
Can. J. Math., Vol. XXXVI, No. 6, 1984, pp. 1046-1066 

A GENERAL FORM OF THE FUNCTIONAL LIL FOR 
BANACH-VALUED BROWNIAN MOTION 

H. SHIP-FAH WONG 

1. Introduction. In a recent paper [12], C. Mueller proved a general 
version of the functional LIL which unifies Strassen's LIL and the Levy 
modulus of continuity for Brownian motion W(t). His theorem also 
contains other known forms of the LIL. 

For each / è 0, let @t be a family of points in the first quadrant of the 
plane. Let r > 0; to each point (% /0), we associate a rectangle 

Rr(s0, /„) = { (s, I) \ke~r ^ l â /</, \s - s0\ ^ lor). 

Define Ar(t) to be the area of the union of these rectangles up to time / 

under the measure — j - . Then, Theorem 1 [12, p. 166] states that for an 

increasing function h such that 

/

oo 

0 e~ah{t)dAx{t) < oo} = 1; 

the set of limit points of 

c(.)-{/^ )-
w," + ^ . - ' ^ ' | ( , . / ) 6 < > , } 

in C[0, 1] is the closed unit ball of the reproducing kernel Hilbert space 
(rkhs) associated with Wiener measure. 

The proof given in [12] does not generalize easily to Banach 
space-valued Brownian motion. Furthermore, the above function Ar(t) is 
not easy to compute even in the simplest cases. In this paper, we prove the 
above result for the Banach space-valued Brownian motion in the form 
first studied by Bulinskii [1] (also used by the author in [17] ). He proved 
that for an increasing function h and if 

2 e-W) < oo, c > 1 
k 

R = inf { a > 0 

then the set of limit points of the sequence 
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BROWNIAN MOTION 1047 

g (.) = WW 
\/2nh(n) 

in C[0, 1] is the closed ball K* of radius V # ( = C[Q, 1] if R = oo) in 
the rkhs for Wiener measure. 

Our proof uses a rectangular exponential grid in the first quadrant of 
the plane and a sequence (sk, lk) e ^ ; ^ being the first / when &t first 
exits the k{h rectangle. If Wis a 5-valued Brownian motion, then we prove 
that the sequence 

/*(*) 
W(sk + xlk)- W{sk)\ 

is "asymptotically independent" in the sense of Nisio [13]. Consequently, 
if 

log h 
R = hm sup < oo, 

by a theorem analogous to Theorem 4.2 of Carmona-Kôno [2] the 
sequence 

(_A_\ 

satisfies the LIL, with the set of limit points being the closed ball K ^ in 
the corresponding rkhs. 

To complete the proof, we show that the other 

[fsl\ (s,l) ^<?t) 

can be controlled. The criterion 

log k 
R = lim sup 

Hh) 

proves to be easier to work with as we shall see in some examples. When 
R = oo, this proof has to be modified because we use the fact that K^ is 
compact for finite R. 

Section 2 introduces the machinery we need for "asymptotically 
independent" Gaussian sequences. We prove a generalized form of Nisio's 
lemma [13]. As a corollary, we get an improvement of a lemma of Lai [10] 
and Pathak-Qualls [14]. 

Section 3 contains the main result for a ^-valued Brownian motion 
when R < oo. 

Section 4 takes up the case R = oo. Here our proof follows the same 
lines as that of Bulinskii and uses the Haar basis for Wiener measure. 
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1048 H. SHIP-FAH WONG 

2. Preliminaries. Let {an\n = 1} be a positive non-decreasing sequence. 
Set 

oo 

R(an) = inf {a > 0| 2 e~aa» < oo}. 
n = \ 

The first lemma gives another characterization of R(an). 

log / 
LEMMA 1. R(an) = lim sup . 

J aJ 

Proof. Let 

r logy 
r = lim sup . 

J aJ 

First suppose r < oo, and a > r. There exists € > 0 for which 
a > r(l + e) and this shows that 

2 e~fla» < oo. 

Therefore R(an) ^ r. 
Conversely, suppose 

2 e~aa" < oo 
n 

for some finite positive a. Since £~aa* decreases, and 2 e-*"*" converges it 
is easy to show that ne~an —> 0. Suppose further that a < r, then there 
exists a sequence {«,} such that 

aan < log «y- or eaa"j < rij. 

This is a contradiction. Therefore either 

r = oo and 2 e~ao;" = oo for all a 

or 

r < oo then 2 £~aa;" < oo implies a = r. 

This completes the proof. 

In [13], M. Nisio studied what was described later as "asymptotically 
independent" Gaussian sequences {£„}, that is, for which 

lim sup E(£n£m) ^ 0. 
m — n—>oo 

n-^oo 

For the proof of our main theorem in the next section, we need an 
extension of Theorem 2 in [13] to sequences satisfying a slightly weaker 
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condition. The proof uses a lemma of Slepian and the Borel-Cantelli 
lemma. 

LEMMA 2. Let {£„} be a mean-zero Gaussian sequence with E{i~n) = o ; 
and let {an} be a positive non-decreasing sequence with R(an) = R < oo. 
Suppose further that the following condition (N) is satisfied: 

For every e > 0, there exists a subsequence {£„.} of {£„} such that 

E(èn^nk) = € whenever j ¥= k 

and 

R(a„) = R. 

Then 

lim sup in 
/2a„ 

= o\/R a.s. 

Proof Without loss of generality we are going to suppose o = 1. If 
R = 0 then for any c > 0. 

2P \in\ 
/2a„ 

> € I oo 

« = 1 € 1 /2a„ 
< oo. 

By the Borel-Cantelli lemma 

lim sup in 
/2a„ 

= 0 a.s. 

Let 0 < R < oo, for 8 > 0 the Borel-Cantelli lemma again implies that 

in lim sup 
r2an 

â V#0 + 8) a-s-

For the reverse inequality, choose 0 < € < 1/2 and /? > 1 such that 

1 
> 1 and j8 (-Î)1 < 1. 

€ 4 

Condition (N) implies the existence of a sequence {nj} such that 

E(U„k) g € for j ^ * 

and 

log / 
#(«„) = lim sup - ^ - - R. 

Choose a further subsequence {nJk} of {«,-} such that 

Jk > Vk-\ and logjk ^ ita„7 / ^ l - - J 
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We now follow Nisio's proof using Slepian's lemma. 
Let {X0, Xh X2, . . . } be an independent mean-zero Gaussian sequence 

with 

E(xl) = e and E(XJ) = 1 - c, / > 1. 

Set Yt = X0 + Xh i > 1. Since EY\ = 1, 

E(YkYj) è E(Znkin). 

Therefore, by a lemma of Slepian [15] 

P[ max £n. ë c] ^ P[ max 7y g c] 
jk=j=jk\\ J Jk=j=jkv\ 

for every c > 0. 

P[ max | g (1 - Ô)V^(1 - «)2<^ ] 
Jk=j=Jk+\ 

^ P[ max 7y g (1 - S)\/R(\ - c)2a/I/Af|] 
jk=j=jkn 

=i P[X0 ^ -8- y/R{\ - €)2a„.J 

+ P[ max A) § (1 - | ) V « ( l " <)2a„;il] 

= (I) + (II)-

(I) is bounded by the general term of a convergent series because 

S2 1 - £ 

(II) ë (1 - pky
k + }~jk where 

^ e x p ( — ^ l o g(^ + i - Â ) - ( i - ( ô / 4 ) )2^««/Vt + l) 

using standard estimates 

for some positive c, because of the choice of the subsequence {jk}-
The latter being the general term of a convergent series; by the 

Borel-Cantelli lemma, the proof is complete. 
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COROLLARY 1. (Nisio) For a mean-zero Gaussian sequence {£„} if 

lim sup E(inim) ^ 0, 
m—>co 

n — m—>oo 

then condition (N) is satisfied. 
Therefore 

lim sup £— = a\[R a.s. 

if ml) = o2. 
Proof By hypothesis, if € > 0 is given, then there exist integers ra0 and 

k0 such that 

Eiem+jkoZm + iko) = € f o r m = m0-

It is clear that for some mx with m0 = m\ = m0 + k0 

lim sup = R. 
am]+jk0 

If, in the above, R(an) = oo, N. Kôno has proved (an unpublished 
result) that Nisio's lemma is still true. The proof of the following corollary 
follows his idea. 

COROLLARY 2. (N. Kôno) If in Lemma 2, R(ocn) = oo, then 

lim sup r-— = oo a.s. 
ylan 

Proof Since R(an) = oo, for 0 < 8 < 1 if 
an = max {5 log n, an) 

then 

log n 1 
lim sup —-— = - . 

n Oin 8 

Consequently, by Lemma 2, 

lim sup - 7 = = —TK a.s. 

Thus, for almost all co, 

r £«(<*>) > r £„(<*>) a 
lim sup /-— ^ lim sup /2a^ V^n V$ 

Since 5 is arbitrary, the proof is complete. 

An easy application of the above gives the following. 
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COROLLARY 3. Let {^} be a stationary zero-mean Gaussian sequence 
such that 

£(£) = I and E(Sxtk) ^ 0. 

Let {OL^} be a positive non-decreasing sequence. Then 

P[ik > V^k i.o.] = 0 or 1 

according as 

OO ] 

2J a/,, 2e~ak < oo or = oo. 
l 

Corollary 3 improves the result of Lai [10, Corollary 2, p. 835] and 
Pathak and Quails [14]. They proved Corollary 3 with the stronger 
assumption that 

*«*> - ° ( i ) 
3. A general LIL in Banach spaces. Throughout this section, let B 

denote a real separable Banach space, B* its dual. X:Q, —» B is a mean-zero 
Gaussian random variable if x*(X) is a mean-zero Gaussian for each 
x* e B*. We will suppose that the support ofJ?(X) is B itself. 

We list a few well-known results concerning these i?-valued random 
variables. For details, see [2], [6], [8] and [9]. 

(i) For a semi-norm ||| • ||| on B, using Fernique's theorem [6] we get 

P[ MAUI > t(E\\\X\\\2n ^ e x p ( - ^ log 3) 

if / â 2. (See [2].) 

(ii) The formula Sx* = E(x*(X) • X), x* G B* defines a continuous 
linear map from B* into B, and the completion of SB*, equipped with the 
inner product: 

(Sx*, Sy*) = E(x*(X)y*(X) ) 

is a Hilbert space. It is the reproducing kernel Hilbert space (rkhs) 
determined by X and can be identified with a dense subspace of B. S will 
be called the canonical embedding of B* into B associated to X or 
J?(X). 

(iii) The closed ball Kr of radius r in H is compact when considered as a 
subset of B. 
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(iv) There exist biorthornormal sequences {ef} c B* and (^ = Sef) 
c H such that 

(a) {ej} is an orthonormal basis of H. 
(b) {ef(X) } form an independent standard Gaussian sequence. 
(c) If x e B, set 

n 

Pnx = 2 (et x)ej and (?„ = Id - Pn 
7 = 1 

then 

P „ * -> X a.s. and £ ( HÔ^II2) -> 0. 
(v) For a given Gaussian measure /x on 5, there exists a 5-valued 

stochastic process {W(t), t ^ 0} such that W{0) = 0, the distribution of 
W(\) is /A, Whas stationary independent increments and the distribution 
of t~ïJV(t) is ju. Furthermore the sample paths of Ware continuous. P^is 
called jit-Brownian motion. 

(vi) W defines a new mean-zero Gaussian random variable W on 

CB[0, \] = {$: [0,1]-> B,<t> continuous, <j>(0) = 0} ; 

namely W(co)(t) = WK(/)(co). For J^ the corresponding rkhs H is given by 
HQ ® / ^ where 

i/^ = rkhs determined by /x. 

H0 = rkhs determined by Wiener measure in #[0, 1]. 

As an application of (i) we establish the following lemma which will be 
useful later. It is the analogue of Lemma 1 in [12, p. 166]. 

LEMMA 3.1/0 < e < 1, then for L sufficiently large 

P[ sup \\W(a + A) - W{a) \\B > L] 

_, ( L2 l o g 3 \ 

where 

d = E{ \\W\\2
CB). 

Proof. Break [0, 1] into intervals of length \/N where 

N N - \ 

Then 

P[ sup \\W(a + A) - W ( Û ) | | > L ] 
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1054 H. SHIP-FAH WONG 

sup 

^ (N + 1) P 

W{\+- + A) W ( • •5 ) > 

sup | | W ( A ) | | B > -

g 3€"'P uni Q[0,2É] > ^ 

(where 

7:8 -> CB[0, 2e] 

« -* {* -> W(/) } ) 

g 3e~'exp — K log 3 

4 £||Y||2 96 

(using (i) for sufficiently large L) 

r2 
3<f 

LL _ logjT 
8c E{\\W\\2cB) 96 . 

because 

E( sup \\W(A)\\)2 

0£AS2e 

S £(2e sup 11-= 
^0SAS2e V 2 e 

W(A)| 

2££ ( WKWcl). 
As a preliminary step towards the proof of the main result of this 

section; we prove a theorem analogous to a theorem of Carmona-Kôno 
[2, Theorem 4.1] which itself uses a theorem of Kuelbs [8, Theorem 3.1]. 

THEOREM 1. Suppose that {ak} is a positive non-decreasing sequence with 
R = R(an) < co. Let c > 1 and (sk, lk) a sequence in R2 where 

sk = nkc
mk log c and lk r™k 

mk e Z tfrtd «£ w « non-negative integer. We suppose that (sk, lk) ¥= (sj, lj) 
forj ^ k. 

If 

fk(x) = 
W(sk + xlk) - W{sk) 

[0, 1] 
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then 

pflim d(-^=,KJ =01 = 1 

where &(yk) stands for the set of limit points of a sequence { J A } and 
K fo is the closed ball of radius \/R in the rkhs of [x-Brownian motion in 
CB. 

Proof We will consider the case nk = 0 for each /c, that is sk = 0. The 
proof of the general case is similar though technically more involved. 

We first prove that for each x* G C# the sequence {x*fk} satisfies 
condition (N) of Lemma 2. 

If x* <= C5, then there exists a bounded mapping of G:[0, 1] —» B* and a 
finite Borel measure v on [0, 1] such that 

Jt*(<|>) = J 0< G(s), <f>0) > <H0 for each <j> G C, 

(For details see [5, p. 389].) 
Suppose that /̂  < lj 

B-

E(x*fkx*fj) = —— E\ /[o,i]x[ai]<G(x), 

vy7
 v 

^(*4)><G(>0, W(ylJ)dv{x)dv(y) ) 

G being bounded, an easy computation yields a constant M such that 

E(x*fk**fj) = M(!j)V1 = Mc~ 
7 ' 

Given € > 0, let g be an integer such that Mc~q < c and choose a 
subsequence {fk } as follows: k\ = 1, if &i, . . . , kj have been chosen, let 
kj+\ be the first /c after kj for which 

z = l 

The above shows that 

E(x%x*fkj) S e 

and since /cy ^ 2/#, 
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R(ak) = lim sup ^ = R(ak). 
% 

Now, if in the proof of Theorem 4.1 of [2] we replace Nisio's lemma by 
Lemma 2, we get the proof of Theorem 1. (See also [16], Lemma 3.1.) 

The following setting was first introduced by C. Mueller in [12] to 
formulate his LIL. 

Let c > 1 be fixed (c to be conveniently chosen later) and consider 
the following grid of rectangles in the first quadrant of the plane: 
m e Z, n = 0 

Rm,n = { (S, I) \cm ^ / ^ Cm+\ riCm\0g C ^ S ^ (« + l ) c m l o g c}. 

For each / â 0, we associate a subset SPt of the first quadrant in the plane 
such that 

(i) for each /, 

sé(t) = y 0>s s 
s^t 

is contained in a finite union of rectangles Rmn of the grid. 
(ii) U ^ o ^ is not contained in any finite union of these rectangles. 
These two conditions are independent of c > 1 chosen. Now, set Ac(t) 

to be the minimum number of rectangles such that sf{t) is contained in 
their union. For an increasing function 

/z:R+ —» R+ with h(t) —» oo as t —» oo, 

define 

Rcr> = lim sup ————. 
t h(t) 

Rc(h) is in fact independent of the chosen c > 1, because if 1 < c0 < c 
then there exists an integer p such that CQ > c. This in turn implies that 
there exists an integer M such that every rectangle in the grid determined 
by c is contained in at most M rectangles of the grid determined by c0-
Thus 

ACQ(t) ^ MAc{t) for each t 

and since h(t) —> oo; 

?(h) r log A (t) 
lCo ^ h m s u p - ^ 

l o g ^ c ( 0 (A) 
^ lim sup — — - — = Ry

r \ 
h(t) 
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A similar argument proves the reverse inequality. 
Finally, we choose a sequence /0 = h = h • • • s u c n that J / ( 7 ) enters a 

new rectangle ^m^,,u at time r̂ . Let ô ^ 0 and Rnwh)
 a rectangle such 

that 

^ 0 n tfmo„0 * 0. 

Suppose /0 = • • • = h have been chosen, let 

tk + x = inf {t ^ tk\s/(t) t Rmono U . . . U £ m ^ } . 

Choose Rmk + irik + j such that for every e > 0, there exists /, ^ + 1 < t < ti: + \ 
-f € such that 

* m , M ^ , ns/(t) ¥= 0. 

All this is possible because of the hypothesis onj / ( / ) . Then 

R(h) = Rc(h) = inf {a > 0 2 <,-**(/*) < oo} 
k = 0 

and this is independent of the c > 1 chosen. 

To simplify the statement of the following theorem, we introduce the 
following notation: 

(i) if Or c CB for each / <E R + and /z:R+ —> R+ and v4 c Q ; we 
write 

lim d\^-,A) = 0 
\A(0 / 

if for every € > 0, 

d(—9A ) < e 
\ / i (0 / 

for all large / and <J> <= 3>r. 

(ii) ^1 - — I will denote the set of limit points of subsequences 

{&>* 
(0-

G $, /„ -» oo | in Q . 

THEOREM 2. Le? { W(f) |f = 0} be ji-Brownian motion in B and {&t} be 
given as above. Let 

log Ae(t) 
R = hm sup —— < oo. 

h(t) 
For each / = 0, set 
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where 

W(s + xl) ~ W(s) 

Mx) 7 r • 

Then, 

P[lim d\ " x, Km \ = 0] = 1 

where K ^ is the closed ball of radius \fR in the rkhs for fi-Brownian 
motion. 

Proof From Theorem 1 above: for any c > 1 and (sk, lk) the bottom left 
hand vertex of Rmk,nk>

 w e find t n a t 

The proof will be complete, if we prove that for any 8 > 0 and c > 1 
chosen sufficiently close to 1 

OO r 

(*) 2 /> sup HA/-A/J|f(i>8V2ÂÔ*) 
(sJ)ŒR 

< OO 

(note that if (s, I) e &>t n R„lk„k then t ^ tk). 
(*) is proved using the following lemma (cf. [12, Lemma 2] ). 

LEMMA 4. In the setting established above; with a grid determined by some 
c > \.Ifc = log c 4 ( c — 1) tffld (SQ, /()) ^ the left hand bottom vertex oj a 
fixed rectangle Rmn, then 

P\ sup \\fj - fJ\CB > Ô h i - exp( -t-p) 

P = (log 3)/(96£( HiO2) ). 

Proof. The proof follows along the same lines as Mueller's Lemma 2 
[12, p. 167]: 
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SUP ||/,/ - fs0l0\\cB 

sup 
(sJ) 

\W(s) - W(s0)\\B 

4- sup sup 
(SJ) X G [0,1] 

\W{s + xl) - W(s0 + x/0) | 

i + ii + in. 

+ sup 
(sJ) 

sup 
jce[0,l ] 

\\W(s0 + xl0) ~ W(S0)\\B 

Therefore, 

sup ||/,,/ ~ fSoi0\\cB > 8 
(sJ)<ERmn 

^ P[I + II + III > 8] 

because of Fernique's inequality and 

Furthermore, since 

1 < €. 

\(S + X/) - (5Q + X/Q) I ^ |j ~ *Q| 1/ ~ /pi 

/o " /o ' 

^ log C + (C - 1) ^ 6. 

By Lemma 3 

2(11) > 

=g P sup ||W(a + A) - ^ ( a ) ||Cs > -

e x p ( - ^ p ) . 

Combining these two inequalities, we get Lemma 4. 

Remark. If /*, v4:R+ —» R+ are increasing, unbounded and have no 
common discontinuities then 
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/

oo 

o e~ah(,)dA(t) < 00} 

log ,4(0 
= lim sup 

h(t) 

The proof of this equality uses integration by parts following the same 
lines of the Laplace-Stieltjes transform when h(t) = t in [7, Section 19.4]. 
Therefore, for real-valued Brownian motion, Theorem 2 implies Mueller's 
Theorem 1 in [12]. 

Examples. We give three applications of our Theorem 2. 

a) Strassen's theorem. If 0>t = { (0, t) } , t = 0}. Then for any grid with 
c > 1, tk = ck\ and if h(t) = log log / 

r loS k 1 lim sup = 1. 

{ W{xt) \ 
—===== \ is the unit ball 
y/2t log log t J 

of the rkhs in CB. 

b) Levy's modulus of continuity. If 

&t = { (j, /) |/ = -9 0 ^ s ^ 1 - / } for each * g 1: 

In this case, if we use the grid with c = 2 and h(t) = log t, it is fairly 
simple to check that 

m 

log 2 (2J + j) 
.. log A: 7 = 1 
lim sup ——- = lim sup —— = 1. 

* Ktk)
 F h(tm) 

Therefore, when t \, 0 the set of limit points of 

f W(s + xt) - W{s) 

\J(X) ~ V(2r log I//) 

is the unit ball in CB. 

0 ^ s ^ 1 - / 

c) Moving averages ( [3], [4] ). If {an} is a sequence satisfying an = n, 
an | oo, anln decreasing: Set 

n ( n \ 
bn = log — + log log n = log I — log n I. 

«» \ ^ / 

(I) If 0„/w | a > 0, set 

^ (c ) = (1 + €)*. 
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Then for a grid with c = 1 + e, it is easy to see that the exit times tk ~ nk. 
Therefore bnk ~ log k. 

(II) If anln I 0, Deo in [4, p. 104] introduces two sequences mk(e) and 
nk(e) for each e > 0 for which 

bnk ~ log k and bmk ~ (I + c)log k. 

From the properties of nk and mk we find 

log/c logfc logfc 
hm sup —— ^ hm sup —-— ^ lim sup ——. 

°mk btk bnk 

Consequently, 

hm sup —-— = 1. 
°mk 

By Theorem 2, we get that if n —» oo the set of limit points of 

{ I^(« — a„ + xan) — W{n — an) 1 

is the unit ball K of the rkhs in C#. 

4. The case i? = oo. When R = oo the proofs given above are not valid 
because they assume that KR is compact. However we are going to prove 
that in case ^ = { (0, t) } then the set of limit points include all of i/, 
therefore all of CB because H is dense in CB and the set of limit points is 
closed. The theorem is still true for more general sets &t\ the proof uses the 
same idea but is more involved. 

THEOREM 3. Let {W(t) \t = 0} be \i-Brownian motion in B and h a 
non-decreasing function with h(t) —» oo as t —» oo. If 

oo 

2 e~ah^ = oo 
k = l 

for any c > 1 and any a > 0 then 

« « * ) - c « > - > • 

Proof. As stated above the rkhs determined by /x-Brownian motion is 

H = HoQH^c: CB. 

Let {ej|c} c 5* and {ej} c //^ be the bi-orthonormal bases for the 
Gaussian measure /x. For # 0 , let {gt} be the Haar basis with {g?} c 
C[0, 1]* the corresponding sequence. Consequently {g*® ^/} and {gz ® ef\ 
give a pair of bases for the Gaussian measure on CB induced by 
/x-Brownian motion W. 
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Let <f> <= H with \\>j>\\H = r > 0. It is known [9] that <t>(t) e //^ for all 
? G [0, 1] and 

11*11 '' = 2 /o [s (**X°] A. 

We are going to prove that <£ is a limit point of some sequence 

[ W(tk) 1 

Let e > 0 be such that € < r/2. Choose m and ra0 (large enough) such 
that: 

(a) m = 2P for some integer p, 
(b) For x e C#, if 

A)(*) = 2 2 
, = l y = l 

< g* ® *# * > gi ® <7 

and 

<2o = Id - -Po ; 

then 

1100 4>\\l 4' 

(c) 
m0 

2 
7 = 1 

f \ / m 

Jo K ef$)\t)]2dt 
< 4 

and 

sup ||<KO \\B < ^ 
1 o 
m 

Let / / w be the subspace of H0 generated by g], g2, . . . , gm the first m = 2P 

elements of the Haar basis. If 8t denotes as usual unit mass at / then 
8r G C[0, 1]* and if S denotes the canonical map 

S:C[0, 1]* -> C[0, 1] 

induced by Wiener measure in C[0, 1], then {S8\/m, S82/m, . . . , S8\} also 
generate Hm\ therefore by the Gram-Schmidt orthogonalisation process 
we get an orthonormal basis {d\, d2, . . . , dm} and the corresponding 
{d* , . . . , dm} such that SW* = dz. For example 

* i 
J] = m28]/m and 
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di(t) = 

mi 0 ^ t ^ 

1 1 
m 

^ ^ 1 
m m 

and 

m mo 

A)(*) = 2 2 < rf*® ef , A: > 4 ® ey. 

Set 

/*(*) = 
W(x • mA 

JC G [0 , 1]. 

We are going to prove that a.s. <f> is a limit point of fkI V 2/z(m ); that is 

A 

Since 

V2/z(mA) 

A 
^2h(mk) 

U 
\l2h{mk)> 

and because on any finite dimensional subspace all norms are equivalent 
we can replace the C#-norm by the equivalent //-norm. 

fu 
\/lh(mk) 

4> c, < € 2 UL 

where 

uk = Vkn V£n vk" 

and 
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n = - n. 2 S / s m L 
\tàjtim0 

(df ® ef)\ 
V \llh(mk\ ' ' V 4 w w 0 

sup 
/*(*) - 4 

*"*" = sup 
] 

o g ^ I ' ' V2h(mk) 
m 

°VM(m(')' 

< 

* < * J 

We will prove that P(Uk i.o.) = 1. 
(I) Using standard estimates for the independent N(0, 1): dl 

the choice of m and rriQ. 

P(V'k) ^ exp( — rfh(mk) ) for some - < r' < r. 

* * ^ and 

Thus 

F(P^) ^ exp(-exp(-r7z(m*)) . 

(K .̂ denotes the complement of Vk.) 
(II) Because 

= sup ||g(Ollfl 
l 

is a semi norm on CB with |||g||| ^ \\g\\cB
 w e § e t 

P ( P T ) ^ exp(-ah(mk)) 

for some positive a given by Fernique's inequality. 
(Ill) m was chosen such that 

sup \\cj>(x) \\B ^ -
1 o 

O^x^-

PiVfi ^ P\ sup 
O^x^-

1 

W(x • mk) 
> V2/z(/w*)l 

^ exp ( — a'h(m) ) 

for some positive a'. 
From (I) to (III), we get that by a suitable choice of /c0, 
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P(Uk) ^ exp (-{exp(-r'h(rnk))) 

iîk ^ k0. 
It is clear that Uk C\ . . . n Uq and V'q+\ are independent; the same for 

Vk n . . . n L^ and J^+i; using an induction proof as in [1, Lemma 4] it 
can be shown that 

_ _ q 
P(Uko n . . . n Uq) ^ exp(H 2 exp(-r'/z(mA)). 

The series 

oo 

2 exp( — r'h (mk ) ) 
4 = ^0 

diverging, we conclude that P(Uk i.o.) = 1, and therefore w.p.l <j> is a limit 
point of/^/ y2h(mk). Since the set of limit points is a closed set and / / is 
dense in CB\ the proof is complete. 
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