity β(k) and mass γ (k)

for all of the rings of the plate (k = 1, 2, . . . ,K), which we call case I; (2) optimising the
flexural rigidity for each ring of the plate (β(k), k = 1, 2, . . . ,K) while keeping the mass as
a constant for all rings (i.e. γ (k) = γ (1), k = 2, 3, . . . ,K), which we denote as case II; and,
lastly, (3) optimising mass of the plate for each ring of the plate (γ (k), k = 1, 2, . . . ,K)
while keeping the flexural rigidity as a constant for all rings (β(k) = β(1), k = 2, 3, . . . ,K),
which we call case III.

First, we visualise the wave field around an isolated cylinder and also a cylinder with the
optimised plate surrounding it (figure 2). The optimised plate shown in figure 2 consists of
K = 4 rings with the outermost radius b = 5.0, where both flexural rigidity and the mass
of the plate are optimised to minimise the energy of scattered waves (case I). The optimised
plate yields Wclk = 0.004, with a cloaking factor of Fclk = 0.008. The comparisons of
wave patterns between the isolated cylinder (left column) and the cloaked cylinder (right
column) are shown. The real parts of the wave elevation around the cylinder are shown
in figures 2(a) and 2(b), the amplitudes of the wave elevation are shown in figures 2(c)
and 2(d), and the phases of wave elevation are shown in figures 2(e) and 2( f ). In contrast
to the isolated cylinder which generates outgoing scattered waves, the cylinder with the
optimised plate has no visually identifiable outgoing wave in the wave amplitudes field
around it (figure 2c,d). Similarly, we observe that the isolated cylinder modulates the wave
phase field, however, the cylinder with the plate has a phase field that matches that of
incident waves. As the wave amplitude and phase at the plate are almost symmetric with
respect to the y-axis, it yields an almost zero wave drift force (we quantify the forces
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Figure 2. The real part (a,b), amplitude (c,d) and phase field (e, f ) of the wave solution for an isolated cylinder
(a,c,e) and the cylinder surrounded by the optimised plate (b,d, f ). The optimised composite plate consists of
K = 4 rings where the flexural rigidity and mass of each ring are optimised to minimise the energy of scattered
waves for the wave number k0 = 1.0, i.e. case I.

exerted on the cylinder later in this section). As a result, the optimised floating composite
plate is significantly reducing the energy of scattered waves of water waves and cloaking
the cylinder from the incident wave. It is noted that because the cloaking plate here is
axisymmetric, its functionality is independent of incoming waves’ direction and as a result,
is omnidirectional.

Next, we investigate the effect of the number of rings K on the effectiveness of the
cloaking plate. We fix the outermost radius of the plate at b = 5.0 and we plot the cloaking
factor versus the number of rings for the optimised plate for the three cases (I, II and III)
in figure 3(a). Interestingly, when the ring number is K � 4, the cloaking factors in cases
I and II become less than 0.01. However, the cloaking factor in case III does not decrease
significantly and the cloaking factor remains above 0.8. As a result, varying flexural
rigidity β(k) is essential for manipulating waves and creating a cloaking plate. As case I has
a cloaking factor smaller than case II, optimising the mass γ (k) helps to achieve a better
cloak, nevertheless only optimising the mass is insufficient to realise an effective cloaking
plate. The use of larger K does not always yield a smaller cloaking factor as seen in the
result of K = 5 in case I. To investigate the sensitivity of the cloaking factor to the flexural
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Figure 3. (a) Comparison of cloaking factor Fclk versus the number of rings K for: case I when both flexural
rigidity and mass are optimised for each ring of the composite plate; case II when the flexural rigidity is
optimised for each ring while the mass stays as a constant for all rings; and case III, when the mass is optimised
on every ring while the flexural rigidity remains a constant for all rings. (b) Sensitivity study of cloaking factor
to flexural rigidity and mass for a plate with K = 4 rings for case II with varying mass γ (1) and case III with
varying flexural rigidity β(1). Note that the red triangle/blue square in (b) correspond to the values of the
red/blue curve for K = 4 in (a)

rigidity and mass, we calculate the cloaking factor while modulating these parameters.
The sensitivity of the factor to these parameters is shown in figure 3(b). The result of
case II against varying mass γ (1), and that of case III against varying flexural rigidity
β(1) are plotted; optimum values are marked by a square and triangle, respectively. The
cloaking factor for case II increases as the mass γ (1) slightly changes from the optimum
value. When the mass γ (1) and flexural rigidity β(1) are far from the optimum values,
the cloaking factors are bigger than 1.0, meaning that the structure scatters waves with an
energy larger than that of the isolated cylinder. It can be concluded that the cloaking factor
is sensitive to both flexural rigidity and mass of the plate, and a large deviation can be
detrimental to the efficacy of the cloaking plate.

The spatial distribution of the flexural rigidity in case II is shown in figure 4 where it
shows the structural flexural rigidity profile of the composite plate. Note that r � 1.0 is the
cylinder region; the plate is at 1.0 � r � 5.0. Results for K = 4, 5 and 6 are plotted and
fixed values of mass are noted in the legend. For K = 4, the plate has two sets of peaks and
valleys with the first peak being larger than the second. The values of valleys are almost at
β = 0.01 which is the lower limit of the physical parameter (see (4.1)). Interestingly, the
rigidity profile follows a similar trend for the different number of rings. The two sets of
peaks and valleys are not achievable with only three rings, and this might be the reason
why cloaking cannot be achieved for K < 4 (see figure 3a).

To investigate the cloaking performance with angular directions, the amplitude of
progressive scattering waves and scattering coefficient against angle are shown in figure 5.
Results of case II with ring numbers K = 4, 5 and 6 are plotted. Compared with the
isolated cylinder, the cylinder with the plate of all ring numbers show remarkably small
progressive scattering wave amplitude. Figure 5(b) indicates that scattering coefficients are
rose-like shapes. Sizes of petals are the biggest around θ = ±0.4π (= ±72◦) because the
progressive scattering wave amplitude by the isolated cylinder at this angle is relatively
smaller than those of other angles. Here K = 4 has only 3 petals, whereas K = 5 and
K = 6 have 10 petals.
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Figure 4. Spatial distributions of flexural rigidities β(k) for the optimised composite plate. The plate extends
at 1.0 � r � 5.0 where the cylinder is inside r � 1.0. We assume a constant mass density across the rings,
and variable flexural rigidity (case II). We optimise the composite plate parameters for the different number
of rings K = 4, 5 and 6. The value found for the optimised γ is noted in the legend, and the flexural rigidity
profile is plotted across the rings.
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Figure 5. (a) Amplitude of progressive component of scattering waves |ζps| and (b) scattering coefficient Sclk
against angle. Incident waves come from θ = π. The outermost radius of the plate b = 5.0 and parameters of
case II (mass γ (k) being constant across rings whereas γ (1) can vary) are considered with the number of rings
K = 4, 5 and 6.

In addition to the number of rings, we analyse the influence of the outermost radius b
on the cloaking factor. The cloaking factor for case II against the outermost radius b is
shown in figure 6. When the outermost radius is b = 2.0, the factor is not fully reduced
even with increasing the number of rings K. The cloaking factor for K = 4 and b = 6.0 is
also not small enough, while results of K = 5 and 6 are less than 0.01. When b = 4.0 and
5.0, the use of the larger ring number helps us to achieve a smaller cloaking factor whereas
b = 6.0 does not show such a result. In summary, it is observed that the size of the plate
b affects the cloaking factor and cloaking cannot be realised using a small plate size.
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Figure 6. Cloaking factor Fclk against sizes of outermost radius b = 2.0, 3.0, 4.0, 5.0 and 6.0. Case II (mass
γ (k) is constant as γ (1) for all rings) is considered. Figure is displayed on semi-log graph. The influence of
outermost radius size on cloaking factor is investigated using different ring numbers K = 4, 5 and 6. Note that
zero cloaking factor Fclk = 0 yields perfect cloaking.

In addition, using a bigger plate size does not necessarily indicate a better cloaking result.
An optimised plate size and ring number exist that should be selected for efficient cloaking.
In other words, our simulation results suggest that for a given plate size, there is an
optimum number of rings, and for a given number of rings, there is an optimum value
for the outer diameter of the cloaking plate.

Lastly, we analyse the frequency response of the cloaking plate, i.e. the behaviour of the
structures for wave numbers or wave frequencies other than the value that it is optimised
for. For all frequencies, deep water is assumed using h/λ = 1.0. Energy balance in wave
numbers is discussed in Appendix B to demonstrate the numerical accuracy. Here, the
energy of scattered waves is shown in figure 7(a), and the wave drift force acting in
x-direction is shown in figure 7(b). The result of the isolated cylinder and the results of
the cloaked cylinder are compared. The outermost radius of the plate is fixed at b = 5.0,
and physical parameters in case II are used. Looking at k0 = 1.0, the wave drift force of
the isolated cylinder is Fx|cyl = 1.330 and the cloaked wave drift forces by different K
are Fx|K=4 = 0.010, Fx|K=5 = 0.004 and Fx|K=6 = 0.001; 99.9 % reduction of wave drift
force is achieved at most. Therefore, both energy of scattered waves and wave drift force
are dramatically reduced and become almost zero using the composite plate at the target
wave number k0 = 1.0. Note that the wave drift force is the second-order force based on
the law of action and reaction of wave scattering. As a result, the wave drift force is not
acting on the structures if no scattered wave is generated, or if the scattered-wave field
is y-symmetric as shown in figure 2(b). As for frequency responses, the drift force of the
cloaked cylinder is smaller than that of the isolated cylinder around the target wave number
with a bandwidth of�k = 0.5 (in the case of K = 4). However, these values are larger than
those of the isolated cylinder outside this band, meaning that the energy scattered by the
structures is larger than that of the isolated cylinder. Note that the energy of scattered waves
and the wave drift force converge as k0 → 0 and k0 → 2.0. Interestingly, using a larger
number of rings K does not indicate a smaller wave drift force for the frequency bands.
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Figure 7. (a) Energy of scattered waves Ws and (b) wave drift force in x-direction Fx against wave number k0.
Figures are displayed on semi-log graph. Results are compared among the isolated cylinder and the cylinder
with the optimised plate. Here, the outermost radius of the plate is b = 5.0. We consider case II (mass γ (k)

being constant across rings whereas γ (1) can vary) with the number of rings K = 4, 5 and 6. Plate parameters
are optimised to minimise the energy of scattered waves at wave number k0 = 1.0.

For realising an optimised cloak in a frequency band, the integration of the cloaking factor
over the frequency band (i.e.

∫
�k Fclkdk) might be used as a new objective function (e.g.

Bobinski et al. 2018) instead of the cloaking factor at one frequency. As we can increase
the degrees of freedom for controlling wave propagation by easily increasing the number
of rings in the composite plate, such plate design can potentially achieve a broadband cloak
from water waves.

We would like to briefly comment here that the range of parameters in (4.1) is chosen
such that the associated physical parameters fall within typical values of realistic materials.
For instance, for a fluid density of ρw = 1000 kg m−3, gravitational acceleration of g =
9.81 m s−2, the radius of the cloaked cylinder a = 1.0 m and the thickness of the plate tp =
0.1 m, then the range of 0.01 � β(k) � 0.5 corresponds to a Young’s modulus between 1
and 50 GPa.

We also would like to comment that the presented investigation is based on the linear
potential theory, whereas real ocean waves can be very steep and highly nonlinear. If the
proposed idea is to be considered for real ocean scenarios, then a thorough investigation
of the effect of nonlinearities must be performed. An analytical leading-order nonlinear
analysis is an immediate extension of the present study. Nevertheless, for a full-nonlinear
analysis, resorting to direct simulations may be the only practical option. For either
analyses, our results can serve as an initial configuration and a starting point for more
general optimisations and in-depth investigations.

6. Conclusion

We have presented the cloaking of a bottom-mounted cylinder from water waves using
an elastic plate floating on the surface around the cylinder. In the governing equation of
surface gravity waves, the sea bed topography and the gravitational acceleration are the
only physical parameters controlling the trajectory of wave propagation; nevertheless, the
effect of sea depth exponentially decreases as the depth increases, and the gravitational
acceleration is a physical constant. As a consequence, the cloaking of the offshore
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structure from deep-water waves becomes a challenge. Here, we have proposed the
use of a floating composite plate to provide extra adjustable degrees of freedom for
controlling wave propagation. The composite plate consists of K concentric annular
rings with isotropic and homogeneous physical parameters. This design enables easier
experimental implementation. The cloak is created based on the scattering cancellation
method; the plate cancels out the scattered waves from the cylinder. Physical parameters
of each ring are optimised using an evolutionary strategy method, specifically a real-coded
genetic algorithm. A numerical calculation scheme is developed using pseudo-spectral and
eigenvalue matching methods, and the effectiveness of the cloak is evaluated. As deep
water cloaking is particularly challenging, we demonstrate the cases of deep-water waves.
The plate is designed to cloak the cylinder at a specific wave number. We have varied
different parameters of the plate and analysed their effects on the cloaking factor. We
have shown that an optimum cloaking size and the number of rings exist for maximally
increasing the efficiency of the cloak. We have further addressed the sensitivity of the
cloak to changes in the wave frequency and showed that an optimum working bandwidth
exists. As the reduction of the wave drift force is important for practical applications, we
have shown that our proposed cloak has 99.9 % reduction of wave drift force at most.
We believe that our proposed cloak has potential real-world applications in the fields of
offshore industries to protect offshore structures.
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Appendix A. Details of boundary conditions

In the following we list the details of all boundary conditions that are used.

(i) Matching conditions of the velocity potential between the free surface and the
structure (N + 1 equations):

imJm(k0b)A0� + am0H(1)m (k0b)A0� +
N∑

n=1

amnKm(knb)An�

= b(1)m0Jm(μ
(1)
0 b)B(1)0� +

N∑
n=−2,n /= 0

b(1)mnIm(μ
(1)
n b)B(1)n�

+ c(1)m0H(1)m (μ
(1)
0 b)B(1)0� +

N∑
n=−2,n /= 0

c(1)mnKm(μ
(1)
n b)B(1)n� . (A1)

(ii) Matching conditions of the radial derivative of the velocity potential between the
free surface and the structure (N + 1 equations):

imk0J′
m(k0b)A0� + am0k0H(1)

′
m (k0b)A0� +

N∑
n=1

amnknK′
m(knb)An�
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= b(1)m0μ
(1)
0 J′

m(μ
(1)
0 b)B(1)0� +

N∑
n=−2,n /= 0

b(1)mnμ
(1)
n I′m(μ

(1)
n b)B(1)n�

+ c(1)m0μ
(1)
0 H(1)

′
m (μ

(1)
0 b)B(1)0� +

N∑
n=−2,n /= 0

c(1)mnμ
(1)
n K′

m(μ
(1)
n b)B(1)n� . (A2)

(iii) Matching conditions of the velocity potential between adjacent rings ((K − 1)(N +
1) equations):

b(k)m0Jm(μ
(k)
0 R(k+1))B(k)0� +

N∑
n=−2,n /= 0

b(k)mnIm(μ
(k)
n R(k+1))B(k)n�

+ c(k)m0H(1)m (μ
(k)
0 R(k+1))B(k)0� +

N∑
n=−2,n /= 0

c(k)mnKm(μ
(k)
n R(k+1))B(k)n�

= b(k+1)
m0 Jm(μ

(k+1)
0 R(k+1))B(k+1)

0� +
N∑

n=−2,n /= 0

b(k+1)
mn Im(μ

(k+1)
n R(k+1))B(k+1)

n�

+ c(k+1)
m0 H(1)m (μ

(k+1)
0 R(k+1))B(k+1)

0� +
N∑

n=−2,n /= 0

c(k+1)
mn Km(μ

(k+1)
n R(k+1))B(k+1)

n� .

(A3)

(iv) Matching conditions of the radial derivative of the velocity potential between
adjacent rings ((K − 1)(N + 1) equations):

b(k)m0μ
(k)
0 J′

m(μ
(k)
0 R(k+1))B(k)0� +

∞∑
n=−2,n /= 0

b(k)mnμ
(k)
n I′m(μ

(k)
n R(k+1))B(k)n�

+ c(k)m0μ
(k)
0 H(1)

′
m (μ

(k)
0 R(k+1))B(k)0� +

N∑
n=−2,n /= 0

c(k)mnμ
(k)
n K′

m(μ
(k)
n R(k+1))B(k)n�

= b(k+1)
m0 μ

(k+1)
0 J′

m(μ
(i+1)
0 R(k+1))B(k+1)

0�

+
N∑

n=−2,n /= 0

b(k+1)
mn μ(k+1)

n I′m(μ
(k+1)
n R(k+1))B(k+1)

n�

+ c(k+1)
m0 μ

(k+1)
0 H(1)

′
m (μ

(k+1)
0 R(k+1))B(k+1)

0�

+
N∑

n=−2,n /= 0

c(k+1)
mn μ(k+1)

n K′
m(μ

(k+1)
n R(k+1))B(k+1)

n� . (A4)
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(v) No flux conditions at the surface of the cylinder (N + 1 equations):

b(K+1)
m0 μ

(K+1)
0 J′

m(μ
(K+1)
0 )B(K+1)

0� +
N∑

n=−2,n /= 0

b(K+1)
mn μ(K+1)

n I′m(μ
(K+1)
n )B(K+1)

n�

+ c(K+1)
m0 μ

(K+1)
0 H(1)

′
m (μ

(K+1)
0 )B(K+1)

0�

+
N∑

n=−2,n /= 0

c(K+1)
mn μ(K+1)

n K′
m(μ

(K+1)
n )B(K+1)

n�

= 0. (A5)

(vi) Matching conditions of the wave elevation between adjacent rings (K − 1
equations):

b(k)m0E(k)0 Jm(μ
(k)
0 R(k+1))+

N∑
n=−2,n /= 0

b(i)mnE(k)n Im(μ
(k)
n R(k+1))

+ c(k)m0E(k)0 H(1)m (μ
(k)
0 R(k+1))+

N∑
n=−2,n /= 0

c(k)mnE(k)n Km(μ
(k)
n R(k+1))

= b(k+1)
m0 E(k+1)

0 Jm(μ
(k+1)
0 R(k+1))+

N∑
n=−2,n /= 0

b(k+1)
mn E(k+1)

n Im(μ
(k+1)
n R(k+1))

+ c(k+1)
m0 E(k+1)

0 H(1)m (μ
(k+1)
0 R(k+1))+

N∑
n=−2,n /= 0

c(k+1)
mn E(k+1)

n Km(μ
(k+1)
n R(k+1)),

(A6)

where

E(k)n = 1

β(k)μ
(k)4
n − αγ (k) + 1

. (A7)

(vii) Matching conditions of the radial derivative of the wave elevation between adjacent
rings (K − 1 equations):

b(k)m0μ
(k)
0 E(k)0 J′

m(μ
(k)
0 R(k+1))+

N∑
n=−2,n /=0

b(k)mnμ
(k)
n E(k)n I′m(μ

(k)
n R(k+1))

+ c(k)m0μ
(k)
0 E(k)0 H(1)

′
m (μ

(k)
0 R(k+1))+

N∑
n=−2,n /=0

c(k)mnμ
(k)
n E(k)n K′

m(μ
(k)
n R(k+1))
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Figure 8. Energy balance against wave number k0. We consider case II (mass γ (k) being constant across rings
whereas γ (1) can vary) with the radius of the plate b = 5.0, and the number of rings K = 4, 5 and 6. Positive
energies are energies transferred to scattered waves (i.e. energy of scattered waves) calculated by the second
term in (2.25) whereas negative energies are energies transferred from incident waves calculated by the first
term in (2.25). Total energy becomes zero with an accuracy of less than O(10−14).

= b(k+1)
m0 μ

(k+1)
0 E(k+1)

0 J′
m(μ

(k+1)
0 R(k+1))

+
N∑

n=−2,n /=0

b(k+1)
mn μ(k+1)

n E(k+1)
n I′m(μ

(k+1)
n R(k+1))

+ c(k+1)
m0 μ

(k+1)
0 E(k+1)

0 H(1)
′

m (μ
(k+1)
0 R(k+1))

+
N∑

n=−2,n /=0

c(k+1)
mn μ(k+1)

n E(k+1)
n K′

m(μ
(k+1)
n R(k+1)). (A8)

(viii) Matching conditions of the bending moment between adjacent rings (K − 1
equations):

M(k)
m (R(k+1)) = M(k+1)

m (R(k+1)). (A9)

(ix) Matching conditions of the shear force between adjacent rings (K − 1 equations):

V(k)m (R(k+1)) = V(k+1)
m (R(k+1)). (A10)

(x) Free–free beam conditions; zero bending moment and shear force (4 equations):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(1)
m (b) = 0,

M(K)
m (1) = 0,

V(1)m (b) = 0,

V(K)m (1) = 0.

(A11)
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Appendix B. Numerical validation through energy balance

One way to validate our numerical scheme is to look at the energy balance. Let us
consider three cloaking plates with the same outer radius of b = 5.0, but composed of
three different number of rings K = 4, 5 and 6. We assume that the mass per unit area of
rings is constant, and optimise for flexural rigidity (i.e. case II discussed in § 5). Energy
conservation is expressed by (2.25), in which the first term is the part of incident wave
energy that goes to scattered waves, and the second term is the energy of scattered waves
(cf. (28) in Fàbregas Flavià & Meylan 2019). These two energies are plotted in figure 8
where bottom curves (lines with symbols) show the energy transferred from the incident
wave to scattered waves with a negative sign, and top curves (lines without symbols) show
energy of scattered waves (note that curves of ‘energy transferred to scattered waves’ are
the same as those plotted in figure 7(a), except that in figure 7(a) a log scale is used).
Figure 8 shows that the two terms on the energy balance equation (2.25) have the same
magnitudes (to graphical accuracy) with opposite signs and therefore add to zero. The
exact accuracy of the energy balance here is, in fact, less than O(10−14).
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