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Abstract

In this paper, we study the structure of the local components of the (shallow, i.e. without
Up) Hecke algebras acting on the space of modular forms modulo p of level 1, and relate
them to pseudo-deformation rings. In many cases, we prove that those local components
are regular complete local algebras of dimension 2, generalizing a recent result of Nicolas
and Serre for the case p = 2.

1. Introduction

1.1 General notation
In this paper we fix a prime number p. We shall denote by K a finite extension of Qp, by O the
ring of integers of K, by p the maximal ideal of O, by π a uniformizer of O and by F the finite
residue field O/π.

We call GQ,p the Galois group of a maximal algebraic extension of Q unramified outside p
and ∞. For ` a prime 6= p, we denote by Frob ` ∈ GQ,p a Frobenius element at `. We denote
by c a complex conjugation in GQ,p. We write GQp for Gal(Q̄p/Qp). There is a natural map
GQp → GQ,p, well defined up to conjugacy. For ρ a representation of GQ,p, we shall denote by
ρ|GQp

the composition of that map with ρ: this is a representation of GQp , well-defined up to
isomorphism. We denote by ωp : GQ,p→ F∗ the cyclotomic character modulo p.

1.2 Definition of the Hecke algebras modulo p
We shall denote by Sk(O) the module of cuspidal modular forms of weight k and level 1 with
coefficients in O, that we see by the q-expansion map as a sub-module of O[[q]]. For f ∈ Sk(O),
we shall denote by

∑
n>1 an(f)qn its image in O[[q]]. We denote by S6k(O) the sub-module∑k

i=0 Si(O) (the sum is direct, cf. [Miy06, Lemma 2.1.1]) of O[[q]]. We denote by Sk(F) the
space of cuspidal modular forms of weight k and level 1 over F in the sense of Swinnerton-Dyer
and Serre, that is the image of Sk(O) by the reduction map O[[q]] → F[[q]], f 7→ f̃ which
reduces each coefficient modulo p. It is clear that the natural map Sk(O)/pSk(O)→ Sk(F) is an
isomorphism. Similarly, we denote by S6k(F) the image of S6k(O) by the reduction map f 7→ f̃ .
The reader should be aware that the natural map S6k(O)/pS6k(O)→ S6k(F) is surjective but
not an isomorphism in general, or in other words, that S6k(F) =

∑k
i=0 Si(F) but that the sum

is not direct in general.
All of the modules considered above have a natural action of the Hecke operators Tn for

p - n. We call Tk the O-subalgebra of EndO(S6k(O)) generated by the Tn, p - n, and similarly
Ak the F-subalgebra of EndF(S6k(F)) generated by the Tn, p - n. Note that it would amount to
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the same to define Tk or Ak as generated by the Hecke operators T` and S` for ` 6= p, ` prime,
instead, where S` is the operator acting on forms of weight k as the multiplication by `k−2: this
equivalence is clear from the relations

Tmn = TmTn when (m,n) = 1, (1)

T`n+1 = T`T`n − `S`T`n−1 for n > 1. (2)

Recall that on q-expansions, for a form f ∈ Sk(O), one has for every n > 1,

an(T`f) = a`n(f) if ` - n, (3)

an(T`f) = a`n(f) + `k−1an/`(f) if ` | n, (4)

an(S`f) = `k−2an(f). (5)

Since the actions of the operators T` on the various modules considered above are compatible
in an obvious sense, one has a natural morphism of F-algebras Tk/pTk → Ak which is obviously
surjective, but in general not an isomorphism as will be clear from the sequel. One also has
surjective morphisms Tk+1→ Tk and Ak+1→ Ak given by restriction, and we can consider the
projective limit:

T = lim
←−Tk, A = lim

←−Ak.

By passage to the limit we obtain a surjective map T/pT→ A.
A well-known important fact is that T and A are complete semi-local rings. More precisely,

if F is large enough, the maximal ideals, hence the local components, of both T and A are in
bijection with F-valued systems of eigenvalues for all the operators T` and `S` (for ` prime not
dividing p) which have a non-trivial eigenspace in S6k(F) for k large enough, and those systems
are finitely many. By Deligne’s theorem on the existence of Galois representations attached
to eigenforms and by the Deligne–Serre lemma, those systems of eigenvalues are in bijection
with the set of isomorphism classes of modular Galois representations ρ̄ : GQ,p → GL2(F) (the
bijection being: eigenvalue of T` ↔ tr ρ̄(Frob `), eigenvalue of `S` ↔ det ρ̄(Frob `)). Here and
below, modular means that ρ̄ is the semi-simplified reduction of a stable lattice for the Galois
representation ρ : GQ,p→ GL2(K) attached by Deligne’s construction to an eigenform in Sk(O)
for some integer k. We stress that by definition, our modular representations ρ̄ are semi-simple.
Moreover, if such a representation ρ̄ is irreducible, then p is odd1 and since ρ̄ is odd, it is
absolutely irreducible.

We call Tρ̄ and Aρ̄ the local components of T and A corresponding to a modular
representation ρ̄. These rings are complete local rings. By definition, the image of T` ∈ T in
the residue field F of Tρ̄ or Aρ̄ is tr ρ̄(Frob `). The surjective map T/pT → A sends Tρ̄/pTρ̄
onto Aρ̄.

1.3 Aim of the paper

The aim of this paper is to study the local components Aρ̄ of the Hecke algebra A modulo p,
and their relation with deformation rings defined below. The study of the local components Aρ̄

1 Indeed, as was observed by Serre, since ∆ ≡ 1 (mod 2), Sk−12(F2) is a subspace of Sk(F2); this subspace has
codimension at most 1 by the standard dimension formula. Hence, any eigenform in Sk(F2) which is not already in
Sk−12(F2) is an eigenvector in the one-dimensional space Sk(F2)/Sk−12(F2), hence has eigenvalues in F2. Therefore,
any modular representation GQ,2→ GL2(F) is rational over F2, hence defined over F2 since finite fields have trivial
Brauer group, and it is a simple exercise to show that there is only one semi-simple representation GQ,2→ GL2(F2)
up to isomorphism, the direct sum of two copies of the trivial character.
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was initiated by Jochnowitz [Joc82] who proved that Aρ̄ is infinite-dimensional as a vector space
over F, and continued by Khare [Kha98], who proved, under the hypothesis that ρ̄ is absolutely
irreducible, that Aρ̄ is noetherian and has Krull’s dimension at least 1. Recently, the structure
of A in the case p = 2 has been determined by Nicolas and Serre. Let us explain their result,
which is the direct motivation for this work. When p = 2, we can take O = Z2, F = F2 and there
is only one modular representation (see the previous footnote). In other words, the F2-algebra
A is local. Nicolas and Serre show that A is isomorphic to a power series ring in two variables:
A ' F2[[x, y]]. Their proof of this result is long and difficult, but elementary. The result was
extended to p = 3 by the first-named author of this article with Anna Medvedovsky: in this case
A = Aρ̄ = F3[[x, y]] for the unique modular representation ρ̄ = 1 + ω3 (a sketch of the proof is
given in the appendix of this paper). In this paper we shall give a generalization of these results
for an arbitrary prime p > 3, using results of Böckle, Katz, Hida, Gouvêa–Mazur, Kisin, Wiles
and Taylor–Wiles.

1.4 Deformations rings of pseudo-representations

To state our results, we need to recall Chenevier’s notion of pseudo-representations,2 restricted to
dimension 2 for simplicity: if S is a commutative ring, and G is a group, a pseudo-representation
(cf. [Che14, Lemma 1.9]) of G on S is an ordered pair of functions (t, d) from G to S, such that:

(a) d is a morphism of groups G→ S∗;

(b) t(1) = 2;

(c) for all g and h in G, t(gh) = t(hg);

(d) for all g and h in G, d(g)t(g−1h) + t(gh) = t(g)t(h).

When G and S have a topology, we say that (t, d) is continuous if both t and d are.
If ρ : G→GL2(S) is a representation (i.e. a morphism of groups), then (tρ := tr ρ, dρ := det ρ)

is a pseudo-representation of G to S, called the pseudo-representation attached to ρ. Conversely,
a pseudo-representation (t, d) of G to K, where K is an algebraically closed field, is attached
to a unique semi-simple representation ρ : G → GL2(K) (see [Che14, Theorem A]). When 2
is invertible in S, (t, d) is determined by t, which is a pseudo-character of dimension 2 in the
sense of Rouquier [Rou96], and the theory of pseudo-representations reduces to the more classical
theory of pseudo-characters.

Let S be a henselian local ring, with algebraically closed residue field K = S/m, and (t, d) :
G→ S a pseudo-representation whose residual pseudo-representation (t (mod m), d (mod m))
of G to K is attached to a representation ρ̄ : G→ GL2(K) which is absolutely irreducible. Then
a theorem of Chenevier [Che14, Theorem B] asserts that (t, d) is attached to a unique (up to
isomorphism) representation ρ : G→ GL2(S).

Let C be the category of local profinite3 O-algebras S with maximal ideal mS such that
S/mS = F, the morphisms being the continuous local morphisms of O-algebras, and let C̃ be
the full subcategory of C whose objects are the local profinite F-algebras S. Let us fix an odd
continuous representation ρ̄ :GQ,p→GL2(F). We define a functor Dρ̄ from C to SET S by sending

2 Cf. [Che14], where this notion has the not very convenient name determinant.
3 By a profinite algebra we mean a topological algebra which is the directed projective limit of finite algebras,
endowed with the discrete topology, with surjective morphisms. Note that we do not require that the topology
on the local profinite algebra S is that defined by its maximal ideal mS . However, this is the case when S is
noetherian, for in this case the identity map S → S, where the source is provided with the profinite topology and
the target with the mS-adic topology, is continuous, hence an homeomorphism since S is compact.
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S to the set of continuous pseudo-representations (t, d) of GQ,p to S such that t (mod mS) = tr ρ̄,

d (mod mS) = det ρ̄, and t(c) = 0.4

We denote by D̃ρ̄ the restriction of Dρ̄ to the subcategory C̃, and by D̃0
ρ̄ the sub-functor

of D̃ρ̄ of deformations (t, d) with constant determinant, that is such that d = d̄. By [Che14,

Proposition 3.3], the functor Dρ̄ is representable by a local profinite algebra Rρ̄, and by

[Che14, Proposition 3.7], Rρ̄ is noetherian. It follows that the functor D̃ρ̄ is also representable,

by R̃ρ̄ = Rρ̄/pRρ̄, and that D̃0
ρ̄ is representable as well, by a local algebra R̃0

ρ̄ which is a quotient

of R̃ρ̄.

Definition 1. Let ρ̄ be a modular representation GQ,p → GL2(F). We shall say that ρ̄ is

unobstructed if the tangent space Tan D̃0
ρ̄ to the functor D̃0

ρ̄ has dimension 2.

When ρ̄ is irreducible, by the result of Chenevier [Che14, Theorem B] mentioned above,

the functor D̃0
ρ̄ is just the usual functor of deformations of ρ̄ as a representation, and with

constant determinant, on the category C̃. Hence, Tan D̃0
ρ̄ = H1(GQ,p, ad0ρ̄) and we see that ρ̄ is

unobstructed in our sense if and only if H1(GQ,p, ad0ρ̄) has dimension 2. By Tate’s computation

of the Euler’s characteristic of global Galois representation, dimH1(GQ,p, ad0ρ̄) > 2 with equality

if and only if H2(GQ,p, ad0ρ̄) = 0, which is equivalent to H2(GQ,p, adρ̄) = 0. The latter is exactly

Mazur’s definition of unobstructed (cf. [Maz89, § 1.6]), which is thus seen, in the irreducible case,

to coincide with ours. For examples of irreducible ρ̄ which are unobstructed, or obstructed, see

[Bos91] and other works of the same author. By contrast, reducible representations are often,

or, assuming the Vandiver conjecture, always unobstructed: when p = 2, then ρ̄ = 1 ⊕ 1 is

unobstructed by [Che14, Lemma 5.3] (see also [Bel12a, Proposition 1]), and when p > 2 see

Theorem 22. Note that in any case, the dimension of Tan D̃0
ρ̄ is at least 2 (in the case p > 2 and

ρ̄ reducible, this follows from Proposition 20 and Lemma 21).

It is easy to glue all of the pseudo-representations attached to the representations associated

to modular eigenforms of level 1 and all weights, in order to prove the following proposition.

Proposition 2. Fix a modular representation ρ̄ : GQ,p → GL2(F). There exists a unique

continuous pseudo-representation (τ, δ) : GQ,p → Tρ̄ such that τ(Frob `) = T` for all ` 6= p.

It also satisfies δ(Frob `) = `S` for all primes ` 6= p, τ(c) = 0, and we have τ (mod mTρ̄) = tr ρ̄,

δ (mod mTρ̄) = det ρ̄.

Let (τ̃ , δ̃) be the pseudo-representation obtained by composing (τ, δ) with the natural

morphisms Tρ̄ → Aρ̄. Thus, τ̃ (mod mAρ̄) = tr ρ̄, δ̃ (mod mAρ̄) = det ρ̄. Moreover, the

determinant δ̃ : GQ,p → A∗ρ̄ is constant (more precisely equal to ωk−1
p where k is the weight

of a modular form associated to ρ̄).

We omit the proof of that proposition, which is simple and exactly similar as the case p = 2

which can be found in [Bel12a, Step 1 of the proof of Theorem 1].

The pseudo-representation (τ, δ) (respectively (τ̃ , δ̃)) of the proposition is an element of

Dρ̄(Tρ̄) (respectively of D̃0
ρ̄(Aρ̄)) hence defines a morphism Rρ̄ → Tρ̄ in the category C

(respectively a morphism R̃0
ρ̄→ Aρ̄ in the category C̃). These morphisms are surjective, because

their images contain T` and `S`, as the image of the trace and determinant of Frob ` for the

universal pseudo-representation, respectively, for all ` 6= p.

4 When p > 2, this condition is automatic and can be forgotten. Indeed, since d(c) (mod mS) = det ρ̄(c) = −1,
and d(c)2 = 1 it follows from Hensel’s lemma that d(c) = −1. Then part (d) applied to g = c, h = 1, implies that
0 = 2t(c), hence t(c) = 0.
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1.5 Statement of the main results

We shall prove the following three results concerning the Hecke algebra Aρ̄ and its relation with

the deformation ring R̃0
ρ̄.

Theorem I. Assume that ρ̄ is unobstructed. Then the morphism R̃0
ρ̄→ Aρ̄ is an isomorphism,

and Aρ̄ is isomorphic to a power series ring in two variables F[[x, y]].

Theorem II. Assume that ρ̄ is absolutely irreducible after restriction to the Galois group of

Q(ζp). If ρ̄|GQp
is reducible, assume in addition that ρ̄|GQp

is not isomorphic to χ⊗
(

1 ∗
0 1

)
nor to

χ⊗
(

1 ∗
0 ωp

)
, where χ is any character GQp → F∗ and ∗ may be trivial or not. Then R̃0

ρ̄ → Aρ̄ is

an isomorphism and both rings have dimension 2.

Theorem III. In any case, R̃0
ρ̄ and Aρ̄ have dimension at least 2.

When p = 2, Theorem I is proved (hence Theorem III as well, and Theorem II is empty) in

[NS12a, NS12b] (for the part concerning the structure of A) and [Bel12a] (for the relation with

R̃0
ρ̄). For p = 3, we sketch a proof in the appendix of this paper.

Let us give an idea of the proof of Theorems III and II in the case p > 3 (as Theorem I

follows easily from Theorem III and the definition of unobstructed, see § 8). For Theorem III,

we start with results of Gouvêa–Mazur obtained with the ‘infinite fern’ method (hence, using

the deep results of Coleman on the existence of p-adic families of finite slope modular forms),

which proves that dimTρ̄ > 4. We need to relate the characteristic 0 Hecke algebra Tρ̄ with the

characteristic p Hecke algebra Aρ̄. There are various obstacles to a direct comparison. First Tρ̄
is obtained by the action of the Hecke operators on S(O) while Aρ̄ is obtained by the action of

the same operators on S(F), and S(F) is not equal to S(O) ⊗O F. To circumvent this problem,

we work with the larger rings of divided congruences in the sense of Katz, D(O) and D(F), for

which we do have, by construction, D(O) ⊗O F = D(F). We then need to control the changes

introduced in our Hecke algebras by the change of modules of modular forms. By definition, the

Hecke algebra that acts on D(O) is the same as that, T, constructed on S(O). Moreover, a result

of Katz allows us to compare D(F) and S(F), and from this the Hecke algebras on D(F) with the

Hecke algebra A constructed on S(F). It therefore remains to compare the Hecke algebra T on

D(O) with the Hecke algebra on D(F) = D(O)⊗F. The main difficulty here is that the formation

of Hecke algebras needs not commute with non-flat base changes. To solve the difficulty, we need

to change again the Hecke algebras and replace them by their full counterpart, defined by the

action of the T`, `S` for ` 6= p and Up. As the full Hecke algebras are in duality with D(O), those

do commute with non-flat base change.

Then it remains to control how the addition of the Up operator changes our Hecke algebras,

both in characteristic p and 0, which we do by using (respectively generalizing) a result of

Jochnowitz. At the end of these comparisons of many Hecke algebras, we conclude that Aρ̄ =

Tρ̄/(p, T ) where T is in the maximal ideal of T. It follows that dimAρ̄ > 2, since as we have said

dimTρ̄ > 4.

To prove Theorem II, we need to use, in addition to what have already been said, a result

of Böckle, according to which Tρ̄ is of dimension exactly 4 under the hypotheses of Theorem II.

To conclude, we prove that Tρ̄ is also flat over the Iwasawa algebra Zp[[T ]], which implies that

dimTρ/(p, T ) is of dimension 2.

In §§ 2–9 we assume p > 3.
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2. The divided congruences modules of Katz

This section and the next one intend to be a short exposition, without the proofs of the main
results, of the theory of divided congruences of Katz, while introducing some objects and notation
important for this article.

The divided congruences module of cuspidal forms of weight at most k and level 1, that we
shall denote by D6k(O) is defined as the O-sub-module of S6k(K) =

⊕k
i=0 Si(K) ⊂ K[[q]] of

forms whose q-expansion lies in O[[q]]. Thus, D6k(O) is a free of finite rank O-module, which
contains S6k(O) as a co-torsion sub-module. We define the divided congruence module of cuspidal
forms of level 1, denoted by D(O), as

⋃∞
k=0D6k(O) (the union being taken in O[[q]]). The module

D(O) contains S(O) as a co-torsion sub-module.

Remark 3. Let us recall that the name divided congruences is justified by the following elementary
fact: let fi ∈ Ski(O) be a finite set of forms of distinct weights ki. Assume that these forms satisfy
a congruence ∑

i

fi ≡ 0 (mod pn) (6)

for some integer n. Then (
∑

i fi)/π
n belongs to D(O). And it is clear that every element of D(O)

is of this form.
Observe that the algebra D(O) is not a graded sub-algebra of the graded (by the weight)

algebra S(K) =
∑∞

i=0 Si(K). In the example above, (
∑

i fi)/π
n belongs to D(O) but the

individual terms fi/π
n in general do not.

A fundamental result on divided congruences is the following.

Theorem 4 (Katz). There exists a unique action of Z∗p on D(O) denoted by (x, f) 7→ x ·f , such

that for x ∈ Z∗p, and f ∈ Sk(O) ⊂ D(O), x · f = xkf .

Note that the uniqueness is easy, as knowing the action of x on each Sk(O) implies knowing
it on S(O), which is a co-torsion sub-module of the torsion-free module D(O). Concretely, if the
fi are as in (6), and f = (

∑
i fi)/π

n ∈ D(O), then x · f has to be equal to (
∑

i x
kifi)/π

n. But
the existence of the action is much more difficult, because, as noted by Katz and Hida, it is not
clear that the q-expansion of (

∑
i x

kifi)/π
n is in O[[q]]. Instead the construction of this action by

Katz uses the geometric interpretation of divided congruences and the Igusa tower. See [Kat75,
Corollary 1.7] for the proof.

We define D6k(F) as the image of D6k(O) by the reduction map f 7→ f̃ , O[[q]] → F[[q]].
This is similar to the definition of S6k(F) (which is a sub-module of D6k(F)), but the following
lemma provides an alternative definition of D6k(F) which does not hold for S6k(F).

Lemma 5. The natural map D6k(O)⊗O F→ D6k(F) is an isomorphism.

Proof. This is because O[[q]]/D6k(O) is without torsion, which follows from the definition of
D6k(O). 2

We define D(F) as the union of the D6k(F) for k = 1, 2, 3, . . . . By definition, S(F) ⊂ D(F).
By the lemma, Z∗p acts on D(F). It is clear that this action preserves S(F), since any f̃ in S(F)

is a sum
∑

i∈(Z/pZ)∗ f̃i, where f̃i is the image of an fi ∈
⊕

k≡i (mod p−1) Sk(O), and x ∈ Z∗p acts

on f̃i by x · f̃i = x̄if̃ i, where x̄ is the reduction mod x in F∗p. In particular, 1 + pZp acts trivially
on S(F).
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Theorem 6 (Katz). The space S(F) is the space of invariants of 1 + pZp acting on D(F).

This is proved in [Kat75, § 4]; see also [Hid86, Theorem 1.1].
We observe that the two results of Katz recalled in this section are proved only there for

p > 3. We do not know whether they also hold for p = 2, 3.

3. Hecke operators on divided congruences

An important consequence of the existence of the action of Z∗p on D(O) (Theorem 4) is the
possibility of defining Hecke operators on that module.

Corollary and Definition 7 (Hida, cf. [Hid86, p. 243]). For ` a prime 6= p, and
f =

∑
n>0 anq

n ∈ D(O), define S`(f) = `−2(` · f) ∈ D(O), and define an element T`f =∑
n>1 an(T`f)qn ∈ O[[q]] with

an(T`f) = an`(f) if ` - n, (7)

an(T`f) = an`(f) + `−1an/`(` · f) if ` | n. (8)

Then T`f ∈ D(O). The operators T` and S` of D(O) for every ` 6= p commute and act on the
stable sub-module S(O) as the usual T` and S`.

We also define operators Tn for (n, p) = 1 by the formulas (1) and (2).

Proof. Let f ∈ D(O). Since ` · f ∈ D(O), and ` is invertible in O, S`f ∈ D(O). Also T` coincides
with the usual operator T` for any form in Sk(O). Hence, if f = (

∑
i fi)/π

n with fi ∈ Ski(O),
then πnT`f =

∑
i T`fi by linearity hence T`f lies in S6k(K) for k = max(ki). On the other hand,

the coefficients of the q-expansion of T`f are in O by definition, so T`f ∈ D6k(O) ⊂ D(O). The
other assertions are clear. 2

We define the operators T` and S`, and Tn for n coprime to p, on D(F) by reducing the
operators with the same name on D(O) modulo p.

Lemma 8. The O-sub-algebra of EndO(D6k(O)) generated by the Hecke operators Tn for p - n
is naturally isomorphic to Tk (defined in § 1.2).

Proof. Denote temporarily by T′k the sub-algebra of EndO(D6k(O)) generated by the Hecke
operators Tn for p - n. The restriction from D6k(O) to S6k(O) defines a morphism of O-algebras
T′k → Tk, which is surjective because its image contains all of the Tn for p - n. Let u ∈ T′k be an
element of the kernel of that map. Then, by definition, u acts trivially on S6k(O). Therefore, u
factors as a map D6k(O)/S6k(O)→ D6k(O). Since the source of this map is torsion while the
target is torsion free, u = 0, and the map T′k → Tk is an isomorphism. 2

In particular, the algebra T (see § 1.2) acts faithfully on D(O), and we can see it as an
O-sub-algebra of EndO(D(O)).

Lemma 9. The homomorphism φ : Z∗p → EndO(D(O)), defined by φ(x)f = x · f , f ∈ D(O),
takes values in the sub-algebra T.

Proof. Let us provide D(O) with the sup norm |
∑
anq

n| = supn |an|, and EndO(D(O)) with the
weak topology, so that a sequence of operators um ∈ EndO(D(O)) converges to u if and only
if for every f ∈ D(O), |umf − uf | converges to 0. We claim that T is closed in EndO(D(O)).
Indeed, if um ∈ T, and (um) converges to u ∈ EndO(D(O)), then for every k > 0, the restriction
of u to D6k(O) is the limit of the restriction of un to D6k(O), hence is in Tk since Tk is closed
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(even compact) in the finite-type O-module EndO(D6k(O)). This shows that u is in lim
←−Tk = T,

hence the claim.
For the weak topology, the map φ : Z∗p → EndO(D(O)) is continuous, since for any given

f ∈ D(O), we can write f = (
∑

i fi)/π
n ∈ D(O) with fi ∈ Si(O), and x ·f = (

∑
i x

ifi)/π
n which

makes clear that if xm converges to x in Z∗p, then |xmf − xf | converges to 0.
For ` 6= p a prime number, one has φ(`) = `2S` ∈ T. If x ∈ Z∗p, there exists by Dirichlet’s

theorem on primes in arithmetic progressions a sequence of primes `m (different from p)
converging to x p-adically. Therefore, φ(`n) converges to φ(x) in EndO(D(O)). Hence, φ(x) ∈ T.

2

Remark 10. The proof of the lemma shows that the two natural topologies one can consider
on T are the same: the topology of the projective limit lim

←−Tk, each Tk having its natural
topology of finite rank O-module; and the topology obtained by restriction of the weak topology
on EndO(D(O)). Hence, an equivalent definition of T would be as the closed subalgebra of
EndO(D(O)) (for its weak topology) generated by the T` and S`.

Let us define the Iwasawa algebra Λ = O[[1+pZp]]. By choosing a topological generator (say
1 + p) of 1 + pZp one determines an isomorphism Λ ' O[[T ]] under which the maximal ideal
mΛ of Λ becomes (π, T ). The group homomorphism φ : 1 + pZp → T∗ defines a morphism of
O-algebras ψ : Λ→ T. Using that morphism, one regards T as a Λ-algebra.

4. Divided congruences of level Γ0(p)

We shall also need a variant with level Γ0(p): Sk(Γ0(p),K) denotes the space of cusp forms
of weight k and level Γ0(p) with coefficients in K. The divided congruence module of cuspidal
forms of weight at most k and level Γ0(p), that we shall denote by D6k(Γ0(p),O) is defined
as the O-sub-module of S6k(Γ0(p),K) =

⊕k
i=0 Si(Γ0(p),K) of forms whose q-expansion lies in

O[[q]]. Similarly, the divided congruence module of cuspidal forms of level Γ0(p) is defined as
D(Γ0(p),O) =

⋃∞
k=0D6k(Γ0(p),O). The theorems and corollary above also hold (with the same

references) for D(Γ0(p),O) instead of D(O).

Proposition 11. The closures of D(O) and D(Γ0(p),O) in O[[q]] (provided with the topology
of uniform convergence) are equal.

Proof. Their common closure is the space of p-adic modular functions of tame level 1, denoted
Vpar(O, 1) in [Gou88, see Proposition I.3.9]. 2

Corollary 12. There is an isomorphism preserving q-expansions D(Γ0(p),O)⊗O F ' D(F).

We call Tk(Γ0(p)) the sub-algebra of EndO(Γ0(p), D6k(O)) generated by the Hecke operators
Tn for p - n, and we define T(Γ0(p)) as lim

←−k Tk(Γ0(p)).

Corollary 13. The algebras T(Γ0(p)) and T are naturally isomorphic.

Proof. The natural morphism r : T(Γ0(p)) → T is obtained by the projective limit of the
surjective restriction maps Tk(Γ0(p)) → Tk. Hence, r is surjective. The algebra T(Γ0(p)) acts
faithfully on D(Γ0(p),O). By continuity of the Hecke operators (for the topology of uniform
convergence on q-expansions), it also acts on its closure in O[[q]], and its action is of course
still faithful. The action of T(Γ0(p)) on D(O) is also faithful, for if it was not, some operator
0 6= u ∈ T(Γ0(p)) would act by 0 on D(O), hence by 0 on its closure by continuity, hence by 0
on the closure of D(Γ0(p),O) by the proposition above, contradicting what we just saw. Since
that action factors through r, the map r must be injective. 2
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5. Full Hecke algebras

Let us recall that the operator Up is defined on q-expansions by Up(
∑
anq

n) =
∑
apnq

n. This

operator leaves stable the subspace of modular forms S6k(Γ0(p),K) of K[[q]], and since it

also preserves the integrality of coefficients, it leaves stable D6k(Γ0(p),O) and D(Γ0(p),O).

By reduction, the subspace D6k(Γ0(p),F) of F[[q]] is also stable by Up, and so is the subspace

D(Γ0(p),F) = D(F) (cf. Corollary 12) of F[[q]]. Note that the subspaces S6k(F) ⊂ D6k(F) of

F[[q]] are also stable by Up, since they are stable by Tp and in characteristic p, the operators Tp
and Up coincide.

We define the full Hecke algebra Tfull
k as the subalgebra of EndO(D6k(Γ0(p),O)) generated

by the Hecke operators T` and S` for ` prime different form p, and by Up. We let Tfull = lim
←−Tfull

k .

We define the following full Hecke algebras in characteristic p: DAfull
k (respectively Afull

k ) is the

sub-algebra of EndF(D6k(F)) (respectively of EndF(S6k(F))) generated by the Hecke operators

T` and S` for ` prime different form p, and by Up. We let DAfull = lim
←−DA

full
k and Afull = lim

←−A
full
k .

We have natural surjective morphisms of algebras (sending Hecke operators to Hecke

operators with the same name) Tfull
k ⊗O F→ DAfull

k (induced by the reduction map D6k(Γ0(p),

O) → D6k(Γ0(p),F)) and DAfull
k → Afull

k (induced by the inclusion S6k(F) ⊂ D6k(F) ⊂
D6k(Γ0(p),F)), hence by passage to the limit, surjective maps Tfull

→ DAfull
→ Afull.

Proposition 14. The pairings Tfull
k ×D6k(O)→ O, DAfull

k ×D6k(F)→ F and Afull
k × S6k(F)

given by (t, f) 7→ a1(tf) are perfect.

Proof. This is elementary and well known. 2

Corollary 15. The map Tfull
k → DAfull

k induces an isomorphism Tfull
k ⊗O F→ DAfull

k , hence

an isomorphism Tfull ⊗O F ' DAfull.

Proof. It is clear that the map Tfull
k ⊗OF→DAfull

k is surjective. The preceding proposition assures

that its source has dimension the rank of D6k(O) and that its image has dimension dimD6k(F).

These two numbers are equal since Dk(O) is torsion-free. This proves the corollary. 2

The composition Λ → T → Tfull defines a structure of Λ-algebra on Tfull. Those results

combined with the main results of Katz yield the following result.

Proposition 16. One has Tfull/mΛTfull ' Afull.

Proof. Set Λ̃ = Λ/πΛ and mΛ̃ its maximal ideal (which is principal). By the above corollary,

Tfull/πTfull ' DAfull as Λ̃-module. By Theorem 6, S(F) = D(F)[mΛ̃]. By Proposition 14, this

implies Afull = DAfull/mΛ̃DA
full = Tfull/mΛTfull. 2

6. Local components of normal and full Hecke algebras

The Hecke algebras Tfull and Afull are semi-local, and for both of them, their local components

are in bijection with the set of F-valued systems of eigenvalues of all of the Hecke operators Tn
that appear in S(F), or what amounts to the same, the pairs (ρ̄, λ), where ρ̄ : GQ,p → GL2(F)

is a modular representation attached to some eigenform f ∈ S(F), and λ is the eigenvalue of Up
on f . We shall denote by Tfull

ρ̄,λ and Afull
ρ̄,λ the corresponding local algebras.
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Proposition 17. One has a natural isomorphism of Aρ̄-algebras Aρ̄[[Up]] ' Afull
ρ̄,0 , and a natural

isomorphism of Tρ̄-algebras Tρ[[Up]] ' Tfull
ρ̄,0 .

Proof. The first isomorphism is due to Jochnowitz, see [Joc82]. For the second we mimic her

proof with some adaptations.

We have a natural surjective map Tk[Up]→ Tfull
k . Since Up is topologically nilpotent in Tfull

ρ̄,0 ,

this map induces by passage to the limit and localization a surjective map Tρ̄[[Up]]→ Tfull
ρ̄,0 . By

Corollary 13, the algebra T (respectively Tfull) acts faithfully on D(Γ0(p),O), and the quotient

Tρ̄ of T (respectively Tfull
ρ̄,0 of Tfull) is the largest quotient that acts faithfully on D(Γ0(p),O)ρ̄

(respectively D(Γ0(p),O)ρ̄,0) where D(Γ0(p),O)ρ̄ (respectively D(Γ0(p),O)ρ̄,0) is the (direct)

sum of the generalized eigenspaces for all of the T` and S` for ` 6= p (respectively and for Up)

with system of eigenvalues in O that lifts the F-valued system attached to ρ̄ (respectively to

(ρ̄, 0)). Therefore, to prove that Tρ̄[[Up]]→ Tfull
ρ̄,0 is an isomorphism it is sufficient to prove that

Tρ̄[[Up]] acts faithfully on D(Γ0(p),O)ρ̄,0.

Recall that onD(Γ0(p),O)ρ̄,0 we have an operator V which acts on q-expansions as
∑
anq

n 7→∑
anq

pn (cf. e.g. [Gou88, § II.2]). One sees immediately on q-expansions that UpV = Id and that

V Up is a projector. Thus, V is injective on D(Γ0(p),O)ρ̄,0, Up is surjective, and V Up is the

projector of kernel KerUp and image ImV .

We claim that for every t ∈ Tρ̄, t 6= 0, there exists g ∈ D(Γ0(p),O)ρ̄,0 such that Upg = 0, but

tg 6= 0. Indeed there exists an f in D(Γ0(p),O)ρ̄, such that tf 6= 0. Let i be the smallest integer

such that tf has a coefficient an 6= 0 with pi || n. Then U iptf has a coefficient an 6= 0 with n

relatively prime to p. Therefore U iptf is not in the image of V , hence is not in the image of the

projector V Up, hence is not in the kernel of the projector 1− V Up. That is, (1− V Up)U iptf 6= 0.

Define g = (1−V Up)U ipf . Then clearly Upg = 0 (so g ∈ D(Γ0(p),O)ρ̄,0) and because t commutes

with Up and V , tg 6= 0, and the claim is proved.

Now let us prove that Tρ̄[[Up]] acts faithfully on D(Γ0(p),O)ρ̄,0. Let
∑∞

j=n tjU
j
p ∈ Tρ̄[[Up]]

with tj ∈ Tρ̄ and tn 6= 0. Then by the claim, there is g ∈ D(Γ0(p),O)ρ̄,0 such that tng 6= 0 but

Upg = 0. Let h = V ng, so that Unp h = g. Then tn(Unp h) = tng 6= 0, but Un+1
p h = Upg = 0, and

so U iph = 0 for all i > n, and (
∑∞

j=n tjU
j
p )h 6= 0. On the other hand, since Un+1

p h = 0, h is in

the generalized eigenspace of Up with eigenvalue 0, hence h ∈ D(Γ0(p),O)ρ̄,0, which proves the

faithfulness. 2

7. Proof of Theorem III

We need to prove that dimAρ̄ > 2. It is equivalent to prove dimAρ̄[[Up]] > 3, that is by

Proposition 17, dimAfull
ρ̄,0 > 3. By Proposition 16, Afull

ρ̄,0 is isomorphic to Tfull
ρ̄,0/mΛTfull

ρ̄,0 . Since the

ideal mΛ is generated by two elements, one has by the hauptidealsatz that dimAfull
ρ̄,0 > dimTfull

ρ̄,0−2

so it suffices to prove that dimTfull
ρ̄,0 > 5. But by Proposition 17, that is dimTρ̄[[Up]] = dimTρ̄+1.

It therefore suffices to prove that dimTρ̄ > 4. But that is precisely the result given by Gouvêa–

Mazur’s infinite fern argument, cf. [GM98, Eme11].

8. Proof of Theorem I

Assuming that ρ̄ is unobstructed, we need to prove that the surjective map R̃0
ρ̄ → Aρ̄ is an

isomorphism of local regular rings of dimension 2. But, by assumption, the cotangent space of
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R̃0
ρ̄ has dimension 2, while the Krull dimension of Aρ̄ is at least 2 by Theorem III. The result

follows.

9. Proof of Theorem II

Theorem 18 (Böckle, Diamond–Flach–Guo, Gouvêa–Mazur, Kisin). Under the hypotheses of
Theorem II, the natural map Rρ̄→ Tρ̄ is an isomorphism between local rings of dimension 4.

Proof (Compare [Eme11]). Under more restrictive assumptions than Theorem II, namely under
the assumption that ρ̄|GQp

, if irreducible, is flat up to torsion by a character (cf. [Boc01,

Assumption (2.1)]), the fact that Rρ̄→ Tρ̄ is an isomorphism is proved in [Boc01, Theorems 3.1
and 3.9]. In [Boc01], this assertion is used only to ensure the validity of Theorem 2.8 there, due
to Diamond [Dia96, Theorem 1.1]. However, Diamond, with Flach and Guo, later generalized
[Boc01, Theorem 2.8], proving it under the hypotheses (ii) of our Theorem II: cf. [DFG04,
Theorem 3.6]. Therefore, Böckle’s results [Boc01, Theorems 3.1 and 3.9] are true, with the same
proof, under the hypotheses of Theorem II.

Once we know that Rρ̄ → Tρ̄ is an isomorphism, we conclude by recalling that Tρ̄ has
dimension at least 4 by the infinite fern argument of Gouvêa–Mazur (cf. [GM98]), and that Rρ̄
has dimension at most 4 by a theorem of Kisin (under weaker assumptions than ours), cf. [Kis04,
Main Theorem]. 2

Recall the Iwasawa algebra Λ and the morphism of algebras ψ : Λ→ Tρ̄ introduced at the
end of § 3.

Lemma 19. The algebra Tρ̄ is flat over Λ.

Proof. We first observe that Tρ̄ is flat over O, because it is torsion-free as a sub-module of
T, which is itself torsion-free as the projective limit of the Tk, which are sub-modules of the
torsion-free modules EndO(S6k(O)). Hence, Rρ̄ is flat over O.

Second, let χ : GQ,p → O∗ be the Teichmüller lift of the character det ρ̄. Let us call D0
ρ̄

the functor which parametrizes the deformations of ρ̄ with constant determinant χ. Let R0
ρ̄ be

the ring representing D0
ρ̄. Let us call Ddet ρ̄ the deformation functor of the character det ρ̄. This

functor is representable by the Iwasawa algebra Λ (cf. [Maz89, § 1.4]).
Consider the morphism of functors Dρ̄ → Ddet ρ̄ × D0

ρ̄, which to a deformation ρ : GQ,p →

GL2(S), attaches the pair (det ρ, ρ⊗ ((det ρ)−1χ)1/2). Here, note that (det ρ)−1χ ≡ 1 (mod mS)
by definition of χ, hence since p > 2 the character (det ρ)−1χ has a unique square root by
Hensel’s lemma. One checks easily that this morphism of functor is an isomorphism. Hence, we
get a natural isomorphism

Λ⊗O R0
ρ̄→ Rρ̄.

From that isomorphism follows the fact that R0
ρ̄ is flat over O (for if it had torsion, so would

have R0
ρ̄⊗OΛ since Λ is flat over O, contradicting the fact that Rρ̄ has no O-torsion). Therefore,

Rρ̄ = R0
ρ̄ ⊗O Λ is flat over Λ by universality of flatness.

To conclude, we observe that the natural diagram

Rρ̄ // Tρ̄

Λ

``

ψ

??
(9)

407

https://doi.org/10.1112/S0010437X1400774X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400774X
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is commutative. Indeed, the determinant δ : GQ,p → T∗ρ̄ (see Proposition 2) is a deformation of
det ρ̄, hence defines a morphism ψ′ : Λ→ Tρ̄ since Λ is the universal deformation ring of det ρ̄.
Moreover, it is clear from the definition of the map Rρ̄→ Tρ̄ that the diagram above commutes
if the map Λ→ Tρ̄ is replaced by ψ′. Hence, we are reduced to showing that ψ′ is the same map
as the map ψ defined in § 3, and to do so, it is enough to do so after composition by any map λf :
Tρ→ K̄ attached to a modular eigenform f ∈ Sk(Γ) for some integer k. But (λf ◦ψ)(x) = xk−1

for x ∈ Z∗p by definition of ψ and since f is of weight k, while (λf ◦ψ′)(`) = det ρf (Frob `) = `k−1

for any prime ` 6= p. By continuity, it follows that ψ = ψ′

Since the upper horizontal map of (9) is an isomorphism, it follows that Tρ̄ is flat over Λ. 2

It follows from the lemma that Tfull
ρ̄,0 = Tρ̄[[Up]] is also flat over Λ. Thus, the dimension of

Tfull
ρ̄,0/mΛTfull

ρ̄,0 is equal by [Eis95, Theorem 10.10] to dimTfull
ρ̄,0−2 = 5−2 = 3, hence Afull

ρ̄,0 = Aρ̄[[Up]]
has dimension 3 and Aρ̄ has dimension 2. This concludes the proof.

10. When are the reducible modular representations unobstructed?

In this section, we discuss the condition, for a modular representation ρ̄, of being unobstructed
(Definition 1). As noted just after the definition, when ρ̄ is absolutely irreducible, this notion
coincides with Mazur’s notion of being unobstructed, and has thus been discussed extensively in
the literature. This is why we restrict ourselves in this section to a ρ̄ which is reducible. We shall
see that in this case, many (conjecturally all) representations are unobstructed.

In the case p = 2, we have already noted that the only modular representation ρ̄ = 1⊕ 1 was
unobstructed. Let us assume that p > 2 for the rest of this section.

Since our modular representation ρ̄ is reducible, and by definition semi-simple, it is the direct
sum of two characters GQ,p→ F∗. By class field theory, any character GQ,p→ F∗ is of the form ωap
where ωp : GQ,p→ F∗p is the cyclotomic character modulo p and a is an integer in {0, 1, . . . , p−2}.
Hence, ρ̄ is, up to a twist, of the form 1⊕ ωap , with a odd since ρ̄ is, and one has tr ρ̄ = 1 + ωap ,
det ρ̄ = ωap .

The functor D̃0
ρ̄ is the functor of deformations of (t̄, d̄) as pseudo-representations (t, d) in the

sense of Chenevier, with the condition d constant, that is d = det ρ̄ = ωap . (Since p > 2, it is by
[Che14] the same functor as the functor which attaches to S a pseudo-character t : GQ,p → S
of dimension 2, deforming t̄ and satisfying the condition d(g) := (t2(g) − t(g2))/2 = 1 for all
g ∈ GQ,p.) Let Tan D̃0

ρ̄ be the tangent space of that functor.

Proposition 20. The dimension of Tan D̃0
ρ̄ is 1 + dimH1(GQ,p, ω

a
p) dimH1(GQ,p, ω

−a
p )

Proof. By the main theorem of [Bel12b], that tangent space of D̃ρ̄ lies in an exact sequence:

0→ Tan (D̃ωap ⊕ D̃1)
ι
→ Tan (D̃ρ̄)→ H1(GQ,p, ω

a
p)⊗H1(GQ,p, ω

−a
p )→ H2(GQ,p, 1)2.

Here, D̃ωap (respectively D̃1) is the deformation functor of ωap (respectively 1) as a character of

GQ,p, and ι is the map which to a pair of deformations (χ, χ′) of (ωap , 1) on Fp[ε]/(ε2) attaches
the deformation χ+ χ′ of ωap + 1 = tr ρ̄. It is well known (e.g. as a consequence of Tate’s global
Euler–Poincaré’s formula) that H2(GQ,p, 1) = 0. Hence, an exact sequence

0→ Tan (D̃ωap ⊕ D̃1)→ Tan (D̃ρ̄)→ H1(GQ,p, ω
a)⊗H1(GQ,p, ω

−a)→ 0.

Recall that the functor D̃0
ρ̄ is the sub-functor of D̃ρ̄ of deformations which have constant

determinant. We claim that the restriction to Tan (D̃0
ρ̄) of the surjective map Tan (D̃ρ̄) →
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H1(GQ,p, ω
a
p) ⊗ H1(GQ,p, ω

−a
p ) is also surjective. Indeed, if an element x of H1(GQ,p, ω

a) ⊗
H1(GQ,p, ω

−a
p ) is the image of a deformation ρ of ρ̄ to F[ε]/(ε2), then det ρ is a deformation

of det ρ̄ = ωap , hence an element of Tan (D̃ωap ) ⊂ Tan (D̃ωap ⊕ D̃1), and removing to ρ̄ the image

by ι of that element gives an element of Tan (D̃0
ρ̄) whose image in H1(GQ,p, ω

a
p)⊗H1(GQ,p, ω

−a
p )

is still x.
We therefore have an exact sequence:

0→ Tan ((D̃ωap ⊕ D̃1)0)
ι
→ Tan (D̃0

ρ̄)→ H1(GQ,p, ω
a
p)⊗H1(GQ,p, ω

−a
p )→ 0

where (D̃ωap ⊕ D̃1)0 is the sub-functor of the functor of D̃ωap ⊕ D̃1 parameterizing deformations

(χ, χ′) of (ωap , 1) such that χχ′ is constant. The dimension of Tan ((D̃ωap⊕D̃1)0) is easily computed
to be 1, and the proposition follows. 2

We shall use the following rather standard notation: for χ a character of Gal(Q(µp)/Q),
we denote by A(χ) the part of the p-torsion subgroup of the class group Cl(Q(µp)) on which
Gal(Q(µp)/Q) acts by χ.

Lemma 21. For every odd a, one has dimH1(GQ,p, ω
a
p) = 1 + dimA(ωp−ap ) and dimH1(GQ,p,

ω−ap ) = 1 + dimA(ωa+1
p ).

Proof. The second equality is the same as the first since ω−ap = ωp−1−a
p . We shall therefore only

prove the first equality.
When a = 1, a class in H1(GQ,p, ωp) is represented by a cocycle of the form g 7→ cα(g) :=

g(α)/α, with α ∈ Q̄, αp ∈ Q and v`(α
p) = 0 for all prime ` 6= p, and the cocycle cα is a coboundary

if and only if α ∈ Q (cf. [Was97] for this simple application of the Kümmer exact sequence).
Therefore, the dimension of H1(GQ,p, ωp) is 1 and this space is generated by the cocycle cα for

α = p. On the other hand, A(ωp−1
p ) = A(1) is the p-torsion of the class group of Q, so has

dimension 0, and the equality is proved.
When a > 1 by Greenberg–Wiles version of Poitou–Tate duality [Was97, Theorem 2],

one has dimH1(GQ,p, ω
a
p) = dimH1

0 (GQ,p, ω
1−a
p ) + 1 where H1

0 (GQ,p, ω
1−a
p ) = Ker (H1(GQ,p,

ω1−a
p ) → H1(GQp , ω

1−a
p )). Since H1(GQ,p, ω

1−a
p ) = H1(Ip, ω

1−a
p ) (cf. [Was97, Theorem 2]) so

H1
0 (GQ,p, ω

1−a
p ) parametrizes extensions of GQ-representations 0 → ω1−a

p → V → 1 → 0 that

are unramified everywhere (in the sense that applying the functor of I`-invariants to this short
exact sequence yields a sequence which is still exact, including for ` = p), and this space, by
Hilbert class field theory, cf. [Rub00, ch. I], is the space A(ω1−a

p ) = A(ωp−ap ). 2

Theorem 22. The residual representation ρ̄ = 1⊕ ωap (1 6 a 6 p− 2, a odd) is unobstructed if
either of the following conditions holds:

(i) a > 1 and p does not divide Ba+1Bp−a where Bn is the nth Bernoulli number;

(ii) a = 1;

(iii) Vandiver’s conjecture holds for p.

Therefore, in any of those cases, Aρ̄ is a regular local complete algebra of dimension 2 over F̄p.

Proof. Let us assume that condition (i) holds. By the reflection theorem [Was82, Theorem 10.9]
one has p-rank A(ωp−ap ) 6 p-rank A(ωap) and p-rank A(ωa+1

p ) 6 p-rank A(ωp−1−a
p ). The p-rank

of A(ωap) (respectively A(ωp−1−a
p ) is 0 if p - Bp−a and p - Ba+1 by Herbrand’s theorem [Was82].
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Hence by the Lemma, dimH1(GQ,p, ω
a
p) 6 1 and dimH1(GQ,p, ω

−a
p ) 6 1 and ρ̄ is unobstructed

by Proposition 20.
In case (ii), that is a = 1, we have already seen that dimH1(GQ,p, ωp) 6 1 in the course

of the proof of the lemma, and by the lemma again, dimH1(GQ,p, ω
−1
p ) 6 1 + dimA(ω2

p) 6

1 + dimA(ωp−2
p ) by the reflexion theorem. By Herbrand’s theorem, A(ωp−2

p ) is 0 (since B2 = 1/6
is not divisible by any p), and the result follows again from the proposition.

Finally, in case (iii), one just needs to recall that Vandiver’s conjecture is the statement that
A(ωnp ) is 0 for every even n, so the result follows again from the lemma and the proposition. 2
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Appendix A. The case p = 3

This appendix is devoted to the case p = 3 of Theorem I. We give a complete treatment of the
Galois-theoretic part of the proof, which allows us to obtain a more precise result than Theorem I,
with explicit determination of systems of generators of A: it is a concrete illustration of the
Galois-theoretical methods used in this article. But we only sketch the second part of the proof,
concerning the order of nilpotence of modular forms modulo 3, which uses completely different
methods than those of this paper, more akin to Nicolas and Serre’s methods in characteristic 2.
The details of this second part are due to Anna Medvedovsky and will appear in her forthcoming
thesis, as part of her general study of modular forms modulo 3.

A.1 Results
If p = 3, the only modular Galois representation is ρ̄ = 1 ⊕ ω3, which is unobstructed. We
therefore only need to prove Theorem I, that is that A = Aρ̄ is isomorphic to F3[[x, y]]. If ` is a
prime 6= 3, tr ρ̄(Frob `) = 1 + ` (mod 3). It follows that the operators T` for ` ≡ 2 (mod 3), and
1 + T` for ` ≡ 1 (mod 3) belongs to the maximal ideal mA of A. We shall write T ′` for 1 + T`
when ` ≡ 1 (mod 3) and for T` when ` ≡ 2 (mod 3) so that the Hecke operators T ′` are always
locally nilpotent on S(F3).

Let us also recall that by [SD73], S(F3) is the F3-vector space of basis (∆̃k)k=0,1,2,..., where ∆̃
is the reduction modulo 3 of the q-expansion of the modular form ∆. We restrict our attention
to the subspace M of S(F3) generated by ∆̃k for k > 1, k 6≡ 0 (mod 3).

Lemma 23. (i) The space M is stable by all of the T`, ` 6= 3, hence by A.

(ii) The action of A on M is faithful.

(iii) For every cofinite ideal I in A, the pairing A/I×M [I]→ F3, (T, f) 7→ a1(Tf) is perfect.

Proof. Note that if ∆̃k =
∑
anq

n ∈ F3[[q]], and an 6= 0, then n ≡ k (mod 3): this follows from
the case k = 1, which results from the known congruences about τ(n) (see [SD73]). The space
M is therefore the subspace of S(F3) of forms

∑
anq

n which satisfy a3n = 0 for every integer n,
and part (i) follows then from the formula giving the action of T` on q-expansions. Also one has
S(F3) =

⊕∞
n=0M

3n , and since for f ∈ S(F3), and ` 6= 3 a prime, one has T`(f
3) = (T`f)3, this

decomposition is stable by A and S(F3) is, as an A-module, isomorphic to a countable direct
sum of copies of M . Since A acts faithfully on S(F3) by construction, part (ii) follows, and part
(iii) is then routine. 2
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Let P1 be the set of primes ` which are congruent to 1 modulo 3 but not split in the splitting
field L of X3 − 3. Let P2 be the set of primes ` which are congruent to 2 modulo 3 but not to 8
modulo 9. Note that P1 and P2 both have density 1/3 and are disjoint.

We shall sketch the proof of the following more precise version of Theorem 1.

Theorem 24. There is a (unique) isomorphism of algebras F3[[x, y]] → A which sends x to
T ′2 = T2 and y to T ′7 = 1 +T7. For ` 6= 3 a prime, one has T ′` ≡ x (mod m2

A) if and only if ` ∈ P2,
T ′` ≡ y (mod m2

A) if and only if ` ∈ P1, and T ′` ≡ 0 (mod m2
A) if and only if ` 6∈ P1 ∪ P2.

As in [NS12b], one deduces immediately from the theorem, using Lemma 23(iii), that the
following result holds.

Corollary 25. There exists a unique basis m(a, b)a∈N,b∈N of M , adapted to T ′2 and T ′7 in the
following sense:

(i) m(0, 0) = ∆̃;

(ii) T ′2m(a, b) = m(a− 1, b) if a > 1, and T ′2m(0, b) = 0;

(iii) T ′7m(a, b) = m(a, b− 1) if b > 1, and T ′7m(a, 0) = 0;

(iv) the first coefficient a1 of m(a, b) is zero except if (a, b) = (0, 0).

Example 26. With simple computations, one checks that

m(0, 1) = ∆̃7 + 2∆̃10,

m(0, 2) = ∆̃13 + 2∆̃16 + ∆̃19 + ∆̃28,

m(1, 0) = ∆̃2,

m(2, 0) = ∆̃4 + 2∆̃7 + ∆̃10,

m(3, 0) = ∆̃8 + 2∆̃11,

m(4, 0) = 2∆̃13 + 2∆̃16 + ∆̃19 + ∆̃28,

m(1, 1) = 2∆̃5 + 2∆̃8 + ∆̃11.

The proof of the theorem rests on two propositions, one concerning deformation theory, and
one of elementary nature, similar to some arguments of Nicolas and Serre about the order of
nilpotence of modular forms.

Proposition 27. The tangent space D̃0
ρ̄(F3[ε]) to the functor D̃0

ρ̄ has dimension 2. This space
has a basis of pseudo-characters τ1, τ2 : GQ,3 → F3[ε] (deforming t̄ = 1 + ω3 : GQ,3 → F3) such
that for i = 1, 2, and any prime ` 6= 3, τi(Frob `) is non-constant (that is, lies in F3[ε] − F3) if
and only if ` ∈ Pi

To state the second proposition, we need two definitions.

Definition 28. For every form f ∈ S(F3), the index of nilpotence of f , denoted by g(f), is the
smallest integer n such that T ′`1 . . . T

′
`n
f = 0 for any choice of n primes `1, . . . , `n (not necessarily

distinct) different form 3.

Definition 29. Let k > 1 be an integer. Write k in base 3, that is k =
∑r

i=0 ai3
i, with the

ai ∈ {0, 1, 2}, ar 6= 0. We define the content of k by c(k) =
∑r

i=0 ai2
i.

Let us note for later use the following estimate of c(k).

Lemma 30. One has c(k) 6 22+[log k/log 3], where [log k/log 3] is the integral part of log k/log 3.
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Proof. Let r = [log k/log 3], so that 3r 6 k < 3r+1, and k =
∑r

i=0 ai3
i, with the ai ∈ {0, 1, 2},

ar 6= 0. Then c(k) =
∑r

i=0 ai2
i 6 2

∑r
i=0 2i = 2r+2 − 2 6 2r+2. 2

Proposition 31. The index of nilpotence of the form ∆̃k is at most its content, that is
g(∆̃k) 6 c(k).

A.2 Proof of the theorem assuming Propositions 27 and 31

Let us denote by τuniv : GQ,3→ R̃0
ρ̄ the universal pseudo-character and by m the maximal ideal

of the deformation ring R̃0
ρ̄. For ` 6= 3 a prime, let us denote by t` ∈ R̃0

ρ̄ the element τuniv(Frob `)

and by t′` ∈ m the element t`− tr ρ̄(Frob `). By definition of the map R̃0
ρ̄→ A, one sees that this

map sends t` on T` and t′` on T ′`.
Since t′` ∈m, one can see t′` ∈m/m2 as an element of the cotangent space of Spec R̃0

ρ̄, that is

as a linear form on the tangent space D̃0
ρ̄(F3[ε]). Proposition 27 can be translated as t′`(τ1) 6= 0 if

and only if ` ∈ P1, t′`(τ2) 6= 0 if and only if ` ∈ P2, where τ1, τ2 is the basis of D̃0
ρ̄(F3[ε]) introduced

in the proposition. Hence, it is clear that t′`1 , t
′
`2

form a basis of m/m2 if and only if `1 ∈ P1,

`2 ∈ P2 (up to exchanging `1 and `2). In particular, t′2 and t′7 is a basis of m/m2.
Since the map R0

ρ̄ → A is surjective, it follows that T ′2 and T ′7 generate mA/m
2
A, hence by

Nakayama, generate the topological algebra A. Hence, to show that the morphism F2[[x, y]]→ A
that sends x and T ′2 and y on T ′7 is an isomorphism, it suffices to prove that A has Krull dimension
at least 2.

Thus, dimA/mn
A = dimM [mn

A] = dim{f ∈ M, g(f) 6 n}. By Proposition 31, the latter
space contains all of the forms ∆̃k for c(k) 6 n, hence by Lemma 30 all of the forms ∆̃k

for 22+[log k/log 3] 6 n, in particular for k 6 1
9n

log 3/log 2, k 6≡ 0 (mod 3). As the forms ∆̃k are

linearly independent, one deduces that dimA/mn
A > 2

27n
log 3/log 2. If A was of Krull’s dimension

1 (respectively 0), then dimA/mn
A would be linear in n (respectively constant) for n large enough,

which would contradict the above estimate since log 3/log 2> 1. Therefore, A has Krull dimension
at least 2, hence is isomorphic to F3[[x, y]] by the isomorphism described above, hence has
dimension 2.

A.3 Proof of Proposition 27
It suffices to construct two pseudo-characters τ1 and τ2 satisfying for i = 1, 2, τi(Frob `) is non-
constant if and only if ` ∈ Pi because two such pseudo-characters are clearly linearly independent,
hence a basis of D0

ρ̄(F3[ε]) since this space has dimension 2 by point (ii) of Theorem 22.

A.3.1 Construction of τ2. We define an additive non-trivial character α : GQ,3 →

Gal(Q(µ9)/Q) = (Z/9Z)∗ → F3, by α(1) = α(8) = 0, α(2) = α(7) = 1, and α(4) = α(5) = 2.
(Note that by class field theory, any non-trivial character G → F3 factors through the
quotient Gal(Q(µ9)/Q) of GQ,3 which is cyclic of order 6, hence is either α or −α). Define
τ2 : GQ,3 → F3 by (1 + εα) + ω3(1 − εα). As the sum of two characters GQ,3 → F3[ε]∗, τw
is a pseudo-character of GQ,3 of dimension 2, clearly deforming 1 + ω3. Its determinant is
(1 + εα)× ω3(1− εα) = ω3, hence is constant. Thus, τ2 is an element of D̃0

ρ̄(F3[ε]). One has for
` 6= 3 a prime, τ2(Frob `) = 1 + ω3(`) + εα(`)(1 − ω3(`)). So τ2(`) is non-constant if and only if
α(`) 6= 0 and ω3(`) 6= 1 in F3, that is if and only if ` (mod 9) is not 1 and 8, and ` (mod 3) is
2, which means ` ∈ P2.

A.3.2 Construction of τ1. The splitting field of X3 − 3 in C is L = Q(u, j), where u = 31/3

and j is the cubic root of unity (−1 + i
√

3)/2. The Galois group Gal(L/Q) is isomorphic to the
symmetric group S3 by sending σ ∈ Gal(L/Q) to its action on {u, ju, j2u} which we identify
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with {1, 2, 3} by sending u on 1, uj on 2, and uj2 on 3. With this identification, the character
ω3 : Gal(L/Q)→ (Z/3Z)∗ = {1,−1} is identified with the sign character of S3.

We also identify the multiplicative subgroup µ3(L) = {1, j, j2} of L∗ with the additive
subgroup of F3 by sending 1 on 0, j on 1, j2 on 2. We define a map τ1 : S3 → F3[ε] as in
the third column of the table below:

σ ω3(σ) τ1(σ) 1
2(τ1(σ)2 − τ1(σ2))

Id 1 2 1
(12) −1 0 −1
(13) −1 0 −1
(23) −1 0 −1
(123) 1 2 + ε 1
(132) 1 2 + ε 1

One checks by straightforward computations that τ1 is a pseudo-character on S3 of
dimension 2. (A more conceptual proof can be obtained by the arguments of the proof of the
main theorem in [Bel12b].) The determinant of this pseudo-character has been computed in the
last column of the above table, and is seen to be equal to ω3. Therefore τ1 : G→ Gal(L/Q) =
S3 → F3[ε] is in D0

ρ̄(F3[ε]), and one sees from the table that τ1(Frob `) is non-constant if and
only if Frob ` in S3 is a 3-cycle, that is if and only if Frob ` is an element of sign 1 but not the
identity, that is if and only if ` ≡ 1 (mod 3) but ` does not split in L.

A.4 Sketch of the proof of Proposition 31
We have seen during the proof of Theorem 24, before using Proposition 31, that the ideal mA

was generated by T ′2 and T ′7. Hence, the following lemma holds.

Lemma 32. For f ∈M , the index of nilpotence g(f) of f is the smallest n such that T ′`0 . . . T
′
`n
f =

0 for any choice of primes `0, . . . , `n in the set {2, 7}.
Thus, we are reduced to study the operators T ′2 and T ′7.

Lemma 33 (Nicolas–Serre). One has the following recurrence relations:

T ′2∆̃k = ∆̃T ′2∆̃k−2 − ∆̃3T ′2∆̃k−3 for k > 3,

T7∆̃k =−∆̃T7(∆k−1)− ∆̃2T7(∆̃k−2)− ∆̃3T7(∆̃k−3) + (∆̃4 − ∆̃)T7(∆̃k−4)

− (∆̃5 + ∆̃2)T7(∆̃k−5)− (∆̃6 + ∆̃3)T7(∆̃k−6)

+ (∆̃ + ∆̃4 − ∆̃7)T7(∆̃k−7)− ∆̃8T7(∆̃k−8) for k > 8.

More generally, Nicolas and Serre prove that Tp∆̃
k =

∑p
i=0 cp,i(∆̃)Tp(∆

k−i) for all k > p+ 1,
with the cp,i polynomials of one variable of degree at most i. The proof is similar to that of
[NS12a, Theorem 3.1]. Nicolas has computed the cp,i for small values of p (up to p = 37). The
details have not yet been published.

Definition 34. If 0 6= f =
∑
ak∆̃

k ∈ M , we define the content c(f) of f , as c(f) =
maxk,ak 6=0 c(k). If f = 0 we define c(0) = −∞.

Proposition 35 (Medvedovsky). For every f ∈ M , one has c(T ′2f) 6 c(f) − 1, and c(T ′7f) 6
c(f)− 2.

The proof will appear in Medvedovsky’s thesis.
Let n > c(∆k) and g = T ′`0 . . . T

′
`n

∆̃k = 0. By applying the lemma n + 1 times, one obtains
c(g) < 0, hence c(g) = −∞ and g = 0. This proves Proposition 31.
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