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Abstract

Let {(Xn, Sn), n ≥ 0} be a Markov random walk in which Xn takes values in a general
state space and Sn takes values on the real line R. In this paper we present some results
that are useful in the study of asymptotic approximations of boundary crossing problems
for Markov random walks. The main results are asymptotic expansions on moments of
the first ladder height in Markov random walks with small positive drift. In order to
establish the asymptotic expansions we study a uniform Markov renewal theorem, which
relates to the rate of convergence for the distribution of overshoot, and present an analysis
of the covariance between the first passage time and the overshoot.
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1. Introduction

Let {Xn, n ≥ 0} be a Markov chain on a general state space X with σ -algebra A. Suppose
that an additive component Sn = ∑n

t=1 ξt with S0 = 0, taking values on the real line R, is
adjoined to the chain such that {(Xn, Sn), n ≥ 0} is a Markov chain on X × R with

P{(Xn, Sn) ∈ A× (B + s) | (Xn−1, Sn−1) = (x, s)}
= P{(X1, S1) ∈ A× B | (X0, S0) = (x, 0)} = P(x,A× B)

(1.1)

for all x ∈ X, s ∈ R, A ∈ A, and B ∈ B(R) (where B(R) is the Borel σ -algebra on R). The
chain {(Xn, Sn), n ≥ 0} is called a Markov random walk. For an initial distribution ν on X0,
let Pν denote the probability measure under the initial distribution ν on X0 and let Eν denote
the corresponding expectation. If ν is degenerate at x, we shall simply write Px(Ex) instead
of Pν(Eν). Some interesting examples related to the Markov models, (1.1), can be found in
Kesten (1974), and Klüppelberg and Pergamenshchikov (2003).

Suppose that the Markov chain {Xn, n ≥ 0} has an invariant probability π . Let

τ = τ+ = inf{n ≥ 1 : Sn > 0} (1.2)

be the first ascending ladder epoch of Sn, and denote the first positive value taken by the Markov
random walk, Sτ+ , as the first ladder height. For a given a > 0, we want to establish asymptotic
expansions, in terms of θ as θ → 0, of

µθ Eθπ+(τ+S
a
τ+) and Eθπ+ S

a
τ+ . (1.3)
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Asymptotic expansions 827

Hereµθ denotes the mean value, with θ interpreted as the parameter representing various means
of the Markov random walk S1, and Eθπ+ denotes the expectation under invariant probability
π+ of the ladder Markov chain in a family of distributions indexed by θ , which will be defined
precisely in Section 2. The main idea of obtaining the asymptotic expansions of (1.3) involves
using the twist transformation for the Markov transition operator, the time-reversed Markov
chain, and the ladder Markov random walk. To the author’s knowledge, the essential step of
characterizing constant terms in asymptotic expansions involving the solutions of the Poisson
equations, to be defined in (2.8) and (2.9) precisely, is new.

The asymptotic expansions of (1.3) have important applications for deriving asymptotic
approximations of boundary crossing problems for Markov random walks. In the case of
simple random walks, Siegmund (1979), (1985, Chapter X) developed the so-called corrected
diffusion approximations, by computing correction terms in the diffusion approximation, to
approximate the first passage probabilities of Sn and the expected values of the first ladder height
in (1.3). That is, he considered the first ladder height in an exponential family of distributions,
{Fθ : θ ∈ �}, which may be written in the form Fθ(dx) = exp(θx −�(θ))F (dx), where � is
the parameter space, �(θ) is the cumulant generating function, and F denotes the distribution
under θ = 0. Note that here we assume� contains a neighborhood of 0. Let Pθ (P) and Eθ (E)
denote the probability and the expectation, respectively, when the distribution of Xn is Fθ(F ).
Under some regularity conditions, Siegmund (1979) showed that, for a > 0,

Eθ Saτ+ = E Saτ+ + a

a + 1
(E Sa+1

τ+ )θ + o(θ) (1.4)

as θ ↓ 0. By making use of the results in Siegmund (1982), (1988), Chang (1992) extended (1.4)
to a high-order asymptotic expansion, with the o(θ) replaced by Caθ2 + O(θ3), where Ca is
a constant depending on a, the distribution of overshoot, and the renewal function of the
descending ladder random variables. Further refinements of (1.4) can be found in Lotov (1996),
and Chang and Peres (1997) for Gaussian random walks, to which the coefficients are related
to the celebrated Riemann zeta function. Using different techniques to those utilized by Chang
(1992), Blanchet and Glynn (2006) proposed a method to compute the coefficients in the
asymptotic expansion of the moments of the first ladder heights for non-Gaussian random
walks (up to arbitrary order).

In the case of a finite state ergodic Markov chain, Asmussen (1989b) derived a first-order
corrected diffusion approximation for one-barrier ruin problems in risk theory, while Fuh (1997)
studied one-barrier and two-barrier boundary crossing probabilities, and derived a second-order
corrected diffusion approximation in Markov random walks. To establish the approximations,
they also derived first-order asymptotic expansions of (1.3). Glasserman and Kou (1995) studied
the first passage times for rare sets in regenerative processes. For a general account of ruin
probabilities, the reader is referred to Asmussen (2000) and the references therein.

An alternative approximation of the corrected diffusion approximation is the so-called large
deviations approximation. In the case of Markov random walks, using the idea of large
deviations and constructing a Markov chain extension of the classical Wald martingale family,
Miller (1962a), (1962b) derived the asymptotic behavior of P{τb < ∞ | X0 = x} based on a
Markov Wiener–Hopf factorization, where τb = inf{n ≥ 1 : Sn > b} for b > 0. This technique
was further developed by Arndt (1980) to study asymptotic properties of the distribution of the
supremum for a random walk on a Markov chain. Local limit theorems for the joint distribution
P{τb = n, Sτb − b ≤ s,Xτb ∈ dy | X0 = x} were derived by Lalley (1984). Hoglund (1991)
combined these techniques with the idea of large deviations to study the ruin problems for finite
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state Markov random walks; while Chan and Lai (2003) provided saddle point approximations
and nonlinear boundary crossing probabilities for general state Markov random walks.

Our motivation for providing asymptotic expansions of (1.3) stems from the approximation
of boundary crossing probabilities in reflected Markov random walks. That is, let Wn =
Sn− min0≤k≤n Sk be the reflected Markov random walk with reflecting barrier at 0. For b > 0,
define the stopping time t = tb = inf{n : Wn > b}. In a variety of contexts, for given m ≤ ∞,
we need to approximate the first passage probabilities, i.e.

Pπ {t ≤ m} and Pπ {t ≤ m | Sm = ζ }, ζ < b. (1.5)

It is known that, with some proper identifications, the first term of (1.5) is the probability
that at least one among the first m customers in a single-server Markov-modulated queue has
a waiting time exceeding b; see Burman and Smith (1986) and Asmussen (1989a), (1989b),
(2000, Chapter VI). The approximation of (1.5) is an essential step in the approximation of
the distribution of the run length of a CUSUM test in autoregressive models and state space
models; see Basseville and Nikiforov (1993, Chapter 7.3), and Fuh (2003).

As noted in (1.3) and (1.4), the theory developed here establishes an asymptotic expansion
which can be expressed in terms of moments of Markov random walks. In order to characterize
the coefficients in the expansion, we follow a similar idea to that used for the case of an
independent and identically distributed (i.i.d.) increment. The idea of duality leads to that of
time-reversed descending ladder Markov random walks and expected values of the ladder
heights. The idea of exponential embedding leads to that of twist transformations of the
transition probability operator. Owing to Markovian dependence, the constants also involve
solutions of the Poisson equations; see Section 2 for details. However, in order to apply the
results, we need to implement the coefficients in the expansion. In the case of i.i.d. increments,
Chang (1992) derived an asymptotic expansion to which the constants depend on integrals of
the whole renewal function. By making use of a technique in complex analysis, Blanchet and
Glynn (2006) developed a method to compute the constants. In order to compute the constants
developed in this paper (see Theorem 1 for details), we first need to extend Blanchet and Glynn’s
results to the Markovian case. Then, we need to develop a numerical method to compute
solutions of the Poisson equations. In the setting of a MArP/PH/1 queue, computational tasks
related to the ladder Markov random walks can be found in Asmussen (2003, Chapter XI).
In general, the implementation issue is still an interesting open problem, and deserves further
study. Moreover, after obtaining the coefficients in the expansion, we can gain insight into how
the additional coefficient obtained in this paper improves upon a first-order expansion.

The remainder of the paper is organized as follows. In Section 2 we formulate the problem
and state our main results: asymptotic expansions on moments of the first ladder height in
Markov random walks with small positive drift. As an application of our main results, we also
present an asymptotic approximation of the first term in (1.5). Motivated by the approximations
of (1.3), we study a uniform Markov renewal theorem which relates to the rate of convergence
for the distribution of overshoot in Section 3, and the rate of convergence for the covariance
between first passage time and overshoot in Section 4. The proofs of our main results are given
in Section 5.

2. Asymptotic expansions on moments of the first ladder height

Let {(Xn, Sn), n ≥ 0} be the Markov random walk on X × R as defined in (1.1), with
transition probability kernel P(x,A × B). The corresponding m-step transition kernel will
be denoted by Pm. For ease of notation, write P(x,A) = P(x,A × R) as the transition
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probability kernel of {Xn, n ≥ 0}. For two transition probability kernelsQ(x,A) andK(x,A),
where x ∈ X, A ∈ A and for all measurable functions h(x), x ∈ X, define Qh and QK
by Qh(x) = ∫

Q(x, dy)h(y) and QK(x,A) = ∫
K(x, dy)Q(y,A), respectively. Let N

be the Banach space of measurable functions h : X → C with norm ‖h‖ < ∞. We also
introduce the Banach space B of transition probability kernels Q such that the operator norm
||Q|| = sup{||Qg||; ||g|| ≤ 1} is finite. Some prototypical norms considered in the literature
are the supremum norm, the Lp norm, the weighted variation norm, and the bounded Lipschitz
norm, among others; the reader is referred to Kartashov (1996, pp. 4–6) and Fuh (2004) for
further details. Define also the Césaro averages P (n) = ∑n

j=0 P
j/n, where P j is a j -fold

power of P , P 0 = P (0) = I and I is the identity operator on B. A Markov chain {Xn, n ≥ 0}
is said to be uniformly ergodic with respect to a given norm || · ||, if there exists a stochastic
kernel 
 such that P (n) → 
 as n → ∞ in the induced operator norm in B.

As the theorems developed below are the same for each fixed norm, in the rest of the paper
we will focus on a particular norm, namely, the weighted variation norm. To be more precise,
let w : X → [1,∞) be a measurable function and define, for all measurable functions h, a
weighted variation norm ||h||w = supx∈X |h(x)|/w(x) and set Nw = {h : ||h||w < ∞}. The
corresponding norm in Bw is of the form ||Q||w = supx∈X

∫ |Q|(x, dy)w(y)/w(x). The
Markov chain {Xn, n ≥ 0} is called w-uniformly ergodic in the case of the weighted variation
norm.

Recall τ+, defined in (1.2), and let τn+ = inf{k ≥ τn−1+ : Sk > S
τn−1+

} be the nth ascending
ladder epoch of Sn. Let τ− = inf{n ≥ 1 : Sn ≤ 0} be the first descending ladder epoch
of Sn, and τn− = inf{k ≥ τn−1− : Sk ≤ S

τn−1−
} be the nth descending ladder epoch of Sn, for

n = 2, 3, . . . . If µ > 0, τn+ is finite almost surely under the probability P{Xτ+ ∈ A | X0 = x}
and, therefore, the associated ladder heights Sτn+ are well-defined positive random variables.
Furthermore, {(Xτn+ , Sτn+), n ≥ 0} is a Markov chain, and it is the so-called ladder Markov
random walk. When µ = 0, we can still define the ladder Markov chain using the property of
uniform integrability in Theorem 5 of Fuh and Lai (1998). It is assumed throughout this paper
that Px(τ+ < ∞) = 1 for all x ∈ X. Let π+ denote the invariant measure, which is assumed
to exist, of the transition probability kernel P+(x,A× R) := P{Xτ+ ∈ A, Sτ+ ∈ R | X0 = x}
of the ladder Markov chain {(Xτn+ , Sτn+), n ≥ 0}.

The following assumptions will be used throughout this paper.

Assumption 2.1. Assume that {Xn, n ≥ 0} is aperiodic, irreducible (with respect to a maximal
irreducible measure ϕ on (X,A)), and w-uniformly ergodic, i.e. there exists an invariant
probability measure π such that

∫
w(y) dπ(y) < ∞ and

lim
n→∞ sup

x

{
1

w(x)

∣∣∣∣ Ex(h(Xn))−
∫
h(y) dπ(y)

∣∣∣∣ : x ∈ X, |h| ≤ w

}
= 0, (2.1)

sup
x

{
Ex(w(X1))

w(x)

}
< ∞; (2.2)

see Meyn and Tweedie (1993, Chapter 16). We also assume that {Xτn+ , n ≥ 0} is aperiodic,
irreducible, and w-uniformly ergodic with (2.1) and (2.2) satisfied.

Assumption 2.2. Assume that {Xn, n ≥ 0} satisfies the minorization condition (see Ney and
Nummelin (1987)), i.e. there exists a k ≥ 1, a probability measure� onX×R, and a measurable
function h on X such that

∫
h(x) dπ(x) > 0, �(X × R) = 1,

∫
�(dx × R)h(x) > 0, and

Pk(x, A× B) ≥ h(x)�(A× B), for all x ∈ X, A ∈ A, and B ∈ B(R).
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Assumption 2.3. Assume that Eν{w(X1)(1 + |ξ1|r )} < ∞ for some sufficiently large r , where
ν is an initial distribution of the Markov chain {Xn, n ≥ 0}. Furthermore, we assume that there
exists � ⊂ R containing an interval of 0 such that, for all θ ∈ �,

sup
x

{
Ex(exp(θξ1)w(X1))

w(x)

}
≤ C < ∞

for some C > 0.

Assumption 2.4. Assume that Eπ ξ1 = 0, supx Ex |ξ1|a+3 < ∞, for some a > 0, and that
there exists an ε > 0 such that infx Pπ {ξ1 ≤ −ε | X1 = x} > 0.

Assumption 2.5. There exists a σ -finite measure M on (X,A) such that, for all x ∈ X, the
probability measure Px on (X,A) defined by Px(A) = P(X1 ∈ A | X0 = x) is absolutely
continuous with respect to M , so that Px(A) = ∫

A
p(x, y) dM(y) for all A ∈ A, where

p(x, ·) = d Px /dM .

Assumption 2.6. Assume that, for some n0 ≥ 1,∫ ∞

−∞

∫
x∈X

| Ex{exp(iθξ1)}|n0 dπ(x) dθ < ∞.

Remark 2.1. Assumption 2.1 implies that Assumption 2.2 holds; see Meyn and Tweedie
(1993, Theorem 14.0.1). We include Assumption 2.2 here for the case of other norms. Under
Assumptions 2.1 and 2.2, and using the fact that ϕ is σ -finite, Theorem 1.1 of Kartashov (1996)
shows that P has a unique stationary projector 
 in the sense that 
2 = 
 = P
 = 
P,
and 
(x,A) = π(A) for all x ∈ X and A ∈ A. Under irreducibility and aperiodicity, (2.1)
implies that there exists a C > 0 and 0 < ρ < 1 such that, for all h ∈ B, the Banach space of
measurable functions, and n ≥ 1,

sup
x

{
1

w(x)

∣∣∣∣ Ex(h(Xn))−
∫
h(y) dπ(y)

∣∣∣∣
}

≤ Cρn||h||w;

see Meyn and Tweedie (1993, pp. 382–383).

Remark 2.2. Assumption 2.3 is a moment condition in the sense of the weighted variation
norm of ξ1. Assumption 2.4 implies that Eπ Sa+2

τ+ < ∞ for a > 0; see Fuh and Lai (1998,
Theorem 5). The existence of the transition probability density in Assumption 2.5 will be
used to construct the time-reversed Markov chains. Note that Assumption 2.5 holds in most
applications.

Remark 2.3. Assumption 2.6 implies that, for all n ≥ n0, Sn has a bounded probability density
function for given Xn. Instead of assuming Assumption 2.6, we may assume the following
extension of Cramér’s (strong nonlattice) condition: g(θ) := inf |v|>θ |1 − Eπ {exp(ivS1)}| > 0
for all θ > 0. We also assume that the conditional Cramér’s (strong nonlattice) condition is
satisfied, which states that there exists an m ≥ 1 such that

lim sup
|θ |→∞

| E{exp(iθSm) | X0, Xm}| < 1.

Here, we assume that Assumption 2.6 holds for simplicity. Some practical examples which
satisfy Assumptions 2.1–2.6 can be found in Fuh (2003, Section 6).
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Remark 2.4. It is known (see Alsmeyer (2000)) that the ladder Markov random walk,
{(Xτn+ , Sτn+), n ≥ 0}, satisfies Assumption 2.2. The uniformly strong nonlattice for the ladder
random walk and the exponential moment condition, Assumption 2.3, for the ladder random
walk can be found in Lemma 13 and Lemma 14 of Fuh (2004), respectively. In Section 2 of
Fuh and Lai (2001) and Section 3 of Fuh (2004), it was shown, in some interesting examples,
how the w-uniform ergodicity of the ladder Markov chain can be established. In general, the
w-uniform ergodicity of the ladder Markov chain is an open problem.

For b > 0, define the first passage time of the Markov random walk Sn as

τb = τ(b) = inf{n : Sn > b} (τ+ = τ(0)),

and the residual at b is defined as

Rb = R(b) = Sτb − b.

Under Assumptions 2.1–2.6, we can apply Corollary 2 of Alsmeyer (1997) to show that, as
b → ∞, (Xτb , Sτb − b) has the limiting distribution (X∞, R∞), which is defined by

P{X∞ ∈ A,R∞ > s} = 1

Eπ+ Sτ+

∫ ∞

s

Pπ+{Xτ+ ∈ A, Sτ+ > u} du (2.3)

for every A ∈ A and s > 0.
To present our main results, we need to consider time-reversed descending ladder Markov

random walks, study solutions of the Poisson equations, and define the twist transformation
of the transition probability operator. These are given in the following three paragraphs,
respectively.

By Assumption 2.5, the invariant probability measure π of the Markov chain {Xn, n ≥ 0}
has a positive density function with respect to M . Without any confusion, we still denote it as
π here and in the sequel. As in Section 4 of Fuh and Lai (1998), we consider the time-reversed
(dual) process {(X̃n, S̃n), n ≥ 0} of {(Xn, Sn), n ≥ 0} with transition kernel

P̃(y, dx × ds) = π(x)

π(y)
P(x, dy × ds). (2.4)

Note that {X̃n, n ≥ 0} and {Xn, n ≥ 0} have the same invariant probability measure π . Let
τ̃ 0− = 0 and τ̃− = inf{n ≥ 1 : S̃n ≤ 0}, and, for n > 1, define the nth weakly descending
ladder epoch as τ̃ n− = inf{k ≥ τ̃ n−1− : S̃k ≤ S̃

τ̃ n−1−
}. The same assumptions will be made for

{(X̃τ̃ n− , S̃τ̃ n−), n ≥ 0} as made for {(Xτn+ , Sτn+), n ≥ 0}. For x ∈ X, define the renewal measure
by

Ũx,−(A,B) :=
∞∑
n=0

P̃x{τ̃ n− < ∞, X̃τ̃ n− ∈ A, S̃τ̃n− ∈ B} (2.5)

for all A ∈ A and Borel subsets B ⊂ [0,∞), and let

Ũx,−(A, v) :=
∞∑
n=0

P̃x{τ̃ n− < ∞, X̃τ̃ n− ∈ A,−S̃τ̃ n− ≤ v} (2.6)

be the renewal function corresponding to the renewal process {−S̃τ̃ n− , n = 0, 1, . . . }. We simply
denote Ũx,−(A, v) as Ũx,−(v) if A = X in (2.6). For a given a > 0, define

αax =
∫

[0,∞)

(Ex R
a
b − Eπ+ R

a∞)Ũx,−(db) and αa =
∫
x∈X

αax dπ(x). (2.7)
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Let g1 : X → R be a solution of the Poisson equation

g1(x)− Ex g1(Xτ+) = Ex Sτ+ − Eπ+ Sτ+ (2.8)

for almost every (with respect toM) x ∈ X, with Eπ+ g1(Xτ+) = 0, and let g2 be a solution of
the Poisson equation

g2(x)− Ex g2(Xτ+) = Ex(Sτ+ − Eπ+ Sτ+ + g1(Xτ+)− g1(x))
2

− Eπ+(Sτ+ − Eπ+ Sτ+ + g1(Xτ+)− g1(X0))
2

(2.9)

for almost every x, with Eπ+ g2(Xτ+) = 0. Note that under Assumptions 2.1–2.4, the solutions
of (2.8) and (2.9) exist via (2.2) and (2.3) of Fuh and Zhang (2000), and Theorem 17.4.2 of
Meyn and Tweedie (1993). Now, define

α1(Xτ+) = g1(Xτ+)− g1(X0), (2.10)

α2(Xτ+) = g2(Xτ+)− g2(X0). (2.11)

For z ∈ C, define linear operators Pz, P , ν∗, and Q on N by

(Pzh)(x) = E[h(X1)e
zξ1 | X0 = x], (Ph)(x) = E[h(X1) | X0 = x],

ν∗h = Eν{h(X0)}, Qh =
∫
h(y) dπ(y).

Proposition 1 of Fuh (2004) shows that there exists sufficiently small δ > 0, such that, for
|z| ≤ δ, N = N1(z)⊕ N2(z) and

PzQzh = λ(z)Qzh for all h ∈ N , (2.12)

where N1(z) is a one-dimensional subspace of N , λ(z) is the eigenvalue of Pz with correspond-
ing eigenspace N1(z), and Qz is the parallel projection of N onto the subspace N1(z) in the
direction of N2(z). For the structure of N1(z) and N2(z), and other results of the perturbation
theory for Markovian operators, the reader is referred to Appendix A of Fuh and Lai (2001)
and Proposition 1 of Fuh (2004) for details.

Let h1 ∈ N be the constant function h1 ≡ 1 and let r(x; z) = (Qzh1)(x). From (2.12),
it follows that r(·; z) is an eigenfunction of Pz associated with the eigenvalue λ(z), i.e. r(·; z)
generates the one-dimensional eigenspace N1(z). In particular, when z = θ ∈ R such that
there exists a δ > 0 and |θ | ≤ δ, define the ‘twisting’ transformation by

Pθ (x, dy × ds) = r(y; θ)
r(x; θ)e−�(θ)+θs P(x, dy × ds), where � = log λ. (2.13)

Then Pθ is the transition probability of a Markov random walk {(Xθn, Sθn), n ≥ 0}, with invariant
probability πθ . Let Eθν be the expectation under Pθν . The function �(θ) is normalized so
that �(0) = �̇(0) = 0, where �̇ denotes the first derivative of � with respect to θ . Then
P0 = P is the transition probability of the Markov random walk {(Xn, Sn), n ≥ 0} with
invariant probability π . Here, and in the sequel, we denote by Pθν the probability measure
of the Markov random walk {(Xθn, Sθn), n ≥ 0}, with transition probability kernel (2.13) and
initial distribution νθ . For simplicity of notation, we denote νθ := ν and πθ := π , and delete
θ in {(Xθn, Sθn), n ≥ 0} if it is under Pθ or Eθ . Since r(x; 0) = 1, the continuity property
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of r(x; θ) implies that there exists a δ > 0 and, thus, for |θ | ≤ δ, we have r(x; θ) > 0 (or
1/r(x; θ) < ∞) uniformly for all x ∈ X. For given θ , let {(Xθ

τn+
, Sθ
τn+
), n ≥ 0} be the ascending

ladder Markov random walk and set the invariant measure πθ+ = π+ for simplicity. Note that
π+ has a probability density with respect to M which, abusing the notation a little, we will
denote by π+ again.

By Proposition 1 of Fuh (2004), it is known that � is a strictly convex and real analytic
function for which �̇(θ) = Eθπ ξ

θ
1 . Therefore, Eθπ ξ

θ
1 is less than, equal to, or greater than 0 if

and only if θ is less than, equal to, or greater than 0. For any θ �= 0 and |θ | < δ, there is at most
one value of θ ′ with |θ ′| < δ, necessarily of opposite sign, for which �(θ) = �(θ ′). Assume
that such a θ ′ exists, we may let θ0 = min(θ, θ ′) and θ1 = max(θ, θ ′) such that θ0 < 0 < θ1
and �(θ0) = �(θ1). Denote µθ = �̇(θ), and let � = θ1 − θ0. We also assume, without loss
of generality, that σ 2 = �̈(0) = 1, where �̈ denotes the second derivative of � with respect
to θ .

Theorem 2.1. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then, for any a > 0, as θ ↓ 0, we have

µθ Eθπ+(τ+S
a
τ+) = 1

a + 1
Eπ+ S

a+1
τ+

+
(

1

a + 2
Eπ+ S

a+2
τ+ + Eπ+(S

a+1
τ+ α1(Xτ+))+ αa

)
θ +O(θ2).

(2.14)

Hence, as θ ↓ 0,

Eθπ+ S
a
τ+ = Eπ+ S

a
τ+ +

(
a

a + 1
Eπ+ S

a+1
τ+ + Eπ+(S

a
τ+α1(Xτ+))

)
θ

+ 1

2

(
a

a + 2
Eπ+ S

a+2
τ+ + Eπ+(S

a+1
τ+ α1(Xτ+)+ Saτ+α2(Xτ+))− αa

)
θ2 +O(θ3),

(2.15)

where α1(Xτ+) and α2(Xτ+) are defined in (2.10) and (2.11), respectively.

The idea of the proof involves the twist transformation for the Markov transition operator in
(2.13), the time-reversed Markov chains from (2.4)–(2.9), and Taylor’s expansion with respect
to θ . The details will be given in Section 5.

Remark. To compare the asymptotic expansion (2.15) to (4.3) of Chang (1992), we observe
that there is an extra term Eπ+(S

a
τ+α1(Xτ+)), the joint moment of the first ladder height and

the solution of the Poisson equation (2.8), in the first-order approximation; and an extra term
Eπ+(S

a+1
τ+ α1(Xτ+)+Saτ+α2(Xτ+)), the joint moment of the first ladder height and the solutions

of the Poisson equations (2.8) and (2.9), in the second-order approximation. An interpretation
for these extra terms can be described as follows: note that

a

a + 1
Eπ+ S

a+1
τ+ + Eπ+(S

a
τ+α1(Xτ+)) = − 1

a + 1
Eπ+ S

a+1
τ+ + Eπ+(S

a
τ+(Sτ+ + α1(Xτ+)))

and Sn + α1(Xn) is a martingale since µ = 0; see Meyn and Tweedie (1993, Theorem 17.4.3).
Using the fact that α1(Xn) = 0 in the case of simple random walks, we may regard the extra
constantα1(Xτ+) as being due to Markovian dependence, which reflects the martingale structure
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of Markov random walks. The same interpretation can also be applied to S2
n + α2(Xn), which

forms a quadratic martingale; see Fuh and Zhang (2000, Theorem 3). Note that the constant
αa depends on the distribution of overshoot and the renewal function for the time-reversed
descending ladder Markov chains.

Using the tilting formula, (2.13), and Theorem 2.1, we give an asymptotic approximation
of the first term in (1.5) as follows. Under the conditions of Theorem 2.1, assume that θ0 ↑ 0,
b → ∞, and m → ∞ in such a way that, for some δ > 0 and some k, we have

|θ0|1+δb → ∞, |θ0|km → 0, and m ≥ b

µ1
(1 + δ).

Then

Pθ0
π {tb ≤ m} ∼= exp[−�(b + ρ+ − ρ−)]

(
�|µ0|

(
m− b + (ρ+ + ζ+)− (ρ− + ζ−)

µ1

)

+ 3(1 +�Eπ+ α1(Xτ+))− 2

3
γ�

)
, (2.16)

where µ0 = �̇(θ0), µ1 = �̇(θ1), γ = Eπ ξ3
1 , and

ρ+ = Eπ+ S
2
τ+

2 Eπ+ Sτ+
, ρ− =

Ẽπ− S̃
2
τ̃−

2Ẽπ− S̃τ̃−
,

ζ+ = Eπ+(S
2
τ+α1(Xτ+))

Eπ+ Sτ+
, ζ− =

Ẽπ−(S̃
2
τ̃− α̃1(X̃τ̃−))

Ẽπ− S̃τ̃−
,

with α̃1(X̃τ̃−) defined as α1(Xτ+) in (2.10) for the time-reversed ladder Markov random walk
{(X̃τ̃− , S̃τ̃−), n ≥ 0}.

Note that approximation (2.16) generalizes Theorem 3 of Siegmund (1988) to the case of
reflected Markov random walks. A formal proof of (2.16) along with high-order asymptotic
approximations of (1.5), and its applications to the CUSUM change point detection procedure
will be published in a forthcoming paper.

3. Rate of convergence for the distribution of overshoot

Using the same notation as in Section 2, we define the renewal measure for Markov random
walks as

Uν(A,B) =
∞∑
n=0

Pν{Xn ∈ A, Sn ∈ B}, (3.1)

where A ∈ A and B ∈ B. When ν is degenerated at x, we simply denote it as Ux(A, ·). Then
under Assumption 2.5, for fixed B ∈ B, Ux(A,B) is absolutely continuous with respect toM ,
with density function u(y; x, B) so that Ux(A,B) = ∫

A
u(y; x, B) dM(y). It is simple to note

that the measure P+(x, ·×R)on (X,A) is also absolutely continuous with respect toM for every
x ∈ X. Likewise, the renewal measure Ux,+, as defined in (3.1), associated with the ascending
ladder random walk initialized at (x, 0) also has density function u+(·; x, B) with respect
to M , i.e. Ux,+(A,B) = ∫

A
u+(y; x, B) dM(y). When B = (−∞, t], we simply denote it as

u+(y; x, t). Assumption 2.5 also implies that, for every x ∈ X, there exists a p−(x; ·) such
that P(Xτ− ∈ A | X0 = x) = ∫

A
p−(x; y) dM(y) for all A ∈ A. For given B ∈ B((−∞, 0)),
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define G−(x, y;B) = p−(x, y)P{Sτ− ∈ B | X0 = x,Xτ− = y}. Consider the time-reversed
(dual) process {(X̃n, S̃n), n ≥ 0} and define p̃− and G̃− for the dual process in the same way
as p− and G− are defined for {(Xn, Sn), n ≥ 0}. Let Ĝ−(x, y;B) = G̃−(y, x;B)π(y)/π(x),
Û− = ∑∞

n=0 Ĝ
∗n− , where ∗ denotes the convolution of two transition kernels F1(x, y; ·) and

F2(x, y; ·), with Ĝ∗1− = Ĝ and Ĝ∗0− being the kernel that puts all its mass at 0.
By making use of the exponential rate of convergence for the Markov renewal theory in

Fuh (2004), the next result states the exponential rate of convergence for the distribution of
overshoot.

Theorem 3.1. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then there exists an r > 0, θ∗ > 0, and C such that, for any x ∈ X and A ∈ A,

| Pθx{Xτb ∈ A,Rb ≤ s} − Pθ {X∞ ∈ A,R∞ ≤ s}| ≤ Ce−r(s+b)

for all s, b ≥ 0 and θ ∈ [0, θ∗].
Proof. For given θ ∈ (0, θ∗], x, y ∈ X, and B ∈ B((−∞, 0)), define uθ+(y; x, B) as that

in the first paragraph of this section for the Markov random walk {(Xθτn, Sθτn), n ≥ 0}. Since,
by (3.15) of Fuh and Lai (2001),

Pθx{Xτb ∈ A, Sτb − b > s} =
∫

X

∫
[0,b)

Pθy{Xτ+ ∈ A, Sτ+ > b + s − t}uθ+(y; x, dt) dM(y)

for any x ∈ X and A ∈ A, and since, by (2.3),

Pθ {X∞ ∈ A,R∞ > s} =
∫ ∞

s

Pθπ+{Xτ+ ∈ A, Sτ+ > t} dt

Eθπ+ Sτ+

=
∫

X

∫ b

−∞
Pθy{Xτ+ ∈ A, Sτ+ > b + s − t}π+(y) dt

Eθπ+ Sτ+
dM(y),

we have, for any x ∈ X and A ∈ A,

Pθx{Xτb ∈ A, Sτb − b > s} − Pθ {X∞ ∈ A,R∞ > s}
=

∫
X

∫
[0,b)

Pθy{Xτ+ ∈ A, Sτ+ > b + s − t}
(
uθ+(y; x, dt)− π+(y) dt

Eθπ+ Sτ+

)
dM(y)

−
∫

X

∫ 0

−∞
Pθy{Xτ+ ∈ A, Sτ+ > b + s − t}π+(y) dt

Eθπ+ Sτ+
dM(y)

:= J1 − J2.

(3.2)

For all x, y ∈ X, define

ηθ (y; x, b) = uθ+(y; x, b)− π+(y)b
Eθπ+ Sτ+

− π+(y)Eθπ+ S
2
τ+

2(Eθπ+ Sτ+)
2
.

Then

J1 =
∫

X

∫
[0,b)

Pθy{Xτ+ ∈ A, Sτ+ > b + s − t}ηθ (y; x, dt) dM(y),

https://doi.org/10.1239/aap/1189518640 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518640


836 C.-D. FUH

and integration by parts gives

J1 =
∫

X

(
ηθ (y; x, b)Pθy{Xτ+ ∈ A, Sτ+ > s}

+ π+(y)Eθπ+ S
2
τ+

2(Eθπ+ Sτ+)
2

Pθy{Xτ+ ∈ A, Sτ+ > b + s}
)

dM(y)

−
∫

X

∫
[0,b)

Pθy{Xτ+ ∈ A, Sτ+ ∈ b + s − dt}ηθ (y; x, t) dM(y). (3.3)

To find an upper bound of |J1|, note that Theorem 1 of Fuh (2004) states that there exists a
C1, α1 > 0, and θ∗

1 > 0, such that

|ηθ (y; x, b)| ≤ C1e−α1b (3.4)

for all x, y ∈ X, b and all θ ∈ [0, θ∗
1 ]. Also, by making use of the requirement that� contains an

open interval around 0, Lemma 14 of Fuh (2004) (which states that there exists an α∗ > 0 such
that, for any α ∈ [0, α∗], Eθν exp{αξ1} < ∞ implies that Eθπ+ exp{αSτ+} < ∞), and Wald’s
likelihood ratio identity for Markov random walks (see Fuh (2004)), we can show that there
exists a C2, α2 > 0, and θ∗

2 > 0 such that Eθπ+ exp{α2Sτ+ 1{Xτ+∈A}} ≤ C2 for all θ ∈ [0, θ∗
2 ],

so that, for any y ∈ X and A ∈ A,

Pθy{Xτ+ ∈ A, Sτ+ > s} ≤ C2 exp{−α2s} for all θ ∈ [0, θ∗
2 ] and s ≥ 0. (3.5)

Therefore, by (3.4) and (3.5), letting α3 = min{α1, α2} and θ∗ = min{θ∗
1 , θ

∗
2 }, there exists a

C3 such that, for any x ∈ X and A ∈ A,∣∣∣∣
∫

X

(
ηθ (y; x, b)Pθy{Xτ+ ∈ A, Sτ+ > s}

+ π+(y)Eθπ+ S
2
τ+

2(Eθπ+ Sτ+)
2

Pθy{Xτ+ ∈ A, Sτ+ > b + s}
)

dM(y)

∣∣∣∣ ≤ C3 exp{−α3(b + s)}

for all s, b ≥ 0 and θ ∈ [0, θ∗]. As, by Theorem 1 of Fuh (2004), the last term on the right-hand
side of (3.3) can be rewritten as∣∣∣∣

∫
X

∫
[0,b/2)

Pθy{Xτ+ ∈ A, Sτ+ ∈ b + s − dt}ηθ (y; x, t) dM(y)

∣∣∣∣

≤ C1 Pθπ+

{
Xτ+ ∈ A, Sτ+ ≥ s + b

2

}

≤ C1C2 exp

{
−α2

(
s + b

2

)}
and ∣∣∣∣

∫
X

∫
[b/2,b)

Pθy{Xτ+ ∈ A, Sτ+ ∈ +s − dt}ηθ (y; x, t) dM(y)

∣∣∣∣
≤ C1 exp

{−α1b

2

}
Pθπ+{Xτ+ ∈ A, Sτ+ ≥ s}

≤ C1C2 exp

{−α1b

2
+ α2s

}
,
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then there exists an α4 > 0 and a C4 such that the integral over [0, b] is bounded by
C4 exp{−α4(b + s)} for all x ∈ X, b, s ≥ 0, and θ ∈ [0, θ∗]. Thus, by (3.3) there exists
an α5 > 0 and a C5 such that, for any x ∈ X and A ∈ A,

|J1| ≤ C5 exp{−α5(b + s)} (3.6)

for all b, s ≥ 0 and θ ∈ [0, θ∗].
For J2, since Eθπ+ Sτ+ is bounded below for θ ≥ 0, we have, by Theorem 1 of Fuh (2004),

|J2| ≤
∫

X

∫ 0

−∞
C2 exp{−α2(b + s − t)} dt

C6
π+(y) dM(y) = C7 exp{−α2(b + s)}. (3.7)

Combining (3.2), (3.6), and (3.7), we complete the proof.

Recall the definitions of θ1 and θ0 given in the paragraph before Theorem 2.1, and let
� = θ1 − θ0. By making use of the fact that Eθx R

a
b = a

∫ ∞
0 sa−1 Pθx{Xτb ∈ X, Rb > s} ds and

Theorem 3.1, we obtain the following result.

Corollary 3.1. Assume that the conditions of Theorem 3.1 hold. Then, for any a > 0, there
exists an r > 0, θ∗ > 0, and C such that, for any x ∈ X,

| Eθx R
a
b − Eθπ+ R

a∞| ≤ Ce−rb

for all b ≥ 0 and θ ∈ [0, θ∗]. Also, there exists an r > 0, θ∗ > 0, and C such that, for any
x ∈ X,

| Eθ1
x (e

−�Rb)− Eθ1
π+(e

−�R∞)| ≤ C�e−rb

for all b ≥ 0 and θ1 ∈ [0, θ∗].

4. The covariance between the first passage time and the overshoot

For given θ ∈ (0, θ∗] and for any u > 0, x ∈ X, and A ∈ A, let

Qθ
x(A, u; b) =

∞∑
n=0

Pθx{τb > n, Xn ∈ A, Sn > b − u}, (4.1)

Qθ
π+(A, u; ∞) = (Eθπ+ Sτ+)

−1
∫ 0

−u

∫
X

{∫
A

Ûθ−(z, y; (s, 0)) dM(y)

}
dπ+(z) ds,

where Û θ−(z, y; (s, 0)) is defined as Û−(z, y; (s, 0)) in Section 3 for the Markov random walk
{(Xθn, Sθn), n ≥ 0}. In order to study the rate of convergence for the covariance between the first
passage time and the overshoot, we first give the following two lemmas. Lemma 4.1 generalizes
Lemma 3.1 of Fuh and Lai (2001) in order to obtain the rate of convergence.

Lemma 4.1. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then there exists a C, r1 > 0, and θ∗ > 0 such that, for any x ∈ X and A ∈ A,

|Qθ
x(A, u; b)−Qθ

π+(A, u; ∞)| ≤ Ce−r1(b−u) (4.2)

for all b > 0, 0 ≤ u ≤ b, and θ ∈ (0, θ∗].
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Proof. First note that, for any x, z ∈ X,

Pθx{τb > n, Xn ∈ A, Sn > b − u}

=
n∑
k=0

∫
(b−u,b)

Pθx{Si < Sk for all i < k, Sk ∈ dt, Sj ≤ Sk for all k < j ≤ n,

Sn − Sk > b − u− t, Xn ∈ A}

=
n∑
k=0

∫
(0,u)

∫
X

Pθx{Si < Sk for all i < k, Sk ∈ b − ds, Xk ∈ dz}

× Pθz {τ+ > n− k, Sn−k > s − u, Xn−k ∈ A}.
Recall that τm+ is the mth ascending ladder epoch. Then

∞∑
k=0

Pθx{Si < Sk for all i < k, Sk ∈ b − ds, Xk ∈ dz} =
∞∑
m=0

Pθx{Xτm+ ∈ dz, Sτm+ ∈ b − ds}.

For given A ∈ X and B ∈ B((−∞, 0)), as shown by Fuh and Lai (1998, p. 576),∑∞
n=0 Pθz {τ+ > n, Xn ∈ A, Sn ∈ B} = ∫

A
Ûθ−(z, y;B) dM(y). Then

Qθ
x(A, u; b) =

∞∑
n=0

Pθz {τb > n, Xn ∈ A, Sn > b − u}

=
∞∑
j=0

∫
(0,u)

∫
X

∞∑
m=0

Pθx{Sτm+ ∈ b − ds, Xτm+ ∈ dz}

× Pθz {τ+ > j, Sj > s − u, Xj ∈ A}
=

∫
(0,u)

∫
X

{∫
A

Ûθ−(z, y; (s − u, 0)) dM(y)

}
Uθx,+(z, b − ds) dπ+(z),

where Uθx,+(z, u) := ∑∞
m=0 Pθx{ Xτm+ ∈ dz, Sτm+ ≤ u}. Therefore,

Qθ
x(A, u; b)−Qθ

π+(A, u; ∞)

=
∫

X

∫ u

0

{∫
A

Ûθ−(z, y; (−t, 0)) dM(y)

}

×
(
Uθx,+(z, b − u+ dt)− Uθx,+(z, b − u)− dt

Eθπ+ Sτ+

)
dπ+(z)

=
∫

X

{∫
A

Ûθ−(z, y; (−u, 0)) dM(y)

}

×
(
Uθx,+(z, b)− Uθx,+(z, b − u)− u

Eθπ+ Sτ+

)
dπ+(z)

−
∫

X

∫ u

0

(
Uθx,+(z, b − u+ t)− Uθx,+(z, b − u)− t

Eθπ+ Sτ+

)

× d

{∫
A

Ûθ−(z, y; (−t, 0)) dM(y)

}
dπ+(z).
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Combining these representations with the rate of convergence for the Markov renewal theorem
(see (2.7) in Theorem 1 of Fuh (2004)), we have |Uθx,+(z, b)−Uθx,+(z, b−u)−u/Eθπ+ Sτ+| =
o(e−r1(b−u)) and |Uθx,+(z, b − u + t) − Uθx,+(z, b − u) − t/Eθπ+ Sτ+| = o(e−r1(b−u)). This
yields (4.2).

Lemma 4.2. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then there exists a θ∗ > 0 such that, for all a > 0 and θ ∈ (0, θ∗),

sup
b≥0

Eθπ R
a
b ≤ a + 2

a + 1

Eθπ (ξ
+
1 )

a+1

Eθπ ξ1
. (4.3)

When the initial distribution of X0 is ν, (4.3) implies that there exists a constant K > 0 such
that supb≥0 Eθν R

a
b ≤ (a + 2)Eθπ (ξ

+
1 )

a+1/((a + 1)Eθπ ξ1)+K .

In the case of simple random walks, the upper bound (4.3) was given in Theorem 3 of Lorden
(1970) by pathwise integration. In the case of Markov random walks, the upper bound (4.3)
was given by Fuh (2004) when a = 1. Here we generalize it for all a > 0 in Lemma 4.2,
which will be used in the proof of Theorem 4.1. Since the proof of Lemma 4.2 is a simple
consequence of Lemma 2 of Fuh (2004) using Theorem 3 of Lorden (1970), we omit it here.

Theorem 4.1. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Let ψa(θ, v) = Eθπ+ R

a
v − Eθπ+ R

a∞ and define

Ca(θ) = 1

Eθπ+ Sτ+

∫ ∞

0
ψa(θ, v)

∫
X

∫
X
Û θ−(z, y; (−v, 0)) dM(y) dπ+(z) dv.

Then there exists a C, r > 0, and θ∗ > 0 such that, for any x ∈ X,

| covθx(τb, R
a
b )− Ca(θ)| ≤ (Eθπ+ Sτ+)

−1Ce−rb (4.4)

for all b > 0 and θ ∈ (0, θ∗], where covθx(·, ·) denotes the covariance of two random variables.

Remark. The convergence of covθx(τb, R
a
b ) to Ca(θ) can be found in (3.18) of Fuh and Lai

(2001). Theorem 4.1 establishes exponential rate of convergence uniformly in x ∈ X. The
constant term, (Eθπ+ Sτ+)

−1, on the right-hand side of (4.4) comes from Wald’s equation for
Markov random walks.

Proof of Theorem 4.1. First, we note that it is sufficient to show that there exists a C1, C2,
r > 0, and θ∗ > 0 such that

| covθx(τb, R
a
b )− Ca(θ)| ≤ (Eθπ+ Sτ+)

−1(A1b + A2)e
−rb (4.5)

for all b > 0 and θ ∈ (0, θ∗].
To prove (4.5), we assume that θ > 0 is fixed, then

covθx(τb, R
a
b ) =

∫
z∈X

∫ ∞

0
{Eθz Rav − Eθz R

a
b }Qθ

x(dz, dv; b). (4.6)
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Next, (3.18) of Fuh and Lai (2001) shows (for the case in which a = 1, but its generalization
to a > 0 is straightforward) that, as b → ∞,

covθx(τb, R
a
b ) → Ca(θ) :=

∫ ∞

0
ψa(θ, v)Qθ

π+(dv; ∞), (4.7)

where Qθ
π+(dv; ∞) = ∫

z∈XQ
θ
π+(dz, dv; ∞).

Let Qθ
x(dv; b) = ∫

XQ
θ
x(dz, dv; b). From (4.6) and (4.7), and noting that∫

[0,∞)

Qθ
x(dv; b) = Eθx τb,

we have

covθx(τb, R
a
b )− Ca(θ)

=
∫ ∞

0
(Eθπ+ R

a
v − Eθπ+ R

a∞)[Qθ
x(dv; b)−Qθ

π+(dv; ∞)] + (Eθπ+ R
a∞ − Eθπ+ R

a
b)Eθx τb

+
∫
z∈X

∫ ∞

0
[(Eθz Rav − Eθπ+ R

a
v )− (Eθz R

a
b − Eθπ+ R

a∞)]Qθ
x(dz, dv; b). (4.8)

We show that the second term on the right-hand side of (4.8) satisfies (4.5) as follows. First,
by the assumption of the continuity of Eθπ+ Sτ+ in θ , we can choose C > 0 and θ∗ > 0 such

that, for all θ ∈ [0, θ∗], Eθπ+ Sτ+ ≥ C−1. Next, by Theorem 1 of Fuh (2004), there exists a
u > 0 such that ∣∣∣∣Uθν,+(s)− s + Eθπ+ R∞

Eθπ+ Sτ+

∣∣∣∣ ≤ Ce−us,

where Uθν,+(s) = ∑∞
n=0 Pθν{Xτn+ ∈ X, Sτn+ ∈ [−∞, s]}. By making use of Wald’s equation for

Markov random walks, Lemma 4.2, and Corollary 3.1, we obtain, for any x ∈ X,

|(Eθπ+ R
a
b − Eθπ+ R

a∞)Eθx τb| ≤ Ce−ub b + C

Eθπ+ Sτ+
(4.9)

for all b > 0 and θ ∈ (0, θ∗].
Next we show that the first term on the right-hand side of (4.8) satisfies (4.5). For this

purpose, we split the interval of the first integral in (4.8) into two subintervals, i.e. [0, b/2) and
[b/2,∞). For the integral over [0, b/2], we write∫

[0,b/2)
{Eθπ+ R

a
v − Eθπ+ R

a∞}[Qθ
x(dv; b)−Qθ

π+(dv; ∞)]

= {Eθπ+ R
a
v − Eθπ+ R

a∞}
[
Qθ
x

(
b

2
; b

)
−Qθ

π+

(
b

2
; ∞

)]

−
∫

[0,b/2)

[
Qθ
x

(
b

2
; b

)
−Qθ

π+

(
b

2
; ∞

)]
d(Eθπ+ R

a
v ),

(4.10)

where we have used Qθ
x(0

−; b) = 0 = Qθ
π+(0

−; ∞). However, by Corollary 3.1 and
Lemma 4.1, we have∣∣∣∣{Eθπ+ R

a
v − Eθπ+ R

a∞}
[
Qθ
x

(
b

2
; b

)
−Qθ

π+

(
b

2
; ∞

)]∣∣∣∣ ≤ 4C2(Eθπ+ Sτ+)
−1e−sb. (4.11)
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Note that
∫ v

0 a Eθπ+ R
a−1
t dt = (Eθπ+ S

a
τ+)U

θ
π+,+(v)− Eθπ+ R

a
v , and this implies that, for any

x ∈ X,∣∣∣∣
∫

[0,b/2)
[Qθ

x(dv; b)−Qθ
π+(dv; ∞)] d(Eθπ+ R

a
v )

∣∣∣∣
≤

(
sup

0≤v<b/2
[Qθ

x(v; b)−Qθ
π+(v; ∞)]

)(
(Eθπ+ S

a
τ+)U

θ
π+,+

(
b

2

)
+

∫ b/2

0
a Eθπ+ R

a−1
v dv

)

≤ (4C2(Eθπ+ Sτ+)
−1e−sb)

[
2(Eθπ+ S

a
τ+)U

θ
π+,+

(
b

2

)]

≤ 8C3(Eθπ+ Sτ+)
−1

[
b

2
+ C

]
e−sb/2. (4.12)

Combining (4.11) and (4.12) shows that (4.10) satisfies (4.5).
Finally, for the integral over [b/2,∞), we use Corollary 3.1 to write∣∣∣∣

∫
[b/2,∞)

{Eθπ+ R
a
v − Eθπ+ R

a∞}[Qθ
x(dv; b)−Qθ

π+(dv; ∞)]
∣∣∣∣

≤
∫

[b/2,∞)

Ce−svQθ
x(ds; b)+

∫
[b/2,∞)

Ce−svQθ
π+(dv; ∞).

(4.13)

It is easy to see that the last two integrals satisfy (4.5). Using∫
[0,∞)

Qθ
x(dv; b) = Eθπ+ τb ≤ (Eθπ+ Sτ+)

−1(b + C) (4.14)

and Lemma 3.1 of Fuh and Lai (2001), we can prove that the first term of (4.8) satisfies (4.5).
It remains to show that the third term on the right-hand side of (4.8) satisfies (4.5). By

Corollary 3.1, we find that, for any a > 0, there exists a C, r > 0, and θ∗ > 0 such that

| Eθz R
a
v − Eθπ+ R

a
v | ≤ | Eθz R

a
v − Eθπ+ R

a∞| + | Eθπ+ R
a∞ − Eθπ+ R

a
v | ≤ 2Ce−rv

for all v ≥ 0, θ ∈ [0, θ∗], and uniformly for z ∈ X. Using the same argument as used for (4.13)
and (4.14), we have, for any x ∈ X,∣∣∣∣

∫
z∈X

∫ ∞

0
[(Eθz Rav − Eθπ+ R

a
v )− (Eθz R

a
b − Eθπ+ R

a∞)]Qθ
x(dz, dv; b)

∣∣∣∣ ≤ 3Ce−rb.

This completes the proof.

Let

C̃(θ1) =
∫ ∞

0
[Eθ1
π+(e

−�Rv )− Eθ1
π+(e

−�R∞)]Qθ1
π+(dv; ∞).

Theorem 4.2. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθ1

n , S
θ1
n ), n ≥ 0} the Markov random walk induced by (2.13) with Eθ1

π S1 > 0.
Then there exists an A, r > 0, and θ∗ > 0 such that, for any x ∈ X,

| covθ1
x (τb, e−�Rb)− C̃(θ1)| ≤ Ae−rb

for all b > 0 and θ1 ∈ (0, θ∗].
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Proof. Using the same method as above to derive (4.8), we have, for any x ∈ X,

covθ1
x (τb, e−�Rb)− C̃(θ1)

=
∫ ∞

0
[Eθ1
π+(e

−�Rv )− Eθ1
π+(e

−�R∞)][Qθ1
x (dv; b)−Qθ1

π+(dv; ∞)]
+ [Eθ1

π+(e
−�R∞)− Eθ1

π+(e
−�Rb)] Eθ1

x τb

+
∫
z∈X

∫ ∞

0
[(Eθ1

z (e
−�Rv )− Eθ1

π+(e
−�Rv ))− (Eθ1

z (e
−�Rb)− Eθ1

π+(e
−�R∞))]

×Qθ1
x (dz, dv; b).

The rest of the proof is the same as that of Theorem 4.1.

Theorem 4.3. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then there exists a θ∗ > 0 such that, for any x ∈ X,

covθx(τb, R
a
b ) = 1

Eθπ S1
[Eθx Ra+1

b − (Eθx Rb)(E
θ
x R

a
b )− Ė

θ
xRb +Kθ ] (4.15)

for all θ ∈ (0, θ∗], where

Kθ = Eθx

(
ṙ(Xτb ; θ)
r(Xτb ; θ)

− ṙ(x; θ)
r(x; θ)

)
− (Eθx ṙ(Xτb ; θ)− ṙ(x; θ))(Eθx Rab ).

Proof. For given θ > 0, by Wald’s likelihood ratio identity for Markov random walks, we
have

Eθx R
a
b = Ex

{
Rab exp[θSτb − τb�(θ)] r(Xτb ; θ)

r(x; θ)
}
.

Under Assumptions 2.1–2.6, (5.31) in Lemma 5.4 implies that |ṙ(x; 0)| ≤ | Ex ξ1 − µ|. By
making use of the fact that Eπ | Ex ξ1 − µ| < ∞ and the continuous differentiability property
of r(x; θ) (see Fuh (2004, Proposition 1)), we show that there exists a δ > 0 such that, for
|θ | ≤ δ, Ex ṙ(X1; θ) < ∞ uniformly for all x ∈ X. Now using the dominated convergence
theorem to interchange differentiation with expectation, we obtain

Ė
θ
xR

a
b = Ex

{
Rab exp[θSτb − τb�(θ)] r(Xτb ; θ)

r(x; θ) (Sτb − τb�̇(θ))

+ Rab exp[θSτb − τb�(θ)] ṙ(Xτb ; θ)r(x; θ)− r(Xτb ; θ)ṙ(x; θ)
r2(x; θ)

}

= Ex

{
Rab exp[θSτb − τb�(θ)] r(Xτb ; θ)

r(x; θ)
×

(
(Sτb − τb�̇(θ))+ ṙ(Xτb ; θ)r(x; θ)− r(Xτb ; θ)ṙ(x; θ)

r(Xτb ; θ)r(x; θ)
)}

= Eθx{Rab(Sτb − τb Eθπ S1 +Gθ)}, (4.16)

where we have set Eθπ S1 = �̇(θ) and Gθ = Eθx(ṙ(Xτb ; θ)/r(Xτb ; θ))− ṙ(x; θ)/r(x; θ).
Making the substitution Sτb = b + Rb in (4.16) and rearranging, we obtain

Eθx(τbR
a
b ) = 1

Eθπ S1
[b Eθx R

a
b + Eθx R

a+1
b − Ė

θ
xR

a
b +Gθ ]. (4.17)
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By Wald’s equation for Markov random walks (see Fuh and Lai (1998, Theorem 1) and Fuh
and Zhang (2000)), we have

(Eθx τb)(E
θ
x R

a
b ) = 1

Eθπ S1
(b + Eθx Rb +G′

θ )(E
θ
x R

a
b ), (4.18)

where G′
θ = Eθx ṙ(Xτb ; θ) − ṙ(x; θ). Equation (4.15) is obtained by subtracting (4.17) from

(4.18). The finiteness of ṙ(x; θ) for all x ∈ X will be given in Lemma 5.4, below.

Corollary 4.1. Assume that the conditions of Theorem 4.3 hold. Then there exists a C, r > 0,
and θ∗ > 0 such that, for any x ∈ X,

|ĖθxRab − Ė
θ
π+R

a∞| ≤ Ce−rb (4.19)

for all b > 0 and θ ∈ (0, θ∗].
Proof. Rearranging (4.15) gives

Ė
θ
xRb = Eθx R

a+1
b − (Eθx Rb)(E

θ
x R

a
b )+Kθ − (Eθπ S1) covθx(τb, R

a
b ).

Define
g(θ) = Eθπ+ R

a+1∞ − (Eθπ+ R∞)(Eθπ+ R
a∞)+Kθ − (Eθπ S1)C

a(θ).

Since Kθ is bounded by Proposition 1 of Fuh (2004), using Corollary 3.1 and Theorem 4.1, it
is easy to see that there exists a C, r > 0, and θ∗ > 0 such that, for any x ∈ X,

|ĖθxRab − g(θ)| ≤ Ce−rb (4.20)

for all b > 0 and θ ∈ (0, θ∗].
Now, we have, as b → ∞, Eθx R

a
b → Eθπ+ R

a∞ for all θ and Ė
θ
xR

a
b → g(θ) uniformly in

θ ∈ (0, θ∗), and an elementary analysis theorem (see Apostol (1974, Theorem 9.13)) implies
that Eθx R

a
b is differentiable in θ ∈ (0, θ∗) and Ė

θ
π+R

a∞ = g(θ). Substituting Ė
θ
π+R

a∞ for g(θ)
in (4.20) gives (4.19).

5. Proof of Theorem 2.1

To prove Theorem 2.1 we need to obtain the following three lemmas first. Lemma 5.1
presents a first-order approximation of (2.14) and (2.15), which extends Lemma 10.27 of
Siegmund (1985) to Markov random walks. Lemma 5.2 gives the rate of convergence for
the renewal measures, and Lemma 5.3 provides the rate of convergence for the distributions of
overshoot on the descending ladder Markov random walk.

For given θ > 0 and for x ∈ X, define the renewal measure Ũ θx,− by

Ũ θx,−(A,B) :=
∞∑
n=0

P̃
θ

x{τ̃ n− < ∞, X̃τ̃ n− ∈ A,−S̃τ̃ n− ∈ B} (5.1)

for all A ∈ A and Borel subsets B ⊂ [0,∞). We simply denote it as Ũ θx,−(B) if A = X and
denote it as Ũ θx,−(v) if B = [0, v).
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Lemma 5.1. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then, for any a > 0, we have

lim
θ↓0

µθ Eθπ+(τ+S
a
τ+) = 1

a + 1
Eπ+ S

a+1
τ+ . (5.2)

Hence, as θ ↓ 0,

Eθπ+ S
a
τ+ = Eπ+ S

a
τ+ +

(
a

a + 1
Eπ+ S

a+1
τ+ + Eπ+(S

a
τ+α1(Xτ+))

)
θ + o(θ). (5.3)

Proof. To prove (5.2) holds for a > 0, we first assume that θ > 0 is fixed. Recalling
Qθ
x(dv, dz; b) defined in (4.1), for b = 0, we have

Qθ
x(dz, dv; 0) =

∞∑
n=0

Pθx{τ+ > n,Xn ∈ dz,−Sn ∈ dv}. (5.4)

Then by (4.6), with b = 0, we have

covθπ+(τ+, S
a
τ+) =

∫
x∈X

∫
z∈X

∫ ∞

0
{Eθz Rav − Eθz S

a
τ+}Qθ

x(dz, dv; 0) dπ+(x). (5.5)

Applying duality to obtain Qθ
x(dz, dv; 0) = Ũ θz,−(dx, dv), this implies that

covθπ+(τ+, S
a
τ+) =

∫
x∈X

∫
z∈X

∫ ∞

0
(Eθz R

a
v )Ũ

θ
z,−(dx, dv) dπ+(z)

−
∫
x∈X

∫
z∈X

∫ ∞

0
(Eθz S

a
τ+)Q

θ
x(dz, dv; 0) dπ+(x)

=
∫
z∈X

∫ ∞

0
(Eθz R

a
v )Ũ

θ
z,−(dv) dπ+(z)− (Eθπ+ S

a
τ+)(E

θ
π+ τ+), (5.6)

where Ũ θz,−(dv) := ∫
x∈X Ũ

θ
z,−(dx, dv). By making use of (5.6) and the definition of

covθπ+(τ+, S
a
τ+), we have

µθ Eθπ+(τ+S
a
π+) = µθ

∫
z∈X

∫ ∞

0
(Eθz R

a
v )Ũ

θ
z,−(dv) dπ+(z)

= µθ(E
θ
π+ R

a∞)Eθπ+ τ+ + µθ

∫
z∈X

∫ ∞

0
(Eθz R

a
v − Eθπ+ R

a∞)Ũ θz,−(dv) dπ+(z)

= 1

a + 1
Eθπ+ S

a+1
τ+ +O(θ). (5.7)

Note that the last equality in (5.7) uses the facts that Eθπ+ R
a∞ = Eθπ+ S

a+1
τ+ /(a+1)Eθπ+ Sτ+ and

µθ = θ + o(θ), and Corollary 3.1.
Next, we prove (5.3) from

Eθx S
a
τ+ = Ex

{
Saτ+ exp[θSτ+ − τ+�(θ)] r(Xτ+; θ)

r(x; θ)
}
.
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By the dominated convergence theorem it follows that limθ↓0 Eθx S
a
τ+ = Ex Saτ+ . Also, f (θ) =

Eθx(S
a
τ+) is continuously differentiable for small positive θ and

ḟ (θ) = Eθx

{
Saτ+

[
(Sτ+ − τ+µθ)+ ṙ(Xτ+; θ)r(x; θ)− r(Xτ+; θ)ṙ(x; θ)

r(Xτ+; θ)r(x; θ)
]}
.

Since f (θ1) = f (θ) + (θ1 − θ)ḟ (θ) + ∫ θ1
θ

[ḟ (α) − ḟ (θ)] dα, we obtain the result by letting
θ → 0.

Lemma 5.2. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then, for any A ∈ A and Borel subsets B ⊂ [0,∞),

Ũ θx,−(A,B) → Ũx,−(A,B) as θ ↓ 0, (5.8)

where Ũ θx,−(A,B) is as defined in (5.1) and Ũx,−(A,B) is as defined in (2.5).

Proof. For given A ∈ A and Borel subsets B ⊂ [0,∞). By Wald’s likelihood ratio identity
for the time-reversed descending ladder Markov random walk, for any n ≥ 0, we have

Pθx{τ̃ n− < ∞, X̃τ̃ n− ∈ A,−S̃τ̃ n− ∈ B}

= Ex

{
exp[θS̃τ̃ n− − τ̃ n−�̃−(θ)]

r̃−(X̃τ̃ n−; θ)
r̃−(x; θ) ; X̃τ̃ n− ∈ A,−S̃τ̃ n− ∈ B

}
,

where �̃−(θ) and r̃−(x; θ) are as defined in (2.13) for the transition probability of the Markov
random walk {(X̃τ̃ n− , S̃τ̃ n−), n ≥ 0}. However, By Proposition 1 of Fuh (2004), r̃−(x; θ) → 1
as θ ↓ 0. Therefore, as θ ↓ 0,

exp[θS̃τ̃ n− − τ̃ n−�̃−(θ)]
r̃−(X̃τ̃ n−; θ)
r̃−(x; θ) → 1.

Hence, as θ ↓ 0,

Pθx{τ̃ n− < ∞, X̃τ̃ n− ∈ A,−S̃τ̃ n− ∈ B} → Px{X̃τ̃ n− ∈ A,−S̃τ̃ n− ∈ B}. (5.9)

Since r̃−(x; θ) = 1 + O(θ) as θ ↓ 0, there exists a δ > 0 and c > 0 such that
|r̃−(X̃τ̃ n−; θ)/r̃−(x; θ)| < 1 + cθ for 0 < θ < δ. Together with the fact that exp[θS̃τ̃ n− −
τ̃ n−�̃−(θ)] ↑ 1 as θ ↓ 0, we obtain, for 0 < θ < δ,

Pθx{τ̃ n− < ∞, X̃τ̃ n− ∈ A,−S̃τ̃ n− ∈ B} ≤ (1 + cθ)Px{X̃τ̃ n− ∈ A,−S̃τ̃ n− ∈ B}. (5.10)

Note that Ũx,−(A,B) < ∞ for eachB ⊂ [0,∞)with finite measure. Using (5.9), summing
over n ≥ 0, and applying the dominated convergence theorem, we obtain (5.8).

The following lemma is a key lemma in the proof of Theorem 2.1. The proof involves the
perturbation theory, which is summarized in Fuh (2004), and a detailed analysis.
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Lemma 5.3. Let {(Xn, Sn), n ≥ 0} be a Markov random walk satisfying Assumptions 2.1–2.6
and denote by {(Xθn, Sθn), n ≥ 0} the Markov random walk induced by (2.13) with Eθπ S1 > 0.
Then, for any x ∈ X,∫

[0,∞)

(Eθx R
a
b − Eθπ+ R

a∞)Ũ θx,−(db) = αax +O(θ) as θ ↓ 0,

where αax is as defined in (2.7).

Proof. Let f θx (b) := Eθx R
a
b − Eθπ+ R

a∞ and fx(b) := Ex Rab − Eπ+ R
a∞, and write∫

[0,∞)

(Eθx R
a
b − Eθπ+ R

a∞)Ũ θx,−(db)− αax =
∫

[0,∞)

f θx (b)Ũ
θ
x,−(db)−

∫
[0,∞)

fx(b)Ũx,−(db)

=
∫

[0,∞)

[f θx (b)− fx(b)]Ũ θx,−(db)

−
∫

[0,∞)

fx(b)[Ũx,−(db)− Ũ θx,−(db)]
:= J1 − J2.

To complete the proof we will show that J1 and J2 are O(θ) as θ ↓ 0.
For J1, we rewrite f θx (b)−fx(b) = ∫ θ

0 ḟ
η
x (b) dη, where the dot denotes differentiation with

respect to η. By Corollary 4.1 there exists a C, r > 0, and θ∗ such that |ḟ ηx (b)| ≤ Ce−rb for
all x ∈ X, b ≥ 0, and all η ∈ (0, θ∗]. Therefore, letting θ ∈ [0, θ∗], we have, for all b ≥ 0,
|f θx (b)− fx(b)| ≤ θCe−rb. This implies that there exists a c > 0 such that

|J1| ≤ θC

∫
[0,∞)

e−rbŨ θx,−(db) ≤ θC(1 + cθ)

(∫
[0,∞)

e−rbŨx,−(db)
)
,

where the second inequality follows from (5.10) and Lemma 5.2. Thus, J1 = O(θ).
For J2, use Lemma 5.2 to observe that Ũx,−(db) and (1 + cθ)Ũx,−(db) − Ũ θx,−(db) are

nonnegative measures for each 0 < θ < δ. From this, and the bound from Corollary 3.1,
|fx(b)| ≤ Ce−r1b for r1 > 0 and x ∈ X, say, we obtain

|J2| ≤ C

∫
[0,∞)

e−rb[(1 + cθ)Ũx,−(db)− Ũ θx,−(db)] for all 0 < r < r1.

Now, there exists a θ∗ > 0 and r2 > 0 such that, for 0 < r < r2, we can define λ̃θ−(r), ν̃θ∗,−,
and Q̃θ

r,− uniformly for θ ∈ (0, θ∗), as (2.13) for the transition probability of the Markov random
walk {(X̃θ

τ̃ n−
, S̃θ
τ̃ n−
), n ≥ 0} under the condition of {τ̃− < ∞}. Let ν be an initial distribution

degenerated at x and hA(r) := 1{x∈A}, then we have

∫
[0,∞)

e−rbŨ θx,−(db) =
∞∑
n=0

∫
[0,∞)

e−rb Pθx{τ̃ n− < ∞, X̃τ̃ n− ∈ X,−S̃τ̃ n− ∈ db}

=
∞∑
n=0

Eθx{exp(rS̃τ̃ n−); τ̃ n− < ∞, X̃τ̃ n− ∈ X}

= (1 − λ̃θ−(r))−1ν̃θ∗,−Q̃θ
r,−hX(r)+ ηθ (r), (5.11)
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where ηθ (r) = ∑∞
n=0 ν̃

θ∗,−ν̃θ∗,−(P̃ θ
r,−)n(I − Q̃θ

r,−)hX(r). Note that the last equality follows
from Proposition 1 of Fuh (2004).

Choosing r∗ = min{r1, r2} and considering r ∈ (0, r∗), (5.11) implies that∫
[0,∞)

e−rb[(1 + cθ)Ũx,−(db)− Ũ θx,−(db)]

= λ̃−(r)− λ̃θ−(r)
[1 − λ̃−(r)][1 − λ̃θ−(r)]

ν̃∗,−Q̃r,−hX(r)+ cθ

1 − λ̃−(r)
ν̃∗,−Q̃r,−hX(r)

+ 1

1 − λ̃θ−(r)
(ν̃∗,−Q̃r,−hX(r)− ν̃θ∗,−Q̃θ

r,−hX(r))+ (1 + cθ)η(r)− ηθ (r). (5.12)

By Proposition 1 of Fuh (2004), λ̃−(r), λ̃θ−(r), ν̃∗,−Q̃r,−hX(r), ν̃θ∗,−Q̃θ
r,−hX(r), η(r), and

ηθ (r) (uniformly for θ ∈ [0, θ∗]) have continuous derivatives for |r| near 0 and

λ̃−(r) = 1 + (Ẽπ− S̃τ̃−)r +O(r2), λ̃θ−(r) = 1 + (Ẽ
θ

π− S̃τ̃−)r +O(r2). (5.13)

Moreover, we have, as θ → 0,

ν̃θ∗,−Q̃θ
r,−hX(r) → ν̃∗,−Q̃r,−hX(r) and ηθ (r) → η(r). (5.14)

Now, for fixed r ∈ (0, r∗), (5.13) and (5.14) imply that, as θ → 0, (5.12) equals

(Ẽπ− S̃τ̃− − Ẽ
θ

π− S̃τ̃−)r

(Ẽπ− S̃τ̃− Ẽ
θ

π− S̃τ̃−)r
2
ν̃∗,−Q̃r,−hX(r)+ cθ

−(Ẽπ− S̃τ̃−)r +O(r2)
ν̃∗,−Q̃r,−hX(r)

+ 1

(Ẽ
θ

π− S̃τ̃−)r +O(r2)
o(θ)+ cθη(r)+ o(θ). (5.15)

By making use of the same argument given above for (5.3) in Lemma 5.1, we have Ẽ
θ

π− S̃τ̃− =
Ẽπ− S̃τ̃− +O(θ). Therefore, (5.15) and (5.12) imply that J2 = O(θ). This completes the proof.

Proof of Theorem 2.1. First, we show that (2.14) implies that (2.15) holds. Let a > 0 and
denote hx(θ) = Eθx S

a
τ+ . From

Eθx S
a
τ+ = Ex

{
Saτ+ exp[θSτ+ − τ+�(θ)] r(Xτ+; θ)

r(x; θ)
}
,

by the dominated convergence theorem it follows that limθ↓0 Eθx S
a
τ+ = Ex Saτ+ . Since, for any

x ∈ X, hx(θ) is continuously differentiable for small positive θ , r(x; θ) = 1 + O(θ) and
ṙ(x; θ) = ṙ(x; 0)+O(θ), we have

ḣx(θ) = Eθx

{
Saτ+

[
(Sτ+ − τ+µθ)+ ṙ(Xτ+; θ)r(x; θ)− r(Xτ+; θ)ṙ(x; θ)

r(Xτ+; θ)r(x; θ)
]}

= Eθx{Saτ+[(Sτ+ − τ+µθ)+ ṙ(Xτ+; 0)− ṙ(x; 0)]} +O(θ). (5.16)

Then, we integrate x ∈ X with respect to π+ in (5.16) to obtain

ḣπ+(θ) = Eθπ+ S
a+1
τ+ − µθ Eθπ+(τ+S

a
τ+)+ Eθπ+(S

a
τ+(ṙ(Xτ+; 0)− ṙ(X0; 0)))+O(θ). (5.17)
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Since

hx(θ) = hx(θ
∗)+ (θ − θ∗)ḣx(θ∗)+

∫ θ

θ∗
[ḣx(α)− ḣx(θ

∗)] dα,

we obtain, via (5.3) in Lemma 5.1, by letting θ∗ → 0,

Eθx S
a
τ+ = Ex S

a
τ+ +

(
a

a + 1
Ex S

a+1
τ+ + Ex[Saτ+(ṙ(Xτ+; 0)− ṙ(x; 0))]

)
θ + o(θ). (5.18)

Then, we integrate x ∈ X with respect to π+ in (5.18) to obtain

Eθπ+ S
a
τ+ = Eπ+ S

a
τ+ +

(
a

a + 1
Eπ+ S

a+1
τ+ + Eπ+[Saτ+(ṙ(Xτ+; 0)− ṙ(x; 0))]

)
θ + o(θ). (5.19)

To obtain a further expansion of ḣπ+(θ), we first expand r(x; θ) = 1 + ṙ(x; θ)θ + O(θ2)

and ṙ(x; θ) = ṙ(x; 0)+ r̈(x; 0)θ +O(θ2), and then use 1/(1 − θ) = 1 + θ +O(θ2) to obtain

ṙ(Xτ+; θ)r(x; θ)− r(Xτ+; θ)ṙ(x; θ)
r(Xτ+; θ)r(x; θ) = (ṙ(Xτ+; 0)− ṙ(x; 0))

+ ((r̈(Xτ+; 0)− ṙ2(Xτ+; 0))

− (r̈(x; 0)− ṙ2(x; 0)))θ +O(θ2). (5.20)

Denote

β1(Xτ+) = ṙ(Xτ+; 0)− ṙ(X0; 0),

β2(Xτ+) = (r̈(Xτ+; 0)− ṙ2(Xτ+; 0))− (r̈(X0; 0)− ṙ2(X0; 0)).

By making use of (2.14), (5.19), and (5.20), with a replaced by a + 1, we have

ḣπ+(θ) = Eπ+ S
a+1
τ+ +

(
a + 1

a + 2
Eπ+ S

a+2
τ+ + Eπ+[Sa+1

τ+ (ṙ(Xτ+; 0)− ṙ(X0; 0))]
)
θ + o(θ)

− 1

a + 1
Eπ+ S

a+1
τ+ −

(
1

a + 2
Eπ+ S

a+2
τ+ + αa

)
+O(θ2)

+ Eπ+(S
a
τ+(ṙ(Xτ+; 0)− ṙ(X0; 0)))

+ Eπ+(S
a
τ+[(r̈(Xτ+; 0)− r̈(X0; 0))− (ṙ2(Xτ+; 0)− ṙ2(X0; 0))])θ +O(θ2)

= a

a + 1
Eπ+ S

a+1
τ+ + Eπ+(S

a
τ+β1(Xτ+))+

(
a

a + 2
Eπ+ S

a+2
τ+ − αa

)
θ

+ Eπ+(S
a+1
τ+ β1(Xτ+)+ Saτ+β2(Xτ+))θ + o(θ). (5.21)

Since, for some ε > 0, hπ+ is continuously differentiable on (0, ε) and continuous on [0, ε],
for small θ , we have

hπ+(θ) = hπ+(0)+
∫ θ

0
ḣπ+(θ

′) dθ ′. (5.22)
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Then, replacing ḣπ+(θ
′) in (5.22) by that in (5.21), a simple calculation yields

Eθπ+ S
a
τ+ = hπ+(θ)

= Eπ+ S
a
τ+ +

(
a

a + 1
(Eπ+ S

a+1
τ+ )+ Eπ+(S

a
τ+β1(Xτ+))

)
θ

+ 1

2

(
a

a + 2
Eπ+ S

a+2
τ+ − αa

)
θ2

+ 1
2 Eπ+(S

a+1
τ+ β1(Xτ+)+ Saτ+β2(Xτ+))θ

2 + o(θ2)

= Eπ+ S
a
τ+ +

(
a

a + 1
(Eπ+ S

a+1
τ+ )+ Eπ+(S

a
τ+β1(Xτ+))

)
θ +O(θ2). (5.23)

Now changing a to a + 1 in (5.23) and recalculating (5.21), we have

ḣπ+(θ) = a

a + 1
Eπ+ S

a+1
τ+ + Eπ+(S

a
τ+β1(Xτ+))+

(
a

a + 2
Eπ+ S

a+2
τ+ − αa

)
θ

+ Eπ+(S
a+1
τ+ β1(Xτ+)+ Saτ+β2(Xτ+))θ +O(θ2). (5.24)

Substituting (5.24) into (5.22), we obtain (2.15).
Next, we will prove that (2.14) holds. First we assume that θ > 0 is fixed. Using the same

argument as given above for (5.4)–(5.7), we obtain

µθ Eθπ+(τ+S
a
τ+) = µθ

∫
z∈X

∫ ∞

0
(Eθz R

a
v )Ũ

θ
z,−(dv) dπ+(z)

= µθ(E
θ
π+ R

a∞)Eθπ+ τ+ + µθ

∫
z∈X

∫ ∞

0
(Eθz R

a
v − Eθπ+ R

a∞)Ũ θz,−(dv) dπ+(z)

= 1

a + 1
Eθπ+ S

a+1
τ+ + αaθ +O(θ2). (5.25)

Note that the last equality in (5.25) uses the facts that Eθπ+ R
a∞ = Eθπ+ S

a+1
τ+ /(a + 1)Eθπ+ Sτ+

and µ = θ + O(θ2), and Lemma 5.3. Now, we need to establish an expansion for Eθπ+ S
a+1
τ+

up to O(θ2). Observe that

Ė
θ
π+(S

a+1
τ+ ) = Eθπ+ S

a+2
τ+ − µθ Eθπ+(τ+S

a+1
τ+ )+ Eθπ+(S

a+1
τ+ (ṙ(Xτ+; 0)− ṙ(x; 0)))

= Eθπ+ S
a+2
τ+ − 1

a + 2
Eθπ+ S

a+2
τ+ + Eθπ+(S

a+1
τ+ (ṙ(Xτ+; 0)− ṙ(x; 0)))+O(θ)

= a + 1

a + 2
E0
π+ S

a+2
τ+ + Eπ+(S

a+1
τ+ β1(Xτ+))+O(θ), (5.26)

where the first equality is from (5.17), and the second and third equalities are from (5.7) and
Lemma 5.1, respectively. Integrating the last display of (5.26) gives

Eθπ+(S
a+1
τ+ ) = Eπ+(S

a+1
τ+ )+

(
a + 1

a + 2
Eπ+ S

a+2
τ+ + Eπ+(S

a+1
τ+ β1(Xτ+))

)
θ +O(θ2). (5.27)

Substituting (5.27) into (5.7) yields (2.14).
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To complete the proof, it remains to show that (2.14) and (2.15) still hold when β1(Xτ+) and
β2(Xτ+) are replaced by α1(Xτ+) and α2(Xτ+) defined in (2.10) and (2.11), respectively. This
will be shown in the next lemma.

Recall the definitions of g1 and g2 given in (2.8) and (2.9), respectively.

Lemma 5.4. Assume that the conditions of Theorem 2.1 hold. Then, ṙ(x; 0) and r̈(x; 0) are
bounded on X and, for any x ∈ X, there exist constants c1 and c2 such that

ṙ(x; 0) = g1(x)+ c1, (5.28)

r̈(x; 0)− ṙ2(x; 0) = g2(x)+ c2. (5.29)

Proof. To establish (5.28) and (5.29), we simply assume that the random variable ξ1 takes
positive values, since the extension to the general case is straightforward via ladder random
variables. Since r(·; θ) is an eigenfunction of λ(θ) with respect to the operator Pθ , we have
Pθ r(x; θ) = λ(θ)r(x; θ), which implies that Ex{eθξ1r(x; θ)} = λ(θ)r(x; θ). By Proposition 1
of Fuh (2004), there exists a δ > 0 such that both λ(θ) and r(·; θ) are analytic functions for
|θ | < δ. Note thatµ = λ̇(0) > 0 under the assumption that ξ1 takes positive values. A one-term
Taylor expansion for λ(θ) and r(x; θ)with respect to θ around 0 entails λ(θ) = 1+µθ+O(θ2)

and r(x; θ) = 1 + ṙ(x; 0)θ +O(θ2). Therefore, for any x ∈ X,

Ex(1 + ξ1θ +O(θ2))(1 + ṙ(X1; 0)θ +O(θ2)) = (1 + µθ +O(θ2))(1 + ṙ(x; 0)θ +O(θ2)).

(5.30)
Matching the coefficient of θ in (5.30), we obtain

ṙ(x; 0)− Ex ṙ(X1; 0) = Ex ξ1 − µ. (5.31)

By Assumptions 2.1–2.4 and Eπ | Ex ξ1 − µ| < ∞, the existence and boundedness of the
solution ṙ(x; 0) for the Poisson equation (5.30) follows from (17.38) and Theorem 17.4.2 of
Meyn and Tweedie (1993). Furthermore, |ṙ(x; 0)| ≤ | Ex ξ1 − µ|. Hence, (5.28) follows
from (5.31).

To prove (5.29), note thatµ = �̇(0) > 0 and σ 2 = λ̈(0)−µ2. A two-term Taylor expansion
for λ(θ) and r(x; θ) with respect to θ around 0 entails λ(θ) = 1 + µθ + λ̈(0)θ2/2 + O(θ3)

and r(x; θ) = 1 + ṙ(x; 0)θ + r̈(x; 0)θ2/2 +O(θ3). Therefore,

Ex

(
1 + ξ1θ + ξ2

1 θ
2

2
+O(θ3)

)(
1 + ṙ(X1; 0)θ + r̈(X1; 0)θ2

2
+O(θ3)

)

=
(

1 + µθ + λ̈(0)θ2

2
+O(θ3)

)(
1 + ṙ(x; 0)θ + r̈(x; 0)θ2

2
+O(θ3)

)
.

(5.32)

Matching the coefficient of θ2 in (5.32), we obtain

2 Ex(ξ1ṙ(X1; 0))+ Ex r̈(X1; 0)+ Ex ξ
2
1 = r̈(x; 0)+ µṙ(x; 0)+ σ 2 + µ2. (5.33)

A simple but tedious calculation via (5.33) yields

(r̈(x; 0)− ṙ2(x; 0))− Ex(r̈(X1; 0)− ṙ2(X1; 0))

= Ex(ξ1 − µ+ ṙ(X1; 0)− ṙ(x; 0))2 − Eπ (ξ1 − µ+ ṙ(X1; 0)− ṙ(X0; 0))2.
(5.34)
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By Assumptions 2.1–2.4 and because there exists a positive constant c such that Eπ (Ex ξ1 −
µ + Eπ ṙ(X1; 0) − ṙ(X0; 0))2 ≤ c supx Ex ξ2

1 < ∞, the existence and boundedness of the
solution r̈(x; 0) − ṙ2(x; 0) of (5.34) follows from (17.38) and Theorem 17.4.2 of Meyn and
Tweedie (1993). Furthermore, we have

|r̈(x; 0)| ≤ (Ex ξ1 − µ+ Eπ ṙ(X1; 0)− ṙ(x; 0))2.
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