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Abstract

We consider De Finetti’s control problem for absolutely continuous strategies with con-
trol rates bounded by a concave function and prove that a generalized mean-reverting
strategy is optimal in a Brownian model. In order to solve this problem, we need to
deal with a nonlinear Ornstein–Uhlenbeck process. Despite the level of generality of the
bound imposed on the rate, an explicit expression for the value function is obtained up
to the evaluation of two functions. This optimal control problem has, as special cases,
those solved in Jeanblanc-Picqué and Shiryaev (1995) and Renaud and Simard (2021)
when the control rate is bounded by a constant and a linear function, respectively.
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1. Introduction

Nowadays, De Finetti’s control problem refers to a family of stochastic optimal control
problems concerned with the maximization of withdrawals made from a stochastic system.
While it has interpretations in models of population dynamics and natural resources, it orig-
inates from the field of insurance mathematics. Usually, the performance function is the
expected time-discounted value of all withdrawals made up to a first-passage stopping time.

In the original insurance context, it is interpretated as follows: find the optimal way to
pay out dividends, taken from the insurance surplus process, until ruin is declared. In this
case, the performance function is the expectation of the total amount of discounted dividend
payments made up to the time of ruin. Therefore, the difficulty consists in finding the optimal
balance between paying out dividends as much (and as early) as possible while avoiding ruin
to maintain those payments in the long run. Similar interpretations can be made for population
dynamics (harvesting) and for natural resource extractions; see, e.g., [3, 10]. In any case, the
overall objective is the identification of the optimal way to withdraw from the system (optimal
strategy) and the derivation of an analytical expression for the optimal value function.
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In this paper, we consider absolutely continuous strategies. Except for very recent contri-
butions (see [1, 4, 15]), most of the literature has considered constant bounds on the control
rates (see, e.g., [5, 8, 11]). Following the direction originally taken by [3] and later by [15], we
apply a much more general bound on control rates, namely a concave function of the current
level of the system.

1.1. Model and problem formulation

Let (�,F , (Ft)t≥0, P) be a filtered probability space. Fix μ, σ > 0. The state process X =
{Xt, t ≥ 0} is given by

Xt = x +μt + σWt, (1.1)

where x ∈R and W = {Wt, t ≥ 0} is an (Ft)-adapted standard Brownian motion. For example,
the process X can be interpreted as the (uncontrolled) density of a population or the (uncon-
trolled) surplus process of an insurance company. As alluded to above, we are interested in
absolutely continuous control processes. More precisely, a control strategy π is characterized
by a nonnegative and adapted control rate process lπ = {lπt , t ≥ 0} yielding the cumulative con-
trol process Lπt = ∫ t

0 lπs ds. Note that Lπ = {Lπt , t ≥ 0} is nondecreasing and such that Lπ0 = 0.
The corresponding controlled process Uπ = {Uπ

t , t ≥ 0} is then given by Uπ
t = Xt − Lπt .

In the abovementioned applications (e.g., harvesting and dividend payments), it makes sense
to allow for higher rates when the underlying state process is far from its critical level and to
allow for a higher (relative) increase in this rate as early as possible. The situation is reminis-
cent of utility functions in economics. In this direction, let us fix an increasing and concave
function F : R→R such that F(0) ≥ 0. For technical reasons, we assume F is a continuously
differentiable Lipschitz function. Finally, a strategy π is said to be admissible if its control rate
is also such that

0 ≤ lπt ≤ F(Uπ
t ) (1.2)

for all 0 ≤ t ≤ τπ0 , where τπ0 = inf{t> 0: Uπ
t < 0} is the termination time. The termination

level 0 is chosen only for simplicity. Let �F be the set of all admissible strategies.
From now on, we write Px for the probability measure associated with the starting point x

and Ex for the expectation with respect to the measure Px. When x = 0, we write P and E.
Fix a time-preference parameter q> 0 and then define the value of a strategy π ∈�F by

Vπ (x) =Ex
[ ∫ τπ0

0 e−qtlπt dt
]
, x ≥ 0. Note that in our model Vπ (0) = 0 for all π ∈�F .

We want to find an optimal strategy, that is, a strategy π∗ ∈�F such that, for all x ∈R and
for all π ∈�F , we have Vπ∗ (x) ≥ Vπ (x). We also want to compute the optimal value function
given by V(x) = supπ∈�F Vπ (x), x ≥ 0.

Remark 1.1. The optimal value function and an optimal strategy (if it exists) should be inde-
pendent of the behavior of F when x< 0. The Lipschitz condition assumption is a sufficient
condition for the existence and the uniqueness of a (strong) solution to the stochastic differ-
ential equation (SDE) defined in (2.3); see, e.g., [14]. In fact, any increasing differentiable
concave function F : (0,+∞) →R such that F(0) ≥ 0 and F′(0 + )<∞ satisfies the condi-
tions for our model: we can extend F as a Lipschitz continuous function by extending F such
that F(x) = F′(0 + )x + F(0) for all x ≤ 0.

1.2. More related literature

De Finetti’s optimal control problems are adaptations and interpretations of Bruno de
Finetti’s seminal work [9]. As they have been extensively studied in a variety of models,
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especially over the last 25 years, it is nearly impossible to provide a proper literature review on
this topic in an introduction. See the review paper [2] for more details.

Now, let us focus on the literature closer to our model and our problem. In [5, 11], the prob-
lem for absolutely continuous strategies in a Brownian model is tackled under the following
assumption on the control rate:

0 ≤ lπt ≤ R, (1.3)

where R> 0 is a given constant; see also [13] for the same problem in a Lévy model. For this
problem, a threshold strategy is optimal: above the optimal barrier level the maximal control
rate R is applied, otherwise the system is left uncontrolled. In other words, a threshold strategy
is characterized by a barrier level and the corresponding controlled process is a Brownian
motion with a two-valued drift. Very recently, in [15], the assumption in (1.3) was replaced by
the following:

0 ≤ lπt ≤ KUπ
t , (1.4)

where K > 0 is a given constant. In other words, the control rate is now bounded by a linear
transformation of the current state. Note that this idea had already been considered in a bio-
logical context (but under a different model) in [3]. In [15], it is proved that a mean-reverting
strategy is optimal: above the optimal barrier level the maximal control rate KUπ

t is applied,
otherwise the system is left uncontrolled. Again, such a control strategy is characterized by a
barrier level, but now the controlled process is a refracted diffusion process, switching between
a Brownian motion with drift and an Ornstein–Uhlenbeck process.

To the best of our knowledge, the concept of a mean-reverting strategy first appeared in [6].
It was argued that, in an insurance context, this type of strategy has desirable properties for
shareholders. Then, in [15], the name mean-reverting strategies was used for a larger family of
control strategies; in fact, the mean-reverting strategy in [6] is one member (the barrier level is
equal to zero) of this sub-family of strategies. As mentioned above, one mean-reverting strategy
is optimal in the case F(x) = Kx. Following those lines, we will use the name generalized
mean-reverting strategy for similar bang-bang strategies corresponding to the general case of
an increasing and concave function F.

1.3. Main results and outline of the paper

Obviously, the bounds imposed on the control rates in these last two problems, as given
in (1.3) for the constant case and (1.4) for the linear case, are special cases of the one con-
sidered in our problem and presented in (1.2). A solution to our general problem is given in
Theorem 4.1. As we will see, an optimal control strategy is provided by a generalized mean-
reverting strategy, which is also characterized by a barrier level b. More specifically, for such
a strategy, the optimal controlled process is given by the following diffusion process:

dUb
t = (

μ− F(Ub
t )1{Ub

t >b}
)
dt + σdWt.

We use a guess-and-verify approach: first, we compute the value of any generalized mean-
reverting strategy (Proposition 3.1) using a Markovian decomposition and a perturbation
approach; second, we find the optimal barrier level (Proposition 4.1); finally, using a verifica-
tion lemma (Lemma 2.2), we prove that this best mean-reverting strategy is in fact an optimal
strategy for our problem. Despite the level of generality (of F), our solution for this control
problem is explicit up to the evaluation of two special functions strongly depending on F: ϕF ,
the solution to an ordinary differential equation, and IF, an expectation functional. While ϕF is
one of the two well-known fundamental solutions associated with a diffusion process (also the
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solution to a first-passage problem), the definition of IF, see (2.4), is an intricate expectation
for which many properties can be obtained (see Proposition 2.1).

The rest of the paper is organized as follows. In Section 2, we provide important preliminary
results on functions at the core of our main result, and we state a verification lemma for the
maximization problem. In Section 3, we introduce the family of generalized mean-reverting
strategies and compute their value functions. In Section 4, we state and prove the main result,
which is a solution to the control problem, before looking at specific examples. A proof of the
verification lemma is provided in Appendix A.

2. Preliminary results

In this section, we derive preliminary results that are crucial to solving the control problem.
First, let G : [0,∞) →R be an increasing and continuously differentiable function.

Consider the homogeneous ordinary differential equation (ODE)

�G(f ) := σ 2

2
f ′′(x) + (μ− G(x))f ′(x) − qf (x) = 0, x> 0, (2.1)

and denote by ψG (resp. ϕG) a positive increasing (resp. decreasing) solution to (2.1), with
ψG(0) = ϕG( + ∞) = 0. Under the additional conditions that ϕG(0) = 1 and ψ ′

G(0) = 1, it is
known that ψG and ϕG are uniquely determined. As ψG and ϕG are solutions of a second-order
ordinary differential equation, and since G is a continuously differentiable function, ψG, ϕG ∈
C3[0,∞).

We will write �, ψ , and ϕ when G ≡ 0. In particular, it is easy to verify that, for x ≥ 0,

ψ(x) = σ 2√
μ2 + 2qσ 2

e−(μ/σ 2)x sinh
(
(x/σ 2)

√
μ2 + 2qσ 2

)
. (2.2)

In what follows, we will not manipulate this explicit expression for ψ . Instead, we will use its
analytical properties (see Lemma 2.1).

Remark 2.1. The expression for ψ is proportional to the expression for W(q), the q-scale
function of the Brownian motion with drift X, used in [15]. For more details, see [12].

The next lemma gives analytical properties for the functions ψ and ϕG. See [10] for a
complete proof.

Lemma 2.1. Let G : [0,∞) →R be an increasing and continuously differentiable function.
The functions ψ and ϕG have the following analytical properties:

(i) ψ is strictly increasing and strictly concave-convex with a unique inflection point b̂ ∈
(0,∞);

(ii) ϕG is strictly decreasing and strictly convex.

The value of the inflection point of ψ is known explicitly; see, e.g., [15, (4)]. Our analysis
does not depend on this specific value.

Recall from (1.1) that Xt = x +μt + σWt. Define U = {Ut, t ≥ 0} by

dUt = (μ− F(Ut)) dt + σd Wt, U0 = x. (2.3)

Under our assumptions on F, there exists a unique strong solution to this last stochastic
differential equation. This is what we called a nonlinear Ornstein–Uhlenbeck process.
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Now, for a ≥ 0, define the following first-passage stopping times:

τa = inf{t> 0: Xt = a}, τF
a = inf{t> 0: Ut = a}.

It is well known that for 0 ≤ x ≤ b we have Ex
[
e−qτb 1{τb<τ0}

]=ψ(x)/ψ(b), and for x ≥ 0 we

have Ex
[
e−qτF

0 1{τF
0 <∞}

]= ϕF(x), since it is assumed that ϕF(0) = 1.
Finally, define

IF(x) =Ex

[ ∫ ∞

0
e−qtF(Ut) dt

]
, x ∈R. (2.4)

As alluded to above, the analysis of this functional is of paramount importance for the solution
of our control problem. The main difficulty in computing this functional lies in the fact that the
dynamics of U also depend on F.

Proposition 2.1. The function IF : R→R is a twice continuously differentiable, increasing,
and concave solution to the following ODE: for x> 0,

�F(f ) = −F. (2.5)

Moreover, 0 ≤ I′
F(x) ≤ 1 for all x ≥ 0.

Proof. First, we prove that IF is a solution to (2.5). Fix b> 0 and define τ := τF
0 ∧ τF

b .
By the continuity of F, it is known that there exists a twice continuously differentiable solu-
tion f : R→R to (2.5); see, e.g., [16]. Applying Itô’s lemma to e−q(t∧τ )f (Ut∧τ ) and taking
expectations, we can write

Ex
[
e−q(t∧τ )f (Ut∧τ )

]= f (x) −Ex

[ ∫ t∧τ

0
e−qsF(Us) ds

]
+Ex

[ ∫ t∧τ

0
σe−qsf ′(Us) dWs

]
.

As f ′ is bounded on (0, b) and continuous on [0, b], the expectation of the stochastic integral
is equal to zero and also, after letting t → ∞,

f (0)Ex
[
e−qτF

0 1{τF
0 <τ

F
b }
]+ f (b)Ex

[
e−qτF

b 1{τF
b <τ

F
0 }
]= f (x) −Ex

[ ∫ τ

0
e−qsF(Us) ds

]
.

Since x �→Ex
[
e−qτF

0 1{τF
0 <τ

F
b }
]

and x �→Ex
[
e−qτF

b 1{τF
b <τ

F
0 }
]

are solutions to �F(f ) = 0 on (0, b),

we deduce that x �→Ex
[ ∫ τ

0 e−qsF(Us) ds
]

satisfies (2.5) on (0, b). Finally, splitting the interval
and then using the strong Markov property at τ , we get

IF(x) =Ex

[ ∫ τ

0
e−qsF(Us) ds

]
+ IF(0)Ex

[
e−qτF

0 1{τF
0 <τ

F
b }
]+ IF(b)Ex

[
e−qτF

b 1{τF
b <τ

F
0 }
]

for all x ∈ (0, b), which proves that IF is a solution to (2.5) on (0, b). Since b is arbitrary, this
proves that IF is a solution to (2.5) on (0,∞).

It remains to prove that IF is increasing, concave, and such that 0 ≤ I′
F(x) ≤ 1 for all x> 0.

To do so, we use the notation Ux for the solution to

dUx
t = (μ− F(Ux

t )) dt + σ dWt, Ux
0 = x. (2.6)

This is the dynamics given in (2.3).
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Fix x< y. Note that Ux
0 <Uy

0 and define κ = inf{t> 0: Ux
t = Uy

t }. Since Ux
t <Uy

t for all
0 ≤ t ≤ κ and F is increasing,

IF(y) =E

[ ∫ ∞

0
e−qtF(Uy

t ) dt

]

=E

[ ∫ κ

0
e−qtF(Uy

t ) dt

]
+E

[ ∫ ∞

κ

e−qtF(Uy
t ) dt

]

≥E

[ ∫ κ

0
e−qtF(Ux

t ) dt

]
+E

[ ∫ ∞

κ

e−qtF(Ux
t ) dt

]
= IF(x),

where we used the fact that, for t ≥ κ , Ux
t = Uy

t . This proves that IF is increasing.
Now, fix x, y ∈R and λ ∈ [0, 1]. Define z = λx + (1 − λ)y and Yz

t = λUx
t + (1 − λ)Uy

t . By
linearity, we have dYz

t = (μ− lYt ) dt + σ dWt, Yz
0 = z, where lYt := λF(Ux

t ) + (1 − λ)F(Uy
t ).

Since F is concave, we have lYt ≤ F(Yz
t ) for all t ≥ 0. We want to prove that, almost surely,

Yz
t ≥ Uz

t for all t ≥ 0. First, for all t ≥ 0, we have

Yz
t − Uz

t =
∫ t

0
(F(Uz

s) − lYs ) ds. (2.7)

Note that, by the concavity of F, since Uz
0 = Yz

0 = z, we have F(Uz
0) ≥ lY0 . Now define τ =

inf{t> 0: F(Uz
t )> lYt }. On {τ = +∞} we have Yz

t = Uz
t for all t. On {τ <∞}, since the map-

ping s �→ F(Uz
s) − lYs is continuous almost surely, it follows from (2.7) that there exists ε > 0

for which Yz
t >Uz

t for all t ∈ ]τ, τ + ε[. But we can apply the same argument for another time
point s> τ : if there exists s> τ for which Yz

s = Uz
s , then either Yz

t = Uz
t for all t> s, or there

exist s′, ε′ > 0 for which {
Yz

t = Uz
t if s ≤ t ≤ s′,

Yz
t >Uz

t if s′ < t< s′ + ε′.

This proves that Yz
t ≥ Uz

t for all t ≥ 0, which is equivalent to∫ t

0
F(Uz

s) ds ≥
∫ t

0
(λF(Ux

s ) + (1 − λ)F(Uy
s )) ds.

Since this is true for all t ≥ 0, we further have that, for all t ≥ 0,∫ t

0
e−qsF(Uz

s) ds ≥
∫ t

0
e−qs(λF(Ux

s ) + (1 − λ)F(Uy
s )) ds. (2.8)

Letting t → ∞ it follows that IF(λx + (1 − λ)y) ≥ λIF(x) + (1 − λ)IF(y), proving the concavity
of IF .

Let x, h ≥ 0 and define κh := inf{t> 0: Ux+h
t = Ux

t }. We can write

IF(x + h) − IF(x) =E

[ ∫ ∞

0
e−qt(F(Ux+h

t ) − F(Ux
t )) dt

]

=E

[∫ κh

0
e−qt(F(Ux+h

t ) − F(Ux
t )) dt

]
+E

[∫ ∞

κh
e−qt(F(Ux+h

t ) − F(Ux
t )) dt

]
.
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If κh is finite, the second expectation is zero, because, for all t ≥ κh and for all ω ∈�,
Ux+h

t (ω) = Ux
t (ω). Now, on {κh <∞} we have∫ κh

0
(F(Ux+h

s ) − F(Ux
s )) ds = h,

which implies that
∫ κh

0 e−qs(F(Ux+h
s ) − F(Ux

s )) ds ≤ h. On {κh = ∞}, we have∫ t

0
e−qs(F(Ux+h

s ) − F(Ux
s )) ds< h

for all t ≥ 0, which implies that
∫∞

0 e−qs(F(Ux+h
s ) − F(Ux

s )) ds ≤ h. In conclusion, we have

E

[ ∫ κh

0
e−qt(F(Ux+h

t ) − F(Ux
t )) dt

]
≤ h.

Letting h → 0, we find that I′
F(x) ≤ 1. �

Finally, here is the verification lemma for the stochastic control problem. The proof is given
in Appendix A.

Lemma 2.2. Let π∗ ∈�F be such that Vπ∗ ∈ C2(0,∞), V ′
π∗ is bounded, and, for all x> 0,

σ 2

2
V ′′
π∗(x) +μV ′

π∗ (x) − qVπ∗ (x) + sup
0≤u≤F(x)

u(1 − V ′
π∗ (x)) = 0. (2.9)

Then π∗ is an optimal strategy: for all π ∈�F and all x ∈R, Vπ∗ (x) ≥ Vπ (x). In this case,
V ∈ C2(0,+∞), V’ is bounded, and V satisfies (2.9).

3. Generalized mean-reverting strategies

Since the Hamilton–Jacobi–Bellman equation in (2.9) is linear with respect to the control
variable, we expect a bang-bang strategy to be optimal. Further, since from modelling reasons
we expect the optimal value function V to be concave, then an optimal strategy must be of the
form

lπs =
{

F(Uπ
s ) if Uπ

s > b,

0 if Uπ
s < b

for some b ≥ 0 to be determined.
Consequently, and following the line of reasoning in [15], let us define the family of gen-

eralized mean-reverting strategies. For a fixed b ≥ 0, define the generalized mean-reverting
strategy πb and the corresponding controlled process Ub := Uπb given by

dUb
t = (

μ− F(Ub
t )1{Ub

t >b}
)

dt + σ dWt. (3.1)

In other words, the control rate lb := lπb associated with πb is given by lbt = F(Ub
t )1{Ub

t >b}.
Similarly, we define the corresponding value function by Vb := Vπb .

Note that if b = 0 then U0 = U, with U as defined in (2.3).

Remark 3.1. As discussed in Remark 1.1, there exists a unique strong solution to the SDE
given in (2.3). When b> 0, the drift function is not necessarily continuous, but it can be shown,
using, for example, the same steps as in [15], that a strong solution also exists for (3.1).

The next proposition gives the value function for a generalized mean-reverting strategy.
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Proposition 3.1. The value function V0 of the generalized mean-reverting strategy π0 is con-
tinuously differentiable and given by V0(x) = IF(x) − IF(0)ϕF(x), x ≥ 0. If b> 0, then the value
function Vb of the generalized mean-reverting strategy πb is continuously differentiable and
given by

Vb(x) =
{

C1(b)ψ(x) if 0< x< b,

IF(x) + C2(b)ϕF(x) if x ≥ b,

where

C1(b) = I′
F(b)ϕF(b) − IF(b)ϕ′

F(b)

ψ ′(b)ϕF(b) −ψ(b)ϕ′
F(b)

, C2(b) = I′
F(b)ψ(b) − IF(b)ψ ′(b)

ψ ′(b)ϕF(b) −ψ(b)ϕ′
F(b)

.

Proof. The proof follows the same steps as the one for [15, Proposition 2.1]. Fix b> 0.
Using the strong Markov property, we have, for x ≤ b,

Vb(x) =Ex
[
e−qτb 1{τb<τ0}

]
Vb(b).

For x> b, using the strong Markov property and the equality (also obtained from the strong
Markov property)

Ex
[
e−qτF

b 1{τF
b <∞}

]
Eb
[
e−qτF

0 1{τF
0 <∞}

]=Ex
[
e−qτF

0 1{τF
0 <∞}

]
,

we get

Vb(x) =Ex

[ ∫ ∞

0
e−qtF(Ut) dt

]
+Ex

[
e−qτF

0 1{τF
0 <∞}

](Vb(b) −Eb
[ ∫∞

0 e−qtF(Ut) dt
]

Eb
[
e−qτF

0 1{τF
0 <∞}

]
)

.

Consequently, we can write

Vb(x) =
{

(ψ(x)/ψ(b))Vb(b) if 0 ≤ x ≤ b,

IF(x) + (ϕF(x)/ϕF(b))(Vb(b) − IF(b)) if x ≥ b.
(3.2)

To conclude, we need to compute Vb(b). For n sufficiently large, consider the strategy πn
b

consisting of using the maximal control rate when the controlled process is above b, until it
goes below b − 1/n. We again apply the maximal control rate when the controlled process
reaches b once more. Note that πn

b is admissible. We denote its value function by Vn
b . We can

show that
lim

n→∞ Vn
b (b) = Vb(b). (3.3)

First, we prove that ∫ τ
πn

b
0

0
e−qt dL

πn
b

t −−−→
n→∞

∫ τ
πb
0

0
e−qt dLπb

t (3.4)

almost surely. Note that τ
πn

b
0 ≤ τπb

0 , and so∣∣∣∣∣
∫ τ

πn
b

0

0
e−qt dL

πn
b

t −
∫ τ

πb
0

0
e−qt dLπb

t

∣∣∣∣∣=
∣∣∣∣∣
∫ τ

πn
b

0

0
e−qt (dL

πn
b

t − dLπb
t
)−

∫ τ
πb
0

τ
πn

b
0

e−qt dLπb
t

∣∣∣∣∣
≤ 1

n
+
∣∣∣∣∣
∫ τ

πb
0

τ
πn

b
0

e−qt dLπb
t

∣∣∣∣∣,
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where we used the triangular inequality and the fact that, since 0 ≤ Uπb
t − U

πn
b

t ≤ 1/n for all

t ≤ τπ
n
b

0 , we have 0 ≤ L
πn

b
t − Lπb

t ≤ 1/n for all t ≤ τπ
n
b

0 . As the sequence of stopping times τ
πn

b
0

converges to τπb
0 , since Uπb

τ
πn

b
0

≤ 1/n this proves (3.4). Second, if F is a bounded function,

then (3.3) follows from the dominated convergence theorem. If F is not bounded then, for
n sufficiently large, ∫ τ

πn
b

0

0
e−qt dL

πn
b

t ≤
∫ τ0

0
e−qtF(Xt) dt,

where τ0 = inf{t> 0: Xt = 0}. To apply the dominated convergence theorem, we show that this
upper bound is integrable. Since

Eb

[ ∫ τ0

0
e−qtF(Xt) dt

]
=Eb

[ ∫ ∞

0
e−qtF(Xt) dt

](
1 −Eb

[
e−qτ0 1{τ0<∞}

])
,

using Fubini’s theorem and Jensen’s inequality we get

Eb

[ ∫ ∞

0
e−qtF(Xt) dt

]
≤
∫ ∞

0
e−qtF(Eb[Xt]) dt =

∫ ∞

0
e−qtF(b +μt) dt ≤ F′(0)

(
b

q
+ μ

q2

)
.

This concludes the proof of (3.3).
Next, using similar arguments to above, we can write

Vn
b (b − 1/n) =ψb(b − 1/n)Vn

b (b),

where ψb(x) =ψ(x)/ψ(b), and

Vn
b (b) =Eb

[ ∫ τF
b−1/n

0
e−qtF(U

πn
b

t ) dt

]
+Eb

[
e−qτF

b−1/n 1{τF
b−1/n<∞}

]
Vn

b (b − 1/n)

= IF(b) + ϕF(b)

ϕF(b − 1/n)
(Vn

b (b − 1/n) − IF(b − 1/n)).

Solving for Vn
b (b), we find

Vn
b (b) = IF(b − 1/n)ϕF(b) − IF(b)ϕF(b − 1/n)

ψb(b − 1/n)ϕF(b) −ψb(b)ϕF(b − 1/n)
.

Define

G(y) = IF(b − y)ϕF(b) − IF(b)ϕF(b − y), H(y) =ψb(b − y)ϕF(b) −ψb(b)ϕF(b − y).

Note that G(0) = H(0) = 0. As ψb, ϕF , and IF are differentiable functions, dividing the
numerator and the denominator by 1/n and taking the limit yields

Vb(b) = lim
n→∞ Vn

b (b) = G′(0+)

H′(0+)
,

which leads to

Vb(b) = I′
F(b)ϕF(b) − IF(b)ϕ′

F(b)

ψb
′(b)ϕF(b) −ψb(b)ϕ′

F(b)
. (3.5)
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Substituting (3.5) into (3.2), we get

Vb(x) =
{

K1(b)ψb(x) if 0 ≤ x ≤ b,

IF(x) + K2(b)ϕF(x) if x ≥ b,
(3.6)

where

K1(b) = I′
F(b)ϕF(b) − IF(b)ϕ′

F(b)

ψb
′(b)ϕF(b) −ψb(b)ϕ′

F(b)
, K2(b) = I′

F(b)ψb(b) − IF(b)ψ ′
b(b)

ψb
′(b)ϕF(b) −ψb(b)ϕ′

F(b)
.

Using the definition of ψb, (3.6) can be rewritten as

Vb(x) =
{

C1(b)ψ(x) if 0< x< b,

IF(x) + C2(b)ϕF(x) if x ≥ b.

It is straightforward to check that Vb ∈ C1(0,+∞), since elementary algebraic manipulations
lead to V ′

b(b−) = V ′
b(b+).

When b = 0, using Markovian arguments as above, we can verify that

V0(x) = IF(x) − IF(0)ϕF(x), x> 0,

from which it is clear that V0 ∈ C1(0,+∞). �

4. Main results

We are now ready to provide a solution to the general control problem. As mentioned before,
depending on the set of parameters, an optimal strategy will be given by the generalized mean-
reverting strategy π0 or by a generalized mean-reverting strategy πb∗ for a barrier level b∗ to
be determined.

First, let us consider the situation in which the parameters are such that

I′
F(0) − IF(0)ϕ′

F(0) ≤ 1.

Recalling from Proposition 3.1 that V0(x) = IF(x) − IF(0)ϕF(x), x ≥ 0, we deduce that
V ′

0(0) ≤ 1.
Also, V0 is a concave function. Indeed, using the notation introduced in (2.6) we can write

V0(x) =E

[ ∫ τ x
0

0
e−qtF(Ux

t ) dt

]
,

where τ x
0 = inf{t> 0: Ux

t = 0}. Since the inequality in (2.8) holds for all t ≥ 0, it also holds
true for the stopping time τF

0 . As a consequence, V0 is concave and, further, V ′
0(x) ≤ 1 for all

x ≥ 0.
In conclusion, all the conditions in the verification lemma are satisfied and thus the

generalized mean-reverting π0 is an optimal strategy.
Now let us consider the situation in which the parameters are such that

I′
F(0) − IF(0)ϕ′

F(0)> 1.
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From the Hamilton–Jacobi–Bellman equation (2.9), we expect an optimal barrier level b∗ to
be given by V ′

b∗(b∗) = 1, which is equivalent to

IF(b∗) − I′
F(b∗)ϕF(b∗)

ϕ′
F(b∗)

= ψ(b∗)

ψ ′(b∗)
− ϕF(b∗)

ϕ′
F(b∗)

. (4.1)

Recall from Lemma 2.1 that b̂ is the unique inflection point of ψ .

Proposition 4.1. If I′
F(0) − IF(0)ϕ′

F(0)> 1, then there exists a solution b∗ ∈ (0, b̂] to (4.1).

Proof. Define

g(y) = IF(y) − I′
F(y)ϕF(y)

ϕ′
F(y)

, h(y) = ψ(y)

ψ ′(y)
− ϕF(y)

ϕ′
F(y)

.

We see that g(0)> h(0) is equivalent to I′
F(0) − IF(0)ϕ′

F(0)> 1.
We will show that g(b̂) ≤ h(b̂). The result will follow from the intermediate value theorem.

First, we have the following inequality:

ψ(b̂)

ψ ′(b̂)
− ϕF(b̂)

ϕ′
F(b̂)

≥ F(b̂)

q
. (4.2)

Indeed, by the definition of b̂ and ψ we have ψ(b̂)/ψ ′(b̂) =μ/q. Also, by the definition of ϕF

we have
σ 2

2

φ′′
F(b̂)

ϕ′
F(b̂)

+μ− q
ϕF(b̂)

ϕ′
F(b̂)

− F(b̂) = 0.

Since ϕF is convex and decreasing, (4.2) follows.
Now, using Proposition 2.1, we can write

IF(b̂) = σ 2

2q
I′′
F(b̂) + μ

q
I′
F(b̂) − F(b̂)

q
(I′

F(b̂) − 1).

Since IF is concave, it follows that

IF(b̂) ≤ μ

q
I′
F(b̂) − F(b̂)

q
(I′

F(b̂) − 1).

Also, since 0 ≤ I′
F(b̂) ≤ 1, using (4.2) yields

IF(b̂) ≤ μ

q
I′
F(b̂) −

(
ψ(b̂)

ψ ′(b̂)
− ϕF(b̂)

ϕ′
F(b̂)

)
(I′

F(b̂) − 1).

This inequality is equivalent to g(b̂) ≤ h(b̂). �

The next result states that if b∗ is a solution to (4.1), as in the previous proposition, then πb∗
satisfies the conditions of the verification lemma.

Proposition 4.2. If I′
F(0) − IF(0)ϕ′

F(0)> 1 and if b∗ ∈ (0, b̂] is a solution to (4.1), then Vb∗ ∈
C2(0,+∞) and is concave.
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Proof. This proof relies heavily on the analytical properties of ψ , ϕF , and IF obtained in
Lemma 2.1 and Proposition 2.1.

First, we show that Vb∗ ∈ C2(0,+∞). From Proposition 3.1, we deduce that

V ′′
b∗ (x) =

{
C1(b∗)ψ ′′(x) if 0< x< b∗,
I′′
F(x) + C2(b∗)φ′′

F(x) if x> b∗.

Therefore, since ψ , ϕF , and IF are twice continuously differentiable functions, it is sufficient to
show that V ′′

b∗(b∗ − ) = V ′′
b∗(b∗ + ). We also have that ψ , ϕF , and IF are solutions to second-

order ODEs, so it is equivalent to show that

μ[C1(b∗)ψ ′(b∗) − C2(b∗)ϕ′
F(b∗) − I′

F(b∗)] − q[C1(b∗)ψ(b∗) − C2(b∗)ϕF(b∗) − IF(b∗)]

+ F(b∗)[C2(b∗)ϕ′
F(b∗) + I′

F(b∗) − 1] = 0.

The statement follows from the fact that Vb∗ is continuously differentiable at x = b∗ and
because V ′

b∗ (b∗ + ) = 1.
Now, let us show that Vb∗ is concave. Since V ′

b∗(b∗) = 1, it follows directly that

C1(b∗) = 1

ψ ′(b∗)
, C2(b∗) = 1 − I′

F(b∗)

ϕ′
F(b∗)

. (4.3)

Using the analytical properties ofψ , ϕF , and IF , it is clear that C2(b∗) ≤ 0<C1(b∗). Since b∗ ≤
b̂, ψ is concave on (0, b∗), and so V ′′

b∗(x) ≤ 0 for all x ∈ (0, b∗). Finally, since IF is concave,
ϕF is convex, and C2(b∗) ≤ 0, we have V ′′

b∗(x) ≤ 0 for all x ∈ (b∗,∞). In other words, Vb∗ is
concave. �

We are now ready to state the main result, which is a solution to the general control problem.

Theorem 4.1. If I′
F(0) − IF(0)ϕ′

F(0) ≤ 1, then π0 is an optimal strategy and the optimal value
function is given by V(x) = IF(x) − IF(0)ϕF(x), x ≥ 0.

If I′
F(0) − IF(0)ϕ′

F(0)> 1, then πb∗ is an optimal strategy, with b∗ a solution to (4.1), and
the optimal value function is given by

V(x) =
{
ψ(x)/ψ ′(b∗) if 0 ≤ x ≤ b∗,
IF(x) + ((1 − I′

F(b∗))/ϕ′
F(b∗))ϕF(x) if x ≥ b∗.

Proof. All that is left to justify is the expression for the optimal value function V under
the condition I′

F(0) − IF(0)ϕ′
F(0)> 1. In that case, it suffices to use the general expression

for Vb obtained in Proposition 3.1 together with the expressions for C1(b∗) and C2(b∗) given
in (4.3). �

As announced, given an increasing and concave function F, and recalling that ψ is indepen-
dent of F and always known explicitly, see (2.2), this solution to the control problem is explicit
up to the computations of the functions ϕF and IF. It is interesting to note that these functions
only depend on the dynamics of the nonlinear Ornstein–Uhlenbeck process U as given in (2.3);
they are also solutions to ODEs.

4.1. Solution to the problem with an affine bound

If we choose F(x) = R + Kx, with K > 0 and R ≥ 0, then U is such that

dUt = (μ− R + KUt) dt + σ dWt,
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i.e., it is a standard Ornstein–Uhlenbeck process. In this case, ϕF is known explicitly (see
[7, (2.0.1)]):

ϕF(x) = H(q)
K (x;μ− R, σ )

H(q)
K (0;μ− R, σ )

, x ≥ 0,

where, using the notation in [15],

H(q)
K (x; m, σ ) := eK((x−m/K)2/2σ 2

D−q/K

((
x − m/K

σ

)√
2K

)
,

where D−λ is the parabolic cylinder function given by

D−λ(x) := 1

�(λ)
e−x2/4

∫ ∞

0
tλ−1e−xt−t2/2 dt, x ∈R.

On the other hand, we can compute the expectation in the definition of IF:

IF(x) = K

q + K

(
x + μ

q

)
+ R

q + K
. (4.4)

The following corollary is a generalization of the results obtained in both [5, 11] and [15]
for a constant bound and a linear bound on the control rate, respectively.

Corollary 4.1. Set F(x) = R + Kx, with K > 0 and R ≥ 0. Define

�= − H(q)
K (0;μ− R, σ )

H(q)′
K (0;μ− R, σ )

.

If �≥ Kμ/q2 + R/q, then the mean-reverting strategy π0 is an optimal strategy and the
optimal value function is given, for x ≥ 0, by

V(x) = Kx

q + K
+
[

K

q + K

(
μ

q

)
+ R

q + K

](
1 − H(q)

K (x;μ− R, σ )

H(q)
K (0;μ− R, σ )

)
.

If �<Kμ/q2 + R/q, then there exists a (unique) solution b∗ ∈ (0, b̂] to

ψ(b)

ψ ′(b)
−
(

b + μ

q

)
− R

K
= − q

K

(
ψ(b)

ψ ′(b)
− H(q)

K (b;μ− R, σ )

H(q)′
K (b;μ− R, σ )

)
,

the mean-reverting strategy πb∗ is an optimal strategy, and the optimal value function is
given by

V(x) =

⎧⎪⎪⎨⎪⎪⎩
ψ(x)

ψ ′(b∗)
if 0 ≤ x ≤ b∗,

K

q + K

(
x + μ

q

)
+ q

q + K

(
R

q
+ H(q)

K (x;μ− R, σ )

H(q)′
K (b∗;μ− R, σ )

)
if x ≥ b∗.
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4.2. Solution to the problem with a capped linear bound

If we choose F(x) = min (Kx, R), with K, R> 0, then U is such that

dUt = (μ− min (KUt, R)) dt + σ dWt.

Therefore, when Ut > R/K, U evolves like a Brownian motion with drift μ− R and, when
Ut < R/K, like an Ornstein–Uhlenbeck process.

Note that F is not continuously differentiable at x = R/K, but there exists a decreasing
sequence of continuously differentiable and concave functions Fn such that, for all x ≥ 0,
Fn(x) → F(x) when n → ∞. By the dominated convergence theorem, we thus have ϕFn → ϕF

and IFn → IF . Also, since F is continuous, IF and ϕF are (at least) twice continuously
differentiable, as we recall that ϕF and IF are solutions of a second-order ODE.

We can compute ϕF and IF using the strong Markov property repeatedly:

ϕF(x) =
{

B(x) + C(x)ϕF(R/K) if 0 ≤ x ≤ R/K,

A(x)ϕF(R/K) if x ≥ R/K;

IF(x) =
{

IK(x) − D(x) (IK(R/K) − IF(R/K)) if x ≤ R/K,

(R/q) (1 − A(x))+ A(x)IF(R/K) if x ≥ R/K,

where

A(x) =Ex
[
e−qτF

R/K 1{τF
R/K<∞}

]
= ψ̃(x − R/K) − 2q√

(μ− R)2 + 2σ 2q − (μ− R)
ψ(x − R/K),

B(x) =Ex
[
e−qτF

0 1{τF
0 <τ

F
R/K}

]= S(q/K;
√

2/K(R −μ)/σ ;(x −μ/K)/(σ/
√

2K))

S(q/K;
√

2/K(R −μ)/σ ;
√

2/K(−μ/σ ))
,

C(x) =Ex
[
e−qτF

R/K 1{τF
R/K<τ

F
0 }
]= S(q/K;(x −μ/K)/(σ/

√
2K);

√
2/K(−μ/σ ))

S(q/K;
√

2/K(R −μ)/σ ;
√

2/K(−μ/σ ))
,

D(x) =Ex
[
e−qτF

R/K 1{τF
R/K<∞}

]= H(q)
K (x;μ,−σ )

H(q)
K (R/K;μ,−σ )

,

where ψ̂ is defined as in (2.2) but with μ replaced here by μ− R, where

ψ̃(x) := 1 + 2q

σ 2

∫ x

0
ψ̂(y) dy,

where S(ν, x, y) := (�(ν)/π )e(x2+y2)/4(D−ν(− x)D−ν(y) − D−ν(x)D−ν(− y)), and where

IK(x) := K

q + K

(
x + μ

q

)
.

Note that A is the solution to a well-known first-passage problem for a Brownian motion
with drift μ− R; see, e.g., [7] or [12]. The expressions for B, C, and D are deduced from [7,
(3.0.5(a)), (3.0.5(b)), and (2.0.1)], respectively.

Note that IK is the function IF when F(x) = Kx. See (4.4) when R = 0.
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Since ϕF and IF are differentiable, we can deduce that

ϕF(R/K) = B′(R/K)

A′(R/K) − C′(R/K)
,

IF(R/K) = K/(q + K) − D′(R/K)IK(R/K) + (R/q)A′(R/K)

A′(R/K) − D′(R/K)
.

We are ready to apply the main result to the particular case given by F(x) = min (Kx, R).

Corollary 4.2. Set F(x) = min (Kx, R), with K, R> 0.
If I′

F(0) − IF(0)ϕ′
F(0) ≤ 1, then the generalized mean-reverting strategy π0 is optimal and

the optimal value function is given, for x ≥ 0, by

V(x) =
{

IK(x) − D(x)(IK(R/K) − IF(R/K)) − IF(0)(B(x) + C(x)ϕF(R/K)) if x ≤ R/K,

R/q + A(x)(IF(R/K) − IF(0)ϕF(R/K) − R/q) if x ≥ R/K.

If I′
F(0) − IF(0)ϕ′

F(0)> 1, then the generalized mean-reverting strategy πb∗ is optimal,
where b∗ ∈ (0, b̂] is the unique solution of (4.1). The optimal value function depends on whether
b∗ ≤ R/K or b∗ > R/K. If b∗ ≤ R/K, then the optimal value function is given by

V(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(x)/ψ ′(b∗) if x ≤ b∗,
IK(x) − D(x)(IK(R/K) − IF(R/K)) − ((1 − I′

F(b∗))/ϕF(b∗))(B(x) + C(x)ϕF(R/K))

if x ∈ [b∗, R/K],

R/q + A(x)(IF(R/K) + ((1 − I′
F(b∗))/ϕ′

F(b∗))ϕF(R/K) − R/q) if x ≥ R/K.

If, instead, b∗ > R/K, then the optimal value function is given by

V(x) =
{
ψ(x)/ψ ′(b∗) if x ≤ b∗,
R/q + A(x)(IF(R/K) + ((1 − I′

F(b∗))/ϕ′
F(b∗))ϕF(R/K) − R/q) if x ≥ b∗.

Appendix A. Proof of the verification lemma

Proof of Lemma 2.2. The second statement of the lemma is a direct consequence of the
definition of the optimal value function.

Now, let π be an arbitrary admissible strategy. Applying Itô’s lemma to the continuous
semimartingale (t,Uπ

t ), using the function g(t, y) := e−qtVπ∗ (y), we find

e−q(t∧τπ0 )Vπ∗ (Uπ
t∧τπ0 ) = Vπ∗ (x)

+
∫ t∧τπ0

0
e−qs

(
σ 2

2
V ′′
π∗ (Uπ

s ) +μV ′
π∗ (Uπ

s ) − qVπ∗ (Uπ
s ) − lπs V ′

π∗ (Uπ
s )

)
ds

+
∫ t∧τπ0

0
σe−qsV ′

π∗ (Uπ
s ) dWs.
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Taking expectations on both sides, we find

Vπ∗ (x) =Ex
[
e−q(t∧τπ0 )Vπ∗ (Uπ

t∧τπ0 )
]

−Ex

[ ∫ t∧τπ0
0

e−qs
(
σ 2

2
V ′′
π∗ (Uπ

s ) +μV ′
π∗ (Uπ

s ) − qVπ∗ (Uπ
s ) − lπs V ′

π∗(Uπ
s )

)
ds

]

≥Ex
[
e−q(t∧τπ0 )Vπ∗ (Uπ

t∧τπ0 )
]+Ex

[ ∫ t∧τπ0
0

e−qslπs ds

]
,

where the inequality is obtained directly from the fact that Vπ∗ satisfies (2.9). Note also that
the expectation of the stochastic integral is 0 because V ′

π∗ is bounded. Letting t → ∞, we
get Vπ∗ (x) ≥ Vπ (x) for all x> 0. We can, for example, work separately on {τπ0 <∞} and
{τπ0 = ∞}. �
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