
Live Coding Poetry: The narrative of code in a
hybrid musical/poetic context

ALEXANDROS DRYMONIT IS

Independent Scholar, Greece
Email: alexdrymonitis@gmail.com

Live coding is a celebrated practice that is used in many areas,
combined with a variety of artistic fields. Code poetry is a form
of poetry with many variations, all of which have a common
rule: the code that is or produces the poem must compile
without errors. The meeting point of live coding and code
poetry seems to have not yet been thoroughly explored, leaving
space for experimentation and research. Certain attempts have
already been made, where live coding is either approached
through natural language or used to break up and merge
chunks of existing poems, forming new ones. Computer code
has also been used to write deterministic opera librettos,
following the code poetry paradigm. This article focuses on the
literary and artistic attributes of code, on code poetry and on
the existing attempts to combine it with live coding. It also
highlights the narrative attribute of musical live coding to
formulate a rationale for combining live coding with code
poetry in a musical context. The goal is to examine the
possibilities of this combination, as well as how this can be
achieved, from a technical point of view.

1. INTRODUCTION

Computer code has been approached from the
perspective of poetry or literature in numerous ways
by various researchers and artists. Even long before
the computer, the combination of poetry with
mathematics dates back to at least the medieval
period (Toscano and Vaccaro 2020: 396). In 1960, the
Oulipo group was founded, which focused on the
application of mathematical structure to literature
(ibid.: 394). Certain poems created by members of
this group made use of ‘high-level programming
language commands’, such as BEGIN, For, Do and
Else (Forero 2021: 263). Graham compares hackers –
essentially programmers – to painters, composers or
novel writers (Graham 2004: 18). He takes inspiration
into account as being necessary for writing software,
and he even goes on to state that ‘great software : : :
requires a fanatical devotion to beauty’ (ibid.: 29),
focusing on bad indentation or ugly variable names
as a reference point to beauty – or ugliness for that
matter. He states that computer programs ‘should be
written for people to read, and only incidentally for
machines to execute’, focusing on the literary nature of
computer code, rather than its purely executional one.

From a different perspective, and in contrast to
Graham, Cox, McLean and Ward suggest that the
beauty of poetry, as with code, ‘lies in its execution,
and not simply its written form’ (Cox, McLean and
Ward 2000: 1). They also go on to compare code with
poetry in a variety of ways, where their generative
nature or the order of word placement are used as
arguments. In their paper, they approach the relation-
ship between code and poetry from the point of view of
computer music code, something that can also be
applied to live coding. Cox also writes that ‘If program
code is like speech inasmuch as it does what it says,
then it can also be said to be like poetry inasmuch as it
involves both written and spoken forms.’ (Cox 2013:
17). Another mention of poetry through a computer
music – and more specifically, a live coding – context is
made by Rohrhuber, de Campo and Wieser, who
anticipate ‘a poetic language of code to find its way
into programming and sound research’ (Rohrhuber,
de Campo and Wieser 2005: 4).
The various approaches to the relationship between

computer programming and poetry might sometimes
contradict each other. Nevertheless, a vivid interest in
this interdisciplinary field exists, where researchers
and practitioners attempt to highlight the common
aspects of these two practices and the similarities of
their nature. Still, none of these approaches seem to
interpret computer code as poetry per se. An artistic
practice that fills this gap is code poetry, but even
though poems written in a programming language aim
to create a functional program (Hopkins 1992: 391), in
case the goal of this program is not to mutate the poem
of the source code, this functionality is usually
redundant. In this case, the focus shifts towards the
poetry and away from the program or the algorithm.
Apart from poetry and the literary attributes of

computer code, programming languages, but also
programming itself, are being approached from differ-
ent artistic perspectives, such as software art and
conceptual software.1 Even though these approaches do
not immediately relate to poetry or musical live coding,
they highlight a broader artistic attribute of code and

1https://runme.org/index.html; https://deprogramming.us/ (accessed
25 July 2023).

Organised Sound 28(2): 241–252 © The Author(s), 2023. Published by Cambridge University Press. doi:10.1017/S1355771823000493

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://orcid.org/0000-0002-7401-6422
mailto:alexdrymonitis@gmail.com
https://runme.org/index.html
https://deprogramming.us/
https://doi.org/10.1017/S1355771823000493
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1355771823000493&domain=pdf
https://doi.org/10.1017/S1355771823000493

the act of programming. It is the similarities computer
code bears to all these various art forms – which,
even though subtle, are numerous – that drive my
curiosity about how live coding and code poetry can
be combined, and what is the potential of this
combination.

Going back to live coding, the following ques-
tions arise:

1. (Can code poetry be coded live?

2. (If it can, what is the rationale for this?

3. (Can code poetry be combined with musical live
coding?

4. (What is the rationale for the combination of music
and poetry in a live coding context?

This article might not succeed in answering all these
questions, though I will attempt to approach them
from a critical point of view. Therefore, I will attempt
to justify my rationale for this hybrid art form that
seems to not have been thoroughly explored, and
search for possible ways this can be achieved.

At this point, the reader might expect to read a
definition of poetry, before this article proceeds.
Throughout the history of poetry, many poets and
scholars have either avoided defining poetry or have
provided very different and even contradictory
definitions. I will join the first strand and avoid
attempting to define poetry, and why I consider my
evolving approach to code poetry to be poetry. I will
rest on applying Cage’s approach to coining a new
term for music: ‘If this word “music” is sacred and
reserved for eighteenth- and nineteenth-century instru-
ments, we can substitute a more meaningful term:
organization of sound’ (Cage 1961: 3). In this context,
if the word ‘poetry’ is sacred and reserved for poems
with metre and rhyme, we can substitute a more
suitable term: organisation of words.

The preceding statement can be interpreted as
allowing every possible word structure to be considered
to be poetry. In a live coding context – where a notion
of a list of things that are not live coding is probably
shorter than a list of things that are is common within
the wider live coding community (Hutchins 2015:
147) – allowing such an open definition (or lack of
definition) of poetry seems to agree with the philosophy
of the live coding community. Such an open (un)
definition of poetry can be further paralleled to Cage’s
notion of composition – or sound organisation – where
‘the composer (organizer of sound) will be faced not
only with the entire field of sound but also with the
entire field of time’ (Cage 1961: 5), as the potential poet
(organiser of words) is faced with the entire field of
vocabulary and the entire field of metre. A lack of both
metre and rhyme though, where text is structured in
paragraphs, can be considered to be prose, instead of

poetry. In this context, by narrating a story with a
structure of a programming language, I consider to be
writing code poetry, as this structure, even if void of
metre or rhyme, can resemble concrete poetry, and does
not fit the structure of prose.
This article is centred around my existing work on

live coding poetry, contextualised both by my
rationale for this combination and the existing
discourse on the artistic attributes of code, together
with the limited literature and activity in musical live
coding poetry. Section 2 is on related works, while
sections 3–5 focus on code poetry, and the connection
between code and concrete poetry and code and
ASCII art, to highlight the artistic and poetic aspects
of computer code. In section 6 I will discuss the
narrative in musical live coding, something that
connects to my rationale for live coding poetry in a
sound-based performance context, which is developed
in the section after that. In section 7 I will provide
excerpts of my approach to live coding poetry frommy
past musical live coding poetry performances. Finally,
in section 8 I will reflect on some of the intricacies of
programming languages in the context of code poetry
combined with computer music, and I will propose
some approaches to how I believe the combination of
musical live coding and code poetry can be achieved.

2. RELATED WORKS

This section discusses works that are relevant to the
topic of live coding poetry in some way. This discussion
aims to provide a foundation for the discourse that
follows from section 5 onward by highlighting existing
works whose creators have been occupied by the
concept of the combination of live coding with (code)
poetry.
CineVivo is a mini-language written in

openFrameworks that enables the use of natural
language to control the playback and application of
effects to video files (Rodríguez, Betancur and
Rodríguez 2019). It is not aimed at code poetry,
but the use of natural language integrates narration
into a live coding performance, outside of any
technical-literary context. It works by replacing
words in a custom parser, where the main command
is load for loading videos. This word can be
replaced by any other word, depending on the
parser. The authors provide a few examples in their
paper where the following line loads a video file
named bicycles in layer I:

I love bicycles

Forero is attempting to live code poetry with an
audiovisual result in his performance Aimaako
(Forero 2018). In this performance, he concatenates
numeric values to natural language phrases, which

242 Alexandros Drymonitis

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000493

seem to control the audiovisual aspect in some
manner. It is not clear how the natural language is
treated by the system of the performance though. The
following are a few lines copied from the documenta-
tion of this performance:

No_queia_ni_mirar_sus_cuerpos_llenos_d-
e_rayas 5 5000;

Muy_pocos_hablan_su_idioma_y_nosotros_l-
o_vamos_olvidando 0 10000 0;

No_hubo_respeto 0;

Nadie_pregunto 1;

Both Forero’s Aimaako and the CineVivo mini-
language make use of natural language in a way that is
not connected to most of the existing code poetry
literature, as the typed poetry – or free text, in the case
of CineVivo – is not written in a programming
language, nor is it produced algorithmically by a
program. I still consider these two examples to have
relevance in the context of the combination of live
coding with code poetry, as they attempt to convey the
meaning of natural language through a live coding
performance.
A work that relates to this article from a different

perspective is To code a dadaist poem by Cotterill.2 In
this performance, Cotterill used live coding to split
and re-combine a large bank of poetry in the public
domain. Cotterill’s description of his work states that
he ‘will : : : improvise live-coded sound using
SuperCollider derived from the evolving poem, teasing
out semantic and mimetic relationships between sound
and text, and in turn adapting the sequencing and
usage of poems according to the development of the
music’ (Cotterill 2015). This performance is a true
example of live coding poetry, approaching the latter
from the perspective of an algorithm producing a poem,
rather than the source code being the actual poem.
Another attempt to combine live coding with code

poetry is the opera Echo and Narcissus (Drymonitis
and Manousakis 2022) by the artist group Medea
Electronique. In this opera, the libretto3 is written in
pure Python, following the code poetry paradigm, and
apart from expressing the story of the opera, it triggers
all the sound processes, whether these are effects
applied to the voices of the singers or audio generated
by Unit Generators. All audio processes are written in
Python with the Pyo DSP module (Bélanger 2016), but
they are written in files that are being loaded in the
main Python session where the libretto is being typed
live during the performance. This breaks the conven-
tion of the actual source code being the poem, as a

substantial body of code is used that is not shown to
the audience, but, at that time, this approach was
inevitable, due to time constraints and the extent of the
knowledge I had in Python.
Another issue with this opera is that the libretto is

deterministic and no variation of it is possible. This
fact removes any aspect of improvisation, something
that is an integral part of live coding. Nevertheless, I
consider Echo and Narcissus to be closer to code
poetry than the first two examples. This is because
all the functional parts of the program are integrated
into the code poem in a more seamless way than the
second example, and because the first example, even
though I consider it to be relevant in the context of
live coding poetry, it is not aimed at poetry. I also
consider Echo and Narcissus to provide a solid
ground for research on how these two practices can
be combined. An excerpt of the libretto is provided
in section 7.

3. CODE POETRY

Code poetry is a form of poetry that utilises computer
code in some way. From the existing literature on code
poetry (Holden and Kerr 2016; Alvarez 2017: 35;
Grillmair 2019: 15), it can be asserted that there are
three main approaches to code poetry, which all share
a common principle: the code used must compile
without producing errors. One approach is to write a
poem in a programming language instead of a natural
one. Another approach is to write a poem in a
programming language that, when compiled, results in
a different poem. A third approach is to write an
algorithm in computer code that will generate a poem
when it is compiled. This third approach does not
consider the source code as poetry per se. An example
of a code poem that mutates when compiled by
Alvarez (2017) is shown in Figures 1 and 2.
An example of generative poetry, which seems to

fall in line with the code poetry approach where the
code is not considered to be a poem but generates a
poem, is the Book of All Words by Piwkowski where a
computer program creates word strings consisting of
one letter growing indefinitely where every word is
similar to its previous one with only one letter being
different (Kuchina 2018: 74). This work, part of which
is shown in Figure 3, demonstrates the tautogram4

principle, a poetical form broadly used by European
poets (ibid.).
A good resource for code poetry is the./code –poetry

website,5 which includes 12 poems, each written in a
different programming language (Holden and Kerr
2016). In this project, every poem creates some kind

2https://youtu.be/2dqd715LMQk (accessed 25 July 2023).
3A libretto, in an opera context, is the text of the opera that is sung
by the singers.

4A text in which all words start with the same letter.
5https://code-poetry.com/ (accessed 25 July 2023).

Live Coding Poetry 243

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://youtu.be/2dqd715LMQk
https://code-poetry.com/
https://doi.org/10.1017/S1355771823000493

of ASCII art when it is compiled. Figure 4 shows the
page of the poem written in Go, together with a
snapshot of the ASCII art animation created by the
poem. This animation could justify live coding such
a poem, especially if the animation changes while
the code is being written and executed. This
justification also depends on whether the code poet
is improvising, as this is an integral characteristic of
the practice of live coding. Any of these two
conditions would give a performative aspect to code
poetry, answering the second question posed in
section 1 of this article, on the rationale for live
coding a code poem. Concerning the first question,
whether code poetry can be coded live, the answer
depends on whether the language used to write a
code poem is a scripting programming language,
therefore capable of being typed and executed live.
These statements are personal assumptions based on
my experiences with code poetry, as I have not yet
encountered a live coding performance of code
poetry that stands up to the improvisational fluency
of musical live coding.

4. CODE AND POETRY BUT NOT CODE
POETRY, AND OTHER (ART) FORMS

Computer code, in its various forms, seems to have more
aspects in common with poetry – not code poetry – apart
from its literary attributes. It also has common
characteristics with other forms of art that incorporate
computers in various ways, such as ASCII art.

4.1. Code and concrete poetry

Apart from the code poetry paradigm, computer code
bears resemblances to concrete poetry, where the
visual structure of a poem is more important, rather than
the actual words (Hilder 2013). In Python, for example,
indentation is very important for a program to run, as
this language does not use curly braces to enclose code
structures, but counts on correct indentation for the
interpreter to be able to distinguish the various parts of a
program. But in other languages that do use curly
braces – or other means – to separate the various
elements of a program, the visual form of the code is still
considered important. Apart fromGraham who empha-
sises indentation as an aspect of ‘great’ and beautiful
software – as mentioned in section 1 – the International
Obfuscated C Code Contest also highlights this
importance, as one of its goals is ‘to show the
importance of programming style, in an ironic way’
(Broukhis, Cooper and Noll 2020). In this context,
computer code, without necessarily aiming at projec-
ting its literary or poetic attributes, bears a resemblance
to this form of poetry.

4.2. Brainfuck and ASCII art

A notable case of a programming language having
common aspects with a form of art is that of brainfuck –

intentional lowercase b (Chandra 2014: 119) – and
ASCII art. Being an esoteric programming language,
brainfuck aims mostly at challenging and amusing
programmers. Its minimal set of commands makes
programs written in this language very hard to
decipher. For example, the following line is the
famous ‘Hello World’ program written in brainfuck:

-[—————>�<]>-.-[->�����<]
>��.�������.���.[—>�<]>———.—[-
>���<]>.-[—>�<]>—.���.————.——————.

Figure 1. Screenshot from Alvarez’s article showing source code. Reproduced with the permission of the author.

Figure 2. Screenshot from Alvarez’s article showing muta-
tion. Reproduced with the permission of the author.

244 Alexandros Drymonitis

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000493

In my perception, this language bears a resemblance
to ASCII art, where ASCII characters are used to
depict an image, mimicking the brush strokes, pen
lines and other painting techniques (O’Riordan 2002).
For example, Figure 5,6 is an example of ASCII art –
the three letters at the bottom are apparently the
artist’s signature. If brainfuck used the characters of
Figure 5 instead of the characters it uses, it could
create ASCII art and at the same time a functional

program that would produce output, even if that was
only a ‘Hello World’ printed on the computer’s
console.

5. THE NARRATIVE OF LIVE CODING

Several programming languages created for live
coding aim to simplify the creation of algorithms for
the creation of musical patterns. Such languages
include Tidal Cycles (McLean 2021), Ixi Lang
(Magnusson 2011), FoxDot (Kirkbride 2021) and
Sonic Pi (Aaron and Blackwell 2013). These languages
use musical jargon for naming classes and methods to
make the code easier to understand, from a musical
point of view. As an example, the following two lines
are copied from one of the tutorials on the official
website of Tidal Cycles:7

Figure 3. Screenshot from Kuchina’s paper. Reproduced under a Creative Commons 4.0 licence.

Figure 4. Screenshot from www.code-poetry.com website. Reproduced with permission of the website owners.

Figure 5. Owl sitting on a tree branch by Bake. Copied from
the asciiart.eu website.

6www.asciiart.eu/animals/birds-land. For terms of use see, www.
asciiart.eu/terms-of-use (accessed 25 July 2023).

7https://tidalcycles.org/docs/patternlib/tutorials/course2 (accessed 25
July 2023).

Live Coding Poetry 245

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

http://www.code-poetry.com
http://www.asciiart.eu/animals/birds-land
http://www.asciiart.eu/terms-of-use
http://www.asciiart.eu/terms-of-use
https://tidalcycles.org/docs/patternlib/tutorials/course2
https://doi.org/10.1017/S1355771823000493

d1 $ n “‘maj” # sound “supermandolin”

legato 2 # gain 1.4

These two lines demonstrate an extensive use of
musical jargon with names of acoustic instruments,
and musical terms such as ‘maj’ for major and ‘legato’
being contained in this small code chunk. Ixi Lang
names instruments following traditional music
nomenclature, such as ‘xylo’ for xylophone, and
FoxDot uses words such as ‘pluck’ for playing tones.
Another example is the following line, taken from
Sonic Pi’s tutorials,8 where electronic music jargon
is used:

sample :loop_amen, attack: 1

Within a musical context, when live coding with one
of these languages, there is a certain narrative that is
being developed, where each line of code describes a
certain musical action. The existence of a narrative can
hold for coding in general, but the more low level a
programming language is, the more this narrative can
become esoteric and understandable only by experts –
for example, extensive use of pointers in C or C��
can become very confusing to someone that is not
familiar with this concept.

If we are to think outside of a programming frame
and take into account a non-computer-literate audi-
ence, we can still consider the aforementioned live
coding programming languages as narrative, always
within a musical context. This means that a musical-
literate audience will be able to follow the train of
thought of the coder to a certain extent, even if they
are not computer literate.

If we now think of live coding outside of a musical
context – referring to the actual programming
language, not the audio output – and still embrace a
narrative that can be understood by a non-computer-
literate audience, we are getting closer to a combina-
tion of live coding with code poetry. The question is:
how can this be achieved? This question pertains to
section 8, where various intricacies of programming
languages within a code poetry context are discussed
and two approaches to this combination are presented.

6. RATIONALE FOR LIVE CODING POETRY

In this section, I will attempt to answer the fourth
question posed in section 1. The multitude of literature
on live coding, including the International Conference
on Live Coding,9 the Live Coding book (Blackwell,
Cocker, Cox, McLean andMagnusson 2022), and this
volume of the Organised Sound journal, all witness a
rich activity in the practice of live coding. Members of

the live coding community, such as McLean, are
characterised by a curiosity-driven activity that leads
them to bring live coders closer to other practitioners
(McLean 2015: 219). This fact, together with the
notion of a variety of activities being considered as live
coding (Hutchins 2015: 147), seems to provide an open
frame where various fields of practice can find their
place within live coding, whether these will be
considered as live coding per se, or they will be
combined with live coding in some way.
Code poetry is a practice that seems to have not yet

been caught by the radar of the wider live coding
community. Sure there are live coding works that
incorporate code poetry in some way, something that
has been demonstrated in the references section of this
article. Additionally, the Live Coding book stretches
the fields of practice where live coding happens
(Blackwell et al. 2022: 25), and poetry is mentioned
in various places. Its authors though, do not expand
on actual code poetry through live coding. Combined
with the little literature on live coding poetry,
especially where the code is treated as poetry per se,
we can assume that there is still little activity in this
hybrid field.
As stated in section 1, my curiosity about how live

coding can be combined with code poetry is driven by
the similarities computer code bears to various artistic
practices and its actual literary attributes that seem to
occupy so many scholars. By combining these two
practices, a new dimension is given to each, where live
coding music expands its focus to poetry, and code
poetry expands its focus to sound and music.
Additionally, poetry, often relying on the recitation
of the poem as a form of performance (Belle 2003), can
be considered a performative form of art, in the same
way that live coding is. The numerous examples of
text-sound and sound poetry provided in Landy’s
Compose Your Words (Landy 2020), either of his own
or of other artists’ – such as Marinetti, the Oulipo
group and Schwitters – highlight the performative
character of poetry. Therefore, live coding and code
poetry seem to have more characteristics in common,
besides the actual code.
The expansion of dimensions in each practice

that results from their combination poses certain
challenges, mainly discussed in section 8. This
combination also raises the following question: why
should live coding be combined with code poetry?
A simplistic, and perhaps naive answer, is that live
coding artists can be characterised by curiosity, often
attempting to combine live coding with other forms of
expression (McLean 2015). If we focus on the
performative and auditory aspects of poetry though,
it seems that employing the practice of live coding in
code poetry provides a medium that gives a perfor-
mative and sonic character to the latter, a character

8https://sonic-pi.net/tutorial.html#section-2-1 (accessed 25 July 2023).
9https://iclc.toplap.org/ (accessed 25 July 2023).

246 Alexandros Drymonitis

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://sonic-pi.net/tutorial.html#section-2-1
https://iclc.toplap.org/
https://doi.org/10.1017/S1355771823000493

that is present in other forms of poetry as well. This
combination opens new possibilities for live coding, as
live coding poetry opens a portal for live coders to
enter fields such as opera, recited/sound poetry,
theatre, or any art form that relies on written or
spoken text.

7. PERSONAL ATTEMPTS

In all my attempts to do live coding poetry that
produces sound, I have used Python. But even with a
language such as Python, writing code poetry live that
can also produce sound is a challenging task. Up to
now, I have been writing classes and functions with
keywords I want to use in files I insert into the main
Python instance. I then call them during the perfor-
mance. These class methods and functions also trigger
sound processes. My first attempt was a translation
of three poems by Vakalopoulou from English to
Python, where, apart from the poem, the code would
also create sound. These were performed at the Music
and Poetry Festival by the Music Is network in
November 2015. The performance can be found
online.10 the following is the code poem Ocean Floor
Is Awake:

>>> ocean_floor = _is._awake()

>>> one_eye = _is.made_of(‘pearl’)

>>> ocean_floor.has(one_eye)

the other is waiting

>>>

>>> all = _is.set_up()

>>> all.for_us()

>>>

>>> all.to_meet_up(‘around_people’)

>>>

>>> all.because(‘we_believed’)

>>> all.people(‘in_public’)

>>> all.would(‘forgive_us’)

>>>

>>> all.our(‘words’)

>>> all.our(‘thoughts’)

>>> ocean_floor.our(‘passions’)

This is a static poem that does not allow
improvisation. In this attempt, I tried to escape
Pythonic keywords such as ‘is’ by prepending an
underscore. I also used a few strings and prepared a

printed line: ‘the other is waiting’, shown without the
Python interpreter prompt. The difficulty in this poem
was that the translation had to be as close to the
natural language as possible, and that alienated the
code poetry from being code.
My second attempt was in collaboration with

performer Catalano, during the Koumaria Residency
by the artist group Medea Electronique, in 2016.
I prompted Catalano to write a modular poem in
English, which I then translated to Python. This second
attempt provided more freedom, as I prepared the code
so that certain functions could take more than one set of
arguments. Each different argument would also provide
a different sound. The result was a modular poem that
could take a few possible forms. The following is an
excerpt of the version of the performance of this poem, at
the Onassis Cultural Centre, in Athens, in 2018, that can
be found online:11

>>> sink.deep_in(“the earth’s shelter”)

>>>

>>> free.the_exiled(“light”)

>>>

>>> Break.the_copper_made_birds()

>>>

>>> if disperse.closer_to(“the earth”):

: : : release.the_exiled(“sky”)

: : :

>>> disperse.a_silent_window_to(“the
light”)

>>>

>>> sink.your_eyelids()

>>>

>>> release.the_exiled(“night”)

The approach to this modular poem was to create
classes whose names make literate sense when combined
with their methods. Also, some methods of some classes
shared the same name with methods of other classes, as
we see in the preceding example where the_exiled
method name is shared between the classes free and
release. Extensive use of strings was also applied in
this poem, something that I attempted to avoid in my
next attempt, the Echo and Narcissus libretto, which was
written in collaboration with Poulou and Manousakis,
both members of Medea. The following is an excerpt of
the libretto, while the entire performance can be found
online:12

10https://vimeo.com/146145222/da4d1d82d9 (accessed 25 July 2023).

11https://vimeo.com/187892132 (accessed 25 July 2023).
12https://youtu.be/1Btt4am2S2k (accessed 25 July 2023).

Live Coding Poetry 247

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://vimeo.com/146145222/da4d1d82d9
https://vimeo.com/187892132
https://youtu.be/1Btt4am2S2k
https://doi.org/10.1017/S1355771823000493

>>> poet = Coder()

>>> rhapsode = Coder()

>>>

>>> myth = True

>>>

>>> with Words():

: : : poet.reconstructs(myth)

: : :

>>> poetry = ‘rhythm’ in ‘words’

>>> poet.writes(‘ ‘ in ‘python ‘)

>>> poetry = ‘ ‘

>>> python = poetry in ‘code ‘

>>>

>>> nymphs = Nymphs()

The preceding libretto excerpt does not avoid
strings altogether, but I tried to integrate them into
the language specifics as much as possible. This is
demonstrated where the inmembership test operation
checks if a white space string is included in the string
‘python’, or other places where in is used. This
libretto is more Pythonic in its syntax, as I created
variables of standard classes, such as Booleans, or
classes I explicitly created in files imported to the
Python session. I also used other keyboards, such as
with, more frequently. A discussion on the music of
this opera can be found in my PhD thesis (Drymonitis
2021: 40).

Recently I have attempted to write haikus without
inserting pre-written files with classes and functions
named after keywords that serve the poem. The Pyo
module has to be imported though, and its audio server
must be booted and started. Once these lines are written,
a haiku can be written. The following are two haikus:

>>> give = Input(0)

>>> and_then = Chorus(give, depth=2)

>>> winter = and_then.out()

>>> winter = time.sleep(2)

>>> hear = PinkNoise().mix(2).out(1)

>>> summer = time.sleep(True)

Even though the number of syllables for a haiku is
followed (the equals sign is not supposed to be
pronounced), to make literate sense of these two
haikus, the narration rhythm should split or concate-
nate certain lines, which breaks the haiku rule for the
number of syllables per line. For example, the second
haiku should be read as:

Winter time

Sleep to hear pink noise mix, to out one

Summertime, sleep true

In this attempt, I have utilised Pyo classes that fit the
meaning of the poem, rather than writing a class of my
own with a name that would serve my purposes. Both
haikus produce audio and are functional in a Python
interpreter with the Pyo module imported. The
resulting sound though is very simplistic. Some
variation could be given to the first haiku, as it takes
audio input, applies a chorus effect and outputs it to
the speakers. If the performer utilises natural feedback
by placing the microphone close to the speakers, there
will be some variation in the sound.

8. INTRICACIES AND POSSIBLE
APPROACHES

In this section, I will discuss the intricacies of
programming languages and possible approaches to
combining live coding with code poetry. I consider the
subject of this section to be highly subjective, therefore
I will start by stating that what follows is my
estimation of how the combination of live coding
and code poetry can be achieved. Additionally, I have
knowledge of a few programming languages only –

these include C, C��, Python and a little bit of Lua –
thus, my opinions are formed by a limited field of
expertise.

8.1. Intricacies of programming languages in a code
poetry context

The first aspect of code poetry I would like to examine
is the punctuation marks and various symbols used in
various programming languages, and how these are
treated by code poets. Whether a programming
language makes extensive use of curly or squared
brackets, or various other symbols such as asterisks,
slashes, ampersands, or others, these symbols are
omnipresent and are not easily circumvented.
Therefore, a code poem should take a stand on
whether these symbols will be integrated into the
poetry or ignored altogether. This decision though will
most likely affect the destiny of the poem, as ignoring
such symbols is easier to be realised in recited poetry
rather than written. Nevertheless, there are examples
of written poetry that attempt to ignore this special
notation. Ode to My Thesis, a code poem written in
Perl by Counterman (Hopkins 1992: 392, 397) has
placed various punctuation marks to the far right of
the screen, separating the text of the poem from these
symbols. Still, these symbols are visible to the reader,
even though the poem can be easily read without
paying attention to them.

248 Alexandros Drymonitis

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000493

Most Perl poems try to integrate the special symbols
of this language by reading the $ sign as ‘dollar’ and @
as ‘at’ (ibid.: 392). To further complicate matters, if
such symbols are to be integrated into the poem, it is
not clear how this should be done. An example is a
haiku by Wall where ‘STDOUT’ must be pronounced
‘Standard Out’, to fill in the necessary number of
syllables of haiku (ibid.: 392).
Another aspect that affects code poetry is keywords.

Most, if not all, programming languages have a set of
keywords with a special meaning. For example, in
C/C��/Python, the words ‘for’ or ‘while’ are key-
words for creating loops. For a code poem to compile
without errors, this means that such words have to be
used within the scope of their special functionality,
which means that their special role has to be integrated
into the functional program of the poem, besides their
literary attributes. Some languages such as Ruby and
Lua conclude their function definitions and code
structures created with ‘for’, ‘while’, or other key-
words, with the keyword ‘end’. This applies to nested
structures, where the ‘end’ keyword will have to be
repeated for every structure inside the nest. Unless we
focus on concrete or visual poetry, unavoidably, this
affects any poem written in these languages. Haskell
on the other hand, makes extensive use of the
keywords ‘let’ and ‘where’. For a single poem, these
words could be nicely integrated, but for extensive use
for writing code poems, using these words repeatedly
could result in predictability.
Perl is a language that, even though its keywords are

in the magnitude of over two hundred, appears to
provide a certain amount of freedom, as it does not
complain when many of these keywords are being
abused (Hopkins 1992: 392). On the other hand, Perl
uses an extensive set of symbols, something that brings
us to the first point of this section. There are a few
languages that make a rather limited use of punctua-
tion marks and special symbols, including Ruby and
Lua, but also Python. Ruby and Lua bare the
obligation of the ‘end’ keyword, as stated earlier,
but Python is based on indentation only to conclude its
function definitions and other code structures.
Additionally, Python replaces many symbols used in
other languages with English words. For example, the
Boolean AND is expressed with the English word
‘and’ in Python, whereas in C/C�� it is expressed
with a double ampersand symbol. The same applies to
other Boolean operators. By escaping punctuation
though, we fall to the second point of this section,
which is keywords. It seems that within the program-
ming language domain, it is impossible to avoid both.
If it were possible, we would be probably talking about
natural languages instead. And, in my perception, this
is the challenge code poets are called to overcome,
but – inspired by Stravinsky – a challenge that feeds

inspiration rather than limits creativity (Stravinsky
1970: 65).
The last element of the combination of live coding

with code poetry that we need to examine is the audio
capabilities of a programming language or framework.
From the multitude of programming environments for
audio that exists, the literary attributes of the language of
each environment should be taken into consideration.
A DSP framework with potential literary attributes is
Python with the Pyo module. Even though Pyo is not
widely used, it is a very efficient module for DSP written
in C with its interface in pure Python. Bearing in mind
the advantages Python can have over other languages in
a code poetry context, this framework seems to provide
the desired potential for live coding poetry. The sc3
module for Python that controls SuperCollider’s scsynth
(Samaruga and Riera 2022) can also be considered, as it
is a fully featuredDSPmodule for Python. At the time of
writing though, this module is still in beta with several
functionalities still missing and its documentation under
development (Samaruga, Silvani and Saladino 2021).

8.2. Possible approaches to combining live coding
with code poetry

This subsection provides a conceptual framework on
how live coding and code poetry can be combined in a
single practice by discussing two possible approaches. It
also attempts to answer the third question of section 1.
The discussion in this subsection though is more
theoretical than practical. The reader is thus invited to
take the following information with a critical point
of view.
If we suppose that we have solved the language issue

in a poetry and an audio context, separately, we
should now consider how to merge the audio and
poetic attributes of the language we can use. If one is
to use an existing programming language intact, one is
restricted to the names of classes that produce or
process audio, as these classes must be called and
eventually integrated into the poem. The equals sign
together with other punctuation marks such as
squared or round brackets, even if sparse, will be still
present. If the live coding convention of ‘show us your
screens’ is to be followed, then these punctuation
marks will inevitably make their way into the poem,
so they must somehow be integrated as well. To
overcome these issues we have to enable a somewhat
free vocabulary with a strict syntax – to justify the
word ‘code’ in the term ‘code poetry’ – that would bind
the musical output to the poetic phraseology.
At the time of writing, Artificial Intelligence (AI)13

is a very popular practice, and this is evident through

13AI is a practice where an algorithm is tuned based on data, a
process called training, and provides output on unseen data, based
on its training.

Live Coding Poetry 249

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000493

the volume of research and literature on this field. In
this context, even though I have not yet tested it in the
context of live coding poetry, AI could be deployed in
a way that will enable the generation of audio, or the
control of synthesis parameters, based on the written
text. The practice of sentiment analysis (Bhaumik and
Yadav 2021: 59) – which provides values for the
sentiment of text, whether that is positive, negative, or
neutral – can prove helpful, as it can serve as the input
to AI, based on which the latter will produce or
control sound. To achieve this, if Python is to be used,
a custom Python interpreter is necessary, as undefined
variable names are bound to raise an error with
Python’s default interpreter. A custom interpreter will
enable a more free vocabulary. As an example, the
following line, from the Echo and Narcissus libretto,
which reads:

I = Narcissus()

could be changed to:

I.am(Narcissus)

Thus, we can avoid the equal sign and render the
line more readable and easier to include in a live
coding session. The first case not only includes
the equal sign – which can of course be included in
the poem, but its pronunciation is ambiguous, as it can
be read both as ‘I equal Narcissus’ or ‘I amNarcissus’ –
but it also needs the class ‘Narcissus’ to have been
defined before it is invoked. That was the main issue
withEcho and Narcissus. In the second case, the custom
interpreter will not complain about the undefined
words – all three words, in this case – and no class
‘Narcissus’ is necessary to have been defined.

Concerning the custom interpreter and the preced-
ing example, two approaches are possible. One is to
convert the line to a comment, so the interpreter will
ignore it and use it only in the context of AI. This
approach seems more suitable if AI is used to generate
audio, instead of controlling synthesis parameters –

which is the second approach. This approach is also
more involved than the second one, because AI models
that generate audio need many hours of audio
recordings as training data, and can be very CPU
expensive both during their training and when used for
audio generation.

The second approach is to iterate through this line
until all undefined variables have classes or values
assigned to them. The interpreter should probably be
aware of the fact that ‘I’ must become an object of a
class, ‘am’ a method of that class, and finally,
‘Narcissus’ should be mapped to another class that
will be passed as an argument to the method the word
‘am’ will be mapped to. The following lines are an
example of how this mechanism could map the line
given earlier:

I = SuperSaw()

Narcissus = Sine(freq=185, mul=200,
add=200)

I.setFreq(Narcissus)

This way, ‘I’ will become an object of the
SuperSaw class, ‘Narcissus’ an object of the Sine
class, and ‘am’ will be mapped to the setFreq
method, which is common between many oscillator
classes in Pyo. The preceding example will result in a
frequency modulation of a super saw oscillator
modulated by a sine wave oscillator. The last line is
now very similar to the original, with the replacement
of ‘am’ with ‘setFreq’ being the only difference.
The classes that will be chosen in the preceding

process are the responsibility of the AI. The training of
the AI should be undertaken by each user separately
for the system to represent the audio aesthetics and the
desired connections between text and sound of the
respective user.
The following lines below, inspired by the libretto of

Echo and Narcissus, are a similar example:

echo babbles(randomly):

Hera.is_distracted(intentionally)

The preceding pseudo-code has the structure of a
function definition in Python. Thus, with the proposed
approach, it can be replaced with the following code:

randomly = random.randrage(50, 200)

Hera = SineLoop(freq=200, feedback=0.05)

def babbles(randomly):

intentionally = randomly

Hera.setFreq(intentionally)

After these mappings are made, ‘Hera’ will be
assigned to an object of the SineLoop class, and
‘babbles’ will become a function that will set a random
frequency to the ‘Hera’ object. In the myth of ‘Echo
and Narcissus’, Echo was a Nymph who intentionally
distracted Hera with her babble so that Zeus could flirt
with other women. Thus, the mapping of the pseudo-
code of this example can depict part of the myth
through sound, alongside the actual code poetry.
A programming environment with a free vocabu-

lary but a strict syntax can provide a framework for
expression that is free to a certain extent, in the
domain of code poetry, combined with sound. Python
includes modules for sentiment analysis and a big
variety of machine learning models. It also provides
the capability to create a custom interpreter. All this,
combined with the Pyo module, provides all the
necessary tools for the creation of the proposed
approaches to live coding poetry, all in the same
programming language.

250 Alexandros Drymonitis

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000493

9. CONCLUSIONS

This article has attempted to contribute to the
discourse and the literature on the combination of
live coding and code poetry, as well as to provide a
critical point of view on how these two practices can be
combined. Even though the focus of this article has
been the integration of code poetry in live coding, or
how to write code poetry live, hence do live coding
poetry, the intention has been to combine poetry with
music or sound, as a way to provide another
dimension both to code poetry and to musical live
coding. Expanding on the actual music that can be
produced by this combination is beyond the scope of
this article, as its potential length would outgrow the
available article length of the Organised Sound
journal. Nevertheless, links to existing works, or
references to literature that discusses this, are provided
in certain places in this article.
By acknowledging the small volume of literature

and the little activity on this hybrid art form, together
with the broad perception of what is, or what can be
live coding, and the curiosity that characterises the
live coding community, this article aims to initiate
or continue the discourse on live coding poetry. I
believe that this combination has not been explored
thoroughly. On the other hand, with live coding
approaching many art disciplines, and with existing
software and programming languages providing the
necessary tools to realise this combination, I believe
that the conditions are ripe for diving deeper into
this hybrid art form. Such a combination can open
up new fields of practice for live coding, something
that seems to be always welcomed by its community.
This combination though projects several chal-

lenges. These are connected to the intricacies of
programming languages in a literary context, but also
to the obligatory use of names of classes that produce
or process audio, in a poetic context. A proposed
approach to overcome these challenges is to create an
environment for live coding poetry that will be
tolerant towards a more free vocabulary, but strict
with syntax. This environment could make use of
sentiment analysis to derive the poetic intention of the
coder, and AI to invoke audio classes or to generate
audio, based on this analysis.
From the multitude of programming languages

that exist, Python seems to be a choice that provides
the necessary utilities for the creation of such an
environment, as its repositories include modules for
sentiment analysis and AI, besides DSP and the
ability to create a custom interpreter. The latter is
necessary to liberate the vocabulary of the language
and enable a more free expression, as undefined
variables will internally be assigned to objects or
values, or converted to comments. Besides these
attributes, Python makes extensive use of English

words and, compared with other languages, limited
use of punctuation marks, a fact that serves code
poetry well.

Acknowledgements

I would like to thank Christian Iñigo D. L. Alvarez,
Daniel Holden and Chris Kerr for giving me permission
to use screenshots from their articles or websites in
Figures 1, 2 and 4. Figure 3 is published under a Creative
Commons Attribution 4.0 International license (CC BY
4.0), which can be found at https://creativecommons.org/
licenses/by/4.0/. Figure 5 is published under the terms
found in www.asciiart.eu/terms-of-use.

REFERENCES

Aaron, S. and Blackwell, A.F. 2013. From Sonic Pi to
Overtone: Creative Musical Experiences with Domain-
Specific and Functional Languages. Proceedings of the
First ACM SIGPLAN Workshop on Functional Art,
Music, Modelling & Design. New York: Association for
Computing Machinery, 35–46. https://doi.org/10.1145/
2505341.2505346.

Alvarez, C. I. D. L. 2017. The Intrinsic Mutability of
Code Poetry Uncovers New Notions of Poetic Design.
Philippine Humanities Review 19(1). https://journals.upd.
edu.ph/index.php/phr/issue/view/630.

Bélanger, O. 2016. Pyo, the Python DSP Toolbox.
Proceedings of the 24th ACM International Conference
on Multimedia. New York: Association for Computing
Machinery, 1214–17. https://doi.org10.1145/2964284.
2973804.

Belle, F. 2003. The Poem Performed. Oral Tradition 18(1),
14–15. https://doi.org/10.1353/ort.2004.0007.

Bhaumik, U. and Yadav, D. K. 2021. Sentiment Analysis
Using Twitter. In Computational Intelligence and
Machine Learning. Advances in Intelligent Systems and
Computing. Singapore: Springer, 55–66. https://doi.org/
10.1007/978-981-15-8610-1_7.

Blackwell, A. F., Cocker, E., Cox, G., McLean, A. and
Magnusson, T. 2022. Live Coding: A User’s Manual.
Cambridge, MA: MIT Press.

Broukhis, L., Cooper, S. and Noll, L. 2020. The
International Obfuscated C Code Contest. www.ioccc.
org/ (accessed 25 July 2023).

Cage, J. 1961. Silence. Middletown, CT: Wesleayan
University Press.

Chandra, V. 2014. Geek Sublime. Minneapolis, MN:
Greywolf Press.

Cotterill, S. 2015. ICLC Performances. https://iclc.toplap.
org/2015/performances.html (accessed 25 July 2023).

Cox, G. 2013. Speaking Code. Cambridge, MA: MIT Press.
Cox, G., McLean, A. and Ward, A. 2000. The Aesthetics of

Generative Code. Proceedings of the International
Conference on Generative Art, Rome.

Drymonitis, A. 2021. The Artists Who Say Ni!:
Incorporating the Python Programming Language into
Creative Coding for the Realisation of Musical Works.

Live Coding Poetry 251

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.asciiart.eu/terms-of-use
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://journals.upd.edu.ph/index.php/phr/issue/view/630
https://journals.upd.edu.ph/index.php/phr/issue/view/630
https://doi.org10.1145/2964284.2973804
https://doi.org10.1145/2964284.2973804
https://doi.org/10.1353/ort.2004.0007
https://doi.org/10.1007/978-981-15-8610-1_7
https://doi.org/10.1007/978-981-15-8610-1_7
http://www.ioccc.org/
http://www.ioccc.org/
https://iclc.toplap.org/2015/performances.html
https://iclc.toplap.org/2015/performances.html
https://doi.org/10.1017/S1355771823000493

PhD thesis, Birmingham City University. https://doi.org/
10.13140/RG.2.2.27923.55841.

Drymonitis, A. and Manousakis, M. 2022. Echo and
Narcissus: Live Coding and Code Poetry in the Opera.
Proceedings of the International Computer Music
Conference, ICMC, Limerick, Ireland.

Forero, J. 2021. Code, Poetry and Freedom. Proceedings of
the 9th Conference on Computation, Communication,
Aesthetics & X, 261–77.

Graham, P. 2004. Hackers and Painters: Big Ideas from the
Computer Age. Sebastopol, CA: O’Reilly.

Grillmair, R. M. 2019. Code and Poetry An Exploration of
Logic throughout Art, Computation and Philosophy.
Master’s thesis, University of Arts, Linz, Austria.

Hilder, J. 2013. Concrete Poetry and Conceptual Art: A
Misunderstanding. Contemporary Literature 54(3):
578–614. https://doi.org/10.1353/cli.2013.0034.

Holden, D. and Kerr, C. 2016. ./code –poetry. https://code-
poetry.com/ (accessed 25 July 2023).

Hopkins, S. 1992. Camels and Needles: Computer Poetry
Meets the Perl Programming Language. Proceedings of
the USENIX Winter 1992 Technical Conference. San
Francisco, 391–404.

Hutchins, C. C. 2015. Live Patch/Live Code. Proceedings of
the First International Conference on Live Coding, Leeds,
147–51. https://doi.org/10.5281/zenodo.19346.

Kirkbride, R. 2021. FoxDot. https://foxdot.org/ (accessed 25
July 2023).

Kuchina, S. 2018. OnGenerative Poetry: Structural, Stylistic
and Lexical Features.Matlit. 6(8): 73–83. https://doi.org/
10.14195/2182-8830_6-1_5.

Landy, L. 2020. Compose Your Words. Philadelphia, PA:
Intelligent Arts.

Magnusson, T. 2011. The IXI Lang: A SuperCollider
Parasite for Live Coding. Proceedings of the
International Computer Music Conference, ICMC,
Huddersfield, UK.

McLean, A. 2015. Reflections on Live Coding
Collaboration. Proceedings of the Conference on
Computation, Communication, Aesthetics & X, xCoAx,
Glasgow, 214–20.

McLean, A. 2021. Tidal Cycles. https://tidalcycles.org/docs/
(accessed 25 July 2023).

O’Riordan, K. 2002. ASCII Art. In S. Jones (ed.)
Encyclopedia of New Media. Chicago: University of
Illinois at Chicago, 15–16.

Rodríguez, J., Betancur, E. and Rodríguez, R. 2019.
CineVivo: Livecoding Language for Visuals.
Proceedings of the Sixth International Conference on
Live Coding, ICLC 2019, Madrid, Spain.

Rohrhuber, J., de Campo, A. andWieser, R. 2005. Notes for
Language Design for Just in Time Programming.
Proceedings of the International Computer Music
Conference, Barcelona, Spain.

Samaruga, L. and Riera, P. 2022. A Port of the
SuperCollider’s Class Library to Python. Proceedings
of the 17th International Audio Mostly Conference (AM
‘22). New York: Association for Computing Machinery,
137–42. https://doi.org/10.1145/3561212.3561250.

Samaruga, L., Silvani, D. and Saladino, I. 2021.
SuperCollider library for Python. https://github.com/
smrg-lm/sc3 (accessed 25 July 2023).

Stravinsky, I. 1970. Poetics of Music in the Form of Six
Lessons. Cambridge, MA: Harvard University Press.

Toscano, E. and Vaccaro, M. A. 2020. François Le Lionnais
and the Oulipo. In M. Emmer and M. Abate (eds.)
Imagine Math 7. Cham: Springer. https://doi.org/10.
1007/978-3-030-42653-8_23.

VIDEOGRAPHY

Forero, J. 2018. Aimaako. YouTube. https://youtu.be/w_t-
gm8mXAM (accessed 25 July 2023).

252 Alexandros Drymonitis

https://doi.org/10.1017/S1355771823000493 Published online by Cambridge University Press

https://doi.org/10.13140/RG.2.2.27923.55841
https://doi.org/10.13140/RG.2.2.27923.55841
https://doi.org/10.1353/cli.2013.0034
https://code-poetry.com/
https://code-poetry.com/
https://doi.org/10.5281/zenodo.19346
https://foxdot.org/
https://doi.org/10.14195/2182-8830_6-1_5
https://doi.org/10.14195/2182-8830_6-1_5
https://tidalcycles.org/docs/
https://doi.org/10.1145/3561212.3561250
https://github.com/smrg-lm/sc3
https://github.com/smrg-lm/sc3
https://doi.org/10.1007/978-3-030-42653-8_23
https://doi.org/10.1007/978-3-030-42653-8_23
https://youtu.be/w_t-gm8mXAM
https://youtu.be/w_t-gm8mXAM
https://doi.org/10.1017/S1355771823000493

	Live Coding Poetry: The narrative of code in a hybrid musical/poetic context
	1.. INTRODUCTION
	2.. RELATED WORKS
	3.. CODE POETRY
	4.. CODE AND POETRY BUT NOT CODE POETRY, AND OTHER (ART) FORMS
	4.1.. Code and concrete poetry
	4.2.. Brainfuck and ASCII art

	5.. THE NARRATIVE OF LIVE CODING
	6.. RATIONALE FOR LIVE CODING POETRY
	7.. PERSONAL ATTEMPTS
	8.. INTRICACIES AND POSSIBLE APPROACHES
	8.1.. Intricacies of programming languages in a code poetry context
	8.2.. Possible approaches to combining live coding with code poetry

	9.. CONCLUSIONS
	Acknowledgements

	REFERENCES
	VIDEOGRAPHY

