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ASYMPTOTIC EXPANSIONS ON MOMENTS OF
THE FIRST LADDER HEIGHT IN MARKOV
RANDOM WALKS WITH SMALL DRIFT
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Abstract

Let {(X,, Sy),n > 0} be a Markov random walk in which X,, takes values in a general
state space and S, takes values on the real line R. In this paper we present some results
that are useful in the study of asymptotic approximations of boundary crossing problems
for Markov random walks. The main results are asymptotic expansions on moments of
the first ladder height in Markov random walks with small positive drift. In order to
establish the asymptotic expansions we study a uniform Markov renewal theorem, which
relates to the rate of convergence for the distribution of overshoot, and present an analysis
of the covariance between the first passage time and the overshoot.
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1. Introduction

Let {X,, n > 0} be a Markov chain on a general state space X with o -algebra 4. Suppose
that an additive component §,, = Z?:l & with So = 0, taking values on the real line R, is
adjoined to the chain such that {(X,,, S,), n > 0} is a Markov chain on X x R with

P{(Xyn,Sn) € A (B+s) | (Xn-1,Sn—1) = (x,5)}

=P{(X1,S81) € Ax B | (X9, S) =(x,0)} =P(x,Ax B) (1)

forallx € X,s € R, A € A, and B € B(R) (where B(R) is the Borel o-algebra on R). The
chain {(X,,, S;), n > 0} is called a Markov random walk. For an initial distribution v on X,
let P,, denote the probability measure under the initial distribution v on X and let E, denote
the corresponding expectation. If v is degenerate at x, we shall simply write P, (E,) instead
of P, (E,). Some interesting examples related to the Markov models, (1.1), can be found in
Kesten (1974), and Kliippelberg and Pergamenshchikov (2003).

Suppose that the Markov chain {X,,, n» > 0} has an invariant probability 7. Let

Tt=14 =inf{n > 1: S, > 0} (1.2)

be the first ascending ladder epoch of §,, and denote the first positive value taken by the Markov
random walk, S, as the first ladder height. For a givena > 0, we want to establish asymptotic
expansions, in terms of 6 as 6 — 0, of

noEY (t48¢) and E S . (1.3)
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Here g denotes the mean value, with 6 interpreted as the parameter representing various means
of the Markov random walk Sj, and E§+ denotes the expectation under invariant probability
74 of the ladder Markov chain in a family of distributions indexed by 6, which will be defined
precisely in Section 2. The main idea of obtaining the asymptotic expansions of (1.3) involves
using the twist transformation for the Markov transition operator, the time-reversed Markov
chain, and the ladder Markov random walk. To the author’s knowledge, the essential step of
characterizing constant terms in asymptotic expansions involving the solutions of the Poisson
equations, to be defined in (2.8) and (2.9) precisely, is new.

The asymptotic expansions of (1.3) have important applications for deriving asymptotic
approximations of boundary crossing problems for Markov random walks. In the case of
simple random walks, Siegmund (1979), (1985, Chapter X) developed the so-called corrected
diffusion approximations, by computing correction terms in the diffusion approximation, to
approximate the first passage probabilities of S, and the expected values of the first ladder height
in (1.3). That is, he considered the first ladder height in an exponential family of distributions,
{Fp: 6 € ®}, which may be written in the form Fp(dx) = exp(6x — A(6)) F (dx), where © is
the parameter space, A (6) is the cumulant generating function, and F denotes the distribution
under @ = 0. Note that here we assume © contains a neighborhood of 0. Let P? (P) and EY (E)
denote the probability and the expectation, respectively, when the distribution of X, is Fy (F).
Under some regularity conditions, Siegmund (1979) showed that, for a > 0,

Ef S —ES¢ + a%(E S0 + 0(0) (1.4)
asf | 0. By making use of the results in Siegmund (1982), (1988), Chang (1992) extended (1.4)
to a high-order asymptotic expansion, with the o(6) replaced by C,0% + 0 (83), where C,, is
a constant depending on a, the distribution of overshoot, and the renewal function of the
descending ladder random variables. Further refinements of (1.4) can be found in Lotov (1996),
and Chang and Peres (1997) for Gaussian random walks, to which the coefficients are related
to the celebrated Riemann zeta function. Using different techniques to those utilized by Chang
(1992), Blanchet and Glynn (2006) proposed a method to compute the coefficients in the
asymptotic expansion of the moments of the first ladder heights for non-Gaussian random
walks (up to arbitrary order).

In the case of a finite state ergodic Markov chain, Asmussen (1989b) derived a first-order
corrected diffusion approximation for one-barrier ruin problems in risk theory, while Fuh (1997)
studied one-barrier and two-barrier boundary crossing probabilities, and derived a second-order
corrected diffusion approximation in Markov random walks. To establish the approximations,
they also derived first-order asymptotic expansions of (1.3). Glasserman and Kou (1995) studied
the first passage times for rare sets in regenerative processes. For a general account of ruin
probabilities, the reader is referred to Asmussen (2000) and the references therein.

An alternative approximation of the corrected diffusion approximation is the so-called large
deviations approximation. In the case of Markov random walks, using the idea of large
deviations and constructing a Markov chain extension of the classical Wald martingale family,
Miller (1962a), (1962b) derived the asymptotic behavior of P{r, < oo | Xg = x} based on a
Markov Wiener—Hopf factorization, where 7, = inf{n > 1: §,, > b} for b > 0. This technique
was further developed by Arndt (1980) to study asymptotic properties of the distribution of the
supremum for a random walk on a Markov chain. Local limit theorems for the joint distribution
P{ty =n, Sy, —b <s, X, € dy | Xo = x} were derived by Lalley (1984). Hoglund (1991)
combined these techniques with the idea of large deviations to study the ruin problems for finite
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state Markov random walks; while Chan and Lai (2003) provided saddle point approximations
and nonlinear boundary crossing probabilities for general state Markov random walks.

Our motivation for providing asymptotic expansions of (1.3) stems from the approximation
of boundary crossing probabilities in reflected Markov random walks. That is, let W,, =
S, —ming<k <, Sk be the reflected Markov random walk with reflecting barrier at 0. For b > 0,
define the stopping time t = 1, = inf{n: W, > b}. In a variety of contexts, for given m < oo,
we need to approximate the first passage probabilities, i.e.

P.{t <m} and Py{t<m|Sn,=2¢}, ¢ <b. (1.5)

It is known that, with some proper identifications, the first term of (1.5) is the probability
that at least one among the first m customers in a single-server Markov-modulated queue has
a waiting time exceeding b; see Burman and Smith (1986) and Asmussen (1989a), (1989b),
(2000, Chapter VI). The approximation of (1.5) is an essential step in the approximation of
the distribution of the run length of a CUSUM test in autoregressive models and state space
models; see Basseville and Nikiforov (1993, Chapter 7.3), and Fuh (2003).

As noted in (1.3) and (1.4), the theory developed here establishes an asymptotic expansion
which can be expressed in terms of moments of Markov random walks. In order to characterize
the coefficients in the expansion, we follow a similar idea to that used for the case of an
independent and identically distributed (i.i.d.) increment. The idea of duality leads to that of
time-reversed descending ladder Markov random walks and expected values of the ladder
heights. The idea of exponential embedding leads to that of twist transformations of the
transition probability operator. Owing to Markovian dependence, the constants also involve
solutions of the Poisson equations; see Section 2 for details. However, in order to apply the
results, we need to implement the coefficients in the expansion. In the case of i.i.d. increments,
Chang (1992) derived an asymptotic expansion to which the constants depend on integrals of
the whole renewal function. By making use of a technique in complex analysis, Blanchet and
Glynn (2006) developed a method to compute the constants. In order to compute the constants
developed in this paper (see Theorem 1 for details), we first need to extend Blanchet and Glynn’s
results to the Markovian case. Then, we need to develop a numerical method to compute
solutions of the Poisson equations. In the setting of a MArP/PH/1 queue, computational tasks
related to the ladder Markov random walks can be found in Asmussen (2003, Chapter XI).
In general, the implementation issue is still an interesting open problem, and deserves further
study. Moreover, after obtaining the coefficients in the expansion, we can gain insight into how
the additional coefficient obtained in this paper improves upon a first-order expansion.

The remainder of the paper is organized as follows. In Section 2 we formulate the problem
and state our main results: asymptotic expansions on moments of the first ladder height in
Markov random walks with small positive drift. As an application of our main results, we also
present an asymptotic approximation of the first termin (1.5). Motivated by the approximations
of (1.3), we study a uniform Markov renewal theorem which relates to the rate of convergence
for the distribution of overshoot in Section 3, and the rate of convergence for the covariance
between first passage time and overshoot in Section 4. The proofs of our main results are given
in Section 5.

2. Asymptotic expansions on moments of the first ladder height

Let {(X,, S,),n > 0} be the Markov random walk on X0 x R as defined in (1.1), with
transition probability kernel P(x, A x B). The corresponding m-step transition kernel will
be denoted by P”. For ease of notation, write P(x, A) = P(x, A x R) as the transition
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probability kernel of {X;,, n > 0}. For two transition probability kernels Q (x, A) and K (x, A),
where x € X, A € 4 and for all measurable functions k(x), x € X, define Qh and QK
by Qh(x) = [ Q(x, dy)h(y) and QK (x, A) = [ K(x, dy)Q(y, A), respectively. Let N
be the Banach space of measurable functions 4: X — C with norm [|&] < oco. We also
introduce the Banach space 8B of transition probability kernels Q such that the operator norm
[1O|| = sup{||Qgll; |lgll < 1} is finite. Some prototypical norms considered in the literature
are the supremum norm, the L, norm, the weighted variation norm, and the bounded Lipschitz
norm, among others; the reader is referred to Kartashov (1996, pp. 4-6) and Fuh (2004) for
further details. Define also the Césaro averages P = Z P/ /n, where P/ is a j-fold

power of P, PY = P© = J and I is the identity operator on B A Markov chain {X,,, n > 0}
is said to be uniformly ergodic with respect to a given norm || - ||, if there exists a stochastic
kernel IT such that P?) — T as n — oo in the induced operator norm in 8.

As the theorems developed below are the same for each fixed norm, in the rest of the paper
we will focus on a particular norm, namely, the weighted variation norm. To be more precise,
let w: X — [1, 00) be a measurable function and define, for all measurable functions %, a
weighted variation norm ||A||,, = sup,cx |2 (x)|/w(x) and set M, = {h: [|h]], < oo}. The
corresponding norm in By, is of the form ||Q||, = Squexf |Q|(x, dy)w(y)/w(x). The
Markov chain {X,,, n > 0} is called w-uniformly ergodic in the case of the weighted variation
norm.

Recall 74, defined in (1.2), and let 7} = inf{k > 7}~ LS > S, n- 1} be the nth ascending

ladder epoch of S,,. Let t— = inf{n > 1: §, < 0} be the ﬁrst descendmg ladder epoch
of S,, and " = inf{k > rffl S < SI,H} be the nth descending ladder epoch of §,,, for
n=23,....1fu>0, rf_ is finite almost surely under the probability P{X. € A| Xo=x}
and, therefore, the associated ladder heights Sﬂ are well-defined positive random variables.
Furthermore, {(X 7 Sfi)’ n > 0} is a Markov chain, and it is the so-called ladder Markov
random walk. When p = 0, we can still define the ladder Markov chain using the property of
uniform integrability in Theorem 5 of Fuh and Lai (1998). It is assumed throughout this paper
that Py (74 < oo) = 1 for all x € X. Let 71 denote the invariant measure, which is assumed
to exist, of the transition probability kernel P (x, A x R) :=P{X;, € A, S;, e R | Xg = x}
of the ladder Markov chain {(X s Sfi)’ n > 0}.
The following assumptions will be used throughout this paper.

Assumption 2.1. Assume that {X,, n > 0} is aperiodic, irreducible (with respect to a maximal
irreducible measure ¢ on (X, #)), and w-uniformly ergodic, i.e. there exists an invariant
probability measure 7 such that f w(y)dm(y) < oo and

nlij;oSUP{ﬁlEx(h(Xn)) —/h(y) dr(y)|: x € X, |h| < w} =0, (2.1)
Ex(w(X))) ]
SSP{W} 00; 2.2)

see Meyn and Tweedie (1993, Chapter 16). We also assume that {Xfi’ n > 0} is aperiodic,
irreducible, and w-uniformly ergodic with (2.1) and (2.2) satisfied.

Assumption 2.2. Assume that {X,,n > 0} satisfies the minorization condition (see Ney and
Nummelin (1987)), i.e. there exists ak > 1, a probability measure ¥ on X xR, and ameasurable
function h on X such that [ h(x)dm(x) > 0, ¥(X x R) = 1, [W(dx x R)h(x) > 0, and
PK(x, A x B) > h(x)¥(A x B), forallx € X, A € A, and B € B(R).
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Assumption 2.3. Assume that E,{w(X1)(1+ |£1|")} < oo for some sufficiently large r, where
v is an initial distribution of the Markov chain {X,, n > 0}. Furthermore, we assume that there
exists ® C R containing an interval of O such that, for all 6 € ©,

{EX(GXP(Qél)w(Xl))
sup

w(x)

}§C<oo

for some C > Q.

Assumption 2.4. Assume that E; & = 0, sup, Ex |E119T3 < oo, for some a > 0, and that
there exists an € > 0 such that inf, P, {§; < —e | X1 =x} > 0.

Assumption 2.5. There exists a o-finite measure M on (X, A) such that, for all x € X, the
probability measure Py on (X, A) defined by Px(A) = P(X1 € A | Xo = x) is absolutely
continuous with respect to M, so that Py(A) = fA px,y)dM(y) for all A € A, where
px,-) = dP, /dM.

Assumption 2.6. Assume that, for some ng > 1,

/oo/ | Ex{exp(i0&1)}|" dm(x) do < oo.
oo JxeX

Remark 2.1. Assumption 2.1 implies that Assumption 2.2 holds; see Meyn and Tweedie
(1993, Theorem 14.0.1). We include Assumption 2.2 here for the case of other norms. Under
Assumptions 2.1 and 2.2, and using the fact that ¢ is o -finite, Theorem 1.1 of Kartashov (1996)
shows that P has a unique stationary projector T1 in the sense that [1> = IT = PII = IIP,
and IT(x, A) = w(A) forall x € X and A € 4. Under irreducibility and aperiodicity, (2.1)
implies that there exists a C > 0 and 0 < p < 1 such that, for all 2 € B, the Banach space of
measurable functions, and n > 1,

sup{
X

see Meyn and Tweedie (1993, pp. 382-383).

E.(h(X,)) — /h(y)dn(y)” < Cp" 1Al

Remark 2.2. Assumption 2.3 is a moment condition in the sense of the weighted variation
norm of £;. Assumption 2.4 implies that E, Sf:‘z < oo for a > 0; see Fuh and Lai (1998,
Theorem 5). The existence of the transition probability density in Assumption 2.5 will be
used to construct the time-reversed Markov chains. Note that Assumption 2.5 holds in most
applications.

Remark 2.3. Assumption 2.6 implies that, for all n > no, S, has a bounded probability density
function for given X,,. Instead of assuming Assumption 2.6, we may assume the following
extension of Cramér’s (strong nonlattice) condition: g(6) := inf|y5¢ |1 —Ex{exp(ivSi)}| > 0
for all & > 0. We also assume that the conditional Cramér’s (strong nonlattice) condition is
satisfied, which states that there exists an m > 1 such that

lim sup | E{exp(i6 S,) | Xo, Xm}| < 1.

|6]— 00

Here, we assume that Assumption 2.6 holds for simplicity. Some practical examples which
satisfy Assumptions 2.1-2.6 can be found in Fuh (2003, Section 6).
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Remark 2.4. It is known (see Alsmeyer (2000)) that the ladder Markov random walk,
{(x 7 Sﬂi)’ n > 0}, satisfies Assumption 2.2. The uniformly strong nonlattice for the ladder
random walk and the exponential moment condition, Assumption 2.3, for the ladder random
walk can be found in Lemma 13 and Lemma 14 of Fuh (2004), respectively. In Section 2 of
Fuh and Lai (2001) and Section 3 of Fuh (2004), it was shown, in some interesting examples,
how the w-uniform ergodicity of the ladder Markov chain can be established. In general, the
w-uniform ergodicity of the ladder Markov chain is an open problem.

For b > 0, define the first passage time of the Markov random walk S, as
7, =1(b) =inf{n: S, > b} (74 = 1(0)),
and the residual at b is defined as
Ry, =R(®b) =S, — b.
Under Assumptions 2.1-2.6, we can apply Corollary 2 of Alsmeyer (1997) to show that, as
b — 00, (Xy,, Sz, — b) has the limiting distribution (X, R ), which is defined by

P{Xoo € A, Roo > 5} =

o

— / Pr {X: €A, S, >u}du 2.3)
+ Ot Js
forevery A € A and s > 0.

To present our main results, we need to consider time-reversed descending ladder Markov
random walks, study solutions of the Poisson equations, and define the twist transformation
of the transition probability operator. These are given in the following three paragraphs,
respectively.

By Assumption 2.5, the invariant probability measure 7 of the Markov chain {X,,, n > 0}
has a positive density function with respect to M. Without any confusion, we still denote it as
7 here and in the sequel. As in Section 4 of Fuh and Lai (1998), we consider the time-reversed
(dual) process {(X,,, Sy), n > 0} of {(X,,, S,), n > 0} with transition kernel

P(y, dx x ds) = %yip( ,dy x ds). (2.4)

Note that {X,,n > 0} and {X,, n > 0} have the same invariant probability measure 7. Let
79 = 0and 7. = inf{n > 1: S < 0}, and, for n > 1, define the nth weakly descending

ladder epoch as ' =inflk > 7" § < S~n 1}. The same assumptions will be made for
{(f(f , Szn), n > 0} as made for {(Xrn, Spn ) n > 0}. For x € X, define the renewal measure
by
o
Ue_(A,B) := Zf’x{fﬁ <00, Xz € A, Sin € B) (2.5)
n=0

for all A € A and Borel subsets B C [0, o0), and let

o0
Up (A, 0) =) P <00, Xen € A, —Sen < v} (2.6)
n=0
be the renewal function corresponding to the renewal process {— S’fﬁ ,n=0,1,...}. We simply

denote IL,_(A, v) as Ux,_(v) if A = X in (2.6). For a given a > 0, define

ol = f (Ex RY — By, R%)U, _(db) and o = / otdr(x). (27
0,00) xeX
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Let g1: X — R be a solution of the Poisson equation
g1(x) —Ey gl(Xur) =E, Sur _En+ S‘E+ (2.8)

for almost every (with respect to M) x € X, withE;, g1(X;,) = 0, and let g> be a solution of
the Poisson equation

€2(x) —Eyx 82(Xr,) = Ex(Sz, — Ex, Sr, + g1(X7,) — g1(x))?

) 2.9)
- En+(Sr+ - En+ Snr + 81 (Xr+) — g1(Xo))

for almost every x, with E;, g2(X¢,) = 0. Note that under Assumptions 2.1-2.4, the solutions
of (2.8) and (2.9) exist via (2.2) and (2.3) of Fuh and Zhang (2000), and Theorem 17.4.2 of
Meyn and Tweedie (1993). Now, define

a1(Xe,) = g1(X¢,) — g1(Xo), (2.10)
a2(Xe,) = 82(X¢,) — 82(Xo). (2.11)

For z € C, define linear operators P,, P, v,, and Q on N by
(P:h)(x) = E[h(X1)e*! | X = x], (Ph)(x) = E[h(X1) | Xo = x],

voh = Eu{h(Xo)), oh = / h(y) dr(y).

Proposition 1 of Fuh (2004) shows that there exists sufficiently small § > 0, such that, for
|z] <8, N = N1(2) ® Na(z) and

P,Q.h =Xx(z)0Qh forallh € N, (2.12)

where V1 (z) is a one-dimensional subspace of N, A(z) is the eigenvalue of P, with correspond-
ing eigenspace N1(z), and Q, is the parallel projection of N onto the subspace N (z) in the
direction of N, (z). For the structure of N (z) and M, (z), and other results of the perturbation
theory for Markovian operators, the reader is referred to Appendix A of Fuh and Lai (2001)
and Proposition 1 of Fuh (2004) for details.

Let 1 € N be the constant function 71 = 1 and let r(x; z) = (Q;h1)(x). From (2.12),
it follows that r(-; z) is an eigenfunction of P, associated with the eigenvalue A(z), i.e. r(:; z)
generates the one-dimensional eigenspace N;(z). In particular, when z = 60 € R such that
there exists a § > 0 and |0| < §, define the ‘twisting’ transformation by

;0) _
PY(x, dy x ds) = %e MA@+ p(x dy x ds), where A = log A. 2.13)
r(x,;

Then P? is the transition probability of a Markov random walk {(X 5, S;‘; ), n > 0}, with invariant
probability 7%, Let E?) be the expectation under P?). The function A(f) is normalized so
that A(0) = A(0) = 0, where A denotes the first derivative of A with respect to 6. Then
P® = P is the transition probability of the Markov random walk {(X}, S;),n > 0} with
invariant probability 7. Here, and in the sequel, we denote by P?, the probability measure
of the Markov random walk {(Xg, S,f), n > 0}, with transition probability kernel (2.13) and
initial distribution v?. For simplicity of notation, we denote v :=vand 7? := 7, and delete
6 in {(X?,8%),n > 0} if it is under P? or E?. Since r(x;0) = 1, the continuity property

n’=n
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of r(x; 0) implies that there exists a § > 0 and, thus, for |8| < 8, we have r(x; ) > 0 (or
1/r(x; 0) < oo)uniformly for all x € X. For given 0, let {(Xf,,, Sf,,), n > 0} be the ascending
+ +

ladder Markov random walk and set the invariant measure ni = 4 for simplicity. Note that

74 has a probability density with respect to M which, abusing the notation a little, we will
denote by . again.

By Proposition 1 of Fuh (2004), it is known that A is a strictly convex and real analytic
function for which A(@) = Ef, 519 . Therefore, Eg 519 is less than, equal to, or greater than O if
and only if 0 is less than, equal to, or greater than 0. For any 8 # 0 and |0| < §, there is at most
one value of 8’ with |0’| < §, necessarily of opposite sign, for which A(0) = A(0’). Assume
that such a 0’ exists, we may let 6y = min(0, 6’) and §; = max (6, 8’) such that 6y < 0 < 6,
and A(6y) = A(01). Denote g = [\(9), and let A = 61 — 6p. We also assume, without loss
of generality, that 0> = A(0) = 1, where A denotes the second derivative of A with respect
to 6.

Theorem 2.1. Let {(X,, S,,), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(X?, §%), n > 0} the Markov random walk induced by (2.13) with Eg S1 > 0.

n°*>n
Then, for any a > 0, as 6 |, 0, we have

1
0 1
Mo Ep, (14 SE) = —— Br, ¢
1 a+2 a+1 a 2 (214)
(B ST B (S e (Ko ) 0 )0+ 062).

Hence, as 0 |, 0,

a
E) S¢ =E. 5¢ + (m En, SeH1 4+ En+(Sf+a1(X,+)))0

1 a
+3 (m En, S + En, (SE o1 (X)) + 8¢ 02(Xe,)) — a“)92 + 06,
(2.15)

where a1 (X<, ) and a (X<, ) are defined in (2.10) and (2.11), respectively.

The idea of the proof involves the twist transformation for the Markov transition operator in
(2.13), the time-reversed Markov chains from (2.4)—(2.9), and Taylor’s expansion with respect
to 6. The details will be given in Section 5.

Remark. To compare the asymptotic expansion (2.15) to (4.3) of Chang (1992), we observe
that there is an extra term E (S?Jroq(X z,)), the joint moment of the first ladder height and
the solution of the Poisson equation (2.8), in the first-order approximation; and an extra term
En, (S?j‘loq (Xz,)+ S?+ az(Xz,)), the joint moment of the first ladder height and the solutions
of the Poisson equations (2.8) and (2.9), in the second-order approximation. An interpretation
for these extra terms can be described as follows: note that

a
a—+1

1
Er, S+ Ex, (S2 a1(Xe,)) = —— b S¢ 4 Ep, (8¢ (Se, + a1(X1,)))

and S, + o1 (X,,) is a martingale since i = 0; see Meyn and Tweedie (1993, Theorem 17.4.3).
Using the fact that @1 (X,) = 0 in the case of simple random walks, we may regard the extra
constant o (X, ) as being due to Markovian dependence, which reflects the martingale structure
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of Markov random walks. The same interpretation can also be applied to S,% + o2(X,,), which
forms a quadratic martingale; see Fuh and Zhang (2000, Theorem 3). Note that the constant
a® depends on the distribution of overshoot and the renewal function for the time-reversed
descending ladder Markov chains.

Using the tilting formula, (2.13), and Theorem 2.1, we give an asymptotic approximation
of the first term in (1.5) as follows. Under the conditions of Theorem 2.1, assume that 8y 1 0,
b — o0, and m — oo in such a way that, for some § > 0 and some k, we have

b
160]' b — o0, 16o|*m — 0, and m > M—(l +9).
1

Then

PR{n < m} = expl—A(b + py — P—)]<A|M0|<m _bAlor 4“;)1— (p— + ;_)>
+3(0 4+ AEq, a1(Xc,)) — %)/A), (2.16)

where po = A(60), 11 = A1), y = Ex &, and

Er, 52, Er 52
P T 2R, 8., T
. _ Er, (2, a1(X<,)) . Er (82 &1(X:))
T El S, T E.s

with & £)~( z_) defined as a1 (X, ) in (2.10) for the time-reversed ladder Markov random walk
{(Xz_, Sz_),n > 0}.

Note that approximation (2.16) generalizes Theorem 3 of Siegmund (1988) to the case of
reflected Markov random walks. A formal proof of (2.16) along with high-order asymptotic
approximations of (1.5), and its applications to the CUSUM change point detection procedure
will be published in a forthcoming paper.

3. Rate of convergence for the distribution of overshoot

Using the same notation as in Section 2, we define the renewal measure for Markov random
walks as

o0
Uy(A, B) = ZPU{xn €A,S, € B}, (3.1)

n=0
where A € 4 and B € 8. When v is degenerated at x, we simply denote it as U, (A, -). Then
under Assumption 2.5, for fixed B € 8B, U, (A, B) is absolutely continuous with respect to M,
with density function u(y; x, B) so that U (A, B) = fA u(y; x, BydM(y). Itis simple to note
that the measure P (x, - xR) on (X, «A) is also absolutely continuous with respect to M for every
x € X. Likewise, the renewal measure Uy ., as defined in (3.1), associated with the ascending
ladder random walk initialized at (x, 0) also has density function u, (-; x, B) with respect
to M,ie. Uy +(A, B) = fA uy(y; x, BYdM(y). When B = (—o00, t], we simply denote it as
u4+(y; x,t). Assumption 2.5 also implies that, for every x € X, there exists a p_(x; -) such
thatP(X;_ € A | Xo=x) = fA p—(x; y)dM(y) for all A € A. For given B € B((—o00, 0)),
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define G_(x, y; B) = p_(x,y)P{S;_ € B | Xo = x, X;_ = y}. Consider the time-reversed
(dual) process {(X s S,,) n > 0} and define p_ and G for the dual process in the same way
as p— and G _ are defined for {(X,, S,),n > O}. Let G_ (x,y; B) = G_ (v, x; Bym(y)/m(x),
U_ = Yoo G*", where * denotes the convolution of two transition kernels Fj (x, y; -) and
F>(x, y; ), with G*! = G and G*° being the kernel that puts all its mass at 0.

By making use of the exponential rate of convergence for the Markov renewal theory in
Fuh (2004), the next result states the exponential rate of convergence for the distribution of
overshoot.

Theorem 3.1. Let {(X,,, Sp), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(Xz, Sg), n > 0} the Markov random walk induced by (2.13) with Eg S > 0.
Then there exists anr > 0, 0* > 0, and C such that, for any x € X and A € A,

|PY{Xy, € A, Ry < s} —P’{Xog € A, Rog < 5}| < Ce™" 0T

foralls,b > 0and® € [0, 60%].

Proof. For given 6 € (0,60*], x,y € X, and B € B((—00, 0)), define u‘i(y; X, B) as that
in the first paragraph of this section for the Markov random walk {(X fn, an), n > 0}. Since,
by (3.15) of Fuh and Lai (2001),

PY(X,, €A, Sy, —b>s)= / f PI{Xe, € A, S, > b+s — tjul (y: x, dr) dM(y)
[0.b)

for any x € X and A € 4, and since, by (2.3),

9 0 dr
P{Xoo € A, Reo > s} = P {X:, €A, S, >z}
s Sl’+
1
// PO{Xe, € A, Se, > b+s — 1) —p— T,
Ef S,
we have, forany x € X and A € A,
PY(X,, €A, Sy —b>s)—P(Xoo € A, Roo > 5}
dt
=// Pi{X., €A, SI+>b+s—t}<u+(y,x dr) — &)dM(y)
X J[0,b) s DT

- 7y (y) d 2
_/x/ PUUXe, €A, Se, > b+s — =2 L am(y)

Ty P T4

=J = ).
For all x, y € X, define

(b _ T Eq, ST
Ef S, 2(ES S.)?

ne(y; x, b) = uf, (y; x,b) —

Then
J] :/ /0 b Pg’{XT-%— (S} A, S‘[+ >b + 5 — t}n@(y,x,dt) dM(y)7
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and integration by parts gives

Jl = \/:x:<)79(y;x5b)P?/{XT+ S A7Sf+ > S}

7+(y) Ef,+ S$+ p )
——— P{X; €A, S >b+s})dM
2(E79T+ ST+)2 y{ T+ T+ } ()’)

_ /x /[O ) PUX,, € A, S;, €b+s—di)ng(y; x, 1) dM(). (3.3)

To find an upper bound of |J;|, note that Theorem 1 of Fuh (2004) states that there exists a
C1, a1 > 0, and 6] > 0, such that

116 (y; x, b)| < Cre™1? (3.4)

forallx, y € X,bandalld € [0, 61* ]. Also, by making use of the requirement that ® contains an
open interval around 0, Lemma 14 of Fuh (2004) (which states that there exists an «* > 0 such
that, for any o € [0, a™], Eg exp{aé&} < oo implies that EfZ+ exp{aS;, } < 00), and Wald’s
likelihood ratio identity for Markov random walks (see Fuh (2004)), we can show that there
exists a C2, ap > 0, and 65 > 0 such that E§+ exp{aa Sz, 1{XT+EA}} < Cyforall 0 € [0, 05],
so that, forany y € X and A € A,

PI{X;, €A, S, >s}<Crexp{—aps} forall§ €[0,6;]ands > 0. (3.5)

Therefore, by (3.4) and (3.5), letting @3 = min{ay, a2} and 6* = min{6;", 65}, there exists a
C3 such that, for any x € X, and A € A,

‘/x<ne(y;x,b) P){X., € A, S, > s}

() ES, S7

TG )2+ PI{X:, €A, S, >b ~|—s}) dM (y)
Ty M4

foralls,b > 0and 6 € [0, 6*]. As, by Theorem 1 of Fuh (2004), the last term on the right-hand
side of (3.3) can be rewritten as

< Czexp{—az(b +s)}

‘/ [ Pixe eas. eps- dt}rw(y;x,r)dM(y)‘
x J10,b/2)

b
sclP§+{xf+ €A,S, zs+5}

b
< Clczexp{—ou(s + 5)}

‘/ / Pz{Xz+ €A, S, €+s— dilng(y; x, 1) dM(y)
X J[b/2,b)

and

—ab
< exp{%} P {X:, € A, S, = 5)

—alb
< C1Cyexp - + ans ¢,
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then there exists an a4 > 0 and a C4 such that the integral over [0, b] is bounded by
Coexp{—oy(b + s)} for all x € X, b,s > 0, and 6 € [0,6*]. Thus, by (3.3) there exists
an s > 0 and a Cs such that, forany x € X and A € A,

/1| < Csexp{—as(b + s)} (3.6)

forall b,s > 0 and 6 € [0, 0*].
For J;, since E§+ Sz, is bounded below for & > 0, we have, by Theorem 1 of Fuh (2004),

0 d
) < fx / CzeXP{—az(b-FS—t)}c—;ﬂ+(y)dM(y)=C7eXP{—012(b+S)}~ 3.7

Combining (3.2), (3.6), and (3.7), we complete the proof.

Recall the definitions of 8; and 6y given in the paragraph before Theorem 2.1, and let
A = 6; — 6. By making use of the fact that E Rf = a [~ s ' P{X, € X, Ry > s}ds and
Theorem 3.1, we obtain the following result.

Corollary 3.1. Assume that the conditions of Theorem 3.1 hold. Then, for any a > 0, there
exists anr > 0, 0* > 0, and C such that, for any x € X,

|E{ Rf —Ef RS | <Ce™”

forallb > 0 and 6 € [0, 0*]. Also, there exists anr > 0, 0* > 0, and C such that, for any
x e X,
01 (n—AR 01 (n—ARoo —rb
|EJN e 2%) —EJ! (e )| < CAe™

forallb > 0and 6 € [0, 6*].

4. The covariance between the first passage time and the overshoot

For given 6 € (0, 6*] and for any u > 0, x € X, and A € A, let

o
QYA u;b) =Y Pty >n, X, € A, Sy >b—ul, (4.1)

n=0
0
05, (A, u; 00) = (By, Su)—l/ /x{/Aﬁﬁ(z,y; (s,0)>dM(y>}dn+(z>ds,

where ﬁf (z, y; (s,0)) is defined as U_ (z, ¥; (s, 0)) in Section 3 for the Markov random walk
{(X 2, Sg ), n > 0}. In order to study the rate of convergence for the covariance between the first
passage time and the overshoot, we first give the following two lemmas. Lemma 4.1 generalizes
Lemma 3.1 of Fuh and Lai (2001) in order to obtain the rate of convergence.

Lemma 4.1. Let {(X,, S,), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(X9 SH n > 0} the Markov random walk induced by (2.13) with Eg S > 0.

n’*>n

Then there exists a C,r; > 0, and 0* > 0 such that, for any x € X and A € A,
|Q9(A, us b) — QF (A, u; 00)| < Ce 10~ (4.2)

forallb > 0,0 <u <b,and 6 € (0,0*].
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Proof. First note that, for any x, z € X,
Pg{rb >n, Xp€A, S, >b—u}

n

= 2/ PI(S; < Siforalli <k, Sg e dt, S; < S forallk < j <n,
k=0 (b—u,b)

Sp =Sk >b—u—t, X, € A}

n

=Zf f PI(S; < S foralli <k, Sg € b— ds, X; € dz}
k=0 O,u) J X

x Pty >n—k, Sp—k > —u, Xp_x € A).

Recall that T/ is the mth ascending ladder epoch. Then

o0 o0
ZPi{Si < Siforalli <k, Sx eb—ds, Xg € dz} = Zpﬁ{xﬂz € dz, Spm € b— ds).
k=0 m=0

For given A € X and B € B((—00,0)), as shown by Fuh and Lai (1998, p. 576),
S oPUry >n, X, €A, S, € B = [, U%(z, y; BYdM(y). Then

o
Qg(A,u;b) = ZP?{T;, >n, X, €A, S, >b—u}

n=0
o0 o
6
= Zf(ou)/XZPx{srf €b—ds, X;r € dz}
j=0 ’ m=0

x Pty > j, S; > s —u, Xj € A
= / / {/ I/J\f(Z1 y; (s —u,0)) dM(y)}U)nyr(Z, b — ds)dny(2),
O.u) JX LJA
where U? | (z,u) =Y 00, PY{ Xom € dz, Spp < u}. Therefore,
QZ(A, u; b) — Q,QH(A, u; 00)

:/ / {/ U%(z, y; (—z,O))dM(y)}
X JO A

dr
x (U§,+(z, b—u+dt)— Ul (z,b—u)— W) Ay (2)
T+

=/ {/ 7z, ; (—u,0)>dM(y)}
X A

x <U§,+(Z’ b) — Uf’+(z, b—u)— ) dmy(z)

u
0
EJ S,

u t
—//<Uf’+(z,b—u+t)—Uf,+(z,b—u)— 5 )
X J0 Eﬂ+St+

X d{f ﬁf(z,y; (—t,O))dM(y)}dn+(z).
A
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Combining these representations with the rate of convergence for the Markov renewal theorem
(see (2.7) in Theorem 1 of Fuh (2004)), we have |Uf | (z,b) —=U{ (z,b—u)—u/Ef S; | =
o(e™ =y and |UY | (z, b —u+1) = UY (2, b —u) —t/ES S | = o(e™®=). This
yields (4.2).

Lemma 4.2. Let {(X,, S,),n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(x? Sg), n > 0} the Markov random walk induced by (2.13) with Eg S1 > 0.

n’

Then there exists a 0* > 0 such that, for all a > 0 and 6 € (0, 6%),

2E9 +\a+1
SupEg RZ < a+ &

4.3
b>0 a + 1 Eg %’1 ( )

When the initial distribution of Xq is v, (4.3) implies that there exists a constant K > 0 such
that supy- o E) R¢ < (a +2)BL(E)*T/((a + DEY &) + K.

In the case of simple random walks, the upper bound (4.3) was given in Theorem 3 of Lorden
(1970) by pathwise integration. In the case of Markov random walks, the upper bound (4.3)
was given by Fuh (2004) when @ = 1. Here we generalize it for all @ > 0 in Lemma 4.2,
which will be used in the proof of Theorem 4.1. Since the proof of Lemma 4.2 is a simple
consequence of Lemma 2 of Fuh (2004) using Theorem 3 of Lorden (1970), we omit it here.

Theorem 4.1. Let {(X,,, Sp), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(x? Sg), n > 0} the Markov random walk induced by (2.13) with Eg S > 0.

n’

Let (0, v) = E) RS —EY RS, and define

1

i) =
S

/ ¥4 (0, v) f / 0% (2, y; (—v, 0)) dM(y) 4 (2) dv.
0 X JX

Then there exists a C,r > 0, and 6* > 0 such that, for any x € X,
| cov’ (1. Rf)) — C*(O)| < (ES, S.,)~'Ce™"” (4.4)

forallb > 0and 6 € (0, 6*], where Covg (-, -) denotes the covariance of two random variables.

Remark. The convergence of covﬁ(rb, R}) to C%(6) can be found in (3.18) of Fuh and Lai
(2001). Theorem 4.1 establishes exponential rate of convergence uniformly in x € X. The
constant term, (Eg+ St +)_1, on the right-hand side of (4.4) comes from Wald’s equation for
Markov random walks.

Proof of Theorem 4.1. First, we note that it is sufficient to show that there exists a Cy, C»,
r > 0, and 6* > 0 such that

|covd (ty, RY) — C(O)] < (BS, S-) ' (A1 + Ap)e™"” 4.5)

forall b > O and 6 € (0, 6*].
To prove (4.5), we assume that 6 > 0 is fixed, then

o0
cov?(wp, RY) =/ X/O {E? RY — EY R{} 0% (dz, dv; b). (4.6)
ze
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Next, (3.18) of Fuh and Lai (2001) shows (for the case in which a = 1, but its generalization
to a > 0 is straightforward) that, as b — oo,

cov! (tp, RY) — C9(0) := /OO Y0, v) Q5 (dv; 00), 4.7
0

where Q?,+(dv; 00) = [L o Qf;Jr (dz, dv; 00).
Let Qi(dv; b) = fx Qg (dz, dv; b). From (4.6) and (4.7), and noting that

f 0%(dv; b) = Ef 15,
[0,00)

we have
cov?(wp, RY) — C4(0)

o
= fo (Bf, RS —E) RE)[Q%(dv; b) — Qf (dv:oo)] + (B R —E) R{E] 1,

o
* / x/o [(E? RY —Ef, RY) — (I Rf — E7 RY)IQ](dz, dv:b). (4.8)
z€

We show that the second term on the right-hand side of (4.8) satisfies (4.5) as follows. First,
by the assumption of the continuity of Ef,+ Sz, in 6, we can choose C > 0 and 6* > 0 such
that, for all & € [0, 6*], E?u Se. > C~!. Next, by Theorem 1 of Fuh (2004), there exists a
u > 0 such that ;
s+ Eﬂ+ R

5 < Ce—LlS’
EY, S,

‘ Uﬁ + (s) —
where U‘?’Jr(s) = Zsio P?){Xﬂ e X, Sﬂ € [—o0, s]}. By making use of Wald’s equation for
Markov random walks, Lemma 4.2, and Corollary 3.1, we obtain, for any x € X,

—ub b+C
Ef. S,

|(BS, Rf —ES R)E(T| < Ce 4.9)

forallb > 0 and 6 € (0, 6*].

Next we show that the first term on the right-hand side of (4.8) satisfies (4.5). For this
purpose, we split the interval of the first integral in (4.8) into two subintervals, i.e. [0, b/2) and
[b/2, c0). For the integral over [0, b/2], we write

/ {E, Ry —Ej RSMQ%(dv; b) — 0F, (dv; 00)]
[0,6/2)
6 a % a % b 6 b
:{E7T+ RU _E7T+ ROO}[Qx<§;b) _Qy-[+(§9oo>j| (4.]0)

b b
“oun #(5) -0 (3] o

where we have used Qﬁ(O’; by = 0 = qu (07; 00). However, by Corollary 3.1 and
Lemma 4.1, we have

(25, vt - 6, R4 0(3i0) - 04 (i00) |

<4C*ES, S.)7'e™. (@411
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Note that [i a ES R Ndr = (ES S¢)UY . (v)—Ef} R, and this implies that, for any
x e X,

' / [QY(dv; b) — QF, (dv: c0)]d(E] RY)
[0,b/2)

b b/2
0. 9 /. 0 ) , .
= (o 10300 €6 0 000) <<En+ S$+>Um,+<z> s [aE & dv)
—le— b
= (4C2(}5§T+ ) le sb)|:2(Eg+ S?+)U§+)+<§>:|
b -
< 8C3(Eg+ Sr+) 1|:z + C]e sb/Z‘ wi)

Combining (4.11) and (4.12) shows that (4.10) satisfies (4.5).
Finally, for the integral over [b/2, 00), we use Corollary 3.1 to write

‘ fW ){E?,+ RS —Ej. RO (dv: b) — Q% (dv; oo)]‘
,00

(4.13)
< / Ce™vQ%(ds; b) + / Ce™v QY (dv; 00).
[b/2,00) [b/2,00) *
It is easy to see that the last two integrals satisfy (4.5). Using
0 . _RY 0 -1
/ O,dv;b) =E; v =< (Ez, Se.) (b+0) (4.14)
[0,00)

and Lemma 3.1 of Fuh and Lai (2001), we can prove that the first term of (4.8) satisfies (4.5).
It remains to show that the third term on the right-hand side of (4.8) satisfies (4.5). By
Corollary 3.1, we find that, for any a > 0, there exists a C, r > 0, and * > 0 such that
|EY RS —EY RY| < |E!RY—E; R&|+|E) RY —E) RY|<2Ce™

o]

forallv > 0,6 € [0, 6*], and uniformly for z € X. Using the same argument as used for (4.13)
and (4.14), we have, for any x € X,

o0
/ X/O [(E! RY —Ef RY) — (BY R} —E} R&)1Q(z, dv:b)| <3Ce™".
ze

This completes the proof.
Let ~
C) = /O [ES (™) —EJ (e72F*)10% (dv; 00).

Theorem 4.2. Let {(X,,, Sp), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(XZI, Sg' ), n > 0} the Markov random walk induced by (2.13) with EZI S1 > 0.
Then there exists an A, r > 0, and 0* > 0 such that, for any x € X,

|cov? (zp, e 72R0) — C(61)] < Ae™"?

forall b > 0 and 0 € (0, 0*].
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Proof. Using the same method as above to derive (4.8), we have, for any x € X,

COVZ1 (tp, e_AR”) — 6‘(91)

= /0 oo[1~:?,;(e*“v) — B, (e )10 (dvs b) — 0F, (dv; 00)]

+

4 —ARx 0 — (4
+[BY, (e =) — B! (™ ")E) 1,

+ f / [(Egl (e*ARv) _ Ef{l (C*ARU)) _ (Egl (e*ARb) _ E?rl (e*ARoo))]
zeX JO

+ +
x 0% (dz, dv; b).
The rest of the proof is the same as that of Theorem 4.1.

Theorem 4.3. Let {(X,, S,), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(X9 SH n > 0} the Markov random walk induced by (2.13) with Eg S > 0.

n’*n

Then there exists a 0* > 0 such that, for any x € X,
1 .0
cov?(wp, RY) = m[E§ R{Y — (BY Ry)(EY RY) — E( Ry + Ko 4.15)
7 Ol

forall 6 € (0, 6%, where

X _E9<r'<xr,,;e) i(x6)
T X 0 r(n 0)

) — (B] F(Xr,: 0) — F(x; 0))(EY R}).
Proof. For given 6 > 0, by Wald’s likelihood ratio identity for Markov random walks, we

have
r(Xz,; 0) }
r(x;:6) |
Under Assumptions 2.1-2.6, (5.31) in Lemma 5.4 implies that |r(x; 0)| < | Ex & — u|. By
making use of the fact that E; | Ex & — | < oo and the continuous differentiability property
of r(x; 6) (see Fuh (2004, Proposition 1)), we show that there exists a § > 0 such that, for
|0] < 8, Ex F(X1;0) < oo uniformly for all x € X. Now using the dominated convergence
theorem to interchange differentiation with expectation, we obtain
r(X,; 0)
r(x;0)
F(Xq,; O)r(x; 0) —r(Xq,; 0)r(x; 0)
r2(x; 6) }

E) RY = EX{RZ explS;, — T A(0)]

. 9 .
E, Ry = Ex {RZ exp[0Sy, — A (6)] (Sz, — wA(0))

+ R} expl[0Sz, — tA(0)]

r(x; 0)
. (X, 0 10) —r( Xy, 0)r(x; 0
X ((S‘L’b - TbA(Q)) + r( . ):(();. )9):(()6 g) )r(x )>}
Tho s

= EJ(RY(Sy, — 5 E2 S + Gp)), (4.16)

_E, { RS expl0Ss, — 1A ()]

where we have set EZ S| = A(9) and Gg = El(#(Xy,; 0)/r(Xy,; 0)) — i (x; 0)/r(x; 0).
Making the substitution S;, = b 4+ R}, in (4.16) and rearranging, we obtain

1 .
EY(t,RY) = m[b E RY +E{ R¢H! — E'RY + Gy). 4.17)
1

T
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By Wald’s equation for Markov random walks (see Fuh and Lai (1998, Theorem 1) and Fuh
and Zhang (2000)), we have

1
(E? 7)) (E? RY) = m(b +E% Ry + G,)(EY RY), (4.18)
1

e

where G, = EZ 7(Xq,; 0) — i (x; 6). Equation (4.15) is obtained by subtracting (4.17) from
(4.18). The finiteness of 7(x; 0) for all x € X will be given in Lemma 5.4, below.

Corollary 4.1. Assume that the conditions of Theorem 4.3 hold. Then there exists a C,r > 0,
and 6* > 0 such that, for any x € X,

YRy — EZRQ’OI <Cce"? (4.19)
forallb > 0and 6 € (0, 6%)].
Proof. Rearranging (4.15) gives
<0
E Ry = E{ RIT! — (EY Ry)(EY RY) + Ko — (ES 1) covl (zp, RY).

Define
g(0) =E) R — (B}, Ruo)(BY, RS+ Ko — (E) S1)C(0).

Since Ky is bounded by Proposition 1 of Fuh (2004), using Corollary 3.1 and Theorem 4.1, it
is easy to see that there exists a C, r > 0, and 6* > 0 such that, for any x € X,

B'RY — g(0)] < Ce™"” (4.20)

forall b > O and 6 € (0, 6*].

Now, we have, as b — oo, EY R} — Ee R4 for all 6 and EOR“ — g(#) uniformly in
6 € (0,60%), and an elementary analy51s theorem (see Apostol (1974 Theorem 9.13)) implies
that E9 R} is differentiable in 6 € (0, 6*) and B’ = g(#). Substituting E R“ for g(6)
in (4. 20) gives (4.19).

T+ OO

5. Proof of Theorem 2.1

To prove Theorem 2.1 we need to obtain the following three lemmas first. Lemma 5.1
presents a first-order approximation of (2.14) and (2.15), which extends Lemma 10.27 of
Siegmund (1985) to Markov random walks. Lemma 5.2 gives the rate of convergence for
the renewal measures, and Lemma 5.3 provides the rate of convergence for the distributions of
overshoot on the descending ladder Markov random walk.

For given 6 > 0 and for x € X, define the renewal measure U 9,_ by

o
0 _(A,B):=Y Pi(i" < o0, Xen € A, ~5 € B) 5.1
n=0

for all A € A and Borel subsets B C [0, 0c0). We simply denote it as U9 _(B)if A =X and
denote it as Ue _(w)if B =10, v).
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Lemma 5.1. Let {(X,, S,), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(Xz, S,f), n > 0} the Markov random walk induced by (2.13) with E?r S1 > 0.
Then, for any a > 0, we have

1
. 0 1
191?8 Mo Eﬂ+ (T+S?+) = m EN+ S?:_ . (52)

Hence, as 0 |, 0,

EV, §¢ =Eq, S + ( Er, S+ Em(Sial(XDr)))G +0®).  (5.3)

a
a—+1

Proof. To prove (5.2) holds for a > 0, we first assume that & > 0 is fixed. Recalling
Qﬁ (dv, dz; b) defined in (4.1), for b = 0, we have

o0
0%(dz. dv:0) = Y "Pi{ry > n. X, € dz, -5, € dv}. (5.4)
n=0

Then by (4.6), with b = 0, we have
0 - 0 0
covy, (14, 57,) = / / / {E; Ry — E7 87,10, (dz, dv; 0) dry. (x). (5.5)
xeX JzeX JO
Applying duality to obtain Q%(dz, dv; 0) = 03 _(dx, dv), this implies that
0 ~
covl (ty.8¢) = / / / (EY RHU? _(dx, dv) dm4(2)
xeX JzeX JO
o0
_/ / f (B! 8¢ ) 0! (dz, dv; 0) dmy (x)
xeX JzeX JO
o
= / . fo (EY ROU? _(dv) dmr(z) — (B, $¢)(ES, 14). (5.6)
K4S

where Ug_(dv) = fxex Ug_(dx, dv). By making use of (5.6) and the definition of
COV?I+ (T4, S;L), we have

o0
2% Ef,+(r+Sf;+) =M9/ X/O (Ef RS)sz(dv)dnJr(Z)
€

o0
= uo(Ey, RE)ES T4 + 1o / . /O (BY RY —Ej RE)U! (dv)dmy(2)
z€

1
Ta+1

Ef S¢T 4 000). (5.7)

Note that the last equality in (5.7) uses the facts that E§+ RS, = E?T+ S?;H /(a+1) E§+ Sz, and
wo = 6 + 0(0), and Corollary 3.1.
Next, we prove (5.3) from

EY §¢ = Ex{sa expl0Sz, — T A(0)]

T+

r(XT+; 9) }
r(x;0) |

https://doi.org/10.1239/aap/1189518640 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1189518640

Asymptotic expansions 845

By the dominated convergence theorem it follows that limg o EZ S?Jr =E, S;. Also, f(0) =
E{ (87, is continuously differentiable for small positive ¢ and

oy — g0 qa B F(Xe O)r(x;0) — r(Xe : 0)i(x;6)
f(g)_E"{S’*[(S’* o)+ F(Xe,; 0)r(x; 0) ]}

Ty

Since f(61) = f(0) + (61 — 0) f(®) + fﬁ‘[ f(a) — f(©)]da, we obtain the result by letting
6 — 0.

Lemma 5.2. Let {(X,, S,), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(Xg, Sg), n > 0} the Markov random walk induced by (2.13) with Eg S > 0.

Then, for any A € A and Borel subsets B C [0, 00),
U! _(A,B) > Uy _(A,B) as6 0, (5.8)

where l}f,_(A, B) is as defined in (5.1) and U —(A, B) is as defined in (2.5).

Proof. For given A € 4 and Borel subsets B C [0, c0). By Wald’s likelihood ratio identity
for the time-reversed descending ladder Markov random walk, for any n > 0, we have

PY{#" < 00, Xsn € A, =S € B}

s L Fo(Xzn:0) . 5
=By 1exp[0S;» —T"A_(0)] —————; Xsn € A, —S;» € By,

- r—(x; 0) - -
where A_(0) and 7_ (x; 0) are as defined in (2.13) for the transition probability of the Markov
random walk {(Xz», Sz»),n > 0}. However, By Proposition 1 of Fuh (2004), 7—(x; 0) — 1
as 0 | 0. Therefore, as 6 | O,

L F_ (X3 0)
exp[0Sz» — T"A_(0)] ——— — 1.
- r—(x;0)
Hence, as 6 | O,
P{#" <00, Xin € A, =S8 € B} — P, {Xsn € A, =Sz € B). (5.9)

Sipce F—(x;0) = 14+ 0O@) as 6 | O, there exists a § > 0 and ¢ > 0 suctl that
[F_ (X3 0)/F—(x;0)] <14cO for 0 < 6 < §. Together with the fact that exp[0Sz» —

TP A_(0)] 1 1as 0 | 0, we obtain, for 0 < 6 < 8,
P/{#" < o0, Xin € A, =Sz € By < (14 c0) P, {Xsn € A, —Sz € B}, (5.10)

Note that Ux’_(A, B) < oo foreach B C [0, 0o) with finite measure. Using (5.9), summing
over n > 0, and applying the dominated convergence theorem, we obtain (5.8).

The following lemma is a key lemma in the proof of Theorem 2.1. The proof involves the
perturbation theory, which is summarized in Fuh (2004), and a detailed analysis.
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Lemma 5.3. Let {(X,, S,), n > 0} be a Markov random walk satisfying Assumptions 2.1-2.6
and denote by {(Xz, S,f), n > 0} the Markov random walk induced by (2.13) with E?r S1 > 0.
Then, for any x € X,

/O (B Rf —Ef R&)U! _(db) =l +0() as6 |0,
[0.00)

where o is as defined in (2.7).

Proof. Let f9(b) := Bf R¢ — Eg+ R% and fy(b) := Ey RY — B, RY,, and write

FT?_(db) — f Fo ()T (db)

/ (B Rj —EJ R&)Uﬁ_(db)—ozfj:/
[0,00) [0,00)

[0,00)

_ f[o EACREARIEID

- /[0 )ﬁ(b)[ﬁx,_(db)— U? _(db)]
=J1 — .

To complete the proof we will show that J; and J, are O(6) as 6 | 0.
For J|, we rewrite ff ) — fr(b) = foe fg (b) dn, where the dot denotes differentiation with

respect to 1. By Corollary 4.1 there exists a C, r > 0, and 6* such that |f}7 (b)| < Ce™" for
allx € X,b > 0, and all n € (0, 6*]. Therefore, letting 6 € [0, 6*], we have, for all b > 0,
| £2(b) — fr(b)| < 0Ce™"". This implies that there exists a ¢ > 0 such that

|J1] gec/ e "P0° (db) 590(1+c9)</
[0,00) ' [

e'bl?x,_«lb)),
0,00)

where the second inequality follows from (5.10) and Lemma 5.2. Thus, J; = O(6).

For J,, use Lemma 5.2 to observe that f]x,_(db) and (1 4+ ¢6)U —(db) — f]fq_(db) are
nonnegative measures for each 0 < 6 < §. From this, and the bound from Corollary 3.1,
| fx(D)] < Ce Y forr; >0and x € X, say, we obtain

|| < c/ e "’[(1 + ¢0)Uy,—(db) — UY _(db)] forall0 <r <ry.
[0,00)

Now, there exists a 9* > 0 and r, > 0 such that, for 0 < r < ry, we can define N (r), f)fy_,
and Qe’ _ uniformly for6 € (0, 6*), as (2.13) for the transition probability of the Markov random
walk {(X%,, 5%,),n > 0} under the condition of {¥_ < co}. Let v be an initial distribution
degenerated at x and s 4 (r) := 1{cca), then we have

o
f e 0! _(db) = Z/ e P PIF" < 00, X1 € X, —Si € db)
[0,00) o J10.00)
o0

= ZEi{exp(rS';g); " < 00, X € X}
n=0
=1 =220 _0Q) hx(r)+n’(r), (5.11)
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where 1 (r) = ZZO:O f)f’_f)*y_(f’rg,_)” I - Qf’_)hx(r). Note that the last equality follows
from Proposition 1 of Fuh (2004).
Choosing r* = min{ry, rp} and considering r € (0, r*), (5.11) implies that

/ e "P[(1 + c0) Uy —(db) — Uf _(db)]
[0,00)

A =20 L - cd .
= = = *,— r—h = Vx,— r—h
1= — 2y OO T P G
1 i 3
+ Te(r)(i*’_ Qr—hx(r) — ﬁf,— Q?,—hx(”)) + (L4 cOne) —n’ (). (5.12)

By Proposition 1 of Fuh (2004), & (r), A% (r), Ds,— Q. —hc(r), 7% _ Q% _hx(r), n(r), and
1% (r) (uniformly for 6 € [0, 8*]) have continuous derivatives for |r| near 0 and

A(r) =1+ (E, S; r + 0@, Wary=1+ (Eijf_)r + 0@, (5.13)
Moreover, we have, as 0 — 0,
50 0% _hx(r) > 94— Qp—hx(r) and 1°(r) > n(r). (5.14)

Now, for fixed r € (0, r*), (5.13) and (5.14) imply that, as § — 0, (5.12) equals

d A co -
~* — r_h + — — ~* _ ,-_h
(En_ S‘ffl::i_ S‘fi)rz ba- Cr—hx(r) —(E_ S: r+ 0(}’2)1) —Qr—hx(r)
+ 0(0) + cOn(r) + 0(0). (5.15)

E 3+ 002

By making use of the same argument given above for (5.3) in Lemma 5.1, we have E: S; =

E. Sz_ + O(6). Therefore, (5.15) and (5.12) imply that J, = O(6). This completes the proof.

Proof of Theorem 2.1. First, we show that (2.14) implies that (2.15) holds. Leta > 0 and
denote /1 (6) = EY S¢ . From

E’ §¢ =E, {S;‘+ expl0Sz, — 14 A(0)]

x Pty

r(XT+; 9)
r(x; 6) }

by the dominated convergence theorem it follows that limg o E{ Sz, = Ex S7, . Since, for any
x € X, hy(0) is continuously differentiable for small positive 6, r(x; ) = 1 + O(0) and
F(x;0) =7(x;0) + O(0), we have

hx(@) = Eg{s;_ |:(ST+ _ T+/-'L0) + r(Xr+; Or(x;0) — r(XT+; 0)F(x; Q)j“

r(Xe,; O)r(x; 0)
= EJ{S¢, [(Sr, — T4 119) + F(X1,: 0) — #(x; )]} + O(). (5.16)

Then, we integrate x € X with respect to 7 in (5.16) to obtain

hr, (0) = By, ST — o EY (v4S7,) +Ef (ST, (F(Xz,30) — #(X0: 0)) + 0(0). (5.17)

Ty
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Since

0
hy(0) = hy(8%) + (0 — 6" (0%) + / [y (@) — hy (6%)]da,
9*

we obtain, via (5.3) in Lemma 5.1, by letting 6* — 0,

E)S¢ =E, 8¢ + (a"? E. STH + EL[8¢ (F(Xq,: 0) — F(x; 0))])9 +o(0). (5.18)

Then, we integrate x € X with respect to 7 in (5.18) to obtain

a . .
Efr+ S?Jr =Eg,, Sf+ + <F E. setl _|_E,,+[S;‘+(r(XT+; 0) — 7 (x; O))])O +0(0). (5.19)

T4+ M.
1

To obtain a further expansion of fzm (0), we first expand r(x; 0) = 1 + 7 (x;0)0 + 0(6?)
and 7(x; 0) = F(x; 0) + #(x; 0)0 + O(6?), and then use 1/(1 — ) = 1 + 6 + O (#?) to obtain

F( X Or(x;0) —r(Xe,; 0)i(x; 0) — (H(XeL: 0) — #(x5 0))
r(Xe,; 0)r(x;0)
+ ((F(Xz,3 0) = F2 (X1, 5 0))
— (F(x;0) — F2(x; 0))0 + 0(6%).  (5.20)
Denote

B1(Xz,) = (X, ; 0) — F(Xo; 0),
Ba(Xe,) = (F(Xr,; 0) — #2(X+,; 0)) — (F(Xo; 0) — 72 (Xo; 0)).

By making use of (2.14), (5.19), and (5.20), with a replaced by a + 1, we have

. a+1
e, 0 = Bx 520+ (45

Er, S&7% + B[S (F(Xe, 5 0) — F(Xo; 0))])9 +0(6)

T+
! E,, S¢t! —< ! E, s“+2+a“> + 06
a+1 "t a+2 Tt
+Ex, (8¢, (F(Xx,: 0) — #(X0: 0)))
+ Ex, (8¢, [(F(X1,: 0) — #(X0: 0) — (F (X1, 3 0) — #%(Xo: 0)))O + O (6?)

a a
— Er, ST 4 B, (89 B1(Xe,) + (m Er, 5042 — aa)@

a—+1
+ Ex, (S4 B1(X2,) + Sz, B2(X,))6 + 0(0). (5.21)

T+

Since, for some & > 0, i, is continuously differentiable on (0, ) and continuous on [0, ],
for small 6, we have

6
B, (6) = hy, (0) + / hir, (6')d0. (5.22)
0
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Then, replacing fzn . (0’) in (5.22) by that in (5.21), a simple calculation yields
EJ, S%, = hx, (6)
—E., S + (f?(Em 4 + Exr, (52 By (Xu)))e

1
+ _< a Eﬂ+ S;{jZ _ aa)ez

2\a+2
+ 3 Br, (SEHBI(Xe,) + 8¢ Ba(X2,))0% + 0(67)

a
=Eq, S¢, + (m(E’” S + Eq, (52, By <Xf+>>>e +00%.  (523)
Now changing a to a + 1 in (5.23) and recalculating (5.21), we have

. a a
hj-[Jr(e) = mEqu S?jl +En+(S?+ﬁ1(Xf+)) + (m E”+ S?jz _ o[a)e

+ Ex, (S5 B1(Xey) + 82 B2(X2,))0 + 062, (5.24)

T+

Substituting (5.24) into (5.22), we obtain (2.15).
Next, we will prove that (2.14) holds. First we assume that 6 > 0 is fixed. Using the same
argument as given above for (5.4)—(5.7), we obtain

o
noES (1488 = po / / (E? RHU! _(dv) dm(2)
zeX J0
0 0 " 0 6
= po(Eq, R%) Er, T+ + 1o / f (E] Ry — E;. R U, _(dv) dmy(2)
72eX JO
_ 1
Ca+l

Ef St a0+ 007). (5.25)

Note that the last equality in (5.25) uses the facts that E?T+ RS = Eng S;‘jl /a+1) E2+ A\
and u = 6 4+ 0(6?), and Lemma 5.3. Now, we need to establish an expansion for Ef,+ Sﬁjl
up to 0 (6?). Observe that

-0 . .
E,, (S¢Th =Ef S¢? — pg BY (rpS¢TH +ES (84T G (Xe, 5 0) — #(x: 0)))

T+ T4+ T+
1 . )
= Eq, St — S B St B (S5 (X, 0) = 7(x: 0) + 00)
a+1
=— E) S¢P2 4 By (S9! Bi(Xe,)) + 0(0). (5.26)

where the first equality is from (5.17), and the second and third equalities are from (5.7) and
Lemma 5.1, respectively. Integrating the last display of (5.26) gives

a+1
E) (S¢H) =Eq, (54T + ( En, 8477 4+ Eq, (S¢H! ﬂl(X,+)))9 +00%. (5.27)

T+ T+ a + 2 T+

Substituting (5.27) into (5.7) yields (2.14).
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To complete the proof, it remains to show that (2.14) and (2.15) still hold when B (X, ) and
B2(X <, ) are replaced by a1 (X, ) and a (X<, ) defined in (2.10) and (2.11), respectively. This
will be shown in the next lemma.

Recall the definitions of g; and g; given in (2.8) and (2.9), respectively.

Lemma 5.4. Assume that the conditions of Theorem 2.1 hold. Then, i (x; 0) and ¥ (x; 0) are
bounded on X and, for any x € X, there exist constants ¢ and ¢ such that

7(x;0) = g1(x) + ¢y, (5.28)
F(x; 0) — 72 (x; 0) = ga(x) + ca. (5.29)

Proof. To establish (5.28) and (5.29), we simply assume that the random variable &; takes
positive values, since the extension to the general case is straightforward via ladder random
variables. Since r(-; ) is an eigenfunction of A(6) with respect to the operator Py, we have
Pyr(x; 0) = A(@)r(x; 0), which implies that Ex{eeélr(x; 0)} = A(@)r(x; 0). By Proposition 1
of Fuh (2004), there exists a § > 0 such that both A(6) and r(-; #) are analytic functions for
|6 < 8. Note that u = i(O) > (0 under the assumption that &1 takes positive values. A one-term
Taylor expansion for A(6) and r (x; 8) with respect to 6 around O entails A(6) = 1 +u6+ O 6%
and r(x; 0) = 1 4 7(x; 0)0 + O(#?). Therefore, for any x € X,

Ec(14+£60+ 001 +7(X1;00 + 00%) = (14 ub + 00>)(1 + #(x; 0)0 + 0(62)).
(5.30)
Matching the coefficient of 6 in (5.30), we obtain

F(x;0) =By 7(X150) = Ex §1 — . (5.31)

By Assumptions 2.1-2.4 and E; |E, §1 — | < oo, the existence and boundedness of the
solution 7 (x; 0) for the Poisson equation (5.30) follows from (17.38) and Theorem 17.4.2 of
Meyn and Tweedie (1993). Furthermore, |7 (x;0)| < |E, & — w|. Hence, (5.28) follows
from (5.31).

To prove (5.29), note that u = 1\(0) > 0ando? = X(O) — uz. A two-term Taylor expansion
for A(6) and r(x; ) with respect to 8 around O entails A(0) = 1 + ub + X(0)92/2 + 03
and r(x; 0) = 1 4 7(x; 000 + ¥ (x; 0)0%/2 + 0(63). Therefore,

292 . 2
6 . X1; 0)6
Ex(l + &6+ EIT + 0(93)> (1 + #(X1; 00 + r(lT) + 0(93)>
. N (5.32)
%(0)02 3 , ¥ (x; 0)02 3
=1+ po+ > + 0(6°) 1+r(x;0)€+T+0(9) .
Matching the coefficient of 62 in (5.32), we obtain
2E.(£17(X1; 0)) + Ex F(X1; 0) + By & = #(x; 0) + ui(x; 0) + 0 + p2. (5.33)
A simple but tedious calculation via (5.33) yields
i‘x;O—i’2x;O —E,.(#(Xy1:0 —fZX;O
(F(x; 0) (x;0)) — Ex(F(X1;0) (X1;0)) (534)

=B, (&1 — p + (X1; 0) — #(x; 0)* — Ex (&1 — u + 7(X1; 0) — #(Xo; 0))*.
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By Assumptions 2.1-2.4 and because there exists a positive constant ¢ such that E, (Ex & —
w+Er F(X1;0) — F(X0;0)2 < ¢ sup, Ex 512 < 00, the existence and boundedness of the
solution #(x; 0) — 72(x; 0) of (5.34) follows from (17.38) and Theorem 17.4.2 of Meyn and
Tweedie (1993). Furthermore, we have

[F(x; 0)] < (Bx & — p + Ex #(X1: 0) — F(x; 0))%.
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