
D ISCUSS ION NOTE

On Internal Structure, Categorical Structure,
and Representation

Neil Dewar

Faculty of Philosophy, University of Cambridge, Cambridge, UK
Email: nad42@cam.ac.uk

(Received 21 December 2020; revised 14 November 2021; accepted 18 January 2022; first published online 11
February 2022)

Abstract

If categorical equivalence is a good criterion of theoretical equivalence, then it would seem
that if some class of mathematical structures is represented as a category, then any other
class of structures categorically equivalent to it will have the same representational capaci-
ties. Hudetz (2019a) has presented an apparent counterexample to this claim; in this note,
I argue that the counterexample fails.

1. Introduction
A central topic in the philosophy of science is that of theoretical equivalence: the rela-
tionship that holds between two theories when, roughly, they “say the same things
about the world.” Recent work in the formal philosophy of science has suggested that
an illuminating way of getting a handle on this can be to present theories as catego-
ries of models and investigate whether those categories are equivalent (in the sense of
admitting a full, faithful, and essentially surjective functor between them). However,
the philosophical foundations of such work remain somewhat opaque. In particular, it
is not clear whether a category of models is really capable of capturing enough of a
theory’s structure to make categorical equivalence an interesting or useful notion by
itself—even insofar as we are only considering formal criteria of equivalence between
theories.

A specific version of this concern has recently been articulated by Hudetz (2019a).
He notes that categorical equivalence between categories of models depends only on
how models are related to one another by the morphisms of the category. He argues
that this means categorical equivalence will (in general) fail to take into account the
internal structure of those models—even where that internal structure plays a repre-
sentationally significant role. He then observes that the category FinVect of finite-
dimensional vector spaces with linear mappings as morphisms is categorically equiv-
alent to the categoryMat of natural numbers with real-valued matrices as morphisms.
But, he argues,
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Whenever vector spaces are used to model features of real-world systems, we
cannot simply replace them with natural numbers. Vector spaces possess inter-
nal structure: a set of vectors, the operations of vector addition and scalar mul-
tiplication, a zero vector (and an underlying field of scalars). In applications,
some of these features serve representational purposes. For example, vectors
might be used to represent forces acting on objects, and the net force on an
object may be represented by a sum of vectors. It is utterly impossible that a
natural number n could serve the same representational purposes as a vector
space of dimension n. The number n simply lacks the internal structure neces-
sary for fulfilling such representational roles. (Hudetz 2019a, 52)

The purpose of this note is to argue that this example fails in its intended purpose.
First, I sketch how the internal structure of a vector space can be recovered from the
structure of the category of (finite-dimensional) vector spaces and, hence, how it can
be recovered from the structure of any categorically equivalent category, such as the
category of natural numbers with matrices as morphisms. I then consider two ways to
support the conclusion—strange as it may sound—that a natural number and a vec-
tor space do, in some appropriate sense, have the same representational capacities:
one that depends on this observation about recovery and one that does not.

2. From categories to vectors
It is well known that one can recover the internal structure of a vector space from the
category FinVect.1 What I mean by this is the following. Consider the normal defini-
tion of a vector space, in (broadly) model-theoretic terms, as a structure in signature
f�;�g obeying the vector-space axioms. Consider next the category FinVect as a two-
sorted structure of signature f�g. It is possible to stipulate definitions of the symbols �
and � in terms of �, in such a way that for any vector space V, V is isomorphic to
some substructure of the definitional expansion of FinVect (i.e., that there is an injec-
tion preserving � and � from V to FinVect).

In brief, how this works is as follows: Given two objects of FinVect (i.e., vector
spaces) U and V, their direct sum U � V is a biproduct: it is both a product and a
coproduct.2 Because FinVect has all finite biproducts, it is possible to define a binary
operation known as addition on the arrows between any two objects, purely in terms
of the categorical structure. When we do so, we find that this operation does indeed
coincide with the usual pointwise definition of addition of linear maps. Hence, every
linear map possesses an additive inverse. This means that the category FinVect is
what is known as an additive category.

By using this definition of addition, defining multiplication as precomposition, and
defining order in terms of addition and multiplication, we can equip the set of arrows
from the one-dimensional vector space 1 to itself with the structure of an ordered
field; hence, we are able to identify that set as canonically isomorphic to R. We then

1 Indeed, I learned of this result from Hudetz (2019b). For further discussion of this result, see Spivak
(2017); I thank an anonymous reviewer for drawing my attention to this article. John Dougherty has also
observed (personal communication) that the result here is a special case of the Mitchell–Freyd embed-
ding theorem.

2 For a proof, see, for example, Geroch (1985, chap. 11).
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define scalar multiplication on the set of arrows from 1 to any vector space V as pre-
composition (with some arrow from 1 to itself); together with the previously given
definition of addition, it can then be shown that this set has the structure of a vector
space and indeed is isomorphic to V. Hence, we are able to recover the “internal struc-
ture” of the objects in FinVect from its categorical structure.

Mat has the same categorical structure as FinVect (because it is categorically equiv-
alent to it), so we can use the same reasoning to recover vectors within the category
Mat: in particular, because being an additive category is a property that is statable in
purely category-theoretic terms, and because category-theoretic properties are pre-
served across categorical equivalence, we know thatMat is an additive category. More
concretely, the biproduct of m and n in Mat is m� n, and the categorical notion of
addition (of arrows in the category) turns out to be standard matrix addition.

Using this, we can show that the set of 1 × 1 matrices is canonically isomorphic to
R, and that the set of n × 1 matrices constitutes an n-dimensional vector space. Of
course, we knew this already: it is hardly a surprise to learn that column matrices can
represent vectors! The point, though, is that although we know how matrix algebra
can be used to provide an instantiation of linear algebra, it is less obvious that matrix
algebra can, in turn, be defined upward out of purely categorical notions. That dem-
onstrates the sense in which the categorical structure here is richer than one might
have expected.

3. Discussion
I turn now to Hudetz’s claim that “it is utterly impossible that a natural number n
could serve the same representational purposes as a vector space of dimension n”
(Hudetz 2019a, 52). Let us suppose—as Hudetz suggests—that we wish to model
the forces on an object by using a three-dimensional vector space V, with vector sum-
mation corresponding to the superposition of forces. Can we indeed “replace” the
vector space V with the natural number 3? Per the previous discussion, this replace-
ment would presumably mean using 3 × 1 matrices to represent the various forces,
with superposition of forces represented by matrix addition; does this properly
“count” as using the natural number 3 to represent the empirical situation?

Fully answering this question would mean engaging with the extensive literature
on scientific representation, which is not going to be possible in a short discussion
note like this.3 To make things manageable, then, let us restrict our attention to
so-called “structuralist” accounts of representation—that is, accounts that “take
models to be structures, which represent their target systems in virtue of there being
some kind of morphism (isomorphism, partial isomorphism, homomorphism, . . .)
between the two” (Frigg and Nguyen 2018, n.p.). The structuralist account has its crit-
ics, but it is a reasonably popular approach and certainly seems like a natural place
to try to get a grip on the significance of internal structure for the purposes of
representation. For the sake of simplicity (and ease of connection with the litera-
ture), I will focus on the case where the relevant morphism is taken to be an
isomorphism.

3 For an overview of that literature, see Frigg and Nguyen (2018).
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Evidently, the content of the structuralist account is then going to depend on how
the notions of structure and isomorphism are understood. Frigg and Nguyen (2017)
observe that these are usually explicated in a sense familiar from set theory and
mathematical logic, through definitions like the following:

A structure S in that sense . . . is a composite entity consisting of the following: a
non-empty set U of objects called the domain (or universe) of the structure and a
non-empty indexed set R of relations on U. (Frigg and Nguyen 2017, 66)

Two structures Sa � hUa; Rai and Sb � hUb; Rbi are isomorphic iff there is a map-
ping f : Ua ! Ub such that (i) f is one-to-one (bijective) and (ii) f preserves the
system of relations in the following sense: the members a1; . . . ; an of Ua satisfy
the relation ra of R iff the corresponding members b1 � f �a1�; . . . ; bn � f �an� sat-
isfy the relation rb of Rb, where rb is the relation corresponding to ra. (68)

How the isomorphism relation is set up between the model and the target system is
then a further point of controversy, with several proposed answers; perhaps the sim-
plest suggestion is that target systems instantiate structures, by virtue of having parts
that stand in appropriate relations to one another, and that the isomorphism (if it
exists) holds between the model and this physically instantiated or realized struc-
ture.4 In the context of our example, the “parts” of the target system are presumably
the individual forces: these stand in structure-realizing relations (e.g., the ternary
relation “x is the superposition of y and z”) and thus form a structure to which
the model is—hopefully—isomorphic.

I conjecture that this account of representation, or something like it, is at work in
Hudetz’s assertion that 3 cannot serve the same representational purposes as the
three-dimensional vector space V (Hudetz 2019a): the problem, so the thought goes,
is that 3 is not capable of standing in the appropriate kind of isomorphism relation to
the physical situation. It seems to me that there are two ways in which this assertion
could be backed up. On the one hand, it might be maintained that 3 simply is not a
“structure” in the sense laid out previously (i.e., a composite entity consisting of a set
of objects equipped with relations): it is an element of a certain structure or struc-
tures (e.g., the natural or real numbers) but is not itself a structure. On the other hand,
one could admit that 3 is or may be taken to be a structure but nevertheless argue that
it is not a structure that is isomorphic to V. For instance, perhaps we can take 3 to
have the structure of the relevant von Neumann ordinal f∅; f∅g; f∅; f∅ggg or the
Zermelo ordinal fff∅ggg, but these are both finite sets, so no bijection could be
set up between either of them and the infinite-cardinality structure V.

Thus, in resisting Hudetz’s (2019a) assertion, we must also resist this account of
representation.5 But if one is attracted to category-theoretic accounts of the structure
of scientific theories, then this is a very natural move: the reasoning is explicitly

4 See Frigg and Nguyen (2017, §5.4) for more details and other ways in which the isomorphism relation
could be understood.

5 Thanks to an anonymous referee for making the need for a different account of representation clear
to me.
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based on resources from set theory, after all.6 From a more categorical perspective, it
is just as true that the three-dimensional vector space V, as an object of FinVect, is not
a composite entity consisting of a set of objects equipped with relations. Thus, what
makes the object V an appropriate representation of the physical situation is not the
existence of a bijection between the parts of that situation and the elements of V.
What does make it an appropriate representation is a somewhat tricky question; here
are two possible answers.

First, the “conservative” answer. Although V does not possess elements in the set-
theoretic sense, it does possess elements in a generalized sense—if “elements” are
understood as morphisms from some suitable “test object” (as is often done in cate-
gory theory), then we can take the elements of V to be the morphisms from 1 to V
that were employed earlier. Moreover, we have seen that the vector-space structure
of V is recoverable from the categorical facts about these morphisms. It is therefore
coherent to require (in order that V be a representation) that there be an appropriate
isomorphism between the physically instantiated structure and this vector-space
structure. Thus, we can borrow the structuralist’s account of what makes for repre-
sentation, modulo the appeal to a more generalized understanding of what the “ele-
ments” of a structure are.

And of course, this more generalized understanding of elements opens the door to
admitting the number 3 (at least qua element of Mat) as an appropriate representa-
tion of the physical situation. It admits of elements in just the same manner that V
does, and as we have seen earlier, those elements (namely, 3 × 1 matrices) are just as
good at being correlated to forces for representational purposes as the elements of V
are. Of course, qua an object of a different category, 3 will not carry this representa-
tional capacity. For instance, 3 will not be suitable for representing the physical situ-
ation as an object of an ω-sequence Nat (which, being a partial order, we may regard
as a category). But from the present perspective, this is a feature, not a bug. Regarded
as an object of Nat, the number 3 is also not equivalent to a three-dimensional vector
space because there is no categorical equivalence between Nat and FinVect. For that
matter, there is no categorical equivalence between Nat and Mat, so the number 3 is
not always equivalent to itself, nor does it always have the same representational
capacities as itself—just as the sign “die” does not have the same representational
capacities as a word in the English language and as a word in the German language.

This account invites the following objection: that in such a case, it is not 3 itself
that is doing the representing but rather some substructure of the category Mat

(because the forces are being correlated to certain elements of Mat, i.e., the mor-
phisms from 1 to 3).7 However, this objection only works if we insist that
elements must be understood in the set-theoretic, rather than the category-theo-
retic, fashion—and to make such an insistence is to beg the point at issue. In
category-theoretic accounts of scientific theories, we should expect the

6 Landry (2007) also pushes back against the supremacy of set-theoretic ways of understanding “struc-
ture” and “(iso)morphism”—although Landry would, I think, be similarly wary of granting category the-
ory (rather than set theory) a monopoly on how those terms should be understood. In a related vein, see
(Barrett 2020) for a critique of isomorphism as the right way to explicate the notion of “having the same
structure.”

7 I thank an anonymous reviewer for pressing this objection.
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representational capacities of any object to be relative to the category that it is
presented as being a part of; just as in the set-theoretic account, the representa-
tional capacities of a certain set are relative to what structures and operations it
has been equipped with.

Let us turn now to the second, more radical, answer to the question of what it is
that could make an object of a category (e.g., V or 3) an appropriate representation of
a certain concrete physical situation. This will be somewhat more vague and sketchy,
but I find it intriguing, so I include it in case other readers of this journal find it stim-
ulating to consider. This more radical answer gives up on the idea that the represen-
tation relation is based on any kind of correspondence between the parts, pieces, or
components of the situation and the representation. Rather (in this view), the situa-
tion is appropriately represented by V because it is a situation of a certain kind, and the
structural features of the whole collection of situations of that kind make them apt to
be represented by the category of which V is an object. For instance, if we can con-
sider all the situations featuring forces on an object as a category, then we can pro-
pose that these situations can be represented by vector spaces just in case there is an
appropriate relationship between that category and the category FinVect. An isomor-
phism of categories is not a very natural candidate: it would be more natural to
require that the categories be equivalent, or perhaps merely that one category be
equivalent to a subcategory of the other. Evidently, if we do so, then representational
appropriateness will be preserved across categorical equivalence: that is, FinVect will
be appropriate for representation if and only if the equivalent category Mat is. Note
that this holds independently of the considerations in §2; in other words, the recon-
struction of vectors in the categories FinVect or Mat is only playing a dialectical role
in the first (more conservative) answer.

This second proposal foregrounds the significance of modal structure. In effect,
the idea is to consider a category of possible situations (rather than an individual
situation) and hold that representation arises when that category of possibilities is
appropriately similar to the category being used for representation.8 We might, there-
fore, think of it as a special case of a more general account of how state- or possibility-
spaces represent their targets. In such a space, each individual possibility is repre-
sented by something lacking internal structure: a point of a configuration space, a
vector in a Hilbert space, an element of a Boolean algebra, and so forth. However,
that does not make such a space representationally hopeless because the space itself
can carry a rich enough structure to support our representational practice.9 This
structure must, however, be understood as imputing properties or relations to the
individual possibilities (as wholes) rather than to whatever individuals might popu-
late one possibility or another.10

8 An example of such a category might be the category of models of some theory: the objects of the
category represent the different possibilities according to that theory (i.e., the “nomological possibili-
ties,” if we take the theory to be expressing a certain set of natural laws).

9 This point is made forcefully by, for instance, Wallace and Timpson (2010) and Wallace (2021) in the
context of the debate over how to interpret the quantum state. See also van Fraassen (1987) for discus-
sion of the representational significance of state-spaces.

10 Or at least, it does not impute such properties to individuals directly. This is not to say that
we might not be able to recover the properties of individuals by reading them off from the proper-
ties of possibilities; for instance, from a point of N-fold configuration space, we can recover the
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This then raises the question of what (if anything) might be significant about the
case where that modal space is represented as a category. Here we should remember
that, by virtue of the Yoneda lemma, the objects of a category are fully determined by
their morphisms: as Spivak puts it, “categories can only model ‘relationally-
determined’ subjects, subjects in which each object of study is ontologically deter-
mined by its relationships to the others” (2017, 393). So the modal spaces that cate-
gory theory is capable of describing will be those where the relationships between
possibilities encapsulate everything there is to know about those possibilities. This
suggests a potentially very novel way of thinking about possibility and ontology:
one where the differences between possibilities, rather than the intrinsic character
of those possibilities, are primary.11 Clearly, however, working out such a view will
have to be a project for another time.

4. Conclusion
So what, then, of Hudetz’s argument? Here is how it seems to me that things stand.
The more conservative account of categorical representation, together with the argu-
ment of §2, leads to the conclusion that the example adduced by Hudetz does not do
quite what he wants. However, that is not to say that other examples would not pose
problems for that account. In particular, if one had a category for which the internal
structure was not recoverable (i.e., for which there was no analogue of §2’s argument),
then the conservative account would struggle to push back against the conclusion
Hudetz wishes to draw from this (that categories do not always capture everything
that is representationally relevant). Indeed, this would appear to be so for some of the
other examples discussed by Hudetz, for instance, the (trivial) categories for theories
with unique, rigid models.

Conversely, the radical account—being independent of the argument in §2—
provides a more general way to resist Hudetz’s conclusion. The price of this is that
the account is still in need of much more development. So either way, the forego-
ing hardly constitutes a refutation of Hudetz’s argument in the passage quoted
earlier; still less does it invalidate the main point of Hudetz’s article (to show
how considerations of definability and categorical structure may be fruitfully
combined with one another). As we have seen, however, it does provide a route
toward thinking about scientific representation in ways that are somewhat novel
and unorthodox. For that reason, if nothing else, this little example provides food
for thought.

Acknowledgments. I am very grateful to Lia den Daas and John Dougherty for comments on and dis-
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locational properties of the N particles that, presumably, populate the possibility represented by
that point.

11 At least, novel in the analytic tradition: the “differential ontology” of Deleuze (1994) advocates
something along these lines.
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