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Abstract
This paper concentrates on the trajectory tracking problem for a stratospheric airship subject to underactuated
dynamics, unmeasured velocities, modeling inaccuracies and environmental disturbances. First, a coordinate trans-
formation is performed to solve the underactuated issue, which simultaneously permits a priori assignment of the
tracking accuracy. Second, a finite-time observer is integrated into the control structure to offer the exact infor-
mation of unmeasured velocities and uncertainties in an integral manner. Then, by combining the backstepping
technique with the method of adding a power integrator, a new output-feedback control strategy is derived with sev-
eral salient contributions: (1) the airship’s position errors fall into a predetermined residual region near zero within
a finite settling time and stay there, while all the closed-loop signals maintain bounded during operation; and (2)
no artificial neural networks and filters are adopted, resulting in a low-complexity control property. Furthermore,
the presented method can be extended readily to a broad range of second-order mechanical systems as its design
builds upon a transformed system model. Rigorous mathematical analysis and simulations demonstrate the above
theoretical findings.

Nomenclature
NN neural network
LOS line of sight
API adding a power integrator
FTO finite-time observer
ERF earth reference frame
BRF body-fixed reference frame
CV centre of volume
AUV autonomous underwater vehicle
EL Euler–Lagrange
CFB command-filter backstepping
IAE integrated absolute error
ITAE integrated time absolute error
MIAC mean integrated absolute control
R>0 set of positive real numbers
In identity matrix of size n
Rn n-dimensional Euclidean space
ogxgygzg earth reference frame (ERF)
oxbybzb body-fixed reference frame (BRF)
[x, y] positions of the CV in ERF
ψ yaw attitude in BRF
[u, v, r] velocities in BRF
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mi mass, i = u, v, r
di damping term, i = u, v, r
τi control input, i = u, r
δi system uncertainties and external disturbances, i = u, v, r
δ

′
i cross-coupling term, i = u, v, r

m
′
i uncertain part of mi, i = u, v, r

d
′
i uncertain part of di, i = u, v, r
δdisi wind resistance, i = u, v, r
[xd, yd] reference trajectory

1.0 Introduction
Recently, the stratosphere has received considerable attention from the modern aviation and aerospace
industry that endeavors to exploit its stable atmospheric conditions [1–3]. This dramatically accelerates
the development of the long-dwell stratospheric airship [4], which is a typical lighter-than-air aircraft
that plays various roles from telecommunication to space-like observation outpost, similar to satellites
[5–8]. To accomplish diverse mission objectives, driving the airship to reach and follow a time parame-
terised reference route, also termed as trajectory tracking control, is the most fundamental flight control
task [9–11]. However, high nonlinearities, strong couplings, modeling inaccuracies, and unpredictable
disturbances render the trajectory tracking control design quite intractable.

To date, many powerful control methodologies have been applied to solve this problem, such as
adaptive control [12], backstepping method [9, 13], and sliding mode control [14]. Taking several kinds
of uncertainty into consideration, Xiao et al. [14] proposed an adaptive integral sliding mode controller
for an airship. However, no effective modification technique was provided to eliminate control chattering,
thus yielding its implementation impossible. In other works [6, 10, 15–17], the unmodeled dynamics and
external disturbances were identified and compensated by neural networks (NNs) or fuzzy logic systems
(FLSs). However, the employment of NNs and FLSs will inevitably make the controller computationally
expensive due to their inherent attributes. Furthermore, it should be emphasised that these controllers
only apply to fully actuated airships, which, in general, cannot guarantee the tracking behaviour of
underactuated ones.

In reality, most of the potential application scenarios of stratospheric airships are always associ-
ated with horizontal motion, and the stratospheric airship can automatically maintain the cruise altitude
via an independent lift adjustment system alone [3, 15, 17, 18]. Given this fact, this work focuses on
the horizontal trajectory tracking design for one kind of airship. At present, several challenging issues
concerning this subject are still open, three of which are discussed in this paper. The first one is the
underactuated problem. The conventional teardrop-shaped airship, operating at a proper flight altitude,
is a typically underactuated system [6, 17], primarily due to the non-existence of an independent actua-
tor producing the lateral force to command the sway dynamics. This poses new challenges as the lateral
underactuation imposes a non-integrable restriction on the acceleration of the airship, and therefore it
has become an important topic of research [3, 19–22]. Toward underactuated airships and other types of
underactuated vehicles, several controllers have been proposed, both of which have great reference val-
ues for us, including the waypoint navigation method [23], the transverse function control [20], and the
line of sight (LOS) approach [6, 10, 17, 21]. The controller grounded on the waypoint navigation method
[23] demands pre-planning an optimal course that aligns with the direction of the wind, which may be
suitable for hovering control rather than trajectory tracking control. The transverse function control also
needs dynamic extension [20] to accommodate the lateral underactuation, which admittedly complicates
the plant model. Although the LOS approach is deemed an efficient guidance law for underactuated vehi-
cles, LOS-based trajectory tracking controllers require confining the tracking error of yaw angle ψe to
the interval

(− π

2
, π

2

)
for ∀t ≥ 0. Generally, the error-constrained problem is unavoidably linked to rather

complex nonlinear mappings. Some prime examples can be found in the works of Jia et al. [21] and Wu
et al. [10], both of which introduced barrier functions and error-dependent transformations to meet such
a restrictive condition.
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The second issue is about the performance specification. Note that some previous designs [6, 9, 14,
15, 18, 23] can only ensure the equilibrium point of error dynamics is of asymptotic stability, namely,
that the settling time, a critical indicator in control design for airships, is infinity. To this end, the finite-
time stability and stabilisation theory was established [12, 24–26], permitting a bounded convergence
time. Until now, the finite-time control has been an active research area because of its good control qual-
ities, such as the faster decay rate, higher tracking accuracy, and better disturbance rejection property,
and has been rapidly applied in various fields, including strict-feedback or nonstrict-feedback nonlinear
systems [16, 27, 28], uncertain manipulators [29], and rigid spacecrafts [30, 31]. Nevertheless, own to
the coupled nonlinearities in the kinematic equation of airships, extending these finite-time controllers
to the trajectory tracking control design for airships is nontrivial, especially for underactuated ones. For
fully actuated airships, several finite-time trajectory tracking or path following control algorithms were
constructed [10, 17], where the hard computation of time derivatives of virtual control laws was obvi-
ated through filter tools. Though the filter can avoid repeated differentiation, it still structurally increases
the complexity of control systems. Attributed to the adding a power integrator (API) method, a range of
finite-time control strategies were formulated for airships and other mechanical systems without filters
[30–35]. It should be noted that the power terms used in these API-based methods are strictly constrained
to be an even integer or a ratio of two odd integers. Furthermore, in the above finite-time controllers, the
prior designation of the size of the residual set is infeasible in that the steady-state accuracy counts on
some unknowable model parameters and uncertainty bounds.

The third issue is related to the output feedback. Careful reviews of the above results reveal that
most entail full state measurement. However, such a demand is hardly guaranteed in some practical
applications. For example, the velocity information of airships cannot always be available at each instant
coming from considerations of sensor faults. Inspired by this observation, some notable works used
high-gain observers [21], sliding model observers [10], and fuzzy observers [27] to achieve output-
feedback control. Although the maturity of the current output-feedback control, the finite-time trajectory
tracking control design for airships subject to underactuated dynamics, unmeasured velocities, modeling
imprecisions, and external disturbances is still a challenging control problem that needs more in-depth
research.

Motivated by the above discussion, this paper proposes a novel approach by a combined applica-
tion of the backstepping method, the API technique, and the idea of coordinate transformation. Our
contributions are as follows:

1. Compared to the asymptotic control algorithms [6, 9, 14, 15, 18, 23], our approach allows track-
ing behaviour to be preassigned by the operator, i.e. it drives the position errors of the airship
into a preset range near zero within a finite settling time.

2. By employing some useful lemmas, we relax the strong constraints placed on the power terms
[30–35], broadening the set of possible design parameters. Moreover, unlike the sliding mode
controllers [11, 14, 15], our control signal is continuous and chattering-free.

3. A coordinate transformation is performed herein. Consequently, this work forsakes the extra
dynamics needed in the transverse function control [20], and lifts the restriction of LOS-based
controllers [10, 21]. Furthermore, the presented controller can be extended easily to a wide range
of second-order mechanical systems as its design counts on a transformed equivalent model.

4. Our method is structurally less demanding; no tools for filtering [6, 9, 14, 15, 18, 23] are involved,
and no arduous computation of analytic differentiation required in the backstepping technique
[20] is performed. Furthermore, this work realises velocity-free control and is robust enough in
that it establishes a finite-time observer (FTO) to reconstruct unmeasured velocities and unpre-
dictable uncertainties in a integral manner. In contrast to NN or FLS approximation [6, 10, 15–17,
27], the FTO can sharply lighten the calculational burden, making it particularly appealing for
control applications.
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Section 2 presents the preliminaries and control objective. Section 3 elucidates the coordinate con-
version to cope with lateral underactuation. The major control design procedure and Lyapunov analysis
are given in Section 4. Section 5 delineates the simulation results. Section 6 concludes this brief.

2.0 Preliminaries and problem formulation
2.1 Preliminaries
The notation R>0 is referred to the set of positive real numbers, and the notation In ∈Rn×n represents
the unit matrix. |·| is the absolute value of a scalar, while ‖·‖ is the Euclidean 2-norm of a vector or the
induced 2-norm of a matrix. Given ı > 0 and �= [�1, �2, . . . , �n]

T ∈Rn, |�|, |�|ı , and 	�
 refer to |�| =
[|�1|, |�2|, . . . , |�n|]T , |�|ı = [|�1|ı , |�2|ı , . . . , |�n|ı ]T , and 	�
 = diag {�1, �2, . . . , �n}, respectively. Denote
sigı(�)= [

sigı(�1) , sigı(�2) , . . . , sigı(�n)
]T , where sigı(�i)= |�i|ı sgn(�i) (i = 1, . . . , n), and sgn(·) is

the standard signum function given by

sgn(x)=

⎧⎪⎪⎨
⎪⎪⎩

−1, if x< 0

0, if x = 0

1, if x> 0

. (1)

At this stage, we provide some useful definitions and lemmas used later.
Consider the dynamical system

ẋ = f (x(t)) , x(0)= x0, f (0)= 0, x ∈U0 ⊂R
n, (2)

where x is a state vector, the time variable t varies from 0 to ∞, U0 is a finite open set containing
the origin x = 0, and f (·) : Rn →Rn, well-defined on U0, is a continuous differentiable nonlinear vector
function.

Definition 1 (see the work of Sun et al. [16]). If the equilibrium point x = 0 of system (2) is referred to as
a (locally) asymptotic stable node and for any initial state x0 ∈U0, there exist ε ∈R>0 and a settling time
function T(ε, x0) <∞ such that ‖x(t)‖ ≤ ε, ∀t> T(ε, x0), then it is true that system (2) has a (locally)
finite-time stable equilibrium point at x = 0. Furthermore, if U0 =Rn, then x = 0 is globally finite-time
stable.

Lemma 1 (see the work of Sun et al. [16]). Suppose there exists a Lyapunov function V(x) defined in
domain U0, and the time derivative of V(x) along the trajectory of system (2) satisfies

V̇(x)≤ −qVg(x)+ p, (3)

where {q, p} ∈R>0, and 0< g< 1, then the system (2) is finite-time stable.

Lemma 2 (see the work of Sun et al. [16]). For any {x, y} ∈R, the following inequality holds:

|x|m|y|n ≤ m

m + n
s|x|m+n + n

m + n
s− m

n |y|m+n, (4)

where {m, n, s} ∈R>0,

Lemma 3 (see the work of Zheng et al. [34]). Let ξi ∈R, i = 1, 2, . . . , n. Then(
n∑

i=1

|ξi|
)μ

≤
n∑

i=1

|ξi|μ ≤ n1−μ
(

n∑
i=1

|ξi|
)μ

,μ ∈ (0, 1] ,

n∑
i=1

|ξi|μ ≤
(

n∑
i=1

|ξi|
)μ

≤ nμ−1

n∑
i=1

|ξi|μ ,μ ∈ (1, ∞) .

(5)

https://doi.org/10.1017/aer.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.47


The Aeronautical Journal 143

Figure 1. Depiction of the stratospheric airship.

Lemma 4 (see the work of Du et al. [30]). If ϑ1 > 0 and 0<ϑ2 ≤ 1, then

|sigϑ1ϑ2(x)− sigϑ1ϑ2(y) | ≤ 21−ϑ2 |sigϑ1(x)− sigϑ1(y) |ϑ2 , ∀ {x, y} ∈R. (6)

Lemma 5 (see the work of Du et al. [30]). For any ς ∈R+ and z ∈R, we have

d

dt
|z|ς+1 = (ς + 1) sigς (z) ż,

d

dt
sigς+1(z)= (ς + 1) |z|ς ż. (7)

2.2 Airship model
Figure 1 displays the stratospheric airship with a typical streamline ballonet. The helium-filled ballonet
generates an upward lift for the airship. The cargo bay fixed below the ballonet aims to house the on-
board systems. The propulsive units mounted on both sides of the gondola furnish thrust for flight. The
control surfaces (elevators and rudders) installed on the tail offer yawing and pitching moments.

To investigate the motion control of the airship, it is reasonable to establish the earth and body-fixed
coordinate systems; see Fig. 1. The earth reference frame (ERF) has its origin og at a fixed point on the
earth, the ogxg-axis points north, the ogyg-axis points east, and the ogzg-axis points to the earth’s centre
perpendicular to the plane ogxgyg. The body-fixed reference frame (BRF) moving with the airship sets its
origin o at the centre of volume (CV), the oxb-axis points to the nose of the airship, the oyb-axis points
to the starboard side of the airship, and the ozb-axis lying on the longitudinal axisymmetric plane of the
airship normal to the plane oxbyb.

Neglect the aeroelastic influences and regard the airship as a rigid body. Taken from the airship
modeling technique [2, 9, 10, 14, 15, 17, 22, 23, 34], the airship model built around the horizontal
motion can be directly given here, which is formulated by [6, 18, 36–38]⎡

⎢⎣
ẋ

ẏ

ψ̇

⎤
⎥⎦=

⎡
⎢⎣

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

u

v

r

⎤
⎥⎦= J(ψ) ν,

⎡
⎢⎣

muu̇

mvv̇

mrṙ

⎤
⎥⎦=

⎡
⎢⎣

mvvr

−muur

muvuv

⎤
⎥⎦−

⎡
⎢⎣

duu

dvv

drr

⎤
⎥⎦+

⎡
⎢⎣
τu

0

τr

⎤
⎥⎦+

⎡
⎢⎣
δu

δv

δr

⎤
⎥⎦ .

(8)
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In the above equations, x, y are the CV’s positions in the ERF, and ψ is the yaw attitude in the BRF;
u, v, r are the surge velocity, lateral velocity and yaw angular velocity with respect to the BRF, respec-
tively; mi and di (i = u, v, r) denote the mass and damping term [2, 19, 39], respectively; muv = mu − mv;
τ = [τu, τr]T is the actuating signal. δ = [δu, δv, δr]T characterises all the modeling imperfections and dis-
turbances. To facilitate subsequent discussions, some of most fundamental assumptions are delineated
below.

Assumption 1 (see other works [3, 10, 22]). The airship is flying at a proper cruising altitude with
stable meteorological conditions, while maintaining buoyancy-weight balance. The pitch and roll angle
are very small such that the associated dynamics can be neglected.

Assumption 2 (see other works [6, 19, 39]). In this work, we suppose that δi (i = u,v,r) takes the form

⎧⎪⎪⎨
⎪⎪⎩
δu = δ′

u + m′
vvr − d′

uu − m′
uu̇ + δdisu

δv = δ′
v − m′

uur − d′
vv − m′

vv̇ + δdisv

δr = δ′
r + m′

uvuv − d′
rr − m′

r ṙ + δdisr

, (9)

where δ′
i is the cross-coupling term, m′

i and d′
i are the uncertain part of mi and di, respectively, and δdisi

characterises the slow time-varying wind resistance.

Remark 1. From Equation (8), the airship, operating in three degrees of freedom, only has two inde-
pendent actuating signals (τu, τr) in surge and yaw, which poses a prominent obstacle to steering the
airship alone through a scheduled trajectory with stringent time and performance requirements. Indeed,
it is physically apparent that most surface vehicles (SVs) and autonomous underwater vehicles (AUVs)
propelling themselves on a horizontal plane are underactuated, and the motion equations of SVs and
AUVs are pretty similar to that of the underactuated airship [20, 21]. When designing the motion con-
trol algorithms for SVs and AUVs, the performance specifications, such as the convergent time and the
residual set, always exist. Therefore, this work is constructive for motion control design for SVs and
AUVs to some extent.

Remark 2. Some effective altitude control techniques [3, 10, 22], such as inflating and deflating valves,
make Assumption 1 mild and realistic. Assumption 2 is frequently made in the works on horizontal
motion control of airships [6, 19, 39]. It is also important to point out that the term δ′

i (i = u, v, r) in
Equation (9) is used to depict the coupling effects of pitch and roll.

2.3 Control objective
In this article, our control objective is to generate a control law for τ to be employed by the stratospheric
airship in underactuated mode, such that, despite the adverse influences of unmeasured velocities and
uncertainties, the position of the airship η= [x, y]T tracks with the scheduled route ηd = [xd, yd]T with a
priori designate performance, i.e. such that the tracking error e = η− ηd = [xe, ye]T fulfills

max {|xe|, |ye|} ≤ ε, ∀t ≥ Tf , (10)

where ε represents the preassigned tracking accuracy, and 0< Tf <∞ denotes the finite settling time.
Meanwhile, all the closed-loop signals maintain bounded ∀t ≥ 0.

Assumption 3. The reference trajectory ηd and its derivatives up to η̈d are bounded, continuous, and
available for ∀t ≥ 0.
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Figure 2. Coordinate transformation.

3.0 Coordinate transformation
To fix the underactuated issue, a coordinate transformation is first conducted, specified as

xt = x + ε cos(ψ) , yt = y + ε sin(ψ) , (11)

where ηt =
[
xt, yt

]T denotes a new position, and except for having the definition in Equation (10), ε also
is the distance between η and ηd (see Fig. 2). Calculating the second-order time-derivative of ηt and
taking Equation (8) into consideration yield

ẍt = u̇ cos(ψ)− (v̇ + εṙ) sin(ψ)− ur sin(ψ)− (
vr + εr2

)
cos(ψ) ,

ÿt = u̇ sin(ψ)+ (v̇ + εṙ) cos(ψ)+ ur cos(ψ)− (
vr + εr2

)
sin(ψ) .

(12)

Then, substituting Equation (8) for Equation (12), we obtain

ẍt = cos(ψ)

mu

τu − ε sin(ψ)

mr

τr +�x + δtfx ,

ÿt = sin(ψ)

mu

τu + ε cos(ψ)

mr

τr +�y + δtfy ,

(13)

where

�x =mvvr − duu

mu

cos(ψ)+ muur + dvv

mv

sin(ψ)− muvuv − drr

mr

ε sin(ψ)

− ur sin(ψ)− (
vr + εr2

)
cos(ψ) ,

(14)

�y =mvvr − duu

mu

sin(ψ)− muur + dvv

mv

cos(ψ)+ muvuv − drr

mr

ε cos(ψ)

+ ur cos(ψ)− (
vr + εr2

)
sin(ψ) ,

(15)

δtfx = δu

mu

cos(ψ)−
(
δv

mv

+ εδr

mr

)
sin(ψ) , (16)

δtfy = δu

mu

sin(ψ)+
(
δv

mv

+ εδr

mr

)
cos(ψ) . (17)
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Denoting κ1 = ηt, κ2 = η̇t, �= [
�x, �y

]T , δtf = [
δtfx , δtfy

]T , and τ = [τu, τr]
T , Equation (13) then can

be rewritten in the synthetic form
κ̇1 =κ2,

κ̇2 = R(ψ)Mετ +�+ δtf ,
(18)

where

R(ψ)=
[

cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]
, Mε =

⎡
⎢⎢⎣

1

mu

0

0
ε

mr

⎤
⎥⎥⎦ . (19)

Obviously, R(ψ) RT(ψ)= I2, and Mε is a positive-definite diagonal matrix if, and only if, ε ∈R>0. Note
that in this paper, we suppose that the velocity cannot be measured, and therefore, the term�= [

�x, �y

]T

is actually unavailable for control design. To this end, we consider it as a part of uncertainties, and
define the lumped disturbances δlu as δlu =�+ δtf , which will be estimated by an observation mechanism
designed later. For the convenience of observer design, the following assumption is provided.

Assumption 4 (see other works [40–42]). A bounded positive constant Bδlu exists such that the lumped
disturbances δlu satisfy ‖δ̇lu‖ ≤ Bδlu .

Remark 3. From Equation (18), the original motion model for the underactuated airship has been
transformed into a fully actuated uncertain Euler–Lagrange (EL) model, formally defined as M(q) q̈ +
C(q, q̇) q̇ + G(q)= τ , where q ∈Rn is the generalised coordinate, M(q) ∈Rn×n is the known matrix,
C(q, q̇) ∈Rn is the known nonlinear dynamic, G(q) ∈Rn accounts for uncertain dynamics and distur-
bances, and τ ∈Rn is the control variable; essentially, the EL model can describe various physical
systems [33], such as robot manipulators [12, 24, 29] and spacecrafts [30, 31]. Thus, the presented
method can be readily extended to a series of mechanical systems in second-order form.

Remark 4. It is emphasised that the coordinate transformation does not weaken the control quality;
conversely, it is a potent approach to resolve the underactuated problem and realise the preassigned
accuracy simultaneously. This is especially clear if we now construct a control algorithm that succeeds
in forcing the signal et1 =κ1 − ηd to shrink to zero within a finite time Tf and maintain it there for t ≥ Tf ,
i.e., ‖et1‖ = 0, ∀t ≥ Tf , then the actual position error e will satisfy

‖e‖ =‖η− ηd‖ =
∥∥∥κ1 − ε

[
cos(ψ)

sin(ψ)

]
− ηd

∥∥∥=
∥∥∥et1 − ε

[
cos(ψ)

sin(ψ)

] ∥∥∥≤ ‖et1‖

+
∥∥∥ε

[
cos(ψ)

sin(ψ)

] ∥∥∥≤ ε, ∀t ≥ Tf . (20)

Evidently, decreasing ε yields a higher tracking precision.

Remark 5. It is necessary to remark that this paper views the airship as a rigid body and therefore
the linear velocities u and v and the angular velocity r cannot change suddenly. In addition, the rate of
change of the uncertainties δ is restrained as the stratospheric climate is stable and has limited energy.
As a result, Assumption 4 is reasonable in reality and is widely employed in current literature [40–42]
to facilitate the output feedback control realisation.

4.0 Main result
In this section, we first build an FTO to offer the exact information of the unmeasured velocity κ2 and
the lumped disturbances δlu in an integrated manner. Afterward, in conjunction with the transformed
model, the designed FTO, the backstepping technique, and the API method, a novel trajectory tracking
control algorithm for stratospheric airships is proposed. Finally, a Lyapunov analysis is carried out to
prove the closed-loop system stability.
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4.1 FTO
In this paper, the FTO is formulated by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂κ1 = κ̂2 + p1sigr1
(
κ1 − κ̂1

)+ q1sigz1
(
κ1 − κ̂1

)
˙̂κ2 = R(ψ)Mετ + δ̂lu + p2sigr2

(
κ1 − κ̂1

)+ q2sigz2
(
κ1 − κ̂1

)
˙̂
δlu = p3sigr3

(
κ1 − κ̂1

)+ q3sigz3
(
κ1 − κ̂1

)+ϒsign
(
κ1 − κ̂1

) , (21)

where κ̂1, κ̂2, and δ̂lu are the estimates of κ1, κ2, and δlu, respectively. The parameters in Equation
(21) satisfy 0< ri < 1, zi > 1, ri = ir0 − (i − 1), zi = iz0 − (i − 1), i = 1, 2, 3, 0< r0 < 1 − σ1, 0< z0 <

1 + σ2, σ1 ∈R>0 and σ2 ∈R>0 are sufficiently small constants, and ϒ ≥ Bδlu . The observer gains are
selected to ensure the matrices

P =
⎡
⎢⎣

−p1 1 0

−p2 0 1

−p3 0 0

⎤
⎥⎦ and Q =

⎡
⎢⎣

−q3 1 0

−q3 0 1

−q3 0 0

⎤
⎥⎦ (22)

are Hurwitz. Based on the above contents, we obtained the main results of the FTO.

Theorem 1. Using the FTO (21) under Assumption 4, the velocity κ2 and the lumped disturbances δlu

can be estimated accurately; more specifically, the estimation errors eo1 , eo2 , and eo3 can be driven to
zero with a finite reaching time To.

Proof of Theorem 1. Define eo1 =κ1 − κ̂1, eo2 =κ2 − κ̂2, and eo3 = δlu − δ̂lu as observer errors;
therefore, together with Equation (18), the observer error dynamics can be computed as⎧⎪⎪⎨

⎪⎪⎩
ėo1 = eo2 − p1sigr1

(
eo1

)− q1sigz1
(
eo1

)
ėo2 = eo3 − p2sigr2

(
eo1

)− q2sigz2
(
eo1

)
ėo3 = δ̇lu − p3sigr3

(
eo1

)− q3sigz3
(
eo1

)−ϒsign
(
eo1

) . (23)

The reminder of this proof is quite similar to that of Theorem 1 given by Basin et al. [43], and therefore,
it is omitted here for space.

Remark 6. The FTO (21) essentially is a uniform robust exact differentiator. Historically, the con-
cept of uniform exact convergence was proposed by Cruz-Zavala et al. [44] for the first time. Note that
chattering, measurement noise, sampling step and small delay are out of the scope of this paper.

4.2 Control algorithm design
The entire design procedure is elaborated as follows.

Step 1. Design a stabilising function for et1 . To begin with, let

et2 =κ2 − η̇d, e†
t2

= κ̂2 − η̇d. (24)

Consider the simple quadratic Lyapunov function candidate V1 = 1
2
eT

t1
et1 . Evaluating the time derivative

of V1 by using Equations (18) and (24) results in

V̇1 = eT
t1

et2 = eT
t1
(κ2 − η̇d)= eT

t1

(
κ̂2 + eo2 − η̇d

)= eT
t1

e†
t2

+ eT
t1

eo2 . (25)

Adopting the virtual control law

e∗
t2

= −	κ1
sigα
(
et1

)
(26)
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for et1 produces

V̇1 = eT
t1

(
e†

t2
− e∗

t2

)− eT
t1
	κ1
sigα

(
et1

)+ eT
t1

eo2 = eT
t1

(
e†

t2
− e∗

t2

)−
2∑

i=1

κ1i

∣∣et1i

∣∣1+α + eT
t1

eo2 , (27)

where κ1 ∈R2 and α ∈(0, 1). Define the intermediate variable � as
� = sig

1
α

(
e†

t2

)− sig
1
α

(
e∗

t2

)
, (28)

and together with Lemma 4, we get

eT
t1

(
e†

t2
− e∗

t2

)=
2∑

i=1

et1i

(
e†

t2i
− e∗

t2i

)
≤

2∑
i=1

∣∣et1i

∣∣ ∣∣∣e†
t2i

− e∗
t2i

∣∣∣
=

2∑
i=1

∣∣et1i

∣∣ ∣∣∣sigα
(

sig
1
α

(
e†

t2i

))
− sigα

(
sig

1
α

(
e∗

t2i

)) ∣∣∣
≤

2∑
i=1

21−α ∣∣et1i

∣∣ ∣∣∣sig
1
α

(
e†

t2i

)
− sig

1
α

(
e∗

t2i

) ∣∣∣α ≤
2∑

i=1

21−α ∣∣et1i

∣∣ |�i|α.

(29)

In view of Lemma 2, Equation (29) can be rewritten as

eT
t1

(
ēt2 − ē∗

t2

)≤
2∑

i=1

(
21−α

1 + α

∣∣et1i

∣∣1+α + 21−αα

1 + α
|�i|1+α

)
. (30)

Substituting Equation (30) for Equation (27), the derivative V̇1 becomes

V̇1 ≤ −
2∑

i=1

(
κ1i −

21−α

1 + α

) ∣∣et1i

∣∣1+α +
2∑

i=1

21−αα

1 + α
|�i|1+α + eT

t1
eo2 . (31)

Step 2. Design a fixed-time control law for τ . To this end, select the complete Lyapunov function
candidate as

V = V1 +
2∑

i=1

V2i , (32)

where V2i , i = 1, 2, takes the form

V2i =
∫ e†

t2i

e∗
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds. (33)

In the sequel, we demonstrate that V2i is a scalar positive function through analysing the following cases.

• Case 1: e†
t2i
> e∗

t2i
≥ 0. From sigı (·) = |·|ı sign(·) and s ∈

[
e†

t2i
, e∗

t2i

]
we thus get

s ≥ e∗
t2i

≥ 0, sig
1
α (s)= s

1
α , and sig

1
α

(
e∗

t2i

)
= e

∗ 1
α

t2i
. (34)

This implies that

V2i =
∫ e†

t2i

e∗
t2i

∣∣∣s 1
α − e

∗ 1
α

t2i

∣∣∣2−α
sign

(
s

1
α − e

∗ 1
α

t2i

)
ds =

∫ e†
t2i

e∗
t2i

(
s

1
α − e

∗ 1
α

t2i

)2−α
ds, (35)

where we used the fact that the power function f (x)= x
1
α is strictly increasing when x> 0. This,

together with the well-known mean value theorem, gives

V2i =
(

s
∗ 1
α

1 − e
∗ 1
α

t2i

)2−α(
e†

t2i
− e∗

t2i

)
> 0 (36)

with s∗
1 ∈

(
e∗

t2i
, e†

t2i

)
.
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• Case 2: e†
t2i

≥ 0> e∗
t2i

. Rewrite Equation (33) as

V2i =
∫ e†

t2i

0

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds +

∫ 0

e∗
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds. (37)

Regarding the first term on the right side of Equation (37), if e†
t2i

= 0, then
∫ e†

t2i
0 sig2−α

(
sig

1
α (s)−

sig
1
α

(
e∗

t2i

))
ds = 0. Otherwise, we can easily verify that there exists a strictly positive constant

s∗
2 ∈

(
0, e†

t2i

)
such that

∫ e†
t2i

0

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds =

∫ e†
t2i

0

∣∣s 1
α + ∣∣e∗

t2i

∣∣ 1
α
∣∣2−α

sign
(

s
1
α + ∣∣e∗

t2i

∣∣ 1
α

)
ds =

∫ e†
t2i

0

(
s

1
α + ∣∣e∗

t2i

∣∣ 1
α

)2−α
ds =

(
s
∗ 1
α

2 + ∣∣e∗
t2i

∣∣ 1
α

)2−α
e†

t2i
> 0,

(38)

where e∗
t2i
< 0 ⇒ sign

(
e∗

t2i

)
= −1, ∀s ∈

[
0, e†

t2i

]
⇒ sign(s) = 1, and the mean value theorem have

been used.
As for the second term, let us now consider the integration by substitution technique. By making
the substitution s = −g, we have

∫ 0

e∗
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds =

∫ ∣∣e∗
t2i

∣∣
0

sig2−α
(

sig
1
α (−g)− sig

1
α

(
e∗

t2i

))
dg =

∫ ∣∣e∗
t2i

∣∣
0

sig2−α
(
|g| 1

α sign(−g)− ∣∣e∗
t2i

∣∣ 1
α sign

(
e∗

t2i

))
dg.

(39)

Further consider that sign
(

e∗
t2i

)
= −1 and ∀g ∈

[
0,
∣∣e∗

t2i

∣∣] means sign(−g) = −1 and
∣∣e∗

t2i

∣∣ 1
α >

|g| 1
α . Consequently, Equation (39) simply becomes

∫ ∣∣e∗
t2i

∣∣
0

sig2−α
(
|g| 1

α sign(−g)− ∣∣e∗
t2i

∣∣ 1
α sign

(
e∗

t2i

))
dg =

∫ ∣∣e∗
t2i

∣∣
0

sig2−α
(∣∣e∗

t2i

∣∣ 1
α − |g| 1

α

)
dg =

∫ ∣∣e∗
t2i

∣∣
0

(∣∣e∗
t2i

∣∣ 1
α − |g| 1

α

)2−α
sign

(∣∣e∗
t2i

∣∣ 1
α − |g| 1

α

)
dg =

∫ ∣∣e∗
t2i

∣∣
0

(∣∣e∗
t2i

∣∣ 1
α − |g| 1

α

)2−α
dg.

(40)
Proceeding similarly to get Equation (36) leads to∫ 0

e∗
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds =

(∣∣e∗
t2i

∣∣ 1
α − g

∗ 1
α

1

)2−α ∣∣e∗
t2i

∣∣> 0 (41)

with g∗
1 ∈

(
0,
∣∣e∗

t2i

∣∣). Summarising the results in Equations (38) and (41) gives V2i > 0 in the case
of e†

t2i
≥ 0> e∗

t2i
.

• Case 3: 0 ≥ e†
t2i
> e∗

t2i
. Clearly, in this case, 0 ≤ ∣∣e†

t2i

∣∣< ∣∣e∗
t2i

∣∣ holds. Let us again use the integration
by substitution technique. Setting s = −g results in

V2i =
∫ e†

t2i

e∗
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds =

∫ ∣∣e∗
t2i

∣∣∣∣e†
t2i

∣∣ sig2−α
(

sig
1
α (−g)− sig

1
α

(
e∗

t2i

))
dg. (42)
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Following the same lines to obtain Equations (40) and (41), it can also be shown that

V2i =
∫ ∣∣e∗

t2i

∣∣∣∣e†
t2i

∣∣
(∣∣e∗

t2i

∣∣ 1
α − |g| 1

α

)2−α
dg =

(∣∣e∗
t2i

∣∣ 1
α − g

∗ 1
α

2

)2−α (∣∣e∗
t2i

∣∣− ∣∣e†
t2i

∣∣)> 0 (43)

with g∗
2 ∈

(∣∣e†
t2i

∣∣, ∣∣e∗
t2i

∣∣).

• Case 4: e∗
t2i

≥ 0> e†
t2i

. We now switch the upper and lower bounds of integral (33) and thus
obtain

V2i = −
∫ e∗

t2i

e†
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds

= −
∫ e∗

t2i

0

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds −

∫ 0

e†
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds.

(44)

The first term on the right side of Equation (44) is identically equal to zero if e∗
t2i

= 0; if not,
proceeding as before, it can be simplified as

−
∫ e∗

t2i

0

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds = −

∫ e∗
t2i

0

∣∣∣s 1
α − e

∗ 1
α

t2i

∣∣∣2−α
sign

(
s

1
α − e

∗ 1
α

t2i

)
ds =(

e
∗ 1
α

t2i
− s

∗ 1
α

3

)2−α
e∗

t2i
> 0,

(45)

where s∗
3 ∈

(
0, e†

t2i

)
and we have used the fact ∀s ∈

[
0, e∗

t2i

]
⇒ s

1
α ≤ e

∗ 1
α

t2i
.

And the second term, given the substitution s = −g, satisfies

−
∫ 0

e†
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds =

∫ 0∣∣e†
t2i

∣∣ sig2−α
(

sig
1
α (−g)− sig

1
α

(
e∗

t2i

))
dg =

−
∫ ∣∣e†

t2i

∣∣
0

sig2−α
(

sig
1
α (−g)− sig

1
α

(
e∗

t2i

))
dg =

∫ ∣∣e†
t2i

∣∣
0

(
g

1
α + ∣∣e∗

t2i

∣∣ 1
α

)2−α
dg =

(
g

∗ 1
α

3 + ∣∣e∗
t2i

∣∣ 1
α

)2−α ∣∣e†
t2i

∣∣> 0, (46)

where g∗
3 ∈

(
0,
∣∣e∗

t2i

∣∣) and we have used the facts sign(−g)= −1 and sign
(

e∗
t2i

)
= −1. Taking

Equations (44) and (45) into account, we know that V2i > 0 when e∗
t2i

≥ 0> e†
t2i

.

Evidently, the above discussion guarantees that V2i is positively defined. Differentiating V2i with
respect to time and applying Lemma 5 lead to

V̇2i = sig2−α(�i) ė†
t2i

− (2 − α)
dsig

1
α

(
e∗

t2i

)
dt

∫ e†
t2i

e∗
t2i

∣∣∣sig
1
α (s)− sig

1
α

(
e∗

t2i

)∣∣∣1−α
ds. (47)

Noting that

sig
1
α

(
κ1i sigα

(
et1i

))= κ
1
α

1i
| ∣∣et1i

∣∣α sign
(
et1i

) | 1
α sign

(∣∣et1i

∣∣α sign
(
et1i

))= κ
1
α

1i
et1i

(48)
and

dsig
1
α

(
e∗

t2i

)
dt

= −dsig
1
α

(
κ1i sigα

(
et1i

))
det1i

et2i
= −κ 1

α

1i
et2i

, (49)

we have

V̇2i = sig2−α(�i) ė†
t2i

+ κ
1
α

1i
(2 − α) et2i

∫ e†
t2i

e∗
t2i

∣∣∣sig
1
α (s)− sig

1
α

(
e∗

t2i

)∣∣∣1−α
ds. (50)
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The second term in the right side of Equation (50) satisfies∣∣∣∣∣κ 1
α

1i
(2 − α) et2i

∫ e†
t2i

e∗
t2i

∣∣∣∣∣ sig
1
α (s)− sig

1
α

(
e∗

t2i

)
|1−αds|

≤κ 1
α

1i
(2 − α)

∣∣et2i

∣∣ ∣∣∣e†
t2i

− e∗
t2i

∣∣∣ ∣∣∣sig
1
α

(
e†

t2i

)
− sig

1
α

(
e∗

t2i

)∣∣∣1−α

≤κ 1
α

1i
(2 − α)

∣∣et2i

∣∣ ∣∣∣sigα
(

sig
1
α

(
e†

t2i

))
− sigα

(
sig

1
α

(
e∗

t2i

))∣∣∣× ∣∣∣sig
1
α

(
e†

t2i

)
− sig

1
α

(
e∗

t2i

)∣∣∣1−α

≤κ 1
α

1i
(2 − α) 21−α ∣∣et2i

∣∣ |�i|

(51)

with ∣∣et2i

∣∣= ∣∣∣e†
t2i

+ eo2i

∣∣∣≤ ∣∣e†
t2i

∣∣+ ∣∣eo2i

∣∣≤ |e†
t2i

− e∗
t2i

| + |κ1i sigα
(
et1i

) | + ∣∣eo2i

∣∣
≤ |sigα

(
sig

1
α

(
e†

t2i

))
− sigα

(
sig

1
α

(
e∗

t2i

))
| + κ1i

∣∣et1i

∣∣α + ∣∣eo2i

∣∣
≤ 21−α|�i|α + κ1i

∣∣et1i

∣∣α + ∣∣eo2i

∣∣ ,

(52)

where Equations (24), and (26), (28), and Lemma 4 have been used. Coupling Equations (51) and (52),
we have ∣∣∣∣∣κ 1

α

1i
(2 − α) et2i

∫ e†
t2i

e∗
t2i

∣∣∣∣∣ sig
1
α (s)− sig

1
α

(
e∗

t2i

)
|1−αds|

≤ κ 1
α

1i
(2 − α) 21−α|�i|

(
21−α|�i|α + κ1i

∣∣et1i

∣∣α + ∣∣eo2i

∣∣)
= κ

1
α

1i
(2 − α) 22−2α|�i|1+α + κ

1+ 1
α

1i
(2 − α) 21−α|�i|

∣∣et1i

∣∣α + κ
1
α

1i
(2 − α) 21−α|�i|

∣∣eo2i

∣∣
≤ κ 1

α

1i
(2 − α) 22−2α|�i|1+α + (2 − α) 21−αα

1 + α

∣∣et1i

∣∣1+α + (2 − α) 21−α

1 + α
κ1+α

1i
|�i|1+α

+ κ
1
α

1i
(2 − α) 21−α|�i|

∣∣eo2i

∣∣ ,

(53)

where Lemma 2 has been used. Then, the differentiation of V2i and the utilisation of Equation (53) yield

V̇2i ≤ sig2−α(�i) ė†
t2i

+ (2 − α) 21−αα

1 + α

∣∣et1i

∣∣1+α

+
(
κ

1
α

1i
(2 − α) 22−2α + (2 − α) 21−α

1 + α
κ1+α

1i

)
|�i|1+α + κ

1
α

1i
(2 − α) 21−α|�i|

∣∣eo2i

∣∣ .
(54)

Together with Equations (18), (23), (24), (27), and (54), the definition of V , and the dynamics of e†
t2

ė†
t2

= R(ψ)Mετ + δlu − η̈d + p2sigr2
(
eo1

)+ q2sigz2
(
eo1

)− eo3 , (55)

we get

V̇ ≤ −
2∑

i=1

(
κ1i − γ1i

) ∣∣et1i

∣∣1+α +
2∑

i=1

α

1 + α

∣∣eo2i

∣∣1+ 1
α +

2∑
i=1

γ2i |�i|1+α +
2∑

i=1

κ
1
α

1i
(2 − α) 21−α|�i|

∣∣eo2i

∣∣
+ (

sig2−α(�)
)T(

R(ψ)Mετ + δlu − η̈d + p2sigr2
(
eo1

)+ q2sigz2
(
eo1

)− eo3

)
(56)

with γ1i = 21−α (1+(2−α)α)+1
1+α and γ2i = 21−αα

1+α + κ
1
α

1i
(2 − α) 22−2α + (2−α)21−α

1+α κ1+α
1i

, i = 1, 2. According to the
structure of V̇ , the trajectory tracking control law for τ is designed as

τ = −M−1
ε

R−1(ψ)
(
δ̂lu − η̈d + (	κ2
 + 	γ2
) sig2α−1(�)+ �(t)

(
sigα(�)+ sig2−α(�)

))
, (57)
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where ρ(t)=
{

((Tρ − t)/Tρ)
1
αρ (ρ0 − ρ∞) + ρ∞ , 0 ≤ t ≤ Tρ
ρ∞ , t> Tρ

with
{
ρ0, ρ∞, αρ , Tρ

} ∈R>0, and κ2 ∈R2
>0.

The main results of this brief are included in the following theorem.

Theorem 2. Consider the stratospheric airship (8) subject to underactuated dynamics, unmeasured
velocities, modeling imperfections, and exogenous disturbances, with the coordinate transformation
(11), the FTO (21), the virtual control law (26), and the control action (57). Suppose that Assumptions
1–4 hold and the control parameters are selected such that

κ1i > γ1i + κ ′
1i

, (58)

where κ ′
1i

∈ R>0, i = 1, 2. Then, the position error e = η− ηd converges to a preassigned small vicinity
of the origin within a finite time Tf , while all the closed-loop states maintain bounded for ∀t ≥ 0.

Proof of Theorem 2. Let us prove first that these signals do not go to infinity when t ∈ [0, To].
Substituting the control action (57) with design parameters satisfying the condition (58), we have

V̇ ≤ −
2∑

i=1

κ ′
1i
|et2i

|1+α −
2∑

i=1

κ2i|�i|1+α +
2∑

i=1

κ
1
α

1i
(2 − α) 21−α|�i|

∣∣eo2i

∣∣+ 2∑
i=1

α

1 + α

∣∣eo2i

∣∣1+ 1
α

+ (
sig2−α(�)

)T (
p2sigr2

(
eo1

)+ q2sigz2
(
eo1

))− �(t)
(
sig2−α(�)

)T (
sigα(�)+ sig2−α(�)

)
,

(59)

where the fact

sig2α−1(�i) sig2−α(�i)= |�i|1+α (60)

has been used. Noticing that the signals eo1 and eo2 decay to zero after a fixed-time time T0,
hence

{
eo1i

, eo2i

} ∈L∞. Accordingly, there exists a constant Beo ∈R>0 such that supt∈[0,∞)

{|eo1i
|, ∣∣eo2i

∣∣ ,
|eo1i

|r2 ,
∣∣eo2i

∣∣z2
}≤ Beo , i = 1, 2. This, combined with Young’s inequality, gives

2∑
i=1

κ
1
α

1i
(2 − α) 21−α|�i||eo1i

| ≤
2∑

i=1

(
�(t) |�i|2 + κ

2
α

1i
(2 − α)

2 22−2α

4�(t)
B2

eo

)
, (61)

(
sig2−α(�)

)T(
p2sigr2

(
eo1

)+ q2sigz2
(
eo1

))≤
2∑

i=1

(
�(t) |�i|4−2α + p2

2 + z2
2

4�(t)
|Beo |2

)
. (62)

In view of Equations (61) and (62), Equation (59) can be restated as

V̇ ≤ −
2∑

i=1

κ ′
1i

∣∣et1i

∣∣1+α −
2∑

i=1

κ2i|�i|1+α +
2∑

i=1

α

1 + α
B1+ 1

α
eo

+
2∑

i=1

κ
2
α

1i
(2 − α)

2 22−2α

4�(t)
B2

eo

+
2∑

i=1

p2
2 + z2

2

4�(t)
|Beon

|2.

(63)

Apparently, a constant B[0,To]
s ∈R>0 exists, which is an upper bound on the sum of the last three terms in

Equation (63) when t ∈ [0, To]. Besides, Recalling the definition of function V2i, we can easily see

V2i =
∫ e†

t2i

e∗
t2i

sig2−α
(

sig
1
α (s)− sig

1
α

(
e∗

t2i

))
ds ≤

∣∣∣e†
t2i

− e∗
t2i

∣∣∣ ∣∣∣sig2−α
(

sig
1
α

(
e†

t2i

)
− sig

1
α

(
e∗

t2i

))∣∣∣
≤ |sigα

(
sig

1
α

(
e∗

t2i

))
− sigα

(
sig

1
α

(
e†

t2i

))
||�i|2−α ≤ 21−α|�i|2 ≤ 2|�i|2,

(64)

and therefore the complete Lyapunov function candidate V satisfies V ≤ 2eT
t1

et1 + 2� T� . Since α ∈
(0, 1)⇒ 1+α

2
∈ (

1
2
, 1
)
, this further leads to

V
1+α

2 ≤
(

2
2∑

i=1

e2
t1i

+ 2
2∑

i=1

� 2
i

) 1+α
2

≤ 2
1+α

2

2∑
i=1

∣∣et1i

∣∣1+α + 2
1+α

2

2∑
i=1

|�i|1+α (65)
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Table 1. Airship model parameters

Notation Value Notation Value Notation Value
mu (kg) 301 dr (kg/s) 73 �mv (kg) 155
mv (kg) 455 �δu 15 �mr (kg · m2) 4,127
mr (kg · m2) 12,176 �δv 15 �du (kg/s) 10
du (kg/s) 50 �δr 300 �dv (kg/s) 10
dv (kg/s) 50 �mu (kg) 101 �dr (kg/s) 13

When V > 1, summarising the results in Equations (59), (63), (64) and (65) gives

V̇ ≤ −λ0V
1+α

2 + B[0,To]
s ≤ −λ0V + B[0,To]

s , (66)

where Lemma 3 has been used, λ0 = min
(

1
2

) 1+α
2 × {

κ ′
1i

, κ2i

}
, i = 1, 2. Multiplying Equation (66) by eλ0 t

and integrating it over [0, t], we have

0 ≤ V(t)≤
(

V(0)− B[0,To]
s

λ0

)
e−λ0 t + B[0,To]

s

λ0

. (67)

Besides, in the case of V ≤ 1, the system states eti , i = 1, 2, and � are obviously bounded. As a result,
we can conclude that these signals will not drift to infinity as t ∈ [0, To].

Now, we proceed to prove Theorem 2. Theorem 1 reveals that κ̂2 =κ2 and δ̂lu = δlu for ∀t ≥ T0. Along
with the fact that �(t) ∈R>0, Equation (59) becomes

V̇ ≤ −
2∑

i=1

κ ′
1i

∣∣et1i

∣∣1+α −
2∑

i=1

κ2i|�i|1+α −
2∑

i=1

�(t)
((|�i|2 + |�i|4−2α

))≤ −λ0V
1+α

2 , (68)

Consequently, all of the system states remain bounded for t ≥ To. Besides, it is noteworthy that:

1. the finite-time tracking task is fulfilled. Given Lemma 1, we can conclude that both et1 and �
decay to zero within a finite time Tf estimated by

Tf ≤ 2V
1−α

2 (0)

λ0(1 − α)
+ To; (69)

2. a priori assignment of tracking accuracy is assured. Recalling Equation (20), we get

‖et1‖ = 0, ∀t ≥ Tf ⇒ max {|xe|, |ye|} ≤ ε, ∀t ≥ Tf , (70)

indicating that we can specify the accuracy bound with the parameter ε.

Remark 7. In the related works on API method [30–35], the power is circumscribed to be an even
integer or a ratio of two odd integers. However, with the benefit of Lemma 4, such curtailments are
removed in our work.

Remark 8. In contrast to the sliding mode control designs [11, 14, 15, 42], the control action (57) is
chattering-free. In this note, although the signum operator sign(·) is employed, the highly undesirable
control activity is avoided as the fractional power term sigς (z)= |z|ςsign(z) is a non-smooth but contin-
uous function of z, where ς > 0. This is vital for the long-time flight of the airship as control chattering
may shorten the lifespan of the devices. Moreover, from the definition of ρ(t), we can find that ρ(t) is
a strictly decreasing positive function and it takes a very small value ρ∞ when t> Tρ . In this sense, we
can avoid unnecessary control effort to some extent by incorporating it into the control action (57).
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Figure 3. Trajectories for horizontal tracking.

5.0 Simulation
5.1 Simulation condition
In this section, numerical simulations are performed to intuitively evaluate the effectiveness of the
preceding theoretical results with the running time Tfinal = 100s. The physical parameters of the strato-
spheric airship are borrowed from Zheng et al. [6] and Zhang et al. [18], and all of them are listed in
Table 1.

In this simulations, the airship starts from
[
x(0) , y(0)

]T = [340m, 390m]T with initial heading
ψ(0)= 0.1rad, and initial velocity ν(0)= [u(0) , v(0) , r(0)]T = [

0m/s, 0m/s, 0rad/s
]T , and is required

to track the reference trajectory

ηd =
⎡
⎢⎣500 sin

(
0.0052t + π

4

)
500 cos

(
0.0052t + π

4

)
⎤
⎥⎦ , (71)

with the preassigned accuracy ε = 0.2. To test the robustness, the disturbance δdis induced by environ-
mental forces is mathematically assumed as [6, 10]:

δdis =
⎡
⎢⎣
δdisu

δdisv

δdisr

⎤
⎥⎦=

⎡
⎢⎣

[1.4 + 2.1 sin(0.1t)+ 1.1 cos(0.06t)] × 40

[−0.8 + 1.5 sin(0.1t)+ 0.3 cos(0.06t)] × 40

− [2.3 sin(0.1t)+ 1.9 cos(0.06t)] × 110

⎤
⎥⎦ . (72)

To fulfill this mission, the control parameters are selected as p1 = q1 = 24, p2 = q2 = 216, p3 = q3 =
864, r1 = 0.8, r2 = 0.6, r3 = 0.4, z1 = 1.2, z2 = 1.4, z3 = 1.6, ϒ = 5, ε = 0.2, α = 0.7, κ1 = [2, 2]T , κ2 =
[0.1, 0.1]T , ρ0 = 1, ρ∞ = 0.01, αρ = 2, and Tρ = 1. The initial conditions of the FTO (21) are set to zero.

5.2 Simulation result
Applying the FTO (21) and the control action (57) to the airship model (8), we reach some simulation
outcomes, illuminated by Figs 3-13. From Figs 3-6, we see that the airship can move to the desired
trajectory swiftly and smoothly, and the position errors xe = x − xd and ye = y − yd decay toward a close
vicinity of zero within a finite time. Then, the airship flies along the reference trajectory precisely,
irrespective of underactuated dynamics, modeling imprecisions, and exceptional disturbances. The sim-
ulation results for velocities are shown in Fig. 7, with the three curves corresponding to velocities in
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Figure 4. Actual and reference positions.

Figure 5. Position errors xe and ye.

Figure 6. Absolute values of the position errors xe and ye.
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Figure 7. Velocities in surge u, sway v, and yaw r.

Figure 8. Unmeasured state η̇t (i.e., κ2) and its finite-time observation.

the surge, sway and yaw, respectively, all of which are bounded for ∀t ≥ 0 but do not enter a steady
state. The reason is twofold. First, a circular path is allocated to track, yielding the desired velocities
time-varying. Second, the persistent perturbations (9) consisting in the airship model (8) affect the sys-
tem dynamics directly. Figures 8-9 plot the unmeasured velocity η̇t (i.e., κ2), the lumped disturbances
δlu, and their observed values, which show that the FTO (21) can supply the exact observations of η̇t

and δlu in a finite time. Figure 10 presents the necessary control action, from which we see that the
surge force and yaw torque are continuous, and no control chattering exists. It should be noted that,
compared with the actuating signal τr in the steady-state phase, it appears more aggressive in the initial
stage. The reason is that the mass mr is huge (12,176kg· m2), and the velocity is initialised to zero.
As a result, a large control torque is required in the initial stage to accelerate the airship to the refer-
ence route. Nevertheless, it decreases quickly, as shown in Fig. 10. The trajectory tracking responses
for different initial positions are depicted in Figs 11-13. It can be observed that the finite-time conver-
gence is assured, and the requirement for tracking accuracy, featured in Equation (70), is also met.
The above conclusions successfully affirm that a good tracking performance is achieved under our
method.
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Figure 9. Lumped disturbance δlui (i = x, y) and its finite-time observation.

Figure 10. Control signal τ .

Figure 11. Trajectories with different initial positions: [340m,390m] (position 1); [300m,310m]
(position 2); [280m,460m] (position 3).

https://doi.org/10.1017/aer.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.47


158 Wu et al.

Figure 12. Position errors xe and ye with different initial positions: [340m,390m] (position 1);
[300m,310m] (position 2); [280m,460m] (position 3).

Figure 13. Absolute values of the position errors xe and ye with different initial positions: [340m,390m]
(position 1); [300m,310m] (position 2); [280m,460m] (position 3).

Aimed at comparison, a standard command-filter backstepping (CFB) controller⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z1 =κ1 − ηd, z2 =κ2 − x2r

z̄1 = z1 − c1, z̄2 = z2 − c2

ċ1 = −k1c1 + x2r − x0
2r, ċ2 = −k2c2 + R(ψ)Mε

(
τ − τ 0

)
x0

2r = a1 − c2, τ 0 = a2

a1 = −k1z1 + η̇d, τ 0 = a2 = (R(ψ)Mε)
−1 (−k2z2 − z̄1 −�+ ẋ2r)

(73)

formulated by Han et al. [9] is introduced in this paper, where the control parameters k1 = k2 = eye(3)
are identical to those used by Han et al. [9]. The comparison results are illustrated in Figs 14-17, where
FI control shorts for our method. Moreover, to further display the comparative simulations, we sum-
marise the quantisation indexes in Table 2, where the integrated absolute error, IAE (defined as IAE =∫ Tfinal

0
|je(t) |dt, j = x, y), the integrated time absolute error, ITAE (defined as ITAE = ∫ Tfinal

0
t|je(t) |dt, j =

x, y), and the mean integrated absolute control, MIAC (defined as MIAC = 1
Tfinal

∫ Tfinal

0
|τj(t) |dt, j = u, i),

devote to assess steady-state performance, transient performance, and control effort, respectively. As
seen in Figs 14-17 and Table 2, it is clear that the tracking performance is not satisfactory under the CFB
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Figure 14. Trajectories based on FT control and CFB control.

Figure 15. Position errors xe and ye based on FT control and CFB control.

Table 2. Performance indices comparisons

Index Item FI control CFB control
2IAE xe 756.4 5.9 × 103

ye 1.8 × 103 5.8 × 103

ITAE xe 5.5 × 104 2.2 × 106

ye 1.4 × 105 2.1 × 106

MIAC τu 87.4 93.9
τr 730.1 1.5 × 103

controller and large position errors emerge in the steady state, although the CFB controller ensures the
boundedness of position errors. Particularly, the robustness of the CFB controller cannot be warranted in
default of a compensation mechanism versus modeling imprecisions and disturbances, as demonstrated
in Figs 15-16. In addition, compared to our method, the CFB controller has the biggest IAE, ITAE and
MIAC values. This indicates that our method can offer a better tracking quality with less control energy
consumption.
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Figure 16. Absolute values of the position errors xe and ye based on FT control and CFB control.

Figure 17. Control signal τ based on CFB control.

5.3 Discussion
This paper studies the horizontal trajectory tracking control problem of airships. The system model
is built upon Assumption 1, which is widely made in the related literature [3, 6, 10, 17, 18, 22, 23].
Assumption 2 is introduced to give some characterisation of unmodeled dynamics and external distur-
bances, as the exact model of airships is not always attainable in reality, and the persistent wind field
directly affects the motion of airships and thus cannot be neglected in the design of a tracker. From
Equation (8), we easily find that the airship, flying in the horizontal plane, is a typical underactuated
system. To this end, we start our research with a coordinate transformation (11). After a series of rea-
soning shown in Equations (12)–(17), a fully actuated EL model (18) is obtained. From Figs 3-6, we see
that the coordinate transformation (11) does solve the underactuated problem. We then present an FTO
(21) that requires Assumption 4 to realise the velocity-free control and the dynamical compensation.
The main property of the FTO (21) is given in Theorem 1, and the reasonability of Assumption 4 is
given in Remark 5. Figures 8-9 demonstrate the effectiveness of the FTO (21). Note that in the current
literature on API technique [30–35], certain control parameters are restricted to ratios of positive odd
integers. Based on Lemma 4, we relax this restriction. The selection for α shows this advantage. Finally,
in the light of Lemmas 1–5, we propose an API-based finite trajectory tracking control algorithm for
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underactuated airships without command filters or dynamic surfaces. Figures 11–12 illustrate the finite-
time convergence of position errors to a preassigned residual set, validating the theoretical predictions
in Remark 4 and Theorem 2.

6.0 Conclusion
This brief presented a novel finite-time velocity-free trajectory tracking control algorithm for an under-
actuated airship under the condition of modeling imperfections and environmental disturbances. First,
a coordinate transformation was conducted to address the underactuated problem, which make the pre-
sented approach can be extended easily to a wide range of second-order mechanical systems. Second, an
FTO was built to form a output-feedback control structure with disturbance estimation and attenuation
ability. Finally, we blended the backstepping technique and API method into a Lyapunov design, which
successfully guaranteed the finite-time convergence of the position errors xe and ye into a preassigned
residual set around zero. The control design did not cover any analytically formidable calculation, fil-
ters, or self-tuning mechanisms (e.g. FLSs or NNs), leading to a structurally simple control attribute.
Our future work will focus on extending this approach to a stratospheric airship with actuator faults.
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