Bull. Austral. Math. Soc. Vol. 50 (1994) [29-39]

THE SUBCOMODULE STRUCTURE OF THE QUANTUM SYMMETRIC POWERS

LARS THAMS

In this paper we study the symmetric powers of quantum GL_n . These are comodules and we give a complete description of the subcomodule structure.

In [3] Doty gives a complete description of the submodule structure for the symmetric powers of the natural module for GL_n . We want to do the same thing for quantum GL_n , that is, determine the complete subcomodule structure of the q-symmetric powers (defined in [2] by Dipper and Donkin).

Throughout the paper we shall look at quantum GL_n defined over some field k. From [2, Theorem 2.1.9] we get a k basis of the q-symmetric powers. Following Doty's idea [3] we shall determine the subcomodule generated by a basis element by relating it to the carry pattern which we shall define, and hence get a complete description of the subcomodule structure. As one would expect, the quantum parameter $q \in k$ will play an important role in this description.

1. Preliminaries

We shall first recall the set-up from [2].

1.1 Let R be a commutative ring, $q \in R$ and $2 \le n \in \mathbb{Z}$. Let $A_q(n)$ be defined as the R-algebra generated by $\{c_{i,j} \mid 1 \le i,j \le n\}$ with the following relations:

$$\begin{split} c_{i,k}c_{j,l} &= qc_{j,l}c_{i,k} &\quad \text{for } i>j \text{ and } k\leqslant l \\ c_{i,k}c_{j,l} &= c_{j,l}c_{i,k} + (q-1)c_{j,k}c_{i,l} &\quad \text{for } i>j \text{ and } k>l \\ c_{i,k}c_{i,l} &= c_{i,l}c_{i,k} &\quad \text{for all } i,k \text{ and } l. \end{split}$$

1.2 For some positive integer r, we denote by I(n,r) the set of $\mathbf{i} = (i_1, \ldots, i_r)$ where $i_j \in \{1, \ldots, n\}$ $(1 \leq j \leq r)$. For $\mathbf{i}, \mathbf{s} \in I(n,r)$ let $c_{\mathbf{i},\mathbf{s}} = c_{i_1,s_1}c_{i_2,s_2}\ldots c_{i_r,s_r} \in A_q(n)$. Let $A_q(n,r)$ denote the subspace of $A_q(n)$ spanned by $\{c_{\mathbf{i},\mathbf{s}} \mid \mathbf{i}, \mathbf{s} \in I(n,r)\}$.

Received 13th September, 1993.

I would like to thank S. Donkin for his help and for making me interested in this problem.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

Then $A_q(n)$ is a graded R-algebra $A_q(n) = \bigoplus_{0 \le r} A_q(n,r)$ and it is free as an R-module. The graded part $A_q(n,r)$ has R-basis $\{c_{\mathbf{i},\mathbf{s}} \mid (\mathbf{i},\mathbf{s}) \in I^2(n,r)^+\}$. (See [2] for a definition of $I^2(n,r)^+$. It means that a basis element will be of the form $c_{1,1}^{a_{1,1}}c_{1,2}^{a_{1,2}}\ldots c_{1,n}^{a_{1,n}}c_{2,1}^{a_{2,1}}\ldots c_{n,n}^{a_{n,n}}$ where $a_{ij} \ge 0$ for all i,j and $\sum_{i,j} a_{i,j} = r$.)

- 1.3 $A_q(n)$ is made into a bialgebra with comultiplication $\Delta(c_{i,s}) = \sum_{j=1}^n c_{i,j} \otimes c_{j,s}$ and counit $\varepsilon(c_{i,s}) = \delta_{i,s}$. For every $0 \leq r \in \mathbb{Z}$, $A_q(n,r)$ is a subcoalgebra of $A_q(n)$
- 1.4 Let E be the free R-module of dimension n with basis $\{e_1,\ldots,e_n\}$. This means $E=Re_1\oplus\ldots\oplus Re_n$. Let $E^{\otimes r}$ denote the r-fold tensor product of E with itself. For $\mathbf{i}=(i_1,i_2,\ldots,i_r)\in I(n,r)$ let $e_{\mathbf{i}}=e_{i_1}\otimes e_{i_2}\otimes\ldots\otimes e_{i_r}\in E^{\otimes r}$. Now $E^{\otimes r}$ becomes a right $A_q(n,r)$ -comodule with structure map $\tau_r:E^{\otimes r}\to E^{\otimes r}\otimes A_q(n,r)$ defined by $\tau_r(e_{\mathbf{s}})=\sum_{\mathbf{i}\in I(n,r)}e_{\mathbf{i}}\otimes c_{\mathbf{i},\mathbf{s}}$. Let T(E) denote the tensor algebra $T(E)=\oplus_{0\leqslant r}E^{\otimes r}$, which is also a right $A_q(n)$ -comodule.
- 1.5 There is also a left comodule structue on $E^{\otimes r}$, but to distinguish this from the right comodule it is given the name $V^{\otimes r}$, that is, V is the free R-module with basis $\{v_1,\ldots,v_n\}$ and $V^{\otimes r}$ becomes a left $A_q(n,r)$ -comodule with structure map $\sigma_r:V^{\otimes r}\to A_q(n,r)\otimes V^{\otimes r}$ defined by $\sigma_r(v_{\mathbf{s}})=\sum_{\mathbf{i}\in I(n,r)}c_{\mathbf{i},\mathbf{s}}\otimes v_{\mathbf{i}}$ (again $v_{\mathbf{i}}=v_{i_1}\otimes\ldots\otimes v_{i_r}\in V^{\otimes r}$ for $\mathbf{i}=(i_1,\ldots,i_r)\in I(n,r)$). The tensor algebra T(V) is a left $A_q(n)$ -comodule.
- 1.6 The ideal $\langle e_i \otimes e_j e_j \otimes e_i \mid 1 \leq i, j \leq n \rangle$ is a subcomodule of T(E). By $S_q(E)$ we denote the factor comodule. The ideal $\langle q(v_i \otimes v_j) v_j \otimes v_i \mid 1 \leq i < j \leq n \rangle$ is a subcomodule of T(V). By $S_q(V)$ we denote the factor comodule.

THEOREM. [2, 2.1.9]

- (i) $S_q(E)$ is a graded algebra $S_q(E) = \bigoplus_{0 \leqslant r} S_q^r(E)$. The graded part $S_q^r(E)$ is R-free with basis $\{e_{i_1} \dots e_{i_r} \mid i_1 \leqslant i_2 \leqslant \dots \leqslant i_r\}$.
- (ii) $S_q(V)$ is a graded algebra $S_q(V) = \bigoplus_{0 \leq r} S_q^r(V)$. The graded part $S_q^r(V)$ is R-free with basis $\{v_{i_1} \dots v_{i_r} \mid i_1 \leq i_2 \leq \dots \leq i_r\}$.

(Here $e_{i_1} \ldots e_{i_r}$ (respectively $v_{i_1} \ldots v_{i_r}$) denotes the image of $e_{i_1} \otimes \ldots \otimes e_{i_r}$ (respectively $v_{i_1} \otimes \ldots \otimes v_{i_r}$) in $S_q^r(E)$ (respectively $S_q^r(V)$).

We shall call $S_q^r(E)$ and $S_q^r(V)$ the q-symmetric powers of E and V.

2. CALCULATIONS

We want to give a complete description of the subcomodule structure of $S_q^r(E)$ and $S_q^r(V)$. To do so we shall, following Doty [3], determine the subcomodule generated by some basis element $e_{i_1} \ldots e_{i_r} \in S_q^r(E)$ (respectively $v_{i_1} \ldots v_{i_r} \in S_q^r(V)$). From now on we shall assume that R is some field k.

2.1 For $s \in \mathbb{Z}$ let $[s] = (q^s - 1)/(q - 1) \in k$. We have that $[s] = 1 + q + \dots q^{s-1}$. For $s, t \in \mathbb{N}$ let $\begin{bmatrix} s \\ t \end{bmatrix} = ([s][s-1]\dots[s-t+1])/([1][2]\dots[t])$ (called the Gaussian polynomial). Now we get:

LEMMA. Let $s, t \in \mathbb{N}$.

- (i) If q is a non root of unity then $\begin{bmatrix} s \\ t \end{bmatrix} \neq 0$ for all $t \leqslant s$.
- (ii) If q is an l^{th} root of unity, then write $s = s_1 l + s_0$, $t = t_1 l + t_0$ where $0 \le t_0, s_0 < l$. Then we have

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{pmatrix} s_1 \\ t_1 \end{pmatrix} \begin{bmatrix} s_0 \\ t_0 \end{bmatrix}$$

where $\binom{s_1}{t_1}$ is the ordinary binomial coefficient. Furthermore we have that

$$\begin{bmatrix} s_0 \\ t_0 \end{bmatrix} \neq 0 \Leftrightarrow s_0 \geqslant t_0.$$

Proof:

- (i) This is clear.
- (ii) This is proved by induction on t using that

$$\begin{bmatrix} s \\ t \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} = \begin{bmatrix} s \\ t-1 \end{bmatrix} \begin{bmatrix} s-t+1 \\ 1 \end{bmatrix}.$$

For more information about Gaussian polynomials see [1].

2.2 We shall first consider the right comodule. As $\tau_1(e_j) = \sum_{i=1}^n e_i \otimes c_{i,j}$ $(1 \le j \le n)$ we have that $e_1^{a_1} \dots e_n^{a_n} \in S_q^r(E)$ is sent to (*)

$$(e_1 \otimes c_{1,1} + \ldots + e_n \otimes c_{n,1})^{a_1} (e_1 \otimes c_{1,2} + \ldots + e_n \otimes c_{n,2})^{a_2} \ldots (e_1 \otimes c_{1,n} + \ldots + e_n \otimes c_{n,n})^{a_n}$$

by τ_r . So we shall determine the term in (*) involving some arbitrary basis element $e_1^{b_1} \dots e_n^{b_n} \in S_q^r(E)$.

LEMMA 2.3. Let $\sum_{i=1}^n b_i = a_j$ ($b_i \in \mathbb{N}$ for all i). The term involving $e_1^{b_1} e_2^{b_2} \dots e_n^{b_n}$ in $(e_1 \otimes c_{1,j} + e_2 \otimes c_{2,j} + \dots + e_n \otimes c_{n,j})^{a_j}$ is equal to

$$e_1^{b_1} e_2^{b_2} \dots e_n^{b_n} \otimes \begin{bmatrix} a_j \\ b_1 \end{bmatrix} \begin{bmatrix} a_j - b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} a_j - b_1 - b_2 \\ b_3 \end{bmatrix} \dots \begin{bmatrix} a_j - b_1 - b_2 \dots - b_{n-1} \\ b_n \end{bmatrix} c_{1,j}^{b_1} c_{2,j}^{b_2} \dots c_{n,j}^{b_n}$$

PROOF: Assume first n=2. So we shall look at $(e_1 \otimes c_{1,j} + e_2 \otimes c_{2,j})^{a_j}$ for $1 \le j \le 2$. If $a_j = 1$ the lemma is true, so by induction we shall assume that the lemma is true for $a_j - 1$. Hence the term involving $e_1^{b_1} e_2^{b_2}$ is equal to

$$\begin{split} \left(e_{1}^{b_{1}}e_{2}^{b_{2}-1}\otimes\begin{bmatrix}a_{j}-1\\b_{1}\end{bmatrix}\begin{bmatrix}b_{2}-1\\b_{2}-1\end{bmatrix}c_{1,j}^{b_{1}}c_{2,j}^{b_{2}-1}\right) & (e_{2}\otimes c_{2,j})\\ &+\left(e_{1}^{b_{1}-1}e_{2}^{b_{2}}\otimes\begin{bmatrix}a_{j}-1\\b_{1}-1\end{bmatrix}\begin{bmatrix}b_{2}\\b_{2}\end{bmatrix}c_{1,j}^{b_{1}-1}c_{2,j}^{b_{2}}\right) & (e_{1}\otimes c_{1,j})\\ &=e_{1}^{b_{1}}e_{2}^{b_{2}}\otimes\left(\begin{bmatrix}a_{j}-1\\b_{1}\end{bmatrix}\begin{bmatrix}b_{2}-1\\b_{2}-1\end{bmatrix}+q^{b_{2}}\begin{bmatrix}a_{j}-1\\b_{1}-1\end{bmatrix}\begin{bmatrix}b_{2}\\b_{2}\end{bmatrix}\right)c_{1,j}^{b_{1}}c_{2,j}^{b_{2}}\\ &=e_{1}^{b_{1}}e_{2}^{b_{2}}\otimes\begin{bmatrix}a_{j}\\b_{1}\end{bmatrix}\begin{bmatrix}b_{2}\\b_{2}\end{bmatrix}c_{1,j}^{b_{1}}c_{2,j}^{b_{2}} \end{split}$$

as $b_2 = a_j - b_1$.

Now for the general case. Using the same argument as above we can first move $c_{1,j}$ to the left, that is, the term involving $e_1^{b_1} \dots e_n^{b_n}$ will be of the form

$$e_1^{b_1} \dots e_n^{b_n} \otimes \begin{bmatrix} a_j \\ b_1 \end{bmatrix} c_{1,j}^{b_1} (\dots)$$

where (...) does not include $c_{1,j}$. Now using the same argument on (...) we can move $c_{2,j}$ to the left in (...) and we have to multiply by $\begin{bmatrix} a_j - b_1 \\ b_2 \end{bmatrix}$. By repeating this we get the lemma.

COROLLARY 2.4. Let $e^{\bf a}=e_1^{a_1}\dots e_n^{a_n},\ e^{\bf b}=e_1^{b_1}\dots e_n^{b_n}\in S_q^r(E).$ The term involving $e^{\bf b}$ in

$$(e_1 \otimes c_{1,1} + \ldots + e_n \otimes c_{n,1})^{a_1} (e_1 \otimes c_{1,2} + \ldots + e_n \otimes c_{n,2})^{a_2} \ldots (e_1 \otimes c_{1,n} + \ldots + e_n \otimes c_{n,n})^{a_n}$$

is a sum of elements of the form

$$e_1^{b_1}e_2^{b_2}\dots e_n^{b_n}\otimes dq^s c_{1,1}^{d_{1,1}}c_{1,2}^{d_{1,2}}\dots c_{1,n}^{d_{1,n}}c_{2,1}^{d_{2,1}}\dots c_{n,n}^{d_{n,n}}$$

where $\sum\limits_{i}d_{i,j}=a_{j},\,\sum\limits_{j}d_{i,j}=b_{i}$, s is some integer and

$$d = \begin{bmatrix} a_1 \\ d_{1,1} \end{bmatrix} \begin{bmatrix} a_1 - d_{1,1} \\ d_{2,1} \end{bmatrix} \cdots \begin{bmatrix} a_1 - d_{1,1} - \cdots - d_{n-1,1} \\ d_{n,1} \end{bmatrix} \begin{bmatrix} a_2 \\ d_{1,2} \end{bmatrix} \\ \cdots \begin{bmatrix} a_n - d_{1,n} - \cdots d_{n-1,n} \\ d_{n,n} \end{bmatrix}.$$

PROOF: From the lemma it follows that we have a sum of elements of the form

$$e_1^{b_1}e_2^{b_2}\dots e_n^{b_n}\otimes d\ c_{1,1}^{d_{1,1}}c_{2,1}^{d_{2,1}}\dots c_{n,1}^{d_{n,1}}c_{1,2}^{d_{1,2}}\dots c_{n,n}^{d_{n,n}}.$$

And as $c_{i,j}c_{s,t} = qc_{s,t}c_{i,j}$ for i > s and j < t the corollary follows.

2.5 Now consider the left comodule case. As $\sigma_1(v_j) = \sum_{i=1}^n c_{j,i} \otimes v_i$ $(1 \leqslant j \leqslant n)$ we have that $v_1^{a_1} \dots v_n^{a_n} \in S_q^r(V)$ is sent to (*)

$$(c_{1,1}\otimes v_1+\ldots+c_{1,n}\otimes v_n)^{a_1}(c_{2,1}\otimes v_1+\ldots+c_{2,n}\otimes v_n)^{a_2}\ldots(c_{n,1}\otimes v_1+\ldots+c_{n,n}\otimes v_n)^{a_n}$$

by σ_r . So we shall describe the term in (*) involving some arbitrary basis element $v_1^{b_1} \dots v_n^{b_n} \in S_q^r(V)$.

LEMMA 2.6. Let $\sum_{i=1}^n b_i = a_j$ ($b_i \in \mathbb{N}$ for all i). Then the term involving $v_1^{b_1} v_2^{b_2} \dots v_n^{b_n}$ in $(c_{j,1} \otimes v_1 + c_{j,2} \otimes v_2 + \dots + c_{j,n} \otimes v_n)^{a_j}$ is equal to

$$c_{j,1}^{b_1}c_{j,2}^{b_2}\dots c_{j,n}^{b_n}\otimes \left[egin{array}{c} a_j\ b_1 \end{array}
ight] \left[egin{array}{c} a_j-b_1\ b_2 \end{array}
ight] \left[egin{array}{c} a_j-b_1-b_2\ b_3 \end{array}
ight] \ \dots \left[egin{array}{c} a_j-b_1-b_2\dots-b_{n-1}\ b_n \end{array}
ight] v_1^{b_1}v_2^{b_2}\dots v_n^{b_n}.$$

PROOF: Assume first n=2. If $a_j=1$ the lemma is true, so by induction we shall assume that the lemma is true for a_j-1 . Hence the term involving $v_1^{b_1}v_2^{b_2}$ is equal to

$$\begin{split} \left(c_{j,1}^{b_1-1}c_{j,2}^{b_2}\otimes \begin{bmatrix} a_j-1\\b_1-1\end{bmatrix}\begin{bmatrix} b_2\\b_2\end{bmatrix}v_1^{b_1-1}v_2^{b_2}\right) & (c_{j,1}\otimes v_1) \\ &+ \left(c_{j,1}^{b_1}c_{j,2}^{b_2-1}\otimes \begin{bmatrix} a_j-1\\b_1\end{bmatrix}\begin{bmatrix} b_2-1\\b_2-1\end{bmatrix}v_1^{b_1}v_2^{b_2-1}\right) & (c_{j,2}\otimes v_2) \\ &= c_{j,1}^{b_1}c_{j,2}^{b_2}\otimes \left(q^{b_2}\begin{bmatrix} a_j-1\\b_1-1\end{bmatrix}\begin{bmatrix} b_2\\b_2\end{bmatrix} + \begin{bmatrix} a_j-1\\b_1\end{bmatrix}\begin{bmatrix} b_2-1\\b_2-1\end{bmatrix}\right)v_1^{b_1}v_2^{b_2} \\ &= c_{j,1}^{b_1}c_{j,2}^{b_2}\otimes \begin{bmatrix} a_j\\b_1\end{bmatrix}\begin{bmatrix} b_2\\b_2\end{bmatrix}v_1^{b_1}v_2^{b_2} \end{split}$$

as $b_2 = a_j - b_1$.

Now for the general case the lemma follows by the same argument as in 2.3.

COROLLARY 2.7. Let $v^a=v_1^{a_1}\dots v_n^{a_n}, v^b=v_1^{b_1}\dots v_n^{b_n}\in S_q^r(V)$. The term involving v^b in

$$(c_{1,1} \otimes v_1 + \ldots + c_{1,n} \otimes v_n)^{a_1} (c_{2,1} \otimes v_1 + \ldots + c_{2,n} \otimes v_n)^{a_2} \ldots (c_{n,1} \otimes v_1 + \ldots + c_{n,n} \otimes v_n)^{a_n}$$

is a sum of elements of the form

$$c_{1,1}^{d_{1,1}}c_{1,2}^{d_{1,2}}\ldots c_{1,n}^{d_{1,n}}c_{2,1}^{d_{2,1}}\ldots c_{n,n}^{d_{n,n}}\otimes d\ q^{s}\ v_{1}^{b_{1}}v_{2}^{b_{2}}\ldots v_{n}^{b_{n}}$$

where $\sum_{j} d_{i,j} = a_i$, $\sum_{i} d_{i,j} = b_j$, s is some integer and

$$d=\left[egin{array}{c} a_1\ d_{1,1} \end{array}
ight]\left[egin{array}{c} a_1-d_{1,1}\ d_{1,2} \end{array}
ight]\ldots\left[egin{array}{c} a_1-d_{1,1}-\ldots-d_{1,n-1}\ d_{1,n} \end{array}
ight]\left[egin{array}{c} a_2\ d_{2,1} \end{array}
ight] \ \cdots \left[egin{array}{c} a_n-d_{n,1}-\ldots d_{n,n-1}\ d_{n,n} \end{array}
ight].$$

PROOF: From the lemma it follows that we have a sum of elements of the form

$$c_{1,1}^{d_{1,1}}c_{1,2}^{d_{1,2}}\dots c_{1,n}^{d_{1,n}}c_{2,1}^{d_{2,1}}\dots c_{n,n}^{d_{n,n}}\otimes d\ v_{1}^{d_{1,1}}v_{2}^{d_{1,2}}\dots v_{n}^{d_{1,n}}v_{1}^{d_{2,1}}\dots v_{n}^{d_{n,n}}.$$

And as $v_i v_j = q v_j v_i$ for $1 \le j < i \le n$ the corollary follows.

2.8 Let $e^{\mathbf{a}}, e^{\mathbf{b}}$ (respectively $v^{\mathbf{a}}, v^{\mathbf{b}}$) be basis elements of $S_q^r(E)$ (respectively $S_q^r(V)$). From 2.4 and 2.7 it follows that

$$e^{\mathbf{b}} \in \langle e^{\mathbf{a}} \rangle \iff v^{\mathbf{b}} \in \langle v^{\mathbf{a}} \rangle$$

where $\langle e^{\mathbf{a}} \rangle$ (respectively $\langle v^{\mathbf{a}} \rangle$) is the subcomodule of $S_q^r(E)$ (respectively $S_q^r(V)$) generated by $e^{\mathbf{a}}$ (respectively $v^{\mathbf{a}}$). Hence the subcomodule structure of $S_q^r(E)$ and $S_q^r(V)$ is the same. From now on we shall only consider the right comodule case.

3. THE MAIN RESULT

In this section we shall give a complete description of the subcomodule structure of the q-symmetric powers. In 2.4 we have described the subcomodule of $S_q^r(E)$ generated by some basis element. Now we want to know when the coefficient d in 2.4 is non zero. We shall do so by introducing the carry pattern. If the quantum parameter $q \in k$ is a non root of unity, then there is no work to be done (see 3.1). If, however, q is a root of unity, then we shall consider two cases: when k is of characteristic 0 (see 3.2—3.6) and when k is of prime characteristic (see 3.7—3.10).

THEOREM 3.1. Let q be a non root of unity. Then $S_q^r(E)$ is irreducible for each $r \geqslant 0$.

PROOF: By 2.1 and 2.4 it follows that the subcomodule generated by some arbitrary basis element $e^{a} \in S_{q}^{r}(E)$ is equal to $S_{q}^{r}(E)$.

From now on we shall assume that q is an l'th root of unity $(l \ge 1)$.

3.2 Assume first that k is of characteristic 0. Let $e^{\mathbf{a}} = e_1^{a_1} e_2^{a_2} \dots e_n^{a_n} \in S_q^r(E)$. For each $1 \leq i \leq n$ write $a_i = a_i^1 l + a_i^0$ where $0 \leq a_i^0 < l$. Furthermore let $r = r_1 l + r_0$ where $0 \leq r_0 < l$.

DEFINITION: $C(e^{a})$ is defined by

$$\sum_{i=1}^n a_i^0 = C(e^{\mathbf{a}})l + r_0$$

Following [3], we call $C(e^{\mathbf{a}})$ the carry pattern of $e^{\mathbf{a}}$.

PROPOSITION 3.3. Let $e^{\mathbf{a}}=e_1^{a_1}e_2^{a_2}\dots e_n^{a_n}$, $e^{\mathbf{b}}=e_1^{b_1}e_2^{b_2}\dots e_n^{b_n}\in S_q^r(E)$. Then $C(e^{\mathbf{a}})\geqslant C(e^{\mathbf{b}})$ if and only if there exists $d_{i,j}\in \mathbb{N}$ $(1\leqslant i,j\leqslant n)$ such that $\sum_{i=1}^n d_{i,j}=a_j$, $\sum_{j=1}^n d_{i,j}=b_i$ and

$$\begin{bmatrix} a_1 \\ d_{1,1} \end{bmatrix} \begin{bmatrix} a_1 - d_{1,1} \\ d_{2,1} \end{bmatrix} \cdots \begin{bmatrix} a_1 - d_{1,1} - \ldots - d_{n-1,1} \\ d_{n,1} \end{bmatrix} \begin{bmatrix} a_2 \\ d_{1,2} \end{bmatrix} \\ \cdots \begin{bmatrix} a_n - d_{1,n} - \ldots d_{n-1,n} \\ d_{n,n} \end{bmatrix} \neq 0.$$

PROOF: Assume $C(e^{\mathbf{a}}) \geqslant C(e^{\mathbf{b}})$. This means that $\sum_{i=1}^{n} a_i^0 \geqslant \sum_{i=1}^{n} b_i^0$. For $1 \leqslant i, j \leqslant n$ we shall define $d_{i,j}$. If $b_i \leqslant a_i$ set $d_{i,i} = b_i^1 l + b_i^0$ if $b_i^0 \leqslant a_i^0$ and set $d_{i,i} = b_i^1 l + a_i^0$ otherwise. If $b_i > a_i$ set $d_{i,i} = a_i^1 l + a_i^0$ if $b_i^0 > a_i^0$ and set $d_{i,i} = a_i^1 l + b_i^0$ otherwise. As $\sum_{i=1}^{n} a_i^0 \geqslant \sum_{i=1}^{n} b_i^0$ we see by 2.1 (ii) that we can choose $d_{i,j}$ $(i \neq j)$ such that we get the statement in the proposition.

Assume now that there exist $d_{i,j} \in \mathbb{N}$ $(1 \leq i, j \leq n)$ as required in the proposition. For each $d_{i,j}$ we write $d_{i,j} = d_{i,j}^1 l + d_{i,j}^0$ where $0 \leq d_{i,j}^0 < l$. For each $1 \leq j \leq n$

$$\begin{bmatrix} a_j \\ d_{1,j} \end{bmatrix} \begin{bmatrix} a_j - d_{1,j} \\ d_{2,j} \end{bmatrix} \cdots \begin{bmatrix} a_j - d_{1,j} - \cdots - d_{n-1,j} \\ d_{n,j} \end{bmatrix} \neq 0.$$

Hence by 2.1 (ii) we have $a_j^0 \ge d_{1,j}^0 + \ldots + d_{n,j}^0$. But as $\sum_{i=1}^n d_{i,j} = a_j$ we must then have that

$$a_j^0 = d_{1,j}^0 + \ldots + d_{n,j}^0$$

for each $1 \leqslant j \leqslant n$. Now as $\sum_{j=1}^{n} d_{i,j} = b_i$ we have (for $1 \leqslant i \leqslant n$) that $\sum_{j=1}^{n} d_{i,j}^0 = n_i l + b_i^0$ where $n_i \geqslant 0$. Hence

$$\sum_{j=1}^{n} a_{j}^{0} = \sum_{j=1}^{n} \sum_{i=1}^{n} d_{i,j}^{0} = \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i,j}^{0} = \sum_{i=1}^{n} (n_{i}l + b_{i}^{0}) = \sum_{i=1}^{n} n_{i}l + \sum_{i=1}^{n} b_{i}^{0},$$

that is,

$$C(e^{\mathbf{a}}) \geqslant C(e^{\mathbf{b}}).$$

3.4 From 2.4 and 3.3 we immediately get

COROLLARY. Let $e^{\bf a}$, $e^{\bf b}$ be basis elements in $S_a^r(E)$. Then

$$e^{\mathbf{b}} \in \langle e^{\mathbf{a}} \rangle \Leftrightarrow C(e^{\mathbf{b}}) \leqslant C(e^{\mathbf{a}}).$$

3.5 Let C(r) denote the set of numbers which occur as the carry pattern for some $e^{\mathbf{a}} \in S_q^r(E)$. For $c \in C(r)$ let L(c) denote the span of all $e^{\mathbf{a}} \in S_q^r(E)$, where $C(e^{\mathbf{a}}) = c$. Let $T(c) = \sum_{c' \leq c} L(c')$. The complete description of the subcomodule structure of $S_q^r(E)$ is then an easy consequence of 3.4:

THEOREM. We have a 1-1 correspondence

$$c \leftrightarrow T(c)$$

between the set of carry patterns C(r) and the set of subcomodules of $S_q^r(E)$.

In particular, the irreducible composition factors of $S_q^r(E)$ are in one-to-one correspondence with L(c) for $c \in C(r)$. It follows that all composition factors must have multiplicity one. (In fact we know this already by [2], as all weight multiplicities are 0 or 1.)

3.6 It is easy to determine the carry patterns which occur: Let $r = r_1 l + r_0$ where $0 \le r_0 < l$. Let $M = r_1$ if r < (n-1)(l-1) and otherwise let

$$M = \left\{ egin{array}{ll} n-1 & ext{if } r_0+n-1 < l \ n-2 & ext{otherwise} \end{array}
ight.$$

Then we have that $C(r) = \{0, 1, ..., M\}$. By 3.5 the subcomodule structure of $S_q^r(E)$ can then be described by

$$S_q^r(E) = T(M)$$

$$T(M-1)$$

$$\vdots$$

$$T(0)$$

3.7 Let now k be of prime characteristic p. Let $e^n = e^{a_1} \dots e^{a_n} \in S_q^r(E)$, and for each $1 \le i \le n$ write $a_i = a_i^1 l + a_i^0$ where $0 \le a_i^0 < l$. Furthermore let $a_i^1 = \sum_j c_i^{1,j} p^j$ where $0 \le a_i^{1,j} < p$ for all i,j. Let $r = r_1 l + r_0$, $0 \le r_0 < l$ and $r_1 = \sum_j r_1^j p^j$, $0 \le r_1^j < p$ for all j.

Let $C_0(e^{\mathbf{a}})$ be defined by

$$\sum_{i=1}^n a_i^0 = C_0(e^a)l + r_0,$$

and for $t \geqslant 1$ define $C_t(e^a)$ by

$$C_{t-1}(e^{\mathbf{a}}) + \sum_{i=1}^{n} a_i^{1,t-1} = C_t(e^{\mathbf{a}})p + r_1^{t-1}.$$

DEFINITION: The carry pattern of e^{a} is defined to be

$$C(e^{\mathbf{a}}) = (C_0(e^{\mathbf{a}}), C_1(e^{\mathbf{a}}), \dots, C_m(e^{\mathbf{a}}))$$

where m is the biggest j such that $r_1^j > 0$.

The carry pattern is defined as a mixture of the carry pattern in characteristic 0, and the carry pattern defined in [3].

EXAMPLE. Let n = 3, r = 99, p = 3 and l = 5. Let $e^{a} = e_{1}^{29} e_{2}^{37} e_{3}^{33}$ and $e^{b} = e_{1}^{26} e_{2}^{52} e_{3}^{21}$. Then we have that

$$C(e^{\mathbf{a}}) = (1,1,2)$$
 and $C(e^{\mathbf{b}}) = (0,1,1)$.

3.8 Let C(r) be the set of carry patterns which occur as carry pattern for some $e^a \in S_q^r(E)$. We let C(r) be partially ordered by $c \leq c'$ if and only if $c_i \leq c'_i$ for all i (where $c = (c_0, c_1, \ldots c_m)$ and $c' = (c'_o, c'_1, \ldots, c'_m)$).

PROPOSITION. Let $e^{\mathbf{a}}, e^{\mathbf{b}}$ be basis elements of $S_q^{\tau}(E)$. Then

$$e^{\mathbf{b}} \in \langle e^{\mathbf{a}} \rangle \Leftrightarrow C(e^{\mathbf{b}}) \leqslant C(e^{\mathbf{a}}).$$

PROOF: The proposition can be proved as in 3.3. If $s, t \in \mathbb{N}$ then by 2.1

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{pmatrix} s_1 \\ t_1 \end{pmatrix} \begin{bmatrix} s_0 \\ t_0 \end{bmatrix}$$

where $s = s_1 l + s_0$, $t = t_1 l + t_0$, $0 \le s_0, t_0 < l$.

 $C_0(e^{\mathbf{a}})$ plays exactly the same role as the carry pattern does in the characteristic 0 case, and can be handled as in the proof of 3.3. But we have to be a bit more careful with the binomial coefficient. We have that

$$\binom{s_1}{t_1} \equiv \binom{s_1^m}{t_1^m} \binom{s_1^{m-1}}{t_1^{m-1}} \dots \binom{s_1^0}{t_1^0} \mod p$$

where $s_1 = \sum_j s_1^j p^j$, $t_1 = \sum_j t_1^j p^j$, $0 \leqslant s_1^j, t_1^j < p$ for all j.

The proof of 3.3 uses the fact that $\begin{bmatrix} s_0 \\ t_0 \end{bmatrix} \neq 0 \Leftrightarrow s_0 \geqslant t_0$. As $\binom{s_1^j}{t_1^j} \neq 0 \Leftrightarrow t_1^j \leqslant s_1^j$ the present proposition can be proved using the proof of 3.3 on each level of the *p*-adic expansion.

3.9 For $c \in C(r)$ let L(c) denote the span of all $e^{\mathbf{a}} \in S_q^r(E)$, where $C(e^{\mathbf{a}}) = c$. For a subset $B \subset C(r)$ let $T(B) = \sum_{c \in B} L(c)$. We say that the subset B is order closed if it contains the predecessors of all its elements under the given order relation. As a consequence of 3.8 we now have a complete description of the subcomodule structure of $S_q^r(E)$.

THEOREM. We have a 1-1 correspondence

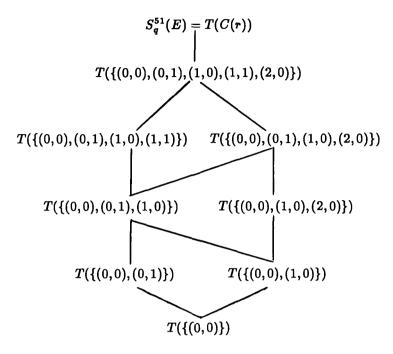
$$B \leftrightarrow T(B)$$

between the set of order closed subsets of C(r) and the set of subcomodules of $S_q^r(E)$.

In particular, the irreducible composition factors of $S_q^r(E)$ are in one-to-one correspondence with L(c) for $c \in C(r)$, and all composition factors have multiplicity one.

3.10 We can determine C(r) and hence the order closed subsets of C(r) by combining 3.6 with Lemma 3 in [3].

EXAMPLE. Let n = 3, l = 5, p = 7 and r = 51 = (1 p + 3)l + 1. Then $C(r) = \{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)\}$. Hence by 3.9 the subcomodule structure of $S_q^{51}(E)$ can be described by



REFERENCES

- [1] G.E. Andrews, The theory of partitions, Encyclopedia Math. 2 (Addison-Wesley, 1976).
- [2] R. Dipper, S. Donkin, 'Quantum GLn', Proc. London Math. Soc. 63 (1991), 165-211.
- [3] S. Doty, 'Submodules of symmetric powers of the natural module for GL_n ', in Contemp. Math. 88 (American Mathematical Society, Providence, R.I., 1989), pp. 185-191.

School of Mathematics and Statistics The University of Sydney New South Wales 2006 Australia