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Predicting the temperature distribution in laminar two-phase flows is essential in a
wide range of engineering applications, like heat dissipation of electronic equipment
and thermal design of biological reactors. Motivated by this, we extend the classical
Graetz problem, studying the heat transfer between two flowing phases in a core-annular
flow configuration. Using a rigorous two-scale asymptotic analysis, we derived two
coupled one-dimensional advection–diffusion heat-transfer equations (one for each phase)
embedding the effects of advection, diffusion (both axial and transverse) and viscous
dissipation. Specifically, the heat-transfer mechanisms are described through effective
velocity and effective diffusion coefficients, while the interaction between the phases is
accounted for via ad hoc coupling and source terms, respectively. The dynamics of the
problem is controlled by seven dimensionless groups: the Péclet and Brinkman numbers,
the heat flux, the viscosity, thermal diffusivity and thermal conductivity ratios, and the
volume fraction. Our analysis reveals the existence of two main regimes, depending on the
disparity in thermal conductivity between the phases. When the conductivity ratio is of
order one, the problem is strongly coupled; otherwise, the phases are thermally decoupled.
Interestingly, we investigate the evolution of the heat-transfer coefficient in the thin-film
limit, shedding light on the most common assumptions underlying extensively used models
in the context of film flows. Finally, we derived closed-form scaling laws for the Nusselt
number clarifying the impact of the phases topology on heat-transfer dynamics. Since our
model has been derived by first principles, we hope that it will improve the understanding
of two-phase forced convection.
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1. Introduction
Predicting heat transfer in laminar two-phase flows is of practical relevance, with
applications ranging from heat sinks for electronic cooling (Mudawar 2011; Kottke et al.
2015), biomedical engineering (Wang & Fan 2010), building refrigeration (Armatis &
Fronk 2017), thermal design of chemical reactors and heat exchangers (Neveu et al. 2013)
to geophysical sciences (Hasan & Kabir 2010).

Among those challenges, the growing demand for high-performance computing and
miniaturisation makes the effective heat flux removal the major ambition in the design
and thermal management of electronic devices (Abdollahi, Sharma & Vatani 2017).
Unfortunately, the penetration of well-established technologies, such as wire coil inserts,
twisted tapes or helical ribs, is limited by fouling and high pressure losses (Ghajar &
Tang 2010). A promising solution consists in promoting two-phase flow conditions to
improve the heat transfer. This can be achieved either via the injection of gas bubbles
into a pipe filled with refrigerant (e.g. the heat transfer coefficient can increase up to ten
times as proposed by Celata et al. 1999), using mixtures of immiscible liquids (e.g. an
aqueous and an organic phases (Brauner 2002)), or promoting evaporation/condensation
(Kim et al. 2015; Adera et al. 2021). In these contexts, the design of heat exchangers is
more complex than in the case of a single phase. The complexity arises from the fact
that the heat transfer depends not only on the flow parameters (i.e. flow rate, pressure
drop, slip ratio, etc.) and the pipe geometry, but also on the phase topology (i.e. the flow
regime: core-annular, stratified, intermittent and dispersed). In addition, while gas–liquid
systems are characterised by a low density and viscosity ratio, in liquid–liquid systems,
the viscosity ratio can span several orders of magnitude. Thus, understanding how heat
transfer is enhanced or retarded due to the presence of more than one phase becomes
necessary for the design of modern heat exchangers.

So far, a wide range of investigations has focused primarily on forced convection of
single-phase flow, starting from Graetz’s and Nusselt’s pioneering works (Graetz 1882;
Nusselt 1910), where the thermal entrance length inside a circular pipe has been solved
neglecting the effect of axial heat conduction and viscous dissipation. Thereafter, the
Graetz problem has been studied extensively, see Shah & London (1978). For example,
when the flow Péclet number is sufficiently small, streamwise conduction becomes
important (see Pahor & Strnad (1956); Reynolds (1963)) as is the case of compact heat
exchangers employing liquid metals as working fluids or in micro-channels (Nonino
et al. 2009). The effect of viscous dissipation on forced convection leads to the so-
called Graetz–Brinkman problem (Brinkman 1951; Ou & Cheng 1973), indicating that the
internal friction becomes relevant only for highly viscous fluids in capillaries (Morini &
Spiga 2006) even at moderate flow rates. Other generalisations include the case of
hydrodynamically developing flows (Boussinesq 1890), non-circular arbitrary geometries
(Barrera et al. 2016), non-Newtonian fluids (Cotta & Özişik 1986; Ali & Khan 2018;
Asghar et al. 2023), specified-flux (Sellars, Tribus & Klein 1956) and mixed-type (Hsu
1968) boundary conditions or a combination of those (Colle 1988; Hirbodi, Yaghoubi &
Warsinger 2022).

Extensions of the Graetz’s problem to the case of two-phase flow are rather limited
and, unfortunately, a generalised understanding of the effect of the presence of more
that one phase on heat transfer dynamics is still missing. Most existing studies focus on
core-annular flow and are restricted to steady-state conditions. Specifically, Leib, Fink &
Hasson (1977) and Stockman & Epstein (2001) studied the steady-state and fully developed
thermal problem of a vertical core-annular flow when a uniform heat flux is imposed at
the pipe wall, while Bentwich & Sideman (1964a,b) proposed a simplified description
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of stratified and core-annular liquid–liquid flows when the wall temperature is imposed.
Nogueira & Cotta (1990) and Su (2006) solved the heat-transfer Sturm–Liouville-type
problem for core-annular flows subjected to fixed temperature and mixed boundary
conditions neglecting both axial conduction and viscous dissipation. Later on, Lindemer,
Advani & Prasad (2015) studied the impact of convection-type boundary condition
combining analytical and numerical solutions (using the method of quasi-orthogonal
functions), while Chalhub, Corrêa & Teixeira (2022) proposed a solution of the steady-
state Graetz’s problem (neglecting axial diffusion) based on integral transform. In those
solutions, the fluid temperature is obtained in the form of an infinite series and, therefore,
macro-scale thermal parameters, such as the heat transfer coefficient (or the Nusselt
number), cannot be obtained in a closed form, keeping the underlying physical scaling
difficult to unravel. In fact, such macro-scale parameters are usually estimated using
experiments and semi-empirical correlations (Dungan & Shapiro 1990). To sum up, a
general theoretical framework that embeds both transient and steady-state effects, and all
the relevant physical mechanisms (e.g. both axial and transverse diffusion), is still missing
in the context of two-phase flows.

To fill this gap, the goal of this paper is to study the impact of the flow topology
on heat transfer clarifying the competition between the main heat transfer mechanisms
(diffusion, advection, an imposed heat flux at the channel walls and viscous dissipation)
and flow parameters, like the volume fraction and the viscosity ratio. To do so, we extend
the Graetz–Brinkman problem to core-annular flows (see figure 1, § 2) that represent the
basic flow pattern in microchannel and it is often used as an idealisation of more complex
flow regimes such as elongated bubbles (see Collier & Thome (1994); Thome, Dupont &
Jacobi (2004); Picchi & Battiato (2018); Picchi, Ullmann & Brauner (2018)). Our goal is
to derive an effective description of the heat-transfer problem addressing both transient
and steady-state conditions.

With this aim, we generalise the Aris–Taylor dispersion theory to heat-transfer in
the context of two-phase flows. In fact, this theory has the great advantage to be a
satisfactory compromise between accuracy, compactness and physical interpretation of
the final solution. Specifically, the long-standing theory of Taylor dispersion (Taylor 1953;
Aris 1956) is a rigorous perturbation scheme that has been first applied to elementary
geometries and later generalised to a disparate class of physical systems (Brenner 1980),
including periodic obstructions (Farah et al. 2020), a non-premixed flame established in a
narrow duct (Liñán et al. 2020), radiant pipes (Batycky, Edwards & Brenner 1994), soils
(Auriault & Lewandowska 1996), capillary-tissue exchange kinetics (Levitt 1972; Fallon &
Chauhan 2005), suspensions and porous media (Brenner & Stewartson 1980; Rubinstein &
Mauri 1986; Battiato & Tartakovsky 2011; Parmigiani et al. 2011; Griffiths, Howell &
Shipley 2013; Dejam, Hassanzadeh & Chen 2014; Bourbatache, Millet & Moyne 2020;
Scholz & Bringedal 2022), and thin films (Picchi & Poesio 2022). Conveniently, it provides
a reduced-order mathematical description where the competitive influence of advection,
diffusion and boundary phenomena is taken into account via a set of effective coefficients
(Frankel & Brenner 1989). So far, to the best of our knowledge, an attempt to adapt this
approach to the case of core-annular flows has not been proposed yet.

Starting from transport equations (§ 2.1), we derive a set of coupled evolution equations
for the average temperatures as functions of space and time by means of two-scale
asymptotic expansions (§ 3). Our analysis (the full derivation is presented in Appendix C)
is complemented by a rigorous specification of the theoretical bounds of validity of the
model (§ 3.1). In the case of large thermal conductivity contrast between the phases, the
system reduces to a single equation (§ 3.2), which admits an analytical solution (§ 4.1),
including transient effects. Instead, when the thermal conductivities are of the same
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Figure 1. Schematic diagram of the extended Graetz–Brinkman problem for a laminar two-phase
core-annular flow in a plane slender channel (Ĥ � L̂) with a semi-infinite heating section.

order of magnitude, the problem is described by two coupled advection–heat-transfer
equations and an analytical solution only exists at the steady-state (§ 4.5). Finally, we
derive analytical scaling laws for the asymptotic Nusselt number (§§ 4.2, 4.7) and discuss
the thermal coupling between the phases (Brenner 1982; Chu, Sposito & Jury 1983;
Auriault & Lewandowska 1994; Moyne & Murad 2006; Shelukhin, Yeltsov & Paranichev
2011). These results shed light on heat transfer phenomena in the context of multi-phase
flows and may serve as a starting step to generalise the heat transfer model to other flow
regimes.

2. Problem formulation
We consider an infinitely long and horizontal planar channel with a uniform cross-section
of height 2Ĥ , as sketched in figure 1; the hat operator will be used to denote dimensional
quantities. Two immiscible Newtonian fluids flow from left to right as a core-annular flow
regime driven by a constant pressure gradient: the inner fluid, which is not in contact
with the channel wall, will be denoted by subscript ‘1’, while the outer fluid that is in
contact with the channel wall will be denoted by subscript ‘2’. The fluid–fluid interface
is supposed to be flat, and both velocity profiles are assumed to be fully developed and
laminar. The channel is heated by a constant and uniform wall heat flux q̂ ′′

w imposed at
both plates (ŷ = ± Ĥ ) over the entire semi-infinite domain (x̂ � 0). We primarily consider
liquid–liquid systems or gas–liquid systems with sufficiently small temperature differences
so that the thermal expansion of the gaseous phase can be neglected. The dimensional
velocity profile in each fluid domain is derived from the incompressible Navier–Stokes
equation for co-current core-annular flows in a planar geometry:

û1
(
ŷ
)= 1

2μ1

d p̂

dx̂

{
ŷ2 − Ĥ2 [μ2 − β(2 − β) (μ2 −μ1)]

μ2

}
,

ŷ

Ĥ
∈ [0; 1 − β] , (2.1a)

û2
(
ŷ
)= 1

2μ2

d p̂

dx̂

{
ŷ2 − Ĥ2

}
,

ŷ

Ĥ
∈ [1 − β; 1] , (2.1b)

where d p̂/dx̂ < 0 is the axial pressure gradient, μ j is the dynamical viscosity of the two
fluids, j = {1, 2}, and β is the volume fraction of the outer phase (0<β < 1); the detailed
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derivation of the velocity profiles is given in Appendix A. Specifically, half the thickness
of the inner and the outer phase is equal to (1 − β)Ĥ and β Ĥ , respectively.

We obtain the averaged speed of the inner and outer phase by integrating the velocity
profiles (2.1),

Û1 =
∫ (1−β)Ĥ

0 û1
(
ŷ∗) dŷ∗

(1 − β) Ĥ
= − Ĥ2

6μ1 μ2

d p̂

dx̂
[2μ2 − β(2 − β) (2μ2 − 3μ1)] , (2.2a)

Û2 =
∫ Ĥ
(1−β)Ĥ û2

(
ŷ∗) dŷ∗

β Ĥ
= − Ĥ2

6μ2

d p̂

dx̂
[β(3 − β)] , (2.2b)

yielding an overall expression for the averaged speed over the entire channel,

Û = (1 − β) Û1 + β Û2 = − Ĥ2

3μ1 μ2

d p̂

dx̂
[μ2 − β(β2 − 3β + 3)(μ2 −μ1)]. (2.3)

2.1. Governing equations for heat transfer

The internal energy balance for each phase written in terms of temperature T̂ j (x̂, ŷ, t̂) is
given by

ρ j cp, j

(
∂ T̂ j

∂ t̂
+ û j

∂ T̂ j

∂ x̂

)
= κ j

(
∂2T̂ j

∂ x̂2 + ∂2T̂ j

∂ ŷ2

)
+ Ŵ j , (2.4)

with ρ j , cp, j , κ j being the density, the isobaric mass heat capacity and the thermal
conductivity of each phase, respectively. The term Ŵ j represents the rate of viscous
dissipation of mechanical energy per unit mass and, for laminar unidirectional and fully
developed flows, it reduces to

Ŵ j =μ j

(
dû j

dŷ

)2

. (2.5)

At the channel wall, ŷ = Ĥ , we assume that a uniform heat flux (UWF) is imposed (Shah
& London 1978), leading to

q̂ ′′
w = −κ2

(
∇̂T̂2 · n2

)∣∣∣
ŷ=Ĥ

= −κ2
∂ T̂2

∂ ŷ

∣∣∣∣∣
ŷ=Ĥ

, (2.6)

where the unit vector is given by n2 = (0; 1). From the practical point of view, an
imposed uniform wall heat flux (for x̂ � 0) can be seen as an approximation of many
experimental facilities where the channel is wrapped with a heat tape or wire resistance
heater – see, for instance, Murphy, Alimohammadi & O’Shaughnessy (2024). In (2.6),
we adopt as convention that the imposed heat flux is positive, q̂ ′′

w > 0, when it exits
the fluid. At the fluid–fluid interface, ŷ = (1 − β)Ĥ , the normal vectors are given by
n1 = (0; 1)= −n2, and the continuity of temperature and heat flux across the flat interface
gives

κ1
∂ T̂1

∂ ŷ

∣∣∣∣∣
ŷ=(1−β)Ĥ

= κ2
∂ T̂2

∂ ŷ

∣∣∣∣∣
ŷ=(1−β)Ĥ

, (2.7a)

T̂1

∣∣∣
ŷ=(1−β)Ĥ = T̂2

∣∣∣
ŷ=(1−β)Ĥ . (2.7b)
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In the duct cross-section at ŷ = 0, the symmetry of the thermal problem results in

∂ T̂1

∂ ŷ

∣∣∣∣∣
ŷ=0

= 0. (2.8)

The problem is closed imposing the initial condition at the channel entry as a uniform
temperature distribution at t̂ = 0 and x̂ = 0 for both phases:

T̂ j
(
0, ŷ, 0

)= T̂in, j . (2.9)

As it will be discussed in § 2.2, we are not focused on describing the early-time evolution
of the system and, therefore, the initial condition (2.9) is unimportant for the purposes of
our analysis.

Then, we recast the energy balance (2.4), written with respect to an absolute reference
frame (x̂, ŷ), introducing a new axial coordinate ẑ = x̂ − V̂ t̂ that advects in the direction
of the flow with an arbitrary speed V̂ (with τ̂ = t̂) yielding

ρ j cp, j

[
∂ T̂ j

∂τ̂
+

(
û j − V̂

) ∂ T̂ j

∂ ẑ

]
= κ j

(
∂2T̂ j

∂ ẑ2 + ∂2T̂ j

∂ ŷ2

)
+ Ŵ j . (2.10)

In general, the choice of the reference frame speed V̂ is arbitrary (Brady 1975), but it
affects the definition of the integral variables (e.g. the effective diffusion coefficients).
Specifically, V̂ = 0 corresponds to a description given in the absolute coordinate system;
this reference frame will be adopted to compute the bulk temperature and the Nusselt
number. Choosing V̂ = Û identifies the volume-fixed reference frame, i.e. a relative
coordinate system moving a speed equal to the mean flow velocity, see (2.3). This reference
frame will be used when the focus is on revealing the impact of advection on multiphase
heat transfer (i.e. the equivalent of hydrodynamic dispersion in mass transfer problems
(Taylor 1953)). In cases where the two phases are thermally decoupled, it is convenient
to choose a reference frame attached to the annulus with V̂ = Û2. A rigorous justification
of this argument is provided both in the framework of statistical moments (Aris 1956)
or perturbation analysis enforcing the Fredholm-type solvability condition (Mauri 1991,
1995, 2015; Mikelić, Devigne & van Duijn 2006). Note that other choices of the reference
frame can be made (e.g. molar or mass mean velocity), but their use is limited to
multicomponent systems (Hooyman 1956; Brady 1975; Piña 1979; Taylor & Krishna 1993;
Kozlova et al. 2019).

2.2. Dimensionless formulation
The governing equations introduced in § 2.1 are made dimensionless to facilitate the
derivation of an effective description of two-phase flow heat transfer. The relevant scale
along the ŷ-direction is chosen as the half-distance between the parallel plates Ĥ , while
we denote by L̂ a characteristic macroscopic/observation length scale along the x̂-axis.
We look at systems that can be treated as a shallow geometry, L̂ � Ĥ , and, therefore,
a small scale parameter indicating the separation between transverse and axial variables
arises naturally,

ε= Ĥ

L̂
� 1. (2.11)
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The scale separation assumption, ε� 1, is a key requirement to simplify the momentum
equations and ensures that the lubrication approximation for the flow holds (see
Appendix A).

The determination of the relevant time scale is not unique (Mauri 1991; Auriault &
Adler 1995; Mikelić et al. 2006; Battiato & Tartakovsky 2011; Bourbatache et al. 2020;
Picchi & Poesio 2022). In fact, advection introduces three advective time scales depending
on whether the focus is on a specific phase or the overall system. Assuming that the
characteristic scale for the velocity is the overall flow speed Û given in (2.3), we can
define the axial advective time as τ̂a = L̂/Û , while using the phase speed, U j , we
can introduce two additional time scales as τ̂a, j = L̂/Û j . Thermal diffusion introduces
two additional time scales for each phase: the axial, τ̂L̂, j = L̂2/α j , and the transverse,
τ̂Ĥ , 1 = (1 − β)2 Ĥ

2
/α1, τ̂Ĥ , 2 = β2 Ĥ

2
/α2, diffusion times, with α j = κ j/ρ j cp, j being

the thermal diffusivity of the j th phase. Since we are primarily interested in transport
dynamics in a time frame much larger than the transverse diffusion time and close to
the advection time, we choose τ̂a as the reference scale for the time variable (Mauri
1991; Griffiths et al. 2013; Mauri 2015; Ling et al. 2016; Liñán et al. 2020). This
choice allows the investigation of heat-transfer regimes characterised by the competition
between advection and axial diffusion. In fact, as elucidated by Taylor’s analysis of
solute dispersion (Taylor 1953), the advective time scale corresponds to a time window
that is intermediate between the times characterising transverse and axial diffusion, i.e.
τH, j � τa � τL , j , defining a hierarchy of time scales that can be uniquely determined
in terms of the scale parameter ε and the Péclet number of the problem (see § 4.3).
This choice of the relevant time window also implies that the model is not capable of
describing the early-time relaxation of the system’s initial configuration due to transverse
diffusion (known as pre-asymptotic regime) and, therefore, the initial condition given
in (2.9) will not be considered. Note that the description of the pre-asymtotic regime (see
e.g. Taghizadeh, Valdés-Parada & Wood (2020)) is out of the scope of this work.

We can recast the energy balance (2.10) introducing the following dimensionless
variables:

z = ẑ

L̂
, y = ŷ

Ĥ
, τ = τ̂

τ̂a
,

{
u j ; V

}=
{

û j ; V̂
}

Û
, ϑ j = T̂ j − T̂re f


T̂re f
, (2.12a-e)

where T̂re f and 
T̂re f are arbitrary reference values for the temperature and its
variation, respectively. For example, the reference temperature T̂re f can be chosen as
the initial temperature at a given location (x̂ = 0), T̂in , while the reference temperature
difference
T̂re f can be defined based on the condition of uniform heat flux at the wall, as
q̂ ′′
w L̂/κ2 (Shah & London 1978) or q̂ ′′

w L̂/(ρ2 cp, 2 Û Ĥ) (Chen et al. 2022). This procedure
yields

εA Pe
[
∂ϑ1

∂τ
+ (u1 − V )

∂ϑ1

∂z

]
=

(
ε2 ∂

2ϑ1

∂z2 + ∂2ϑ1

∂y2

)
+ m

K Br

(
du1

dy

)2

, y ∈ [0; 1 − β] ,

(2.13a)

ε Pe
[
∂ϑ2

∂τ
+ (u2 − V )

∂ϑ2

∂z

]
=

(
ε2 ∂

2ϑ2

∂z2 + ∂2ϑ2

∂y2

)
+ Br

(
du2

dy

)2

, y ∈ [1 − β; 1] ,

(2.13b)
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where dimensionless absolute velocity profiles u j (y) are given in Appendix A.1. In the
following, V = 0 corresponds to a description given in the absolute coordinate system,
V = 1 identifies the relative coordinate system moving at the mean flow speed, while
V = U2 identifies the reference frame attached to the annulus. The normalisation
introduces the viscosity ratio m, the thermal conductivity ratio K and the thermal
diffusivity ratio A:

m = μ1

μ2
, K = κ1

κ2
, A= α2

α1
= 1

K
ρ1

ρ2

cp, 1

cp, 2
. (2.14a-c)

The viscosity ratio accounts for the different viscosity of the flowing phases: when
m → 0, the outer fluid is much more viscous compared with the inner one as typical
of the majority of gas–liquid systems (see table 1); we will refer to this limit as the
free-surface limit. When m → ∞, the inner fluid is much more viscous than the outer
one and it behaves like a rigid body, see figure 3(a); we will refer to this limit as the
rigid-core limit. The product KA can be seen as the thermal capacity ratio: gas–liquid
systems are characterised by lower values of KA with respect to liquid–liquid systems
(see table 1). Note that, although in our model, the physical properties of the two phases
appear in the three property ratios given in (2.14), other sets of dimensionless parameters
can provide an equivalent description. For example, in Appendix B, we show how the
property ratios (2.14) can be recast in terms of the heat-capacity flow rate ratio, commonly
used to describe heat-exchanger problems.

In (2.13), the Péclet number Pe and the Brinkman number Br for the outer phase are
given by

Pe2 = Pe = Ĥ Û

α2
, Br = μ2 Û 2

κ2 
T̂re f
. (2.15a-b)

The Péclet number expresses the ratio between advection and axial diffusion. When
Pe � 1, diffusion dominates over advection, while for Pe � 1, advection plays a major
role with respect to diffusion. The Péclet number Pe1 of the inner phase is given by the
product Pe1 = A Pe. The Brinkman number can be seen as the competition between the
thermal power per unit mass produced by viscous dissipation and the one transferred due
to conduction by the outer phase through the channel walls; Br = 0 only in non-dissipative
flows.

The dimensionless boundary conditions at the wall (2.6), at the interface (2.7) and at the
channel axis (2.8) read

∂ϑ2

∂y

∣∣∣∣
y=1

= − q̂ ′′
w Ĥ

κ2 
T̂re f
= qw, (2.16a)

∂ϑ2

∂y

∣∣∣∣
y=1−β

=K ∂ϑ1

∂y

∣∣∣∣
y=1−β

, (2.16b)

ϑ2|y=1−β = ϑ1|y=1−β , (2.16c)

∂ϑ1

∂y

∣∣∣∣
y=0

= 0. (2.16d)

Note that (2.16a) introduces the dimensionless wall heat flux qw as a further governing
dimensionless group.
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3. Two-scale asymptotic analysis
The present work aims at obtaining a one-dimensional approximation of the energy
equations (2.13) coupled with boundary conditions (2.16). Specifically, we look for
one-dimensional advection–diffusion heat-transfer (ADHT) equations accounting for
advection, diffusion and heat exchange between the two phases. To do so, we adopt a
two-scale asymptotic expansion procedure (Hornung 1997; Boutin, Auriault & Geindreau
2010; Bensoussan, Lions & Papanicolaou 2011).

(i) The starting point is the local description of the dimensionless heat-transfer problem,
see (2.13), (2.16), together with the definition of the scale parameter ε given in (2.11).

(ii) We focus on an asymptotic regime where the temperature profile can be considered
almost uniform in the transverse direction (transverse diffusion has smeared out
the initial profile) and axial diffusion is part of the game in the spirit of classical
Taylor-dispersion theory (Taylor 1953). To this end, we look at axial variations in
temperature in between the duct half-height, Ĥ , and the duct length, Ĥ/ε, of the order
1/

√
ε. Therefore, the longitudinal coordinate z is re-scaled introducing a stretched

spacial variable ξ (similarly to Griffiths et al. (2013); Ling et al. (2016); Liñán et al.
(2020)):

ξ = z√
ε
. (3.1)

(iii) The dimensionless groups (2.15), (2.16a) and the property ratios are evaluated in
asymptotic terms expressing their magnitude as integer or half-integer power of the
scale parameter ε:

K = K εk with K =O (1) and k ∈ 1
2
Z, (3.2a)

A= εa and Pe = ε−p with a, p ∈ 1
2
Z, (3.2b)

Br = B εb with B =O (1) and b ∈ 1
2
Z, (3.2c)

qw = Q ε f with Q =O (1) and f ∈ 1
2
Z. (3.2d)

(iv) The temperature field ϑ j in the energy equations (2.13), (2.16) is written as a half-
integer power-series expansion in the scale parameter:

ϑ j (ξ, y, τ ; ε)= ϑ
(0)
j (ξ, y, τ )+ √

ε ϑ
(1)
j (ξ, y, τ )+ ε ϑ

(2)
j (ξ, y, τ )+O(ε√ε),

(3.3)

where ϑ(n)j is the nth-order term in the asymptotic expansion of the temperature field
ϑ j , with j = {1, 2}. We follow the classical multiscale approach where the main
variables are expanded with respect to space and the axial coordinate is stretched
according to (3.1) to properly describe the asymptotic regime (as explained in item
(ii)) (Mauri 1991; Griffiths et al. 2013; Mauri 2015; Ling et al. 2016; Liñán et al.
2020). An equivalent approach would be to fully expand the independent variables
in both time and space (Mauri 1995; Mazzino 1997; Mauri 2003; Mei & Vernescu
2010).

(v) Then, we collect the terms of the same order obtaining a cascade of boundary-
value problems. These are sequentially solved to obtain the effective description
of the original problem in terms of the depth-averaged temperatures, 〈ϑ j 〉(ξ, τ ),
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plus higher-order corrections. To do so, we introduce the cross-sectional averaging
operator over each fluid domain

〈� j 〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1 − β

(∫ 1−β

0
� j dy

)
if j = 1,

1
β

(∫ 1

1−β
� j dy

)
if j = 2,

(3.4)

consistent with the classical two-scale asymptotic expansion procedure (Hornung
1997; Boutin et al. 2010; Bensoussan et al. 2011). Other types of mean relevant for
heat-transfer problems, such as the mixing-cup (or bulk) temperature, require an a
priori knowledge of the temperature field, and, therefore, they will be defined once
the model’s solution is determined, see § 3.3.
It will be shown, see Appendix C.2 and (C3a), that the leading-order term in (3.3) is
independent on y and, therefore, ϑ(0)j (ξ, τ )≡ 〈ϑ(0)j 〉(ξ, τ ). In this type of approach,
the goal is to describe the macroscopic behaviour of the system in terms of the zeroth-
order terms ϑ(0)j while interpreting higher-order terms in (3.3) as small fluctuations
around the zeroth-order values. Thus, without any lack of generality (Mauri 1995),
we impose a gauge condition of the type〈

ϑ
(n)
j (ξ, y, τ )

〉
≡ 0 for n � 1, (3.5)

implying that the higher orders do not impact on the averaged temperature〈
ϑ
(n)
j

〉
≡ ϑ

(0)
j δn

0 , (3.6)

where δn
0 is the Kronecker delta indicator introduced to make the problem

derivation more concise

δ
i1
i2

=
{

0 if i1 = i2,

1 if i1 = i2.
(3.7)

(vi) The effective model is obtained imposing the compatibility condition, (also known as
solvability condition or Fredholm alternative) which is the sufficient and necessary
condition for the existence of solutions to the successive boundary-value problems.
Satisfying the compatibility condition results in setting to zero the average of the
expanded governing equation over its domain (Rubinstein & Mauri 1986; Auriault
2002; Mikelić et al. 2006).

The full derivation following the aforementioned procedure is provided in Appendix C,
while the final results are given in upcoming sections, distinguishing between two different
scenarios based of the order of magnitude of the thermal conductivity ratio K, see (3.2a).

3.1. One-dimensional ADHT equations – coupled regime
The system of ADHT equations, describing the spatial and temporal evolution of the
averaged temperatures, is given in (C36), with the coefficients defined in (C37). The
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corresponding equation in the core is

A Pe
(

1 + 1 − β

K β

)
∂〈ϑ1〉
∂τ

+A Pe

a�11︷ ︸︸ ︷(
U1 − V +ω�11

) ∂〈ϑ1〉
∂z

+ Pe a�12
∂〈ϑ2〉
∂z

= ε

[
1 + 1 − β

K β
+A2Pe2 (

D1 + δ�11
)]

︸ ︷︷ ︸
d∗

11

∂2〈ϑ1〉
∂z2 + ε Pe2 d�12

∂2〈ϑ2〉
∂z2

+ 1
ε

(
g�1 qw +w�1 Br

)− 1
ε

e�1
(〈ϑ1〉 − 〈ϑ2〉

)
, (3.8)

while for the annulus, we get

Pe
(

1 + K β

1 − β

)
∂〈ϑ2〉
∂τ

+ Pe

a�22︷ ︸︸ ︷(
U2 − V +ω�22

) ∂〈ϑ2〉
∂z

+A Pe a�21
∂〈ϑ1〉
∂z

= ε

[
1 + K β

1 − β
+ Pe2 (

D2 + δ�22
)]

︸ ︷︷ ︸
d∗

22

∂2〈ϑ2〉
∂z2 + ε (A Pe)2 d�21

∂2〈ϑ1〉
∂z2

+ 1
ε

(
g�2 qw +w�2 Br

)+ 1
ε

e�2
(〈ϑ1〉 − 〈ϑ2〉

)
, (3.9)

with a�j j (U j , V, β, m, K ) and d�j j (V, β, m, K , Pe) being the effective coefficients
for advection and diffusion of the inner ( j = 1) and the outer phase ( j = 2). Those
coefficients are a function of the speed of the reference frame, V , the phase speeds U j ,
the volume fraction β, the viscosity ratio m, and the conductivity ratio K – their full
expressions are given in Appendix C.6. The ADHT equations (3.8), (3.9) are coupled
through diverse physical mechanisms, namely advection and diffusion of the other
phase via the coefficients a�12(β, m, K ) and a�21(β, m, K ), and d�12(V, β, m, K ) and
d�21(V, β, m, K ), respectively; heat exchange between the phases through storage terms
(∝ ±(〈ϑ1〉 − 〈ϑ2〉)) and source terms proportional to qw. All these mechanisms will be
discussed in detail in § 4.5.

The ADHT equations (3.8), (3.9) hold only in a specific range of the dimensionless
groups (2.14), (2.15), (2.16a) to guarantee that the two scales can be decoupled. Such
requirements are known as the applicability region and are sufficient (but not necessary)
conditions for the effective model to be representative of the spatially averaged processes
within the error bounds prescribed by the asymptotics. In our case, the upscaled equations
hold only when:

(i) ε� 1;
(ii) Pe � 1/

√
ε;

(iii) A Pe � 1/
√
ε;

(iv) |qw| � 1;
(v) Br � 1.

Condition (a) ensures that the spatial scale separation exists. Conditions (b) and (c) provide
the upper bounds to the Péclet number of each phase, ensuring that advection does not
prevail over diffusion. Condition (d) restricts the rate at which heat is transferred by the
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1 1

1

Pe |qω|1/�ε
—�ε

— �ε
—

�ε
—

1

1/ε 1/ε

1/�ε
—

1/�ε
—

�ε
—

Beyond the scope

Coupled regime

Decoupled regime

Applicability region

Coupled scales

ε ε�ε
—

ε

εε

A K

Figure 2. Parameter space of transport regimes in the (Pe, A) (left) and in the (qw, K) (right) planes.
Coloured areas of the maps correspond to regimes where the effective heat-transfer equation for the averaged
temperatures can be formally written by means of two-scale expansion.

external energy source to/from the channel. Finally, condition (e) concerns the Brinkman
number, guaranteeing that the impact of viscous shear heating is low enough not to conflict
with the other transport phenomena.

The applicability region given by conditions (a)–(e) has been determined from the
asymptotic solution developed in Appendix C selecting the order of the dimensionless
parameters in such a way that they enter the problem at the highest order compatible
with the separation of scales. In other words, the set of exponents p, a, k, b and f has
been selected accordingly so that a given term enters into the corresponding order of
magnitude depending on the transport regime. Those constraints are sufficient conditions
which ensure a rigorous thermal decoupling between the transverse and the axial scales. If
such constraints are not met, the idea of cross-sectional averaging (3.4) lacks significance
and the accuracy of the upscaled model cannot be guaranteed (Boso & Battiato 2013).
Note that there exists strategies to relax the applicability conditions, for example, using
iterative hybrid numerical methods (see Battiato et al. (2011)).

Figure 2 shows the graphical representation of the conditions (b)–(d). Specifically, we
can identify three main regimes based of the order of magnitude of the conductivity ratio
K. When K =O(1), the thermal conductivities are of the same order of magnitude and the
problem is described by two coupled ADHT equations (3.8), (3.9); this will be referred to
as the coupled regime and it is typical of liquid–liquid systems (see table 1). Instead, when
the thermal conductivity of the inner phase is small with respect to that of the outer one
(K�O(√ε)), the thermal interaction between the phases is negligible and the problem is
described by a single ADHT equation for the outer phase, see § 3.2; this will be referred
to as the decoupled regime, typical of gas–liquid systems and a few liquid–liquid systems,
see table 1. There exists a third regime for K�O(1/√ε) that leads to a single equation
for the core averaged temperature. In this work, the latest regime will not be considered,
since we are mainly interested in two-phase forced-convection configurations where the
inner phase is less conductive with respect to the outer phase.

3.2. Decoupled regime
When the thermal conductivity of the outer phase is greater than that of the inner phase,
K�O(√ε), the thermal interaction is negligible and the fluid–fluid interface can be
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Authors Core (1) Annulus (2) m ρ1/ρ2 K A
Liquid–liquid

Kruyer et al. (1967) Transformer oil Water 17 0.853 0.18 1.84
Hasson (1978) Water Kerosene 0.625 1.245 5.18 0.51
Arney et al. (1993) No. 6 fuel oil Water 2.70×103 0.989 0.20 2.31
Bannwart et al. (2004) Heavy crude oil Water 4.15×104 0.975 0.20 2.09

Gas–liquid

Cioncolini (2023) Air Water 2.08×10−2 1.19×10−3 0.04 6.73×10−3

Guevara & Gotham (1983) Steam Water 1.44×10−2 6.00×10−4 0.04 6.77×10−3

Vuong et al. (2018) Nitrogen Isopar L 1.39×10−2 2.19×10−2 0.20 5.38×10−2

Poesio et al. (2009) Air Turbine oil 1.54×10−5 1.34×10−3 0.19 3.44×10−3

Table 1. Physical properties of liquid–liquid and gas–liquid core-annular systems taken from the literature. The
property ratios m, K, A denote the viscosity, thermal conductivity and thermal diffusivity ratios, respectively,
as defined in (2.14).

considered adiabatic (see the derivation in Appendix C.5.1). Thus, in the moving reference
frame (z, τ ), (3.8), (3.9) reduce to a single ADHT for the averaged temperature of the
outer phase 〈ϑ2〉:

∂ 〈ϑ2〉
∂τ

+ (U2 − V )
∂ 〈ϑ2〉
∂z

= D�
2
∂2 〈ϑ2〉
∂z2 + S�2, (3.10)

where

D�
2 = ε

Pe

(
1 + Pe2 D2

)
, S�2 = qw + Br W �

2
ε Pe β

, (3.11a–b)

are the effective diffusion coefficient and the effective source term, respectively, whose
analytical expressions are given in Appendix C.6. The effective coefficients in (3.10)
incorporate the impact of the non-uniformity of the velocity profile (2.1b) and thermal
boundary conditions at the channel axis (2.8) and at the wall (2.6). Specifically, the shear
flow spreads the temperature inhomogeneity along the axial direction, affecting axial heat
diffusion at sufficiently large Péclet numbers via the coefficient D�

2(V, β, m, Pe). The
effective sink/source term S�2 consists of two distinct contributions: qw is the heat flux
imposed at the wall, while W �

2 embeds the effect of viscous dissipation. The trends of the
effective coefficients and the analytical solution of the thermal problem in the decoupled
regime will be discussed in § 4.1.

3.3. Determination of the convective heat-transfer coefficient
The local convective heat-transfer coefficient h is defined via Newton’s law of cooling as
the ratio between the thermal power per unit area entering the system and the difference
in temperature between the solid surface and a representative temperature for the fluid T̂b
(Incropera 2007):

h
(
x̂, t̂

)= − q̂ ′′
w

T̂2

∣∣∣
ŷ=Ĥ

− T̂b

, (3.12)

where T̂b is the bulk temperature; the estimation of h is provided in the absolute
reference frame (V = 0). The bulk (or mixing-cup or flow average) temperature is the
temperature reached when a certain amount of fluid reaches the equilibrium without heat
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loss to the surroundings (Tamir & Taitel 1972). It is defined as an enthalpy-weighted
average of the phase temperature and for the core-annular flow configuration in figure 1,
reads (Su 2006; Chalhub et al. 2022)

T̂b
(
x̂, t̂

)=

∫ (1−β)Ĥ

0
ρ1 cp, 1 û1 T̂1 dŷ +

∫ Ĥ

(1−β)Ĥ
ρ2 cp, 2 û2 T̂2 dŷ

∫ (1−β)Ĥ

0
ρ1 cp, 1 û1 dŷ +

∫ Ĥ

(1−β)Ĥ
ρ2 cp, 2 û2 dŷ

. (3.13)

Equation (3.12) is made dimensionless using the same scales defined in § 2.2, which gives

h (x, t)=
κ2

∂ϑ2

∂y

∣∣∣∣
y=1

Ĥ
(
ϑ2|y=1 − ϑb

) , (3.14)

where the dimensionless bulk temperature ϑb is given combining (3.13) with (2.12),
(3.4),

ϑb (x, t)= KA (1 − β)
〈
u1(y) ϑ1(y)

〉+ β
〈
u2(y) ϑ2(y)

〉
KA (1 − β)U1 + β U2

. (3.15)

Interestingly, the dimensionless group KA in (3.15) is the volumetric heat capacity ratio:
when KA� 1, the bulk temperature simplifies significantly and does not depend anymore
on the core properties (this is true for the decoupled regime in § 4.2). Since the averaged
temperature 〈ϑ2〉 is independent of y, the temperature (and its derivative) at the wall is
calculated considering the power-series truncated to the first order as

ϑ2|y=1 = 〈ϑ2〉 + √
ε ϑ

(1)
2

∣∣∣
y=1

+O(ε), (3.16a)

∂ϑ2

∂y

∣∣∣∣
y=1

= √
ε
∂ϑ

(1)
2
∂y

∣∣∣∣∣
y=1

+O(ε)= qw +O(ε). (3.16b)

In problems of internal forced convection, the heat transfer coefficient is made
dimensionless defining the local Nusselt number computed at the wall (Incropera 2007)

Nu (x, t)= h L
κ2
, (3.17)

where L is a characteristic length, typically the hydraulic diameter deq. For the planar
configuration depicted in figure 1, the hydraulic diameter can be computed by considering
a rectangular slit of width ŵ and height 2Ĥ , and taking the limit for ŵ� 2Ĥ (see, for
instance, Merritt 1991),

deq = lim
ŵ→∞

8 Ĥ ŵ

2
(
ŵ+ 2 Ĥ

) = 4 Ĥ . (3.18)

Ultimately, the Nusselt number (3.17) can be expressed as

Nu (x, t)=
4
∂ϑ2

∂y

∣∣∣∣
y=1

ϑ2|y=1 − ϑb
, (3.19)
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in view of (3.18) and (3.14). In the following, when the flow is thermally fully developed,
we will refer to as the asymptotic (or limiting) Nusselt number Nu∞ (Shah & London
1978).

Finally, for the sake of comparison with the literature, we recast the Brinkman number
defined in (2.15b) (Brinkman 1951; Bird, Stewart & Lightfoot 1960; Boucher & Alves
1963; Shah & London 1978) into

Br ′ = μ2 Û 2(−q̂ ′′
w

)L . (3.20)

In this work, the Brinkman numbers Br and Br ′ are linked to each other by the following
relation:

Br = 4 qw Br ′. (3.21)

4. Results and discussion
In this section, we will discuss the heat-transfer model illustrating the main physical
mechanisms and deriving a closed-form expression for the Nusselt number for laminar
core-annular flows, distinguishing between the decoupled and the coupled regime.

4.1. Heat-transfer mechanisms and temperature field in the decoupled regime
As described in § 3.2, the decoupled model (3.10) applies to cases where the thermal
conductivity of the outer phase is much bigger compared with that of the inner phase,
K�O(√ε). This implies that the inner and the outer phases are thermally decoupled and
the model reduces to a ‘one-side’ approach. Such a scenario is typical of the majority of
applications, including gas–liquid and liquid–liquid systems (see table 1).

By inspection of (3.10), we see that the temperature evolves in time and space due to
three different mechanisms: advection equal to the average speed of the outer phase U2,
effective thermal diffusion through the coefficient D�

2, and a constant source term S�2 due
to the imposed heat flux at the channel wall and viscous dissipation. Specifically, D�

2 has
the typical structure of the Aris–Taylor dispersion coefficient (it scales with the square of
the Péclet number), being the sum of heat diffusivity, equal to the unity, and axial shear-
induced diffusion, D2(V, β, m) whose expression is given in (C40b). The latter is an
apparent diffusion mechanism for the averaged temperature and has its physical origin in
the non-uniformity of the velocity in the outer phase: from the physical point of view, local
advection enhances/reduces the axial diffusion in terms of the leading-order variables.

Figure 3(a) shows the evolution of D2 in a coordinate system moving at the mean
speed of the outer phase, V = U2, according to Aris (Aris 1959). In fact, in the decoupled
model, thermal dispersion is exclusively driven by the annulus. The presence of the other
phase, which acts as a thermal insulator, reduces the effective heat-diffusion compared
with the single-phase scenario where D2 = 2/105; such a limit is reached only when
the core vanishes, i.e. for β → 1. The maximal shear-induced diffusion is obtained in
the rigid core limit (m → ∞), where the velocity profile of the annulus is almost linear
(see figure 3a), maximising the spread of temperature in the axial direction. In the free
surface limit (m → 0), instead, the flow in the outer phase is so slow that the shear-induced
diffusion becomes negligible.

Due to the many applications that involve confined thin-films (e.g. Craster & Matar
(2009); Lavalle et al. (2021)), we highlight the thin-film region (TFR) in figure 3(a),
defined arbitrarily as β �√

ε� 1. In the TFR, the outer phase is ‘thin’ enough that D2
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Figure 3. Effect of the viscosity ratio m on (a) D2 (in the relative reference frame moving at the mean speed
of the annulus, V = U2) and (b) the source term related to viscous dissipation W �

2 /β, as functions of the
volume fraction of the outer phase β. The thin film region (TFR) is highlighted by the grey area. For both the
inner ( j = 1) and the outer ( j = 2) phase: (c) dimensionless velocity profiles u j (y) for different values of the
viscosity ratio m and a fixed volume fraction β = 0.3; (d) average speed U j as a function of β and for different
values of m.

can be expanded as

D2(V = U2, β → 0, m)=

⎧⎪⎪⎨
⎪⎪⎩

3 m2

40
β4 +O(β5) if m finite,

1
120

β2 +O(β3) if m → ∞,

(4.1)

showing that the shear-induced diffusion becomes negligibly small in thin films. This
can be explained by looking at figure 3(d): when β → 0, the speed of the liquid becomes
so small that the system is dominated by diffusion.

In general, advection and diffusion compete in the transient dynamics described
by (3.10). To quantify this, similarly to Dejam et al. (2014) and Ling et al. (2016), we
introduce the ratio between the effective diffusivity (3.11a) and its single phase limit
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Figure 4. Normalised coefficient of shear-induced thermal diffusivity Π2 for a decoupled system (K→ 0)
– see definition in (4.2) – against the flow Péclet number Pe, for different values of volume fraction β and
viscosity ratio m.

(which corresponds to the analogous of the classical Aris–Taylor dispersion coefficient
for the thermal problem), DAT = 1 + 2

105 Pe2 (Horne & Rodriguez 1983; Berkowitz &
Zhou 1996; Wang et al. 2012):

Π2 = ε−1 Pe D�
2

DAT
= 1 + Pe2 D2

1 + 2
105

Pe2
. (4.2)

This normalisation facilitates the identification of different regimes, based on the
competition between diffusion and advection, as shown in figure 4, where the evolution of
Π2 with respect to the Péclet number and the viscosity ratio at two fixed volume fractions,
β = {0.2, 0.8}, is presented. Interestingly, for small Péclet numbers (Pe< 1),Π2 → 1 and
it is independent of m and β, meaning that advective mixing of thermal energy in the outer
phase is negligible compared with heat diffusion. When the Péclet number is sufficiently
large, the advection dominates andΠ2 assumes always values lower than unity. This means
that the core-annular flow pattern does not enhance heat diffusion compared with single-
phase flow, in particular, when the volume fraction is small. Also, the mechanism of
shear-induced diffusion becomes negligible in the free-surface limit (m → 0) since the
velocity in the outer layer is so small that, regardless of the film thickness β,Π2 approaches
zero without reaching a plateau as Pe → ∞. The regime map in figure 4 can be used
in transient multiphase heat-transfer applications to identify a specific set of operational
conditions based on fluid and/or flow properties to enhance or reduce heat diffusion.

The source term S�2 (3.11b) is affected by the dimensionless flux qw and the Brinkman
number Br . In particular, it scales with the inverse of the thickness of the outer phase
S�2 ∼ qw/β, meaning that heating a thin film is very effective since thermal energy is
delivered to a small volume of fluid. The viscous dissipation W �

2 = W �
2 (β, m) defined

in (C28b, c), see (C46c), contributes to the source term, accounting not only for the viscous
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heating produced in the annulus, but also for the production into the core that is exchanged
across the interface. As shown in figure 3(b), in the free-surface limit (m → 0), the velocity
in the annulus is so slow that viscous dissipation is negligible, while for iso-viscous fluids
(m = 1), W �

2 /β = 3 as for single-phase flow. However, in the rigid-core limit (m → ∞),
only the outer phase is dissipative and the heat generated due to friction becomes
unbounded as the film gets thinner. Due to this singularity around β = 0, the scaling in
the thin-film region can be obtained using Laurent series for β → 0 as

W �
2
β
(β → 0, m)=

{
3 m +O(β) if m finite,

β−1 + 1 +O(β) if m → ∞.
(4.3)

The ADHT equation (3.10) for the decoupled regime admits an analytical solution, setting
the initial temperature of the outer phase to a uniform value over the entire channel
half-length x > 0 and imposing the same temperature at the inlet x = 0 for t > 0, i.e.
〈ϑ2〉 (x, 0)= 〈ϑ2〉 (0, t)≡ 0 ∀ x, t > 0, we get – see Carslaw & Jaeger (1959) and Van
Genuchten & Alves (1982) –

〈ϑ2〉 (x, t) = S�2

⎧⎨
⎩t + (x − U2 t)

2 U2
erfc

⎡
⎣ x − U2 t

2
(
D�

2 t
) 1

2

⎤
⎦+

−(x + U2 t)

2 U2
exp

(
U2 x

D�
2

)
erfc

⎡
⎣ x + U2 t

2
(
D�

2 t
) 1

2

⎤
⎦
⎫⎬
⎭ . (4.4)

At long times, the diffusion smears out the temperature profile and the steady-state
temperature

〈
ϑ∞

2
〉

becomes a linear function of x (like in classical internal forced-
convection problems, see Incropera (2007)) with slope equal to S�2/U2, i.e.〈

ϑ∞
2

〉
(x)= lim

t→+∞ 〈ϑ2〉 (x, t)= S�2
U2

x . (4.5)

This solution will be used in § 4.2 to derived a closed-form model for the heat-transfer
coefficient. Note that, given the solution for the mean temperature (i.e. its leading order),
higher order corrections can be easily calculated plugging (4.4) into (C15), (C23).

4.2. Nusselt number in the decoupled regime
In the decoupled regime, since K → 0 and KA� ε, the bulk temperature (3.15) simplifies
to

ϑb (x, t)= 〈ϑ2〉 + √
εU−1

2

〈
u2(y) ϑ

(1)
2 (y)

〉
+O(ε). (4.6)

Upon substitution of (4.6) in (3.14), the local Nusselt number (3.14) yields

Nu (x, t)= 4 qw/
√
ε

ϑ
(1)
2

∣∣∣
y=1

− U−1
2

〈
u2(y) ϑ

(1)
2 (y)

〉 . (4.7)

Equation (4.7) shows how the Nusselt number evolves in space and time and is calculated
by plugging the analytical solution (4.4) into the first-order correction (C15) and using the
velocity profile for u2(y), given in (A5a). Here, the Nusselt number is studied with respect
to the fixed reference frame, in accordance with the literature, where the bulk temperature
is always defined in systems with V = 0.
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The Nusselt number in laminar decoupled core-annular flows with uniform wall
heat flux is a function of space, time, the volume fraction, the viscosity ratio,
the dimensionless heat-flux, the Brinkman and the Péclet numbers only, i.e. Nu =
Nu(x, t, β, m, qw, Br ′, Pe). The Nusselt number and, as a consequence, the heat-
transfer coefficient h depend on the Péclet number only in the transient regime, while at the
steady-state, Nu∞ = Nu∞(β, m, Br ′). Note that, as typical in the heat transfer community
(Shah & London 1978), the Péclet number can be seen as the product of the Prandtl
and Reynolds numbers, i.e. Pe = Pr Re, where Pr =μ2/(ρ2 α2) and Re = ρ2 Û Ĥ/μ2,
respectively.

When the thermal response reaches the steady state, we get the following expression for
the asymptotic Nusselt number Nu∞, obtained by combining (4.5), (C15) and (4.7),

Nu∞(β, m, Br ′)= 280(3 − β)2

β
(
χ Br ′ + 45 β2 − 245 β + 336

) , (4.8)

where χ accounts for the contribution of viscous dissipation as

χ = 18 m
[
3 m β (7 − 3 β)2 − (

5 β2 − 35 β + 56
)
(1 − β)3

]
[1 + β(β2 − 3 β + 3)(m − 1)]2 . (4.9)

Equation (4.8) shows that, in the absence of viscous dissipation (Br ′ = 0) or – equivalently
– in the inviscid limit (m → 0), the asymptotic Nusselt number is uniquely a function of
the volume fraction of the outer phase β. Such an expression embeds the effects of viscous
flow in both phases and heat-transfer (advection and diffusion) in the outer phase and it
has been obtained starting from first principles. In figure 5(a), the Nusselt number in the
non-dissipative regime is represented by the solid black line, which converges to the single
phase limit of 140/17 as β → 1. Instead, in the dissipative regime, the single-phase limit
of Nu∞ approaches 140/(108 Br ′ + 17) according to (278) of Shah & London (1978).

The viscosity ratio impacts Nu∞ only in the dissipative regime, as shown in figure 5(a)
for Br ′ = 1. Interestingly, when the viscosity ratio m is sufficiently large (but finite), there
exists conditions where viscous heating (Br ′ > 0) prevails over the wall heat flux (qw > 0),
and the bulk temperature becomes greater than the wall temperature, ϑ2|y=1 − ϑb < 0,
reversing the direction of the heat exchange. When this happens, the heat-transfer
coefficient h becomes negative, see (3.14), and the singularity of the Nusselt number
represents the limiting situation where ϑ2|y=1 = ϑb. The critical value of volume fraction
β = β(m, Br ′) which determines the position of the vertical asymptote can be calculated
by finding the zeros of the denominator in (4.8) numerically. To ensure that the Nusselt
number remains positive in the entire film thickness range (0<β < 1), the viscosity ratio
and the Brinkman number have to satisfy the inequality χ Br ′ >−91/36.

Finally, it is interesting to observe that the asymptotic Nusselt number in the TFR scales
as follows:

Nu∞(β → 0, m, Br ′ = 0)=

⎧⎪⎪⎨
⎪⎪⎩

15
2
(
1 − 3 m Br ′) β−1 +O(1) + . . . if m finite,

60
7 Br ′ +O(β) if m → ∞,

(4.10)

while for non-dissipative flows (Br ′ = 0), we get that Nu∞ ∼ 15/(2 β). In the finite-
viscosity regimes, the asymptotic Nusselt number Nu∞ shows a singularity. Specifically,
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Figure 5. (a) Dependence of the asymptotic Nusselt number Nu∞ (absolute value) on the volume fraction β,
for fixed viscosity ratios m and Br ′ = 1. Evolution of the normalised Nusselt number Nu/Nu∞: over space at
fixed times and Péclet numbers – (b) Pe = 1, (c) Pe = 0.1, (d) Pe = 0.01 – over time and across the transport
regimes at fixed axial locations – (e) x = 20, (f ) x = 40, with ε= 0.01, Br ′ = 0, qw = β = 0.1, m = 1.

increasing m shifts the position of the vertical asymptote towards lower values of β, and
a larger number of terms in the expansion (4.10) is required to ensure the convergence of
the series to (4.8).
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The time and spatial evolution of the local Nusselt number, normalised with respect to its
asymptotic value for t → ∞, i.e. Nu/Nu∞, is shown in figure 5(b–d) for different Péclet
numbers. The resulting plots have the form of S-shaped breakthrough curves and they
are bounded between two horizontal asymptotes: the upper one denotes the asymptotic
Nusselt number, while the lower one corresponds to the Nusselt number predicted by (4.7)
at the initial time instant, t = 0. At sufficiently high Péclet numbers, the S-shaped curves
are almost rigidly transported by the flow over time, indicating an advective-dominated
behaviour; a reduction of the Péclet number leads to a diffusion-dominated regime
(see figure 4).

To determine how the advective and diffusive mechanisms compete in the transient
dynamics, we plot the normalised Nusselt number for the different transport regimes
considered in figure 5(b–d) over an extended time interval at two fixed positions along
the channel: x = 20 (half-length of the channel) and x = 40 (end of the channel). At
high Péclet numbers (Pe = 1), the heat is primarily advected downstream and the system
quickly reaches the fully developed condition. This means that the heat transfer is quite
efficient due to the strong influence of advection. Conversely, decreasing the Péclet number
(Pe = {0.1, 0.01}) results in a slower increase of the Nusselt number due to the effect of
diffusion. An interesting feature in both figures 5(e) and 5(f ) is the existence of a common
intersection point between all the curves at t = te that is independent of the value of the
Péclet number. For t > te, the Nusselt number increases with the Péclet number, whereas
for t < te, the behaviour of the system is reversed. At a fixed axial position, the curves
appear to pivot around this point.

4.3. Hierarchy of time scales in thermal dispersion
The trends illustrated in figure 5 also reflect the development of the forced-convective
thermal boundary layer, similarly to the single-phase scenario (Siegel & Sparrow 1959;
Siegel & Perlmutter 1963; Fakoor-Pakdaman et al. 2014). As time elapses, the thermal
boundary layer progressively penetrates and fills up the thickness β occupied by the
annulus. As a result, increasingly larger distances after x = 0 become thermally fully
developed. In fact, since a finite amount of time, t∗ = x∗/U2, is required for the entrance
fluid to be advected downstream and reach the axial position x∗, beyond this coordinate,
x � x∗, there has not been any penetration of the fluid which was originally outside the
channel before the start of the transient (at t = 0). For x < x∗, the thermal problem reaches
its long-time thermal behaviour (linear temperature profile and constant Nusselt number).

Similarly to mass transfer (Allaire, Mikelić & Piatnitski 2010; Feder, Flekkøy & Hansen
2022), the thermal mixing is enhanced in regimes where diffusion has had time to even out
the transverse variations of temperature (across the layer) while there are still longitudinal
variations at the large scale (along it). Referring to the time scales introduced in § 2.2 and
choosing the advective characteristic time scale τ̂a as the reference time, we obtain the
following time scale hierarchy valid for the decoupled model (with j = 2 and K → 0):

τĤ , 2 � τa, 2 � τL̂, 2 ⇒ ε Pe β2 � U2 � Pe
ε
. (4.11)

By inspection of (4.11), we can conclude that if the channel is sufficiently shallow
(ε→ 0), these three times scales are sharply separated over a wide range of Péclet
numbers, as shown in figure 6. In particular, since the mean velocity of the annulus is
bounded between 0 and 1, i.e. 0 �U2 � 1 (see figure 3d), thermal dispersion is observed
for times of the order of τ̂a whenever Pe � ε. For smaller Péclet numbers, the problem
approaches its purely diffusive limit, where mixing is not influenced by shear-induced
mechanisms. Interestingly, in the inviscid limit (m → 0), the outer phase is almost at rest
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Figure 6. Time scale hierarchy and corresponding dominant heat-transfer mechanisms for the decoupled model
(K→ 0) as a function of the volume fraction β at different viscosity ratio m and Péclet number Pe. τ2 =
{τĤ , 2, U2, τL̂, 2} are the characteristic times of transverse diffusion, advection (average speed of the annulus)
and longitudinal diffusion, see (4.11), respectively. The dispersion regime is characterised by the dynamical
competition between longitudinal advection and diffusion. ε= 0.01.

(U2 → 0) and does not experience any shear-induced mixing, while in the TFR limit, the
outer phase is so thin that transverse diffusion is almost instantaneous (τĤ ,2 → 0 as β → 0)
at any Pe.

Finally, it is worth recalling that our analysis cannot describe the early-time dynamics of
the system – which may be referred to as pre-asymptotic dispersion regime (Young & Jones
1991; Taghizadeh et al. 2020) – and the upscaled model (3.10) holds only at times that are
much greater than τĤ , 2, i.e. t � ε Pe β2, holding no memory from the initial conditions
(Ananthakrishnan, Gill & Barduhn 1965; Sankarasubramanian, Gill & Benjamin 1973;
Fallon & Chauhan 2005).

4.4. Ramifications for the modelling of thin films and Taylor bubbles
In some circumstances, the modelling of flow patterns, such as intermittent slug flow,
relies on an idealisation of the liquid film region, borrowing closure relations from core-
annular flows (see for example, Balestra, Zhu & Gallaire (2018); Picchi et al. (2018)).
Taylor bubble flow, in fact, consists of a sequence of liquid slugs and elongated bubbles,
and – if the bubble is sufficiently long – a region of uniform film thickness forms, which
can be considered, as a first approximation, a (local) region of fully developed core-annular
flow. This approach neglects the evolution of the thin-film typical of Bretherton’s problem
(Bretherton 1961), while preserving model simplicity. In the context of heat transfer, the
widely used three-zone model developed by Thome et al. (2004) and Dupont, Thome &
Jacobi (2004) assumes that the film region of an evaporating/condensing Taylor bubble
can be treated in this way.

Specifically, the heat transfer coefficient between the thin film surrounding a Taylor
bubble and the channel wall is modelled as h = κ2/δ (where δ is the film thickness)
considering only the heat conduction in the transverse direction (across the film) at the
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Figure 7. (a) Transient evolution of the first-order correction of the temperature profile of the annulus ϑ(1)2
in the decoupled regime at x = 40, for β = 0.1, m = 0.01, ε= 0.01, Pe = 1, qw = 0.1 and Br = Br ′ = 0.
(b) Right ordinate: time evolution of the wall temperature (ϑ(1)2 |y=1, black solid lines with circles) and the
bulk temperature (U−1

2 〈u2 ϑ
(1)
2 〉, black solid line). Left ordinate: Nusselt number (4.7). The lower asymptote

(dotted line) identifies the starting Nusselt number, Nu|t→0 = 16(3 − β)β−1(8 − 3 β)−1; the upper asymptote
(dashed line) denotes the fully developed Nusselt number Nu∞ (4.8).

steady-state and neglecting the impact of advection (see Dupont et al. (2004); Thome
et al. (2004); Dai et al. (2015); Magnini & Thome (2017); Zhang & Nikolayev (2023)).
In this way, the heat-transfer coefficient is obtained by assuming a linear temperature
profile in the film. The results presented in § 4.2 can be used to check the validity of this
hypothesis. Combining (4.10) with (3.14) and (3.19), we obtain the following scaling law
for the steady-state heat-transfer coefficient of core-annular flows in a planar geometry:

h = 15
8
κ2

β Ĥ
. (4.12)

At the steady-state, h is a function of the fluid conductivity and the film thickness
only, i.e. h = h(κ2, β Ĥ). Our analysis confirms that the heat-transfer is primarily driven
by conduction in the film, and the temperature profile remains almost linear along the
transverse direction: when the film is thin enough, the dynamic effects due to the flow are
negligible, see figure 3(d), U2 → 0 as β → 0. This can be easily shown combining (C15)
with the steady-state axial derivative of the averaged temperature (4.4) for Br = 0,

ϑ
(1)
2

∣∣∣
t→∞ = qw√

ε

[
5 (3 + y) (1 − y)3 − β3 (5 − β)

20 β2 (3 − β)
+ y + β

2
− 1

]
, (4.13)

as plotted in figure 7(a). The temperature profile is almost linear in proximity of the
wall, while it flattens out at the interface where the heat-flux is zero; this behaviour is
embedded in the numerical factor 15/8 in (4.12).

However, in regimes where the film thickness is not small compared with the channel
size (Aussillous & Quéré 2000), the flow in the film is not negligible, and the Nusselt
number should be estimated using (4.8) instead of (4.12). In addition, accounting for
transient effects would introduce the dependence of the Péclet number into the problem –
see figure 7(b).
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Figure 8. Effective coefficients of advection as functions of the volume fraction β, for different viscosity ratios
m, when K= 1 in the absolute reference frame (V = 0). (a) Advective coefficients normalised with the mean
flow speed, i.e. a�j j/U j : j = 1 (left) and j = 2 (right). (b) Coefficients of coupled advection a�12/U1 (left) and
a�21/U2 (right). Those coefficients are independent of the speed of the reference frame.

4.5. Heat-transfer mechanisms and temperature field in the coupled regime
When the thermal conductivities of the two phases are of the same order, K =O(1),
the heat transfer problem is described by two coupled ADHT equations (3.8), (3.9).
Differently from the decoupled regime, the phases can exchange energy through the fluid–
fluid interface. By inspection of (3.8), (3.9), we see that the temperatures evolve in time and
space due to three different mechanisms: advection, diffusion and storage/source terms.
Specifically, each ADHT equation shows (i) a canonical and a coupled effective advection
term; (ii) a canonical and a cross-coupling effective diffusion term; (iii) storage and
source terms. In the following, we elucidate the physical interpretation of those effective
coefficients to describe the main heat-transfer mechanisms of the coupled regime.

The evolution of the advection coefficient a�j j = U j +ω�j j is shown in figure 8(a) in
the fixed reference frame (V = 0). For each phase, the advection can be written as the
sum of the mean phase velocity and an extra contribution due to phase coupling. When β
is small, the lubrication effect of the thin annulus enhances the effective advection of
the core that scales as β−1 and it is not affected by the viscosity ratio. The coupling
advective coefficients a�i j appear in each ADHT due to the continuity of temperature
at the fluid–fluid interface (see § C.5.2) and link one phase with the advection of the
other one. Those coupling coefficients are plotted in figure 8(b): when β is small (in the
TFR), the coupled advection in the core becomes negligible, a�12 → 0, and, therefore, axial
temperature gradients of the annulus do not directly affect the core. Instead, regardless of
the value of β, a�21 → 0 in the rigid-core limit (for m → ∞), where the velocity profile
in the core is almost flat, see figure 3(c), and does not trigger any coupled advection
mechanism.

To investigate the diffusive mechanisms, we can think of heat transfer in the flowing
phases via an electrical circuit analogy, as shown in figure 9(a). Specifically, the core-
annular flow is represented by a parallel connection of resistors with a specific thermal
conductance equal to G1 and G2; the equivalent conductance is then Geq = G1 + G2. In
this framework, we can recast the diffusive coefficients in analogy with the Aris–Taylor
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Figure 9. (a) Conductance ratios G j/Geq as functions of the volume fraction β, for K= 1. (b) Effective
coefficients of diffusion as functions of β, for different values of the viscosity ratio m, when K= 1, in the
reference frame moving at the mean flow speed (V = 1).

formalism to highlight the contribution of heat- and shear-induced diffusion as

d�11 = G1

Geq︸︷︷︸
(i)

+Pe2
(

D1 + δ�j j

)
︸ ︷︷ ︸

(ii)

, d�22 = G2

Geq︸︷︷︸
(i)

+A2 Pe2 (
D2 + δ�22

)︸ ︷︷ ︸
(ii)

, (4.14a–b)

The first contribution, (i), is a volume-weighted average of the thermal conductivities of
the individual phases and recalls the typical effective description proposed by Maxwell for
the heat diffusion coefficient of composites (Maxwell 1873); its evolution with the volume
fraction is shown figure 9(a), where we set K = 1. Note that the ratio G j/Geq also appears
in front of each time term in (3.8), (3.9), representing the thermal inertia of the phases,
i.e. their capacity to store heat and delay its transmission. In the limit of K → 0, the ratio
G2/Geq equals unity and the coefficient reduces to one discussed for the decoupled model.
The second contribution in the effective diffusive coefficients, (ii), accounts for the shear-
induced diffusion, D1 and D2, and the coupling between the phases via the terms δ�j j . Both
the effective diffusion coefficients scale with the square of the Péclet number, while the
extra contribution due to the interaction is specific of this class of coupled-layers problems
since it enter the ADHT equations by imposing the continuity of temperatures at the fluid–
fluid interface (see the derivation in § C.5.2). Those terms are quadratic expressions in the
speed of the moving reference frame, V , see (C41), consistent with previous works in the
context of mass diffusion, e.g. see Aris (1959).

The evolution of D2 with β and m has been discussed in § 4.1, figure 3(a), while
the shear-induced diffusion for the core, D1, is plotted in figure 9(b) setting V = 1.
Specifically, in the rigid-core limit, m → ∞, the shear-induced diffusion becomes
negligible since the inner phase has a flat velocity profile, see figure 3(c), preventing any
extra spreading across the axial direction rather than heat diffusion. Conversely, in the free-
surface limit, m → 0, the outer phase is almost at rest and behaves like a static coating: D1
increases linearly with the thickness β as

D1(V = 1, m → 0)= 2
105

+ β

15
, (4.15)
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Figure 10. Normalised coefficient of shear-induced thermal conductivity Π2 for the outer phase of core-
annular flows (K= 1) against the flow Péclet number Pe, for different values of volume fraction β and viscosity
ratio m.

showing that a thinner core will result in higher transverse variations in its velocity
profile, promoting the shear-induced axial diffusion mechanism. As expected, the single-
phase limit of 2/105 is recovered when β → 0.

To explore the influence of the flow parameters (m, β, Pe, K, A) on the heat-
transfer mechanisms in the coupled regime, we set V = 1 and study the ratio between
the coefficient of shear-induced thermal diffusivity in (4.14) and its single-phase limit,
Π j = d�j j/DAT, j , similarly to what done in § 4.1:

Π1 =
1 + 1 − β

K β
+A2Pe2 (

D1 + δ�11
)

1 + 2
105

A2 Pe2
, Π2 =

1 + K β

1 − β
+ Pe2 (

D2 + δ�22
)

1 + 2
105

Pe2
.

(4.16a–b)
The evolution ofΠ2 against the Péclet number is shown in figure 10, varying the viscosity
ratio m for three different volume fractions β = {0.05, 0.2, 0.8}; the conductivity ratio
K has been set to unity. The normalised diffusion coefficient of the outer phase has the
form of an S-shaped curve and allows the identification of a diffusion-dominated and an
advection-dominated regime. Differently from the decoupled model, the purely diffusive
regime is characterised by a limiting value that exceeds unity, i.e. Π2 → 1 + K β/(1 − β)

for Pe → 0, and equal to the conductance ratio G2/Geq, see the expression of t�2 given
in (C38). The advective limit is strongly affected by the viscosity ratio and the volume
fractions. Specifically, when the thickness β is small, the combined effect of advection and
the coupling between phases reduces the diffusion coefficients compared with the case of
single-phase flow. This effect is more pronounced in the free-surface than in the rigid-core
limit. When the annulus is thick enough, instead, Π2 can overcome the purely diffusive
limit for sufficiently small values of the viscosity ratio m. The shear-induced diffusion ratio
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Figure 11. Normalised coefficient of shear-induced thermal diffusivity Π1 for the inner phase of core-annular
flows (K= 1) against the flow Péclet number A Pe, for different values of viscosity ratio m, setting the volume
fraction to (a) β = 0.05 and (b) β = 0.4.

for the inner phase Π1 shows a similar behaviour, as presented in figure 11: at low Péclet
numbers, Π1 → G1/Geq = 1 + (1 − β)/(K β), see the expression of t�1 given in (C38).
However, in the advective regime, the shear-induced diffusion in the core is minimal in
the rigid-core limit, where transverse variations of velocity are negligible.

A similar analysis can be done for the cross-coupling diffusive terms Pe2 d�12 and
A2 Pe2 d�21 in (3.8), (3.9), introducing the following ratios:

Π12 = Pe2 d�12

1 + 2
105

Pe2
, Π21 = A2 Pe2 d�21

1 + 2
105

A2 Pe2
. (4.17a-b)

The physical origin of these coupling terms is due to advection only, as can be seen in
figure 12. Both coefficients, in fact, tend to zero in the purely diffusive regime (Pe → 0)
and play a role only when advection is important, i.e. at high Péclet numbers. Note that the
coupling terms enter the model when the temperature continuity is enforced, see Appendix
C.5.2, suggesting that, at high Péclet numbers, heat diffusion in one phase is influenced
by diffusion in the other one and vice versa. This mechanism can either play as negative
diffusion (with respect to a reference frame that moves with the mean flow V = 1, and,
therefore, the core is always faster than the annulus), as in the case of the annulus, see
figure 12(a), or either enhance or reduce diffusion depending on m and β in the case of
the core, see figure 12(b).

Finally, we study the source terms in (3.8), (3.9) to interpret how the external source of
energy qw affects the model. To do so, observing that the source terms are identical up to
a factor equal to K 2, i.e. K 2 e�1 = e�2, see (C45), and are opposite-signed, we consider the
linear combination, K 2 (3.8) + (3.9), so that the exchange terms cancel out to obtain

qw
ε

(
K 2g�1 + g�2

)
= qw Ĥ

ε κ2
(G1 + G2)= qw Ĥ

ε κ2
Geq . (4.18)
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Figure 12. Normalised coefficients of cross-coupling diffusivity, (a) Π12 and (b) Π21, for a core-annular
system (K= 1) against the corresponding flow Péclet number, for different values of viscosity ratio m and
volume fraction β.

The resulting source term is the imposed heat flux at the channel wall multiplied by the
sum of the two thermal conductances, see figure 9(a), confirming the consistency of our
model. In other words, in the equation for the annulus, the source term is positive and
greater with respect to the decoupled model by a factor 3 K/2(1 − β) > 0 – see (C44) –
while in the core, the source term is negative, −K/2(1 − β) < 0, so as to preserve the
continuity of the temperature and the thermal flux across the interface. Overall, the
energy entering both layers is equal to (4.18) and consistent with the imposed boundary
conditions (2.16).

4.6. Transient and steady-state temperature field in the coupled regime
In the coupled regime, the system of coupled ADHT equations (3.8), (3.9) can be solved
numerically and admits an analytical solution only at the steady state.

At the steady state, in fact, diffusion smears out any sharp differences of temperature,
and the solution 〈ϑ∞

j 〉(x), j = {1, 2}, can be derived by setting to zero the time derivatives
and diffusive terms in (3.8), (3.9), yielding an inhomogeneous system of linear first-order
ordinary differential equations (ODEs), which can be recast via a linear combination as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d
〈
ϑ∞

1
〉

dx
= η1

(〈
ϑ∞

1
〉− 〈

ϑ∞
2

〉)+ γ1,

d
〈
ϑ∞

2
〉

dx
= η2

(〈
ϑ∞

1
〉− 〈

ϑ∞
2

〉)+ γ2,

(4.19a,b)

where

λ= ε
(
a�11 a�22 − a�12 a�21

)
, η1 = −a�22 e�1 + a�12 e�2

A Pe λ
, η2 = a�21 e�1 + a�11 e�2

Pe λ
, (4.20a)
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γ1 =
(
a�22 w

�
1 − a�12 w

�
2
)

Br + (
a�22 g�1 − a�12 g�2

)
qw

A Pe λ
, (4.20b)

γ2 =
(−a�21 w

�
1 + a�11 w

�
2
)

Br + (−a�21 g�1 + a�11 g�2
)

qw
Pe λ

. (4.20c)

A particular solution to system (4.19) (see Kamke (1977); Polyanin & Zaitsev (2017)) is
represented by two parallel lines of slope M and intercepts Q j :〈

ϑ∞
j

〉
(x)= Mx + Q j , with M = η1 γ2 − η2 γ1

η1 − η2
, Q j = −η j (γ1 − γ2)

(η1 − η2)
2 , (4.21)

meaning that, at the steady state, the temperature of both phases increases linearly in the
axial direction with slope equal to M(qw/Pe, β, m, KA, Br ′) given by

M = 2 qw
ε Pe

{
(1 − β)3 + m

[
β
(
β2 − 3 β + 3

)+ 12 Br ′]
m β2(3 − β)+KA [

2 (1 − β)3 + 3 m β (1 − β) (2 − β)
]
}
, (4.22)

where the dimensionless group KA represents the volumetric heat capacity ratio.
Remarkably, in the free-surface limit, m → 0, M is independent of β and equals
qw/(ε Pe KA), whereas the single-phase limits are

ε Pe M

qw
=

⎧⎪⎨
⎪⎩

1 + 12 m Br ′

KA if β → 0,

1 + 12 Br ′ if β → 1,
(4.23)

recovering, in the absence of viscous dissipation (Br ′ = 0), the expected steady-state
thermal behaviour, i.e. M ∝ {1/(KA); 1}, see figure 13(a). The difference between the
intercepts Q2 − Q1 corresponds to the steady-state thermal lag between the outer and the
inner phase. Interestingly, in the free-surface limit, m → 0, the normalised thermal lag
increases linearly with β as [4(1 − β)+ 5 K β]/(10 K ).

The transient formulation of (3.8), (3.9) can be solved numerically, as shown in
figure 14(a, b), choosing a liquid–liquid system from table 1; the numerical solution has
been obtained using the pdepe solver of MATLAB, setting an initial temperature equal
to zero in both phases and imposing the steady-state heat flux M , given in (4.22), at
the right boundary of the domain (x = 20). A second-order accurate spatial discretisation
scheme is employed to convert the original problem into a set of ODEs, which are then
integrated to obtain approximate solutions at the specified times (Skeel & Berzins 1990).
Time discretisation is performed using a multistep variable-step variable-order (VSVO)
solver based on numerical differentiation formulae (NDFs) of orders 1–5 (Shampine &
Reichelt 1997; Shampine, Reichelt & Kierzenka 1999). We use equally spaced meshes in
the intervals 0 � x � 20 and 0 � t � 18, with 1001 and 501 points, respectively. To ensure
highly accurate results, the relative and absolute errors at each integration step have been
set to 10−12, with norm control enabled to manage the overall error in the solution vector.
As time elapses, the solution evolves and an increasing region of the channel reaches the
steady state.

Interestingly, we can use the numerical solution to check the model consistency and
verify that the continuity of temperature at the fluid–fluid interface has been properly
enforced. This issue represents a key aspect of the model, since such a boundary condition
has been imposed in asymptotic terms, see § C.5.2. From figure 14(c), we can see that the
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Figure 13. Normalised (a) slope and (b) difference in intercepts for the steady-state solutions (4.21) to the
coupled model, as a function of the volume fraction of the outer phase β and for fixed values of the viscosity
ratio m, corresponding to a liquid–liquid scenario with A= 0.51 and K= 5.18, see table 1.

temperature difference, ϑ1 − ϑ2 = (〈ϑ1〉 + √
ε ϑ

(1)
1 + ε ϑ

(2)
1 )− (〈ϑ2〉 + √

ε ϑ
(1)
2 + ε ϑ

(2)
2 )

evaluated at the interface and keeping the first three terms of the expansions is within the
O(ε√ε) error, consistent with the two-scale asymptotic expansion in (3.3). Our model is
in fact accurate up to the order O(ε).

4.7. Nusselt number in the coupled regime
In the coupled regime, the bulk temperature ϑb, see (3.15), simplifies to

ϑb (x, t)=
KA (1 − β)U1

(
〈ϑ1〉 + √

ε ϑ
(1)
1

)
+ β U2

(
〈ϑ2〉 + √

ε ϑ
(1)
2

)
KA (1 − β)U1 + β U2

+O(ε),
(4.24)

and the Nusselt number can be computed though the definition (3.19), using the
numerical solution of (3.8), (3.9) for the averaged temperatures

〈
ϑ j

〉
to estimate the

first-order terms in (4.24) via (C12) and (C15). The Nusselt number in laminar
coupled core-annular flows with uniform wall heat-flux is a function only of Nu =
Nu(x, t, β, m, A, K, qw, Br ′, Pe) and, based on the definition of the heat-transfer
coefficient, see (3.12), it allows for obtaining the two-phase heat-transfer coefficient.

An example of the time and spatial evolution of Nu(x, t) is given in figure 14(d):
the Nusselt number evolves according to an S-shaped trend and is bounded between a
lower and an upper horizontal asymptote, corresponding respectively to its limiting values
for t → ∞ and t → 0. The impact of the Péclet number (i.e. the competition between
advection and diffusion) is qualitatively similar to what is described in figure 5(b–f ) for
the decoupled regime and it is not shown here only for the sake of brevity.

At the steady state, the axial gradients of temperature ∂〈ϑ j 〉/∂x can be replaced by the
slope M given in (4.21) and the Nusselt number Nu∞ = Nu∞(β,m,A,K, Br ′) can be
written in a closed form (its full expression looks quite cumbersome and it is not reported
here only for the sake of brevity). Figure 15 shows the evolution of Nu∞ with respect to
the volume fraction and the viscosity ratio for a liquid–liquid case, see table 1, keeping
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Figure 14. Transient evolution of the averaged temperature 〈ϑ j 〉(x, t) in the coupled regime, (a) j = 1,
(b) j = 2. (c) Absolute value of the difference between the temperatures of the two phases at the interface
ϑ j |y=1−β , including corrections up to the second order. Dashed horizontal lines represent the O(ε1/2, ε, ε3/2)

tolerances choosing ε= 0.01. (d) Time evolution of the Nusselt number Nu(x, t) against the axial coordinate
x . For this liquid–liquid scenario (see table 1), the simulation parameters are: Pe = 1, A= 0.51, K= 5.18,
m = 0.625, qw = 0.1, β = 0.5, Br′ = 0. Mesh resolution: 
x = 0.02.

the conductivity ratio as K = 1; the panels (a)–(c) show the effect of the diffusivity ratio
A. First, the single-phase limits of the steady-state Nusselt number for a vanishing core
(i.e. the channel section is entirely occupied by the outer phase) yields to

Nu∞ (
β → 1, m, A, K, Br ′)=

⎧⎪⎨
⎪⎩

4 +O(1 − β) if m → 0,

140
108 Br ′ + 17

+O(1 − β) otherwise,
(4.25)

confirming that the result obtained as m → 0 is consistent with the single-phase
benchmark expression given by (278) of Shah & London (1978) (Nu∞ = 140/17) for a
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Figure 15. Limiting two-phase Nusselt number for a core-annular flow of unitary conductivity ratio, K= 1,
as a function of the volume fraction β, for fixed values of the viscosity ratio m. Panels (a) to (c) refer to
a non-dissipative core-annular flow (Br ′ = 0) with increasing diffusivity ratios as increasing powers of the
small-scale parameter, ε= 0.01: (a) A= ε, (b) A= √

ε, (c) A= 1. In (d), A= Br ′ = 1.

uniform heat flux boundary condition imposed in a planar channel. Note that in the free-
surface limit, m → 0, the outer phase moves so slowly (see figure 3d) that the heat flux
cannot be convected downstream and the Nusselt number converges to the value of 4,
in agreement with the case of two different temperatures specified at each boundary, see
(268) of Shah & London (1978).

Interestingly, when m → 0, the convective heat-transfer is less efficient compared with
the single-phase flow and Nu∞ < 140/17 in the whole range of volume fractions, see
figure 15(a–c). In the free-surface limit, in fact, the annulus moves so slowly (see figure 3c)
that the asymptotic Nusselt number is unaffected by the thermal diffusivity ratio A:

Nu∞ (β, m → 0, K)= 140 K

35 K β + 17 (1 − β)
. (4.26)
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Notice that, in the coupled regime (k = 0), the use of K or K = K εk is equivalent
in (4.26). In the rigid core limit, instead, convective heat-transfer is favoured and is always
enhanced compared with the single-phase flow, namely Nu∞ > 140/17, in the whole range
of β. This can be explained by the shape of the velocity profile (linear in the annulus and
flat in the core, see figure 3c), that maximises heat transfer ensuring the most efficient
replacement of fluid over the heated surface. This effect is amplified by lowering the
diffusivity ratio A. Specifically, the thermal diffusivity represents the promptness of
a material in dissipating a temperature inhomogeneity relative to its tendency to store
thermal energy, and, therefore, when A is less than one, the diffusivity of the core is
greater than that of the annulus. In our case, a lower value of A results in a greater
tendancy of the outer phase to accumulate the heat received from the surroundings rather
than diffusing it, enhancing the heat-transfer coefficient. This behaviour is favoured at low
volume fractions, i.e. when the fluid in contact with the channel wall is sufficiently thin.
In contrast, increasing β leads to a larger thermal resistance in the annulus and gives a
greater difference between the wall and the bulk temperature defined in (4.24), reducing
the heat-transfer coefficient h and the Nusselt number.

In other words, two-phase flows enhance convective heat transfer only under certain
conditions. Specifically, only if the viscosity ratio is finite and the diffusivity ratio is small
enough, we observe an enhanced heat-transfer coefficient, in particular at low volume
fractions.

Finally, the effect of viscous dissipation on the Nusselt number is shown in figure 15(d),
setting Br ′ = 1 while keeping A= 1. When the two fluids have the same viscosity, i.e.
m = 1, the Nusselt number does not depend on the volume fraction and viscous dissipation
lowers the value of 140/(108 Br ′ + 17). The curves obtained for values of m larger than
1 are located below this threshold, while those where 0<m < 1 lie above it. In any
case, viscous heating (Br ′ > 0) reduces the efficiency of convective heat-transfer and the
dependence on the viscosity ratio is flipped compared with the non-dissipative scenario.
This can be attributed to the combination of two factors (Shah & London 1978): (i) a
reduction in the wall temperature gradient near the wall region due to viscous heating; and
(ii) a slower rise of the bulk temperature along the channel axis, due to a reduced amount
of heat transferred through the wall.

5. Conclusions
Forced convection in two-phase channel flows arises in a large variety of applications. In
this paper, we derived an asymptotic one-dimensional model to describe the heat transfer
in laminar core-annular flows in a planar geometry heated by a uniform heat-flux (extended
Graetz-type problem).

The main heat-transfer mechanisms (advection and diffusion) occurring along the
transversal and the longitudinal direction has been modelled via effective coefficients,
which depend on the Péclet and Brinkman numbers, the dimensionless heat flux, the
viscosity, thermal diffusivity and thermal conductivity ratios, and the volume fraction
only. Specifically, the resulting diffusion coefficients provide a generalisation of the
classical Aris–Taylor dispersion theory to two-phase flows. The model reveals the
existence of two main regimes, depending on the thermal capacity of the two phases.

When the thermal conductivities of the two fluids are of the same order of magnitude,
as in liquid–liquid systems, the system is described by two-coupled advection–diffusion
heat-transfer equations. The coupling between the phases results in a canonical and a
coupled effective advection term, a canonical and a cross-coupling effective diffusion
term, and storage and source terms for each phase. We derived an analytical model for the
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Nusselt number revealing that the heat transfer is enhanced with respect to the single-phase
scenario only if the viscosity ratio is finite and the diffusivity ratio is small enough. In
addition to that, we identified the dominant regime controlling thermal mixing depending
on the magnitude of the Péclet number. In particular, at small Pe, the transport of thermal
energy is dominated by diffusion. For intermediate values of the Péclet number, advection
and diffusion compete, leading to a strong influence of both the flow condition (i.e.
Péclet number) and the properties of the system (i.e. volume fraction, viscosity, thermal
conductivity and thermal diffusivity ratios) on the dispersion coefficient. At high Pe, heat
transport is fully dominated by advection.

When the annulus is more conductive than the core, as in most liquid–gas systems, the
phases are thermally decoupled and the averaged temperature of the core evolves according
to a single one-dimensional advection–diffusion heat-transfer equation. In this case, the
limiting Nusselt number scales as the inverse of the annulus thickness and it is independent
of the viscosity ratio. If the annulus is thin, our model confirms that, within the film, the
heat-transfer is primarily driven by conduction and the temperature profile remains almost
linear along the transverse direction. Interestingly, in the advection-dominated regime, the
core-annular flow pattern does not enhance thermal mixing compared with single-phase
flow, in particular when the volume fraction is small. Our analysis is complemented by
the identification of a hierarchy between the characteristic time scales of advection and
diffusion, helping in understanding the proper time window where thermal dispersion can
be observed.

Our work clarifies the impact of the phases topology on forced convection and we hope
that it may be extended with the aim of offering a more rigorous interpretation of the
heat-transfer phenomena taking place in more complex two-phase flow patterns.
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MUR code: 20229JPN53; CUP Master code: J53D23002000006; CUP code: D53D23003250006.
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Appendix A. Velocity profiles
Consider a core-annular flow as shown in figure 1 at laminar and steady-state conditions:
the system is composed by two immiscible and incompressible fluids with no interfacial
instabilities or entrainment of one phase into the other (Joseph, Nguyen & Beavers 1984)
and in the absence of any body forces (such as buoyancy). The channel is assumed
to be shallow enough (Ĥ/L̂ � 1) so that the momentum equations of each phase are
simplified using the lubrication approximation and the flow is treated as one-dimensional
(the velocity components in the transverse and normal directions are neglected). The
momentum equation for each j th-Newtonian fluid, then, reduces to

0 = −d p̂

dx̂
+μ j

d2û j

d2 ŷ2 j = {1, 2} , (A1)

subjected to the following boundary conditions:

dû1

dŷ

∣∣∣∣
ŷ=0

= 0, (A2a)
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μ1
dû1

dŷ

∣∣∣∣
ŷ=(1−β)Ĥ

=μ2
dû2

dŷ

∣∣∣∣
ŷ=(1−β)Ĥ

, (A2b)

û1
∣∣
ŷ=(1−β)Ĥ = û2

∣∣
ŷ=(1−β)Ĥ , (A2c)

û2
∣∣
ŷ=Ĥ = 0, (A2d)

namely, the symmetry of the inner velocity profile with respect to the channel
axis (A2a), the continuity of tangential stresses (A2b) and velocities (A2c) at the interface,
and, the no-slip condition at the channel wall. The set of equations (A1) admits the
following analytical solution

û j (ŷ)= 1
2μ j

d p̂

dx̂
ŷ2 + Â j ŷ + B̂ j j = {1, 2} , (A3)

where Â j , B̂ j are constants to be determined imposing the boundary conditions given
in (A2):

Â1 = 0, Â2 = 0, (A4a)

B̂1 = −1
2

d p̂

dx̂

Ĥ2 [μ2 − β(2 − β) (μ2 −μ1)]
μ1 μ2

, B̂2 = −1
2

d p̂

dx̂

Ĥ2

μ2
, (A4b)

leading to the dimensional velocity fields expressed in (2.1). Effects related to thermo-
capillary Marangoni convection have not been considered in this work.

A.1 Dimensionless velocity profiles
The dimensionless velocity profiles u j (y) normalised using (2.12b,d) are given by

u1(y)= 3Λ[1 + β(2 − β)(m − 1)− y2], u2(y)= 3Λm(1 − y2), (A5a)

U1 =Λ[2 + β(2 − β)(3m − 2)], U2 =Λmβ(3 − β), (A5b)

with

Λ−1 = 2[1 + β(β2 − 3β + 3)(m − 1)]. (A6)

Figure 3(c) shows the velocity profiles (A5a) as a function of the viscosity ratio m.
When m → ∞, the inner fluid approaches the constant plug-like profile and we will refer
to it as the rigid-core limit; conversely, the outer velocity profile becomes linear in the
free-surface limit when m → 0 (Balestra et al. 2018).

The evolution of the average speed U j , see (A5b), against the volume fraction of the
outer phase for different values of the viscosity ratio is presented in figure 3(d).

Appendix B. Heat capacity flow rate ratio
In Graetz-type heat exchange problems, the heat capacity flow rate ratio (or capacitance
ratio) Cr is widely used. This dimensionless number is the ratio between the heat capacity
rates (the product of mass flow rate ṁ j and specific heat capacity at constant pressure cp, j )
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Figure 16. Evolution of the heat capacity flow rate ratio Cr as a function of the dimensionless thickness of the
outer layer β for different values of the viscosity ratio m in (a) liquid–liquid and (b) gas–liquid systems. The
two set of curves differ for the thermal capacity ratio KA. The TFR is highlighted by the grey area.

of the two phases flowing in a heat exchanger (Bai et al. 2018). For the core-annular
configuration depicted in figure 1, Cr is computed combining (2.14c, A5b, A6) as

Cr = ṁ2 cp, 2

ṁ1 cp, 1
= ρ2

ρ1

β

1 − β

U2

U1

cp, 2

cp, 1
= 1

KA
β2 m(3 − β)

(1 − β)
[
2 (1 − β)2 + 3 m β(2 − β)

] .
(B1)

From the physical point of view, the heat capacity ratio governs the distribution of heat
between the two phases and plays a crucial role in determining the overall effectiveness of
heat transfer. Specifically, Cr describes how efficiently the energy is transferred from one
phase to the other: the optimal performance is obtained when Cr ≈ 1, while for Cr → 0 or
Cr → ∞, its effectiveness is limited due to one phase dominating the heat transfer process.
The Cr is typically related to the design and the optimisation of heat exchangers, e.g. the
NTU (number of transfer units) method (Langerova & Matuska 2023).

In figure 16, we plot the capacitance ratio against the volume fraction of the outer
phase for different values of the viscosity ratio for liquid–liquid and gas–liquid systems,
identified by the order of magnitude of the thermal capacity ratio (i.e. the product KA).
Referring to table 1, we can assume that KA≈ 1 in liquid–liquid and KA≈ 10−3 for
gas–liquid systems. Interestingly, Cr increases with m while keeping β fixed for both
liquid–liquid and gas–liquid systems, and the optimal condition of Cr = 1 shifts to lower
β, see figure 16.

Appendix C. Derivation of the heat-transfer model using two-scale asymptotic
expansion
In the following sections, the derivation of the effective equations is carried out following
the procedure discussed in § 3.
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C.1 Expanded governing equations
After making the axial-coordinate stretching (3.1) and using (3.2), the governing
equations (2.13) become

ε−p + δ
j
1 a

[
ε
∂ϑ j

∂τ
+ √

ε
(
u j − V

) ∂ϑ j

∂ξ

]
=

(
ε
∂2ϑ j

∂ξ2 + ∂2ϑ j

∂y2

)

+ B εb + δ
j
1 [logε(m/K )−k]

(
du j

dy

)2

, (C1)

where u j (y) is the velocity profile of the j-phase given in (A5), V is the velocity of
the moving reference frame, and δ j

1 = 1 − δ
j
2 is the Kronecker delta defined in (3.7) and

introduced to make the model derivation more compact. Plugging the expansion (3.3)
into (C1) leads to

−ε−p + δ
j
1 a

[
ε
∂ϑ

(0)
j

∂τ
+ ε

√
ε
∂ϑ

(1)
j

∂τ
+ √

ε
(
u j − V

) ∂ϑ(0)j

∂ξ
+ ε

(
u j − V

) ∂ϑ(1)j

∂ξ

+ ε
√
ε
(
u j − V

) ∂ϑ(2)j

∂ξ

]
+ ε

∂2ϑ
(0)
j

∂ξ2 + ε
√
ε
∂2ϑ

(1)
j

∂ξ2

+
(
∂2ϑ

(0)
j

∂y2 + √
ε
∂2ϑ

(1)
j

∂y2 + ε
∂2ϑ

(2)
j

∂y2

)
+ B εb + δ

j
1 [logε(m/K )−k]

(
du j

dy

)2

=O(ε2).

(C2)

Since the employed asymptotic expansion (3.3) was truncated to its first three terms,
a cascade of equations for the unknown functions ϑ(n)j , with n = {0, 1, 2}, originates
from (C2). Specifically, we obtain

O(1) : ∂
2ϑ

(0)
j

∂y2 = 0, (C3a)

O(√ε) : ∂
2ϑ

(1)
j

∂y2 = ε−p + δ
j
1 a (

u j − V
) ∂ϑ(0)j

∂ξ
− B εb − 1

2 + δ
j
1
[
logε(

m
K )−k

] (du j

dy

)2

, (C3b)

O(ε) : ∂
2ϑ

(2)
j

∂y2 = ε−p + δ
j
1 a

[
∂ϑ

(0)
j

∂τ
+ (

u j − V
) ∂ϑ(1)j

∂ξ

]
− ∂2ϑ

(0)
j

∂ξ2 , (C3c)

O(ε√ε) : 0 = ε−p + δ
j
1 a

[
∂ϑ

(1)
j

∂τ
+ (

u j − V
) ∂ϑ(2)j

∂ξ

]
− ∂2ϑ

(1)
j

∂ξ2 , (C3d)

where the order of magnitude of the governing parameters is within the applicability
region discussed in § 3.1 and has been chosen in a way that ensures the least degeneracy
of the closure problem (Van Dyke 1964). In other words, we keep the maximum possible
number of non-vanishing small terms (Feuillebois & Lasek 1977) when equal powers of
ε are gathered from the expanded governing equation (C2). Doing so, all the relevant
physical effects enter the problem as soon as practicable and not beyond (Richard et al.
2016).
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C.1.1 Boundary conditions
The boundary conditions (2.16) have to be expanded so that at each order in (C3), we
obtain a boundary-value problem in the form of a second-order linear partial differential
equation (PDE) that can be solved integrating twice in y.

The continuity of thermal fluxes across the interface (2.16b) reads(
∂ϑ

(0)
2
∂y

+ √
ε
∂ϑ

(1)
2
∂y

+ ε
∂ϑ

(2)
2
∂y

)∣∣∣∣∣
y=1−β

= K
(
∂ϑ

(0)
1
∂y

+ √
ε
∂ϑ

(1)
1
∂y

+ ε
∂ϑ

(2)
1
∂y

)∣∣∣∣∣
y=1−β

,

(C4)

suggesting the identification of several regimes based on the order of magnitude of the
thermal conductivity ratio K. In this work, we will focus on regimes where the inner phase
exhibits a comparable (k = 0) or lower (k > 0) thermal conductivity with respect to that of
the outer phase only. Therefore, depending on the order of magnitude of the conductivity
ratio, the terms on the right-hand side of (C4) shift between orders.

The continuity of temperatures across the interface (2.16c) is not imposed order-
by-order, viz. ϑ(n)1 |y=1−β = ϑ

(n)
2 |y=1−β , because it is not compatible with the chosen

gauge (3.6) (namely, that the leading-order temperature coincides with the averaged
temperature). Instead, similarly to Ling et al. (2016), we interpret the temperature
continuity as an asymptotic equivalence of the type(
ϑ
(0)
1 − ϑ

(0)
2

)∣∣∣
y=1−β + √

ε
(
ϑ
(1)
1 − ϑ

(1)
2

)∣∣∣
y=1−β + ε

(
ϑ
(2)
1 − ϑ

(2)
2

)∣∣∣
y=1−β =O (

ε
√
ε
)
.

(C5)
The adiabatic condition (2.16d) at y = 0 is straightforward and consistent with the
symmetry of the problem, giving

∂ϑ
(n)
1
∂y

∣∣∣∣∣
y=0

= 0, n = {0, 1, 2} . (C6)

Lastly, to satisfy the gauge condition (3.6), the dimensionless external heat flux imposed
at y = 1 needs necessarily to appear as an O(√ε) quantity, which is equivalent to
writing (2.16a) as

∂ϑ
(n)
2
∂y

∣∣∣∣∣
y=1

=
⎧⎨
⎩

0 if n = 0 ∨ n � 2,

Q ε f − 1
2 if n = 1.

(C7)

C.2 Order O(1): ϑ(0)j solutions

The leading-order equation (C3a) and the boundary conditions (C6), (C7) for n = 0 are
homogeneous. This ensures that the boundary-value problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2ϑ
(0)
j

∂y2 = 0,

∂ϑ
(0)
j

∂y

∣∣∣∣∣
y=δ j

2

= 0,

(C8a,b)

admits a trivial solution (i.e. that ϑ(0)j is independent of y), and, therefore, ϑ(0)j (ξ, τ )

corresponds to the average dimensionless temperature 〈ϑ j 〉(ξ, τ ) defined by (3.4). This is
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true as long as p< 1/2, p − a < 1/2 and f > 0, namely Pe � 1/
√
ε, A Pe � 1/

√
ε and

qw � 1 – viscous dissipation also has to enter the problem as an O(√ε) contribution or
lower.

C.3 Order O(√ε): ϑ(1)j solutions

At the order O(√ε), the derivation will be carried out without choosing a specific value
for the velocity of the reference frame V , which will remain arbitrary. This issue will be
discussed in § 4.

Starting from the inner phase, (C3b) and (C6) with n = 1 and j = 1 give the following
boundary-value problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2ϑ
(1)
1

∂y2 = ε−p + a (u1 − V )
∂ϑ

(0)
1
∂ξ

− m B

K
εb − k − 1

2

(
du1

dy

)2

,

∂ϑ
(1)
1
∂y

∣∣∣∣∣
y=0

= 0.

(C9a,b)

Integrating (C9a) with respect to y gives

∂ϑ
(1)
1
∂y

(y)= εa

ε p

(∫ (
u1(y

∗)− V
)

dy∗
)
∂ϑ

(0)
1
∂ξ

− m B

K

εb − k

√
ε

∫ (
du1(y∗)

dy∗

)2

dy∗ + A(1)1 ,

(C10)
where the integration constant A(1)1 = 0 is determined by using the thermal symmetry

condition (C9b) along with the corresponding velocity profiles (A5).
Then, we proceed by integrating (C10), obtaining

ϑ
(1)
1 (y)= εa

ε p

(∫∫ (
u1(y

∗)− V
)

d2 y∗
)
∂ϑ

(0)
1
∂ξ

− m B

K

εb − k

√
ε

∫∫ (
du1(y∗)

dy∗

)2

d2 y∗ + B(1)1 ,

(C11)
where the integration constant B(1)1 is determined enforcing the gauge-fixing condition

of the type of (3.5), i.e.
〈
ϑ
(1)
1

〉
= 0 (see Mikelić et al. (2006)). Doing so, we get an

expression for the first-order correction of the temperature of the inner phase

ϑ
(1)
1 (ξ, y, τ ; ε)= ε−p + a M1(y)

∂ϑ
(0)
1
∂ξ

− m B

K
εb − k − 1

2 MW
1 (y), (C12)

where the functions

M1(y)=
[
(1 − β)2 − 3 y2

6

]
V + Λ

20

{
−5 y4 + 30

[
β m(2 − β)+ (1 − β)2

]
y2 +

−(1 − β)2
[
10 β m(2 − β)+ 9 (1 − β)2

]}
, (C13a)

MW
1 (y)=

3Λ2 [
5 y4 − (1 − β)4

]
5

, (C13b)

are traditionally named B-fields after the seminal works of H. Brenner (Brenner
& Stewartson 1980; Brenner & Edwards 1993) on Taylor dispersion. These functions
represent the mean axial displacement at long times of a fluid particle located at y within
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the channel cross-section, under the assumption that its initial positions are all equally
probable (Mauri 2015).

For the outer phase, j = 2, (C3b) and (C7) for n = 1 give⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2ϑ
(1)
2

∂y2 = ε−p (u2 − V )
∂ϑ

(0)
2
∂ξ

− B εb − 1
2

(
du2

dy

)2

,

∂ϑ
(1)
2
∂y

∣∣∣∣∣
y=1

= Q ε f − 1
2 .

(C14)

Following the same mathematical procedure illustrated earlier yields a solution for ϑ(1)2 in
a similar form:

ϑ
(1)
2 (ξ, y, τ ; ε)= ε−p M2(y)

∂ϑ
(0)
2
∂ξ

− B εb − 1
2 MW

2 (y) + Q ε f − 1
2 Mq

2(y),

(C15)
where

M2(y)=
[
β2 − 3 (1 − y)2

6

]
V + Λm

20

(
−5 y4 + 30 y2 − 40 y + β4 − 5 β3 + 15

)
,

(C16a)

MW
2 (y)=

3Λ2 m2

5

(
−5 y4 + 20 y + β4 − 5β3 + 10β2 − 15

)
, (C16b)

Mq
2(y)= y + β

2
− 1. (C16c)

C.4 Order O(ε): ϑ(2)j solutions

At the order O(ε), the procedure to find ϑ(2)j can be simultaneously applied to both phases

using the Kronecker delta defined in (3.7). First, since the previous-order solutions ϑ(1)j ,
see (C12), (C15), depend on the axial coordinate ξ only via the leading-order temperatures
ϑ
(0)
j , we have

∂ϑ
(1)
j

∂ξ
= ε−p + δ

j
1 a M j (y)

∂2ϑ
(0)
j

∂ξ2 . (C17)

Then, we can replace (C17) into (C3c) and use the boundary conditions (C6), (C7) to
obtain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2ϑ
(2)
j

∂y2 = ε−p + δ
j
1 a
∂ϑ

(0)
j

∂τ
+

[
ε2 (−p + δ

j
1 a)

(
u j (y)− V

)M j (y)− 1
] ∂2ϑ

(0)
j

∂ξ2 ,

∂ϑ
(2)
j

∂y

∣∣∣∣∣
y = δ

j
2

= 0.

(C18a,b)
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Integrating (C18a) between δ j
2 and y and making use of (C18b) lead to

∂ϑ
(2)
j

∂y
(y) = ε−p + δ

j
1 a ϕ j (y)

∂ϑ
(0)
j

∂τ
+

[
ε2 (−p + δ

j
1 a) ψ j (y)− ϕ j (y)

] ∂2ϑ
(0)
j

∂ξ2 , (C19)

with

ϕ j (y)=
∫ y

δ
j
2

dy∗, ψ j (y)=
∫ y

δ
j
2

I j (y
∗) dy∗, I j (y)=

(
u j (y)− V

)M j (y).

(C20)
Integrating (C19) indefinitely gives

ϑ
(2)
j (y) = ε−p + δ

j
1 a Φ̃ j (y)

∂ϑ
(0)
j

∂τ
+

[
ε2 (−p + δ

j
1 a) Ψ̃ j (y)− Φ̃ j (y)

] ∂2ϑ
(0)
j

∂ξ2 + B(2)j ,

(C21)
where

Φ̃ j (y)=
∫
ϕ j (y

∗)dy∗, Ψ̃ j (y)=
∫
ψ j (y

∗) dy∗, (C22)

and B(2)j is an integration constant, which can be found via the gauge-fixing condition

〈ϑ(2)j 〉 = 0. Finally, we obtain the full expression for the second-order correction of the
temperature for both phases:

ϑ
(2)
j (ξ, y, τ ; ε) = ε−p + δ

j
1 a Φ j (y)

∂ϑ
(0)
j

∂τ
+

[
ε2 (−p + δ

j
1 a) Ψ j (y)−Φ j (y)

] ∂2ϑ
(0)
j

∂ξ2 ,

(C23)

with

Φ j (y)= Φ̃ j − 〈
Φ̃ j

〉
, Ψ j (y)= Ψ̃ j − 〈

Ψ̃ j
〉
. (C24)

By inspection of (C23), we can notice that the O(ε) temperature profile describes the
temporary thermal fluctuations occurring within the system through a time-derivative and
a diffusive term. We do not report here the full analytic expression for the y-dependent
functions that define the O(ε) solution, since we will follow the approach presented by
Ling et al. (2016) for closing the problem (see § C.5), where we will make use only of the
value that (C19), (C23) assume at the interface. To lighten notation, the inverted circumflex
accent will be employed to denote the evaluation of a given function at the interface,
namely M̌ j ≡ M j (y)

∣∣
y=1−β .

C.5 Closure of the upscaled model
To derive the upscaled model, the cross-sectional average operator (3.4) is applied to (C2)
while accounting for the boundary conditions. This is a necessary and sufficient condition
for the cascade of linear equations (C3) to be solvable, thereby enforcing the solvability
condition.
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Thus, applying the gauge condition (3.6) to the expanded energy equation for the outer
phase (C2), j = 2, we obtain

ε−p

⎡
⎢⎢⎢⎢⎣ε

∂ 〈ϑ2〉
∂τ

+ √
ε 〈u2 − V 〉 ∂ 〈ϑ2〉

∂ξ
+ ε

(i)︷ ︸︸ ︷〈
(u2 − V )

∂ϑ
(1)
2
∂ξ

〉
+ε√ε

(ii)︷ ︸︸ ︷〈
(u2 − V )

∂ϑ
(2)
2
∂ξ

〉⎤⎥⎥⎥⎥⎦

= ε
∂2 〈ϑ2〉
∂ξ2 +

√
ε

β

⎛
⎜⎜⎜⎜⎜⎝

Q ε f

√
ε

− ∂ϑ
(1)
2
∂y

∣∣∣∣∣
y=1−β︸ ︷︷ ︸

(iii)

⎞
⎟⎟⎟⎟⎟⎠+ ε

β

⎛
⎜⎜⎜⎜⎜⎝0 − ∂ϑ

(2)
2
∂y

∣∣∣∣∣
y=1−β︸ ︷︷ ︸

(iv)

⎞
⎟⎟⎟⎟⎟⎠

+ B εb

β

∫ 1

1−β

(
du2(y∗)

dy∗

)2

dy∗, (C25)

where we used the wall boundary conditions (C7) at O(√ε, ε). Four terms in (C25)
need to be closed: two non-local advective terms (i, ii), and two interfacial boundary terms
(iii, iv). By means of (C17) and (C20), the term labelled by (i) can be expressed in terms
of macro-scale quantities as ε−p 〈 I2 〉 ∂2 〈ϑ2〉/∂ξ2, while the term (ii) is found to be zero
by averaging (C3d) with j = 2.

Based on the disparity in the thermal conductivities of the two phases, the continuity
condition of thermal fluxes at the interface, see (C4), has different expressions depending
on the order of magnitude of thermal conductivity ratio and, therefore, different closure
relations are valid for terms (iii) and (iv). This leads to the identification of two different
thermal models which may incorporate one or two equations (similarly to Quintard
& Whitaker (1993); Lewandowska & Auriault (2004); Lewandowska, Szymkiewicz &
Auriault (2005)): the cases where k > 0 (decoupled model) and the case where k = 0
(coupled model).

C.5.1 Decoupled model
When k � 1, term (iii) is obtained by replacing (C12) into (C4)

(iii) : −m B εb

√
ε

dM̌W
1

dy
, (C26)

while term (iv) is zero. Thus, the upscaled energy equation describing how temperature
evolves in the outer phase does not directly contain any information related to the inner
flow temperature, and the resulting model is termed decoupled:

ε−p ∂〈ϑ2〉
∂τ

+ ε−p

√
ε

〈u2 − V 〉∂〈ϑ2〉
∂ξ

=
[
1 + ε −2p D2

] ∂2〈ϑ2〉
∂ξ2 + Q

β
ε f −1 + B

β
εb−1 W �

2 ,

(C27)
where the integral contributions to effective diffusivity and viscous dissipation have

been denoted for brevity as follows:

D2 = − 〈 I2 〉 , W �
2 = W2 + m

dM̌W
1

dy
, W2 =

∫ 1

1−β

(
du2(y∗)

dy∗

)2

dy∗.

(C28a–c)
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The full expressions of the above effective coefficients are give later on in Appendix C.6,
see (C40b) and (C46c). After multiplying both sides of (C27) by ε p, reintroducing
dimensionless groups according to (3.2) and scaling back the spatial variable ξ �→ z
via (3.1), we obtain a one-dimensional ADHT equation for the averaged temperature of
the outer phase whose full expression is given in (3.10).

A special scenario is represented for the case where k = 1/2: the O(√ε) solution for the
inner phase (C12) yields the following closure:

(iv) : K ε−p+a M̌1

dy

∂ 〈ϑ1〉
∂ξ

, (C29)

while term (iii) is the same as for the case where k = 0. Using (C29) leads to a single-
equation model of the form of (C25) but requires an a priori knowledge of the axial
gradient of the temperature of the inner phase ∂ 〈ϑ1〉/∂ξ , reducing to the ADHT equation
valid for k � 1 only if the inner phase has a uniform temperature. Thus, this case will not
be addressed in this work.

C.5.2 Coupled model
When k = 0, the thermal conductivities of the two phases are comparable and the upscaled
model consists of two coupled equations in the unknowns

〈
ϑ j

〉
. Specifically, the boundary

terms (iii), (iv) in (C25) are closed using (C4), obtaining

(iii) : K
∂ϑ

(1)
1
∂y

∣∣∣∣∣
y=1−β

= K ε−p+a M̌1

dy

∂ 〈ϑ1〉
∂ξ

− m B εb−1 dM̌W
1

dy
, (C30a)

(iv) : K
∂ϑ

(2)
1
∂y

∣∣∣∣∣
y=1−β

= K

⎡
⎢⎢⎢⎣ε−p+a ϕ̌1

∂ 〈ϑ1〉
∂τ

+
(
ε2(−p+a) ψ̌1 − ϕ̌1

) ∂2 〈ϑ1〉
∂ξ2︸ ︷︷ ︸

(ciii)

⎤
⎥⎥⎥⎦ ,

(C30b)

where we used (C12) and (C19) with j = 1. Using (C30b) in (C25) introduces a coupled-
derivative term, i.e. ∝ ε−p+a ∂ 〈ϑ1〉/∂τ , giving an upscaled equation including the time
derivative of 〈ϑ1〉 and 〈ϑ2〉 simultaneously. To avoid this issue, we can derive the O(ε)
solution of (C23) for the inner phase, ϑ(2)1 , and, evaluating it at the interface, we get an
expression for replacing the time derivative in (C30b):

ε−p+a ∂ 〈ϑ1〉
∂τ

= 1

Φ̌1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ϑ

(2)
1

∣∣∣
y=1−β −

[
ε2 (−p+a) Ψ̌1 − Φ̌1

] ∂2 〈ϑ1〉
∂ξ2︸ ︷︷ ︸

(cii)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (C31)

The last step is to enforce the continuity of temperature at the interface (C5) asymptotically,
replacing the interfacial temperature in (C31) as the following power series:
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ϑ
(2)
1

∣∣∣
y=1−β

= 1
ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩(〈ϑ2〉 − 〈ϑ1〉)︸ ︷︷ ︸

(a)

+ √
ε

(
ϑ
(1)
2 − ϑ

(1)
1

)∣∣∣
y=1−β︸ ︷︷ ︸

(b)

+ ε ϑ
(2)
2

∣∣∣
y=1−β︸ ︷︷ ︸

(ci)

+O (
ε
√
ε
)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

(C32)

This procedure shows that three different mechanisms are needed to adequately capture the
thermal interplay between the phases, namely a storage-type term (a), coupled advective
contributions due to axial gradients, term (b), and time-dependent/diffusive contributions,
term (c). Specifically, term (b) is obtained as the difference between the O(√ε) solutions,
see (C12), (C15), evaluated at the interface, whereas term (c) can be detailed as
follows: term (ci) follows from (C23) (with j = 2), thus containing a time-derivative
(∝ ∂ 〈ϑ2〉 /∂τ ) and a direct-diffusive term (∝ ∂2 〈ϑ2〉 /∂ξ2), while terms(cii) and (ciii)
results in cross-diffusion (∝ ∂2 〈ϑ1〉 /∂ξ2). Note that existing transport models between
coupled layers have postulated the coupling only in the form of a storage term (Reichert &
Wanner 1991; Kazezyılmaz-Alhan 2008) or, additionally, an advective contribution due
to axial gradients (Ling et al. 2016, 2021, 2024), but our analysis highlights that also
cross-diffusive terms emerge naturally from the derivation of the model via asymptotic
expansions and should be accounted for to preserve the model consistency.

The upscaled energy equation for the inner phase can be obtained following the same
procedure shown in § C.5 with j = 1 and using the symmetry condition (C6) at the
channel centre line (the detailed derivation is not shown here for the sake of brevity); this
gives

ε−p+a

⎡
⎢⎢⎢⎢⎣ε

∂〈ϑ1〉
∂τ

+ √
ε 〈u1 − V 〉∂〈ϑ1〉

∂ξ
+ ε

(i)︷ ︸︸ ︷〈
(u1 − V )

∂ϑ
(1)
1
∂ξ

〉
+ε√ε

(ii)︷ ︸︸ ︷〈
(u1 − V )

∂ϑ
(2)
1
∂ξ

〉⎤⎥⎥⎥⎥⎦

= ε
∂2 〈ϑ1〉
∂ξ2 +

√
ε

1 − β

⎛
⎜⎜⎜⎜⎜⎝
∂ϑ

(1)
2
∂y

∣∣∣∣∣
y=1−β︸ ︷︷ ︸

(iii)

− 0

⎞
⎟⎟⎟⎟⎟⎠+ ε

1 − β

⎛
⎜⎜⎜⎜⎜⎝
∂ϑ

(2)
2
∂y

∣∣∣∣∣
y=1−β︸ ︷︷ ︸

(iv)

− 0

⎞
⎟⎟⎟⎟⎟⎠

+ m B εb−k

K (1 − β)

∫ 1−β

0

(
du1(y∗)

dy∗

)2

dy∗, (C33)

where, in analogy with (C28), we can define the following effective coefficients for
diffusion and viscous dissipation – the full expressions are given in Appendix C.6,
see (C40a) and (C46c):

D1 = − 〈 I1 〉 , W1 =
∫ 1−β

0

(
du1(y∗)

dy∗

)2

dy∗. (C34a–b)
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The closure of two advective terms (i), (ii) and two boundary terms (iii), i(v) in (C33)
is obtained as before: regardless of the value of k, by means of (C17) and (C20), we find
that term (i) is equal to ε−p+a 〈 I1 〉 ∂2 〈ϑ1〉/∂ξ2, while term (ii) is zero by averaging
equation (C3d) with j = 1. Again, the closure of terms (iii) and (iv) is accomplished via
the boundary conditions at the interface: for term (iii), it is sufficient to enforce at O(√ε)
the continuity of thermal fluxes, see (C4), while for term (iv), this condition at O(ε) has to
be combined with the continuity of temperatures written in asymptotic terms, in analogy
with (C32):

ϑ
(2)
2

∣∣∣
y=1−β

= 1
ε

{
(〈ϑ1〉 − 〈ϑ2〉)+ √

ε
(
ϑ
(1)
1 − ϑ

(1)
2

)∣∣∣
y=1−β + ε ϑ

(2)
1

∣∣∣
y=1−β + O (

ε
√
ε
)}
.

(C35)

Finally, we obtain that heat-transfer between two flowing phases is described by the
following two coupled ADHT equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε−p+a t�1
∂〈ϑ1〉
∂τ

+ 1√
ε
ε−p+a a�11

∂〈ϑ1〉
∂ξ

+ 1√
ε
ε−p a�12

∂〈ϑ2〉
∂ξ

=

d�11
∂2〈ϑ1〉
∂ξ2 + 1

ε2p
d�12

∂2〈ϑ2〉
∂ξ2 + 1

ε
g�1 Q ε f + 1

ε
w�1 B εb − 1

ε
e�1

(〈ϑ1〉 − 〈ϑ2〉
)
,

ε−p t�2
∂〈ϑ2〉
∂τ

+ 1√
ε
ε−p a�22

∂〈ϑ2〉
∂ξ

+ 1√
ε
ε−p+a a�21

∂〈ϑ1〉
∂ξ

=

d�22
∂2〈ϑ2〉
∂ξ2 + ε2a

ε2p
d�21

∂2〈ϑ1〉
∂ξ2 + 1

ε
g�2 Q ε f + 1

ε
w�2 B εb + 1

ε
e�2

(〈ϑ1〉 − 〈ϑ2〉
)
,

(C36a,b)

where the effective coefficients are defined as follows and their explicit expressions are
given in Appendix C.6:

t�1 = 1 − ϕ̌2 Φ̌1

K (1 − β) Φ̌2
, t�2 = 1 + K ϕ̌1 Φ̌2

β Φ̌1
, (C37a)

a�11 = 〈u1 − V 〉 +ω�11, a�22 = 〈u2 − V 〉 +ω�22, (C37b)

ω�11 = − ϕ̌2 M̌1

K (1 − β) Φ̌2
, ω�22 = K ϕ̌1 M̌2

β Φ̌1
, (C37c)

a�12 = 1
K (1 − β)

(
ϕ̌2 M̌2

Φ̌2
− dM̌2

dy

)
, a�21 = K

β

(
dM̌1

dy
− ϕ̌1 M̌1

Φ̌1

)
, (C37d)

d�11 = t�1 + ε2a

ε2p

(
D1 + δ�11

)
, d�22 = t�2 + 1

ε2p

(
D2 + δ�22

)
, (C37e)
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δ�11 = ϕ̌2 Ψ̌1

K (1 − β) Φ̌2
, δ�22 = − K ϕ̌1 Ψ̌2

β Φ̌1
, (C37f )

d�12 = 1
K (1 − β)

(
ψ̌2 − ϕ̌2 Ψ̌2

Φ̌2

)
, d�21 = K

β

(
ϕ̌1 Ψ̌1

Φ̌1
− ψ̌1

)
, (C37g)

g�1 = 1
K (1 − β)

(
dM̌q

2
dy

− ϕ̌2 M̌q
2

Φ̌2

)
, g�2 = 1

β

(
1 − K ϕ̌1 M̌q

2

Φ̌1

)
, (C37h)

w�1 = 1
K (1 − β)

[
m

(
W1 − ϕ̌2 M̌W

1

K Φ̌2

)
− dM̌W

2
dy

+ ϕ̌2 M̌W
2

Φ̌2

]
,

w�2 = 1
β

[
W2 + m

dM̌W
1

dy
+ ϕ̌1

Φ̌1

(
K M̌W

2 − m M̌W
1

) ]
, (C37i)

e�1 = − ϕ̌2

K (1 − β) Φ̌2
, e�2 = K ϕ̌1

β Φ̌1
. (C37j)

Reintroducing dimensionless groups and scaling back the spatial variable, we obtain the
coupled model in its final form, see (3.8), (3.9).

Note that the ADHT equations of the coupled model (C37) reduce to the decoupled
model in the limit of K → 0. This requires that in w�2, we artificially remove the
contribution originated by the dissipative function within the inner stream M̌W

1 , which
is not part of the decoupled formulation.

C.6 Model coefficients
The full expressions of the effective coefficients (C37) are reported below, while their
physical interpretation will be given in § 4.

In particular, transient effects are taken into account via the following coefficients:

t�1 = 1 + 1 − β

K β
, t�2 = 1 + K β

1 − β
. (C38)

Advective coefficients appearing in (3.8), (3.9) read

ω�11 = 3Λ (1 − β)
[
5 m β(2 − β)+ 4 (1 − β)2

]
5 K β

− 1 − β

K β
V, (C39a)

ω�22 = 3 K Λm β2 (15 − 4 β)
20 (1 − β)

− K β

1 − β
V, (C39b)

a�12 = Λm β2 (15 − 8 β)
20 K (1 − β)

, a�21 = −2Λ K (1 − β)3

5 β
; (C39c)

1011 A41-46

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.360


Journal of Fluid Mechanics

while effective diffusion is described by the following set of coefficients:

D1 = −2Λ (1 − β)4

15
V + 2Λ2 (1 − β)4

[
7 m β (2 − β)+ 6 (1 − β)2

]
35

, (C40a)

D2 = Λm β3 (15 − 8β)
60

V − Λ2 m2 β4 (
8 β2 − 49 β + 63

)
140

; (C40b)

δ�11 = (1 − β)3

15 K β
V 2 + 2Λ (1 − β)3 [(1 − m) β (2 − β)− 1]

5 K β
V +

+ Λ2 (1 − β)3
[
105 m2 β2 (2 − β)2 + 210 m β (2 − β) (1 − β)2 + 104 (1 − β)4

]
175 K β

,

(C41a)

δ�22 = K β3

15 (1 − β)
V 2 + K Λm β4

8 (1 − β)
V − K Λ2 m2 β5 (

32 β2 − 105 β − 270
)

5600 (1 − β)
, (C41b)

d�12 = − β3

15 K (1 − β)
V 2+Λm β4(45−16 β)

120 K (1−β) V − Λ2 m2 β5(288 β2 − 1855 β + 2790)
5600 K (1 − β)

,

(C42a)

d�21 = − K (1 − β)3

15 β
V 2 + 2 K Λ (1 − β)3

[
3 m β (2 − β)+ 2 (1 − β)2

]
15 β

V +

− K Λ2 (1 − β)3
[
105 m2 β2 (2 − β)2 + 140 m β (2 − β) (1 − β)2 + 44 (1 − β)4

]
175 β

.

(C42b)

Among the effective coefficients, see (C37), the speed of the reference frame V only
impacts effective diffusion and direct-coupling advection a�j j . Specifically, shifting from
moving to the fixed reference frame via the inverse transformation x = z + V τ has no
net impact on diffusion, i.e. ∂2 〈

ϑ j
〉
/∂z2 ≡ ∂2 〈

ϑ j
〉
/∂x2, but offers significant advantages

in terms of the physical interpretation of the advective coefficients. In fact, each of these
could be recast as the phase-averaged velocity augmented by a specific factor, namely
U �

j = a�j j + V t�j j = U j − V +ω�j j + V t�j j = U j +
U �
j , where


U �
1 = 3Λ (1 − β)

[
5 m β(2 − β)+ 4 (1 − β)2

]
5 K β

, 
U �
2 = 3 K Λm β2 (15 − 4 β)

20 (1 − β)
.

(C43)
Interestingly, the final expressions for 
U �

j defined in (C43) are independent of V ,
implying that effective extra-advection is invariant with respect to the choice of the
reference frame, i.e. ω�j j

∣∣∣
V =0

≡
U �
j .

The effective coefficients in front of the source terms in (C36) read

g�1 = − 1
2 K (1 − β)

, g�2 = 1
β

+ 3 K

2 (1 − β)
; (C44)
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whereas those concerning storage are

e�1 = 3
K β (1 − β)

, e�2 = 3 K

β (1 − β)
. (C45)

Finally, the analytical expressions for the effective coefficients related to viscous
dissipation are

w�1 = 3Λ2 m
{
4 (1 − β)3 [5 Kβ + 3 (1 − β)] − K m β3 (15 − 8 β)

}
5 K 2 β (1 − β)

, (C46a)

w�2 = 3Λ2 m
{
m

[
3 β2 K

(
4 β2−15 β + 20

) + 20 β (1−β) (β2−3β + 3
)]+ 8 (1−β)4}

5 β (1−β) ,

(C46b)

W1 = 12Λ2 (1 − β)3 , W2 = 12Λ2 m2 β
(
β2 − 3 β + 3

)
, W ∗

2 = 6Λm.

(C46c)

Appendix D. Model validation
To check the accuracy of the ADHT equations (3.8), (3.9), we present the validation
against the steady-state solution of the problem. At the steady-state, in fact, the temperature
gradients along the channel length are uniform and diffusion becomes negligible so that
(in the absolute reference frame, V = 0)

dϑ1

dx
= dϑ2

dx
= J. (D1)

Consequently, the energy balances (2.13) reduce to

εA Pe J u1 = d2ϑ1

dy2 + m

K Br

(
du1

dy

)2

, y ∈ [0; 1 − β] , (D2a)

ε Pe J u2 = d2ϑ2

dy2 + Br

(
du2

dy

)2

, y ∈ [1 − β; 1] , (D2b)

subjected to boundary conditions (2.16). Integrating (D2) gives

dϑ1(y)

dy
= εA Pe J

∫
u1(y

∗) dy∗ − m

K Br
∫ (

du1(y∗)
dy∗

)2

dy∗ + C1, (D3a)

dϑ2(y)

dy
= ε Pe J

∫
u2(y

∗) dy∗ − Br
∫ (

du2(y∗)
dy∗

)2

dy∗ + C2, (D3b)

where C1 and C2 are integration constants. The value of C1 is determined via the
symmetry boundary condition (2.16d), whereas the boundary condition at the wall (2.16a)
allows to express the other constant of integration as a function of the steady-state
axial gradient J and the external heat flux qw, i.e. implicitly C2 = C2(qw, J, . . .). The
expression for J can be found using the thermal flux continuity condition at the interface
(2.16b) and solving for J = J (qw, . . .). These calculations have been carried out using a
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symbolic tool and are not reported here for the sake of brevity. It can be easily checked
that J is equivalent to the slope of the steady-state solution, M , of the leading-order model
given in (4.21), obtaining that M |V =0 = √

ε J .
Finally, aiming at validating the steady-state Nusselt number with the analytical solution

of (D2), we can first integrate (D3) to obtain the steady-state temperature profile. Then,
the continuity of temperatures at the interface (2.16c) is used to eliminate one of the
two additional integration constants. It is convenient to leave the constant for the outer
phase temperature undetermined since it does not affect the definition of the Nusselt
number (3.19): at the denominator of the local heat-transfer coefficient, only the difference
between the wall and the bulk temperature appears. Doing so, the expressions of the
steady-state Nusselt number obtained using the steady-state analytical solution and the
upscaled model match exactly, confirming the consistency of our model.
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