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Abstract

We investigate when a group of the form G × Zm (m ≥ 1) has the finitely generated fixed subgroup property
of automorphisms (FGFPa), by using the BNS-invariant, and provide some partial answers and nontrivial
examples.
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1. Introduction

For a group G, the rank of G, denoted rk(G), is the minimal number of generators of
G and Aut(G) denotes the group of all automorphisms of G. For an endomorphism φ
of G, the fixed subgroup of φ is

Fixφ := {g ∈ G | φ(g) = g}.
The study of fixed subgroups goes back to Dyer and Scott in 1975. In [7], they
proved that for a finite order automorphism φ of a free group Fn of rank n, the rank
of Fixφ is not greater than n. Moreover, Scott conjectured that rk(Fixφ) ≤ n for any
φ ∈ Aut(Fn). Scott’s conjecture was resolved by Bestvina and Handel [2] in 1988, and
extended to all endomorphisms by Imrich and Turner [11] almost simultaneously. For
every endomorphism φ of a surface group G (that is, the fundamental group of a
closed surface), the same bound rk(Fixφ) ≤ rk(G) also holds [13]. The study of fixed
subgroups of various groups and related topics, such as the Nielsen fixed point theory,
has produced many interesting results (see [6, 12, 23, 29–31]).

More generally, we say that a group G has the finitely generated fixed subgroup
property of automorphisms (FGFPa), if the fixed subgroup Fixφ is finitely generated
for every automorphism φ ∈ Aut(G). Note that if a group G has FGFPa, it must itself
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be finitely generated. In addition to free groups and surface groups mentioned above,
many types of groups had been proven to have FGFPa, such as Gromov hyperbolic
groups [20, 21, 24] and limit groups [18]. The FGFPa property is preserved under
taking free products [15], but not under taking direct products [28]. For example, the
free group F2 and Z both have FGFPa, but their direct product F2 × Z does not.

EXAMPLE 1.1. Let φ be the automorphism of F2 × Z = 〈a, b〉 × 〈t〉 defined by
φ(a) = at, φ(b) = b and φ(t) = t. An element u is in Fixφ if and only if the total a
exponent in u is zero. Then the fixed subgroup Fixφ � Fℵ0 × Z is not finitely generated
(it is generated by the set {t, aiba−i | i ∈ Z}).

In this note, we will investigate the following question.

QUESTION 1.2. For a group G, when does G × Zm (m ≥ 1) have FGFPa?

We provide some partial answers (see Theorems 3.1, 3.7 and 3.11) by using the
BNS-invariant.

2. Preliminaries

2.1. BNS-invariant. The BNS-invariant, introduced in 1987 by Bieri et al. [3], is
a geometric invariant of finitely generated groups inspired by the work of Thurston
[27]. It determines whether the kernel of a homomorphism from a group to an abelian
group is finitely generated or not. Generally, the BNS-invariant is hard to compute.
It was described for some families of groups like RAAGs [17], limit groups [14] and
some other groups. Bieri and Renz [4] introduced the higher dimension BNS-invariant
to get more information on the kernel.

DEFINITION 2.1. Let G be a finitely generated group with a finite generating
set X ⊂ G, n = rk(H1(G;Z)) the torsion-free rank of the abelianisation of G, and
S(G) = (Hom(G,R) − 0)/R+ the character sphere which is an (n − 1)-sphere. Note that
an element of S(G) is an equivalence class [χ] = {rχ | r ∈ R+}. Denote by Γ = Γ(G, X)
the Cayley graph of G with respect to X. The first Σ-invariant (or BNS-invariant)
of G is

Σ1(G) := {[χ] ∈ S(G) | Γχ is connected},

where Γχ is the subgraph of Γ whose vertices are the elements g ∈ G with χ(g) ≥ 0
and whose edges are the edges of Γ which connect two such vertices.

A nontrivial homomorphism χ : G→ R with discrete (and hence infinite cyclic)
image is said to be a discrete or rank one homomorphism. It represents a rational point
of S(G). The set of rational points,

SQ(G) := {[χ] ∈ S(G) | χ is discrete},

is dense in S(G).

For later use, we present the main results of the paper [3].
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THEOREM 2.2 (Bieri, Neumann and Strebel). Let G be a finitely generated group.

(1) Let N be a normal subgroup of G with G/N abelian. Then N is finitely
generated if and only if S(G, N) := {[χ] ∈ S(G) | χ(N) = 0} ⊂ Σ1(G). In particular,
Σ1(G) = S(G) if and only if the derived subgroup [G, G] is finitely generated.

(2) Let φ : G→ Z be a nontrivial homomorphism. Then ker φ is finitely generated if
and only if {φ,−φ} ⊂ Σ1(G). In particular, SQ(G) ⊂ Σ1(G) if and only if ker φ is
finitely generated for every homomorphism φ : G→ Z.

2.2. Automorphism. A centreless group G is one in which the centre C(G) is trivial.

PROPOSITION 2.3. If G is a centreless group, then every automorphism φ : G × Zm →
G × Zm (m ≥ 1) has the form:

φ(g, v) = (ψ(g),α(g) +Lv), (g, v) ∈ G × Zm,

where ψ : G→ G and L : Zm → Zm are automorphisms and α : G→ Zm is a
homomorphism.

PROOF. Since G is a centreless group, the centre

C(G × Zm) = C(G) × C(Zm) = 1 × Zm.

Note that an automorphism preserves the centre, so φ(1 × Zm) = 1 × Zm and
φ(1, v) = (1,Lv) for L an invertible matrix. Therefore, we can suppose

φ(g, v) = (ψ(g),α(g) +Lv), (g, v) ∈ G × Zm.

The endomorphism ψ : G→ G is clearly surjective, so it remains to show that it is also
injective. Indeed, for any g ∈ kerψ,

φ(g, 0) = (1,α(g)) ∈ 1 × Zm = C(G × Zm).

Now (g, 0) ∈ 1 × Zm implies g = 1 and hence ψ : G→ G is an automorphism. �

3. Main results

In this section, we study the necessary and sufficient conditions for Question 1.2 to
have a positive answer.

3.1. Necessary condition.

THEOREM 3.1. For a group G:

(1) if G × Z has FGFPa, then G has FGFPa and SQ(G) ⊂ Σ1(G), or equivalently,
every homomorphism α : G→ Z has finitely generated kernel;

(2) if G × Zm has FGFPa for some m ≥ rk(H1(G;Z)), then G × Zn has FGFPa for
every n with 0 ≤ n ≤ m, and Σ1(G) = S(G), or equivalently, its derived subgroup
[G, G] is finitely generated.
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PROOF. (1) First, we assume that G does not have FGFPa, that is, there is an auto-
morphism ψ of G, such that Fixψ is not finitely generated. Consider the automorphism
φ : G × Z→ G × Z given by

φ(g, n) = (ψ(g), n).

Its fixed subgroup, Fixφ = Fixψ × Z, is not finitely generated, contradicting the
hypothesis that G × Z has FGFPa.

Now we assume SQ(G) � Σ1(G), or equivalently by Theorem 2.2, there is a
nontrivial homomorphism α : G→ Z such that kerα is not finitely generated. Let
φ : G × Z→ G × Z be given by

φ(g, n) = (g, α(g) + n).

Then φ is an automorphism whose inverse is φ−1(g, n) = (g, n − α(g)). It is easy to see
that Fixφ = kerα × Z is not finitely generated, also contradicting the hypothesis that
G × Z has FGFPa.

(2) If G × Zm has FGFPa for some m ≥ rk(H1(G;Z)), then G × Zn has FGFPa
for every n with 0 ≤ n ≤ m. This follows directly from proof (1) because
G × Zm = (G × Zm−1) × Z.

Now we assume that [G, G] is not finitely generated. Then Theorem 2.2 implies
Σ1(G) � S(G) and there is a nontrivial homomorphism α : G→ R such that kerα
is not finitely generated. Note that the image of α is an abelian group Zn with
n ≤ rk(H1(G;Z)). So α can be viewed as a homomorphism α : G→ Zn, and the
automorphism

φ : G × Zn → G × Zn, φ(g, v) = (g, α(g) + v),

has fixed subgroup Fixφ = kerα × Zn which is not finitely generated, contradicting the
hypothesis that G × Zn has FGFPa. �

REMARK 3.2. Spahn and Zaremsky [26] showed that every kernel of a map from the
group F2,3 to Z is finitely generated, but there exist maps from F2,3 to Z2 whose kernels
are not finitely generated. For the definition of F2,3 and more details, see [26].

EXAMPLE 3.3. Let G be a nonabelian limit group. Then G × Z (and hence
G × Zm (m ≥ 1)) does not have FGFPa. Indeed, Kochloukova [14] proved that the
BNS-invariant of a nonabelian limit group is the empty set. Note that the sphere S(G)
is not empty, so SQ(G) � Σ1(G). By Theorem 3.1, G × Z does not have FGFPa.

3.2. Sufficient condition. To give sufficient conditions for Question 1.2 to have a
positive answer, we need to introduce the Howson and weakly Howson properties.

DEFINITION 3.4. A group G is said to have the Howson property if the intersection
H ∩ K of any two finitely generated subgroups H, K < G is again finitely generated; G
is said to have the weakly Howson property, if in addition, one of H and K is normal
in G.
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Note that a group with the Howson property necessarily has the weakly Howson
property and simple groups clearly have the weakly Howson property. Free groups
and surface groups both have the Howson property [10]. More concretely, for a free or
surface group G,

rk(H ∩ K) − 1 ≤ (rk(H) − 1)(rk(K) − 1),

which was conjectured by Hanna Neumann in 1957, and proved independently
by Friedman [8] and Mineyev [19] in 2011 for free groups and by Antolín and
Jaikin-Zapirain [1] in 2022 for surface groups.

LEMMA 3.5. (Some basic properties of the weakly Howson property).

(1) F2 × Z does not have the weakly Howson property, and hence does not have the
Howson property;

(2) the Howson property is heritable (that is, if a group has the Howson property, then
each subgroup of it does), and hence any group containing a subgroup isomorphic
to F2 × Z does not have the Howson property;

(3) Thompson’s group V has the weakly Howson property but does not have the
Howson property;

(4) the weakly Howson property is not heritable.

PROOF. (1) Let F2 × Z = 〈a, b〉 × 〈t〉 and let K = 〈a, bt〉 be a finitely generated sub-
group. Then F2 = 〈a, b〉 is normal in F2 × Z, and F2 ∩ K = 〈bnab−n | n ∈ Z〉 is the
normal closure of a in F2 and hence not finitely generated. Therefore, F2 × Z does
not have the weakly Howson property (and hence does not have the Howson property).

(2) The Howson property is clearly heritable. So any group with a subgroup
isomorphic to F2 × Z does not have the Howson property. For example, the special
linear group SL(n,Z) (n ≥ 4) contains a subgroup isomorphic to F2 × Z and does not
have the Howson property. Moreover, by the virtually fibred theorem of 3-manifolds,
every hyperbolic 3-manifold of finite volume is finitely covered by a surface bundle
over the circle. So the fundamental group of every hyperbolic 3-manifold of finite
volume does not have the Howson property [25].

(3) Note that Thompson’s group V is a finitely presented infinite simple group,
so it has the weakly Howson property. Moreover, Thompson’s group V contains
a remarkable variety of subgroups, such as finitely generated free groups, finitely
generated abelian groups and Houghton’s groups. The class of subgroups of V is closed
under direct products and restricted wreath products with finite or infinite cyclic top
group [9]. In particular, V contains F2 × Z as a subgroup and hence V does not have
the Howson property.

(4) This clearly follows from item (3). �

LEMMA 3.6. Let G be a finitely generated group, H < G a finite index subgroup and
K < G a finitely generated subgroup. Then H ∩ K is finitely generated.
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PROOF. It is easy to see that H ∩ K has finite index in K. Since K is finitely generated,
H ∩ K is also finitely generated. �

THEOREM 3.7. Let G be a centreless group with the weakly Howson property. Then:

(1) G × Z has FGFPa if and only if G has FGFPa and SQ(G) ⊂ Σ1(G), or equivalently,
every homomorphism α : G→ Z has finitely generated kernel;

(2) G × Zm has FGFPa for every m ≥ 1 if and only if G has FGFPa and Σ1(G) = S(G),
or equivalently, the derived subgroup [G, G] is finitely generated.

PROOF. The ‘only if’ part clearly follows from Theorem 3.1. For the ‘if’ part, note that
G is centreless, so by Proposition 2.3, every automorphism φ of G × Zm (m ≥ 1) has
the form

φ(g, v) = (ψ(g),α(g) +Lv),

where ψ ∈ Aut(G), α ∈ Hom(G,Zm) and L ∈ Aut(Zm). This gives the fixed subgroup

Fixφ = {(g, v) ∈ G × Zm | ψ(g) = g, α(g) +Lv = v}. (3.1)

We now prove the ‘if’ part for the two statements in the theorem.
(1) In this case, m = 1 and L = ±Id. Since G has FGFPa and SQ(G) ⊂ Σ1(G),

Fixψ and kerα are both finitely generated for every homomorphism α : G→ Z by
Theorem 2.2. When L = Id,

Fixφ = {(g, n) | ψ(g) = g, α(g) + n = n} = (Fixψ ∩ kerα) × Z

and Fixφ is finitely generated by the weakly Howson property of G. When L = −Id,
the fixed subgroup is

Fixφ = {(g, n) | ψ(g) = g, α(g) − n = n}
= {(g, n) | g ∈ Fixψ ∩ α−1(2Z), n = α(g)/2}
� Fixψ ∩ α−1(2Z).

Actually, the weakly Howson property adds nothing in this case, because α−1(2Z) < G
is a subgroup of index ≤ 2 and Fixφ is finitely generated by Lemma 3.6. In both cases,
G × Z has FGFPa and item (1) holds.

(2) To prove G × Zm has FGFPa for every m ≥ 1, let us consider the projection

p : G × Zm → G, p(g, v) = g.

Then, by (3.1), we have the natural short exact sequence

0→ Fixφ ∩ ker p ↪→ Fixφ
p
−→ p(Fixφ)→ 1,

where

Fixφ ∩ ker p = {(1, v) ∈ G × Zm | Lv = v} � Zs
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for some s ≤ m, and

p(Fixφ) = {g ∈ Fixψ | there is v = α(g) +Lv ∈ Zm} = Fixψ ∩ α−1((Id − L)Zm) (3.2)

is a normal subgroup of Fixψ.
By the above exact sequence, to prove that Fixφ is finitely generated, it suffices

to prove that p(Fixφ) is finitely generated. Indeed, note that Σ1(G) = S(G), and
G/α−1((Id − L)Zm) is a quotient of α(G) and hence abelian. So by Theorem 2.2,
α−1((Id − L)Zm) is a finitely generated normal subgroup of G. Moreover, since G has
FGFPa, both G and Fixψ are finitely generated. By the weakly Howson property of G,
p(Fixφ) is again finitely generated.

Therefore, Fixφ is finitely generated and hence G × Zm (m ≥ 1) has FGFPa. �

For an arbitrary group G, it seems too difficult to guarantee that G has both the
(weakly) Howson and FGFPa properties and that [G, G] is finitely generated, unless G
is slender, that is, every subgroup of G is finitely generated. For example, all finite
groups and all finitely generated nilpotent groups are slender. Note that nilpotent
groups have nontrivial centres.

Hyperbolic groups have FGFPa and nonelementary hyperbolic groups are centre-
less. However, for a hyperbolic group G, we do not necessarily have the Howson
property and [G, G] finitely generated. For example, every nonsolvable surface group
is hyperbolic and has the Howson property, but its derived subgroup is not finitely
generated.

Every finitely generated nonabelian simple group G (for example, Thompson’s
group V) is centreless, with [G, G] finitely generated and satisfies the weakly Howson
property, but currently, little is known about the fixed subgroups.

QUESTION 3.8. Is there a centreless, infinite group G with [G, G] finitely generated
and satisfying the (weakly) Howson and FGFPa properties?

3.3. Nontrivial example. For a hyperbolic 3-manifold M, Soma [25] showed that
the fundamental group π1(M) has the Howson property if and only if M has infinite
volume. Although the fundamental group G = π1(M) of a hyperbolic 3-manifold M
with infinite volume has the Howson property, it never has a finitely generated derived
subgroup [G, G] unless G is nilpotent. In fact, assume there is a hyperbolic 3-manifold
M with infinite volume and with fundamental group having finitely generated derived
subgroup [G, G]. Moreover, assume that M is not the solid torus and not homotopic
to a closed surface. For such a hyperbolic 3-manifold M, we know one component of
∂M has genus at least two, so the first homology group of M is infinite. Let N be the
infinite regular cover of M with fundamental group π1(N) = [G, G]. We may deform
the hyperbolic structure on M so that it is geometrically finite and has no cusps. By
Thurston’s theorem [5], the hyperbolic structure on N is also geometrically finite. Since
[G, G] is a normal subgroup of G, the groups have the same limit set. Let C be the
convex hull of the limit set. Then the convex core of N is C/[G, G] and the convex
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core of M is C/G. Both have nonzero finite volume since N and M are geometrically
finite. However, C/[G, G] is an infinite cover of C/G, which is a contradiction.

In the case of M having finite volume, Lin and Wang [16] studied the fixed
subgroups of automorphisms of π1(M) and obtained the following result.

THEOREM 3.9 [16, Theorem 1.6]. Suppose G = π1(M), where M is an orientable
hyperbolic 3-manifold with finite volume and φ is an automorphism of G. Then Fixφ
is either the whole group G, or the trivial group 1, or Z, or Z × Z, or a surface group
π1(S), where S can be orientable or not and closed or not. More precisely:

(1) if φ is induced by an orientation-preserving isometry, then:

(a) Fixφ is either Z or Z × Z or G or 1;
(b) moreover, if M is closed, then Fixφ is either Z or G;

(2) if φ is induced by an orientation-reversing isometry f, then:

(a) if φ2 � id, Fixφ is either Z or 1;
(b) if φ2 = id, Fixφ is either 1 or the surface group π1(S), where S is an embedded

surface in M that is pointwise fixed by f.

Note that in [16], a 3-manifold M is hyperbolic if M is orientable, compact and the
interior of M admits a complete hyperbolic structure of finite volume (so that M is
either closed or has a boundary consisting of a union of tori).

PROPOSITION 3.10. Let G = π1(M) for M an orientable hyperbolic 3-manifold with
finite volume and without an involution. Then for any automorphism φ of G, the fixed
subgroup Fixφ is inert in G, that is, rk(H ∩ Fixφ) ≤ rk(H) for any finitely generated
subgroup H < G.

PROOF. Since M has no involution, we have φ2 � id for any automorphism φ of
G = π1(M), by Mostow’s rigidity theorem. Then by Theorem 3.9, the fixed subgroup
Fixφ is either 1, Z, Z × Z or the whole group G, and the proposition follows. �

To get nontrivial examples, we remove the weakly Howson property from the
conditions in Theorem 3.7.

THEOREM 3.11. The group G × Zm has FGFPa for every m ≥ 1 if G is one of the
following types:

(1) a slender group (for example, a finite group or a finitely generated nilpotent
group);

(2) G = π1(M) where M is a closed orientable hyperbolic 3-manifold with finite first
homology group H1(M) and with the isometry group Isom(M) of odd order.

PROOF. (1) Let G be a slender group, that is, every subgroup of G is finitely generated.
Then G × Zm is again slender, and hence it has FGFPa. Indeed, for any subgroup
H < G × Zm, we have a short exact sequence
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1→ H ∩ ker(p)→ H → p(H) < Zm,

where p is the natural projection G × Zm → Zm with ker(p) = G. Then, H ∩ ker(p) is a
subgroup of the slender group G and hence it is finitely generated. So H is also finitely
generated.

(2) Since M is a closed orientable hyperbolic 3-manifold, G = π1(M) is a centreless,
finitely generated Gromov hyperbolic group, and hence, G has FGFPa. Moreover,
H1(M) finite implies that the derived subgroup [G, G] is of finite index in the finitely
generated group G and hence it is again finitely generated. Note that the weakly
Howson property in the proof of Theorem 3.7(2) is only used to ensure that

Fixψ ∩ α−1((Id − L)Zm)

in (3.2) is finitely generated. However, now, since Isom(M) is of odd order, M has
no involution. By Proposition 3.10, the fixed subgroup Fixψ is inert in G for every
automorphism ψ : G→ G. So

rk(Fixψ ∩ α−1((Id − L)Zm)) ≤ rk(α−1((Id − L)Zm)) < ∞,

that is, Fixψ ∩ α−1((Id − L)Zm) is finitely generated.
In conclusion, we can show that G × Zm has FGFPa, by the same argument as in the

proof of Theorem 3.7(2), without using the weakly Howson property. �

There are many closed hyperbolic 3-manifolds such that their fundamental groups
satisfy condition (2) of Theorem 3.11.

EXAMPLE 3.12. Let M be the 3-manifold S3 − 932 and Mp,q be the Dehn filling from
M along the slope pM + qL. Here, 932 is the knot in Rolfsen’s list [22], and (M,L)
is the canonical meridian-longitude system of the cusp of M. So H1(M) = Zp. From
Snappy, we know that S3 − 932 is hyperbolic with trivial isometry group. When p,
q are large enough, Mp,q is a closed hyperbolic 3-manifold by Thurston’s hyperbolic
Dehn surgery theorem. The proof of Thurston’s hyperbolic Dehn surgery theorem also
implies the Dehn filling has a very short geodesic core when p, q are large. So any
isometry of Mp,q will preserve the core of the Dehn filling, and hence will preserve M,
that is, it will be isotopic to the identity. In summary, when p, q are large enough, Mp,q
is a closed hyperbolic 3-manifold with trivial isometry group and finite first homology
group. So its fundamental group satisfies condition (2) of Theorem 3.11.

Finally, inspired by Theorem 3.11, we may wonder whether the assumption
‘centreless and with the weakly Howson property’ in Theorem 3.7 can be removed
or not.

QUESTION 3.13. Does G × Z have FGFPa if the group G has FGFPa and the derived
subgroup [G, G] is finitely generated?
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