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In this work, the dynamics of two-dimensional rotating Janus drops in shear flow is studied
numerically using a ternary-fluid diffuse interface method. The rotation of Janus drops
is found to be closely related to their deformation. A new deformation parameter D is
proposed to assess the significance of the drop deformation. According to the maximum
value of D (D), the deformation of rotating Janus drops can be classified into linear
deformation (D;,qy < 0.2) and nonlinear deformation (D, > 0.2). In particular, Dy,
in the former depends linearly on the Reynolds and capillary numbers, which can be
interpreted by a mass—spring model. Furthermore, the rotation period ¢z of a Janus drop is
found to be more sensitive to the drop deformation than to the aspect ratio of the drop at
equilibrium. By introducing a corrected shear rate and an aspect ratio of drop deformation,
a rotation model for Janus drops is established based on Jeffery’s theory for rigid particles,
and it agrees well with our numerical results.
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1. Introduction

Particle-laden flows are seen widely in nature and industrial processes, such as suspensions
(Brandt & Coletti 2022), weather forecasting (Li et al. 2022) and deep-sea mining (James,
Mingotti & Woods 2022). To investigate these complicated multi-phase flows, it is crucial
to gain insight into the dynamics at the particle scale so as to interpret the rheological
properties and establish dispersed two-phase flow models (Tsai 2022). Here, the particles
refer to granules, droplets or bubbles, which have either negligible or finite inertia and a
length scale much larger than a micrometre. In particular, suspended particles in a linear
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shear flow serves as a flow model for the study of microscopic behaviour of very dilute
particulate flows, and has been a longstanding topic of research.

It is known that distinct particles experience very different dynamic processes in shear
flows. For example, rigid particles rotate in linear shear flows, and the rotation dynamics
is characterised by the shear rate y and the aspect ratio A of the particle (Leal 1980; Voth
& Soldati 2017). In particular, an analytical solution of the particle rotation was provided
by Jeffery (1922) for ellipsoidal particles, with the assumptions that inertia of both the
fluid and particle are negligible, and that the axis of rotation is one of the principal axes of
the ellipsoid and also parallel to the vorticity of the shear flow (Cox & Mason 1971). The
rotation period 7z and the orientation angle 6 of ellipsoidal particles can be correlated to
y and A by

=21y '(A+ A7), 6(r) =arctan (17 tan(yr/(1+ 271))). (1.1a,b)

Although Jeffery’s theory was obtained for ellipsoidal particles (three-dimensional, 3-D),
it was found to be independent of the scale of the ellipsoid in the vorticity direction
(Zettner & Yoda 2001). Moreover, (1.1a,b) have been shown to give a good prediction
of the rotation period for elliptical cylinders (two-dimensional, 2-D) with finite inertia,
e.g. in experiments (Zettner & Yoda 2001) and numerical simulations (Aidun, Lu & Ding
1998; Ding & Aidun 2000; Li, Ye & Liu 2016). Later, Jeffery’s theory was extended to
the rotation prediction of slender particles by introducing an effective shape ratio (Cox
1971). Different leading-order corrections of finite inertia effect to g of a neutrally buoyant
ellipsoid were also proposed (Mao & Alexeev 2014; Dabade, Marath & Subramanian
2016; Marath & Subramanian 2017). By contrast, droplets/bubbles deform in linear shear
flows, and end up resting in steady flows or breaking up when viscous force exerted by
the surrounding fluid dominates surface tension (Stone 1994). The dynamics of droplets
in shear is characterised by droplet deformation, resulting from the competition among
viscous shear, inertia and surface tension (Singh & Sarkar 2011; Singeetham, Chaithanya
& Thampi 2021; Yi et al. 2022). More specifically, the deformation of a droplet with
finite inertia was shown to be linearly dependent on the viscous force arising from the
surrounding fluid, for both 2-D (Yue et al. 2004; Hu & Adams 2007; Luo, Hu & Adams
2015) and 3-D (Taylor 1932; Liu et al. 2021) droplets with small deformations.

More complicated dispersed phases, such as Janus drops, have attracted the attention of
researchers, due mainly to their wide applications, e.g. biomedicine (Hao et al. 2022), drug
delivery (Song et al. 2021) and material science (Wei et al. 2022). Here, Janus droplets
refer to compound drops consisting of two component droplets (of different fluids) in
contact. Fluid motion for Janus drops with ‘ideal’ shape (spherical with a flat, internal
interface separating the two droplets of equal size) has been analysed theoretically in the
absence of inertia and in the limit of non-deformable interfaces (Shklyaev er al. 2013).
The Janus drops were found to behave as a simple fluid drop or as a solid body with
broken fore and aft symmetry (Diaz-Maldonado & Coérdova-Figueroa 2015). Moreover,
recent simulations indicated that Janus drops in shear may experience periodical rotation
and deformation at the same time, after being formed from the collision between two
equal-sized immiscible droplets (Liu & Park 2022). However, flow mechanisms about the
dynamics of rotating Janus drops in shear remain unclear, e.g. the coupling between drop
deformation and rotation, and the effect of finite inertia on the drop deformation. More
importantly, a unified prediction of the rotation period of solid particles and Janus drops
has not been explored yet.
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Figure 1. (a) A sketch of a Janus drop in shear flow where ¢; is the interfacial angle of fluid 7 at the triple-phase
line where the ternary fluids meet. (b) Convergence study with respect to the most elongated drop with Re = 0.2
and Ca = 0.05. Different curves denote the numerical results with different mesh resolutions: #/R = 0.02
(dash-dotted), 0.01 (dashed) and 0.005 (solid), respectively. The inset shows a zoomed-in view of the interface.

In this work, the dynamics of 2-D Janus drops in shear flow is studied numerically
using a ternary fluid diffuse interface method (Zhang et al. 2016). For simplification of
the flow problems, we focus on only the Janus drops that have two component droplets
with equal size and the same viscosities and surface tensions, as shown in figure 1(a). As
a result, the deformation of Janus drops is expected to be rotationally symmetric. A new
deformation parameter is proposed to describe the deformation pattern of rotating Janus
drops, and different rotation behaviours of Janus drops with small and large deformation
are investigated. The correlation among the shear rate, deformation parameter and rotation
period of Janus drops is analysed based on the numerical results. Consequently, we
establish a theoretical model for rotating Janus drops in a manner similar to that for elliptic
rigid particles.

2. Problem statement and numerical methods
2.1. Problem statement

We consider a 2-D neutrally buoyant Janus drop (with density p) in shear flow (figure 1a).
The Janus drop consists of two immiscible droplets 1 and 2 of equal size TR?, where R
is the effective radius of the droplets. The Janus drop is located in the middle of two flat
plates that move in opposite directions, and is surrounded by fluid 3 in a domain measuring
12R x 12R. The initial flow field is Uy = ((y — 6)y R, 0). The two droplets have the same
viscosity 11, and fluid 3 has viscosity @3. The surface tension coefficient between fluids
i and j is denoted by oy;. In the present study, we assume o013 = 023, and vary the value
of o1 to get different equilibrium shapes of Janus drops. The geometry parameters of
Janus drops are shown in figure 1, including the length of the Janus drop, L, and the
length of the internal interface, B. The orientation angle 6 is defined as the angle at which
the horizontal intersects the line connecting the centres of the two component droplets.
Initially, the Janus drop assumes an equilibrium shape, and the corresponding geometry
parameters are Lo and By, which can be obtained analytically from o, /073 and the volume
2nR2, e.g. Lo = 1.672R and By = 0.966R for o1 = o13. Details of calculation of Ly and
By can be found in Appendix A. The dynamics can be described by two dimensionless
parameters: capillary number Ca = u3yR/o13, and Reynolds number Re = pyR?/u3.
The ranges of dimensionless parameters investigated in this work are 0.01 < Ca < 0.8
and 0.1 < Re < 2. Unless stated otherwise, ;11 = u3 and 012 = o3 are used in the present
study.
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2.2. Numerical methods

A ternary fluid diffuse interface method is used to track the interface evolution (Zhang
et al. 2016). The interfaces are represented by volume fractions of the fluids, C = (Cy, C3),
where C; represents the volume fraction of the ith fluid, and C; 4+ C; + C3 = 1. Time
evolution of C is governed by the dimensionless Cahn—Hilliard equation,

aC

1
— 4+ V.l =— VW — C1C2Cy), 2.1)
Jat Pe

where u is the flow velocity; the chemical potential ¥ = (Y1, ¥2) is defined as
Yi = C) — 1.5C7 +0.5C; — Cn®*V2C;, i=1,2, 2.2)

where the Cahn number Cn represents a dimensionless measure of the thickness of the
diffuse interfaces (Ding, Spelt & Shu 2007). The Cahn number is set to Cn = 0.7h/R,
so that both a relatively narrow diffuse interface and a well-resolved surface tension can
be achieved in simulations, where /4 is the mesh size. The Péclet number Pe represents
the relative significance of convective fluxes to the diffusive fluxes. The diffuse interface
model approaches the sharp interface limit with the vanishing of Cn for Pe ~ Cn~!
(Magaletti et al. 2013), thus Pe = 1/Cn is adopted in the present study. The motion of
fluids is governed by the Navier—Stokes equations and the continuity equation. Details
about numerical implementation can be found in Zhang et al. (2016). The boundary
conditions are: no-slip condition at the upper and bottom boundaries with a constant speed
6y R but in the opposite direction; and periodic condition at the left and right boundaries.
The method has been verified quantitatively previously, e.g. compound drop impacting
onto a flat plate (Liu et al. 2018) and configuration transition of sessile compound
drops (Zhang et al. 2021). The convergence of numerical results with mesh refinement
(h = 0.02R, 0.01R and 0.005R) is also checked (figure 1b), thus 7 = 0.01R is used in the
simulations hereafter.

3. Results and discussion
3.1. Flow regimes of Janus drops in shear flow

Figure 2 shows numerical results of Janus drops and a pure drop in shear flows at
Re = 0.2, with respect to velocity vectors and interface shapes. Two flow regimes can be
identified, namely rotation and breakup, according to the morphology of the Janus drops.
In the rotation regime, the drop rotates periodically, accompanied with continuous drop
deformation (cf. Ca = 0.07 and 0.35 in figures 2a and 2b, respectively). At relatively small
Ca (= 0.07), a vortex persists inside the rotating Janus drop, with rotation period 1z ~
15.8y~1; at a relatively larger Ca (= 0.35), the Janus drop experiences more significant

deformation and a longer rotation period (tg ~ 42.8y~!). The flow features are also
different: only one vortex when the drop is squeezed the most, which also corresponds to
the moment of fast rotation; moreover, we can see one vortex contained in each component
droplet at the maximum elongation, which implies that the Janus drop rotates very slowly
at this moment. As shown in the supplementary movies available at https://doi.org/10.
1017/3fm.2023.963, the rotation dynamics of the Janus drop at Ca = 0.35 is more closely
coupled with its deformation than that at Ca = 0.07. When Ca 1is increased further (e.g.
Ca = 0.40), the Janus drop could elongate continuously and end up with the separation of
the two component droplets (see figure 2c¢), i.e. the breakup regime. It is noteworthy that
the behaviour of Janus drops in shear is remarkably different from that of pure drops. For
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Figure 2. Dynamics of Janus drops and a pure drop in shear flow at Re = 0.2. (a) Rotating Janus drop
at Ca = 0.07. The snapshots from (ai-aiv) correspond to times yt = 5.4,10.3, 13.3, 18.2, respectively.
(b) Rotating Janus drop at Ca = 0.35. The snapshots are yt = 11.3,24.7,32.7, 46.1 for (bi-biv), respectively.
(c¢) Breakup of Janus drops at Ca = 0.40. The snapshots correspond to yt = 8.0 and 30.9, respectively.
(d) Deformed pure drop (of size 27R?) in shear flow at Ca = 0.07. The reference velocity is shown in (a1).

example, a pure drop (of the same size as the Janus drop, 2mR?) at Ca = 0.07 is elongated
by shear flow, and moreover, its eventual shape does not change with time (see figure 2d).

Figure 3(a) shows the dynamics of a rotating Janus drop at Re = 0.2 and Ca = 0.07,
with respect to the evolution of L and B. We can see that L and B evolve in an anti-phase
manner, which means that the maximum value of L (B) and the minimum value of B
(L) occur at the same time. The deformation dynamics of the Janus drop is shown in
figure 3(b), with respect to the averaged values (L and B) of the geometry parameters as a
function of Ca for different Re. We find L ~ Ly and B ~ By at small Ca (e.g. Ca < 0.1),
and L > Ly and B > By at relatively large Ca. Herein, we refer to the former as linear
deformation, and the latter as nonlinear deformation.

In order to assess quantitatively the deformation and rotation of Janus drops, we define

a new deformation parameter,

_ BoL—LyB

= —. (3.1)
BoL + LoB
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Figure 3. (a) Temporal evolution of L and B at Re = 0.2 and Ca = 0.07. (b) Numerical results for L and B for
different Re: 0.1 ((J), 0.2 (V), 0.5 (A), 1.0 (¢) and 2.0 (>).

It is straightforward to get D = 0 for a Janus drop at equilibrium such that the maximum
value of D, D4y, occurs at the maximum elongation of the Janus drop and yields

_ (L4 AL)By — (B— AB)Ly
" (L4 AL)Bo + (B — AB)Ly

(3.2)

Figure 4 presents the variation of D, the rotation velocity w (= df/dr) and the surface
energy E; of Janus drops in one rotation period with respect to the phase ¢ at Re = 0.2
and different Ca, including typical cases of drops with linear deformation (Ca = 0.07)
and nonlinear deformation (Ca = 0.35). Here, E; = f g0 dl, where S is the area of the
drop surface; because o012 = 013 = 023 in this case, E; is determined solely by the total
area of the drop surface. Several observations can be made about figure 4. First, the
variation of w for drops with linear deformation is close to a harmonic function, and has a
noticeable phase difference from D. By contrast, the variation of w for drops with nonlinear
deformation deviates significantly from harmonic functions, and appears to synchronize
with the change of D. In particular, o reaches its peak value at the smallest D, and reaches
its lowest value (close to zero) at the largest D (namely D,,,,). Second, the occurrence of
Dy coincides with the apex of Es. However, the smallest D corresponds not to the lowest
Eg, but to the second peak of E;. Note that the lowest Eg corresponds to D ~ (. From
the observations above, we can see that the rotation of Janus drops is coupled with drop
deformation, and the coupling is strengthened with increasing Ca. Third, the compression
process (D < 0) is longer than the elongation one (D > 0). This tendency is intensified in
the regime of nonlinear deformation.

3.2. Deformation of rotating Janus drops

Deformation of Janus drops reflects the balance between viscous shear, interfacial tension
and drop inertia. Figure 5(a) shows that AL of all rotating Janus drops can be correlated
with Re and Ca by

AL
3 o (1 4+ B Re) Ca, (3.3)
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Figure 4. Variation of w, D and E; as functions of phase ¢ (= # — 1/2) in one rotation period, with Re = 0.2
and two different Ca: (a) Ca = 0.07 and (b) Ca = 0.35. The variation of w (dotted line) is close to a harmonic
function (dashed line). The insets show snapshots of the interfacial shapes of the Janus drops at the extreme

points of Eg.
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Figure 5. (a) Variation of AL as a function of (1 + B Re) Ca on a log-log scale. Variation of AB is shown
in the inset. Different symbols indicate various Reynolds numbers Re: 0.1 ((J), 0.2 (V), 0.5 (A), 1.0 (¢) and
2.0 (). (b) Dpqy as a function of (1 + B Re) Ca. The solid line represents the (3.5) with g = 0.3.

where = 0.3 is a fitting parameter. Similarly, AB/R is found to have the same
proportionality as in (3.3); see the inset of figure 5(a). Moreover, the value of g (= 0.3) is
also the same for AB.

To understand the correlation between AL, Re and Ca in (3.3), we model the
deformation of Janus drops by a one-dimensional mass—spring system. In this system, the
viscosity and inertia of the drop play the roles of the damping elements and the mass, and
the surface tension plays the role of the spring. Given the deviation of a Janus drop from

its original shape as L(f) — L, the scales of inertia, viscous damping and surface tension
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of the Janus drop can be written as pR>L, uRL and o (L — L), respectively. Therefore, the
mass—spring system can be expressed as

PRL + uRL + o (L — L) ~ uR*y + pR*y?, (3.4)

where the two terms on the right-hand side represent the effects of viscous stress and
pressure exerted by the surrounding fluid, respectively. Note that L has scale AL/ZIZe

and g > y~!. Therefore, the effect of drop inertia (~ pR3 AL th < pR3 ALp?) is
comparatively negligible. In addition, when the Janus drops are most elongated, we have
L=0 and L — L = AL (by definition). Consequently, at this particular moment, (3.4)
can be simplified in dimensionless form as AL/R ~ Ca + Re Ca. We note that on the
right-hand side of (3.4), the difference in the effective action area between the viscous
stress and the pressure is not taken into account. If considering this geometry effect further,
then we have AL/R (1 + B Re) Ca, where B is a geometry factor related to the shape of
Janus drops. The value of § is more or less a constant as indicated by the numerical results
(see figure 5a).

Figure 5(b) shows the numerical results of Dy, as a function of (1 4+ B Re) Ca on a
log-log scale, including those of pure drops at Re = 0.1. The results of stationary pure
drops and rotating Janus drops at the maximum elongation collapse onto a single curve.
Moreover, D,y is proportional to (1 + 8 Re) Ca for D,,,, < 0.2. This can be explained by
simplifying the maximum value of D for Janus drops with linear deformation (denoted by
Dﬁm). Because of L ~ Lo, B ~ By and |[By AL — Ly AB| < 2LyBy (which can be derived

from Dy < 1), we can obtain DL~ (AL/Ly + AB/By)/2. Given the correlation of

max

AL and AB with Re and Ca, we can obtain directly
L
Dy & (14 B Re) Ca. 3.5)

Rotating Janus drops can thus be classified quantitatively according to the value of D4y,
1.e. Dy < 0.2 for linear deformation, and D,,,,; > 0.2 for nonlinear deformation. More
precisely, the linear dependence of D,y on Re and Ca holds for (1 + 0.3 Re) Ca < 0.1
in the present study. We note that the linear relation in (3.5) is also found to be valid
for Janus drops with different initial shapes (by changing o12/013), in the case of small
deformations.

3.3. Coupling between rotation period and drop deformation

Figure 6(a) shows the variation of ¢z for Janus drops at Re = 0.2 with different equilibrium
shape (measured by Ly/By). For Janus drops with linear deformation (e.g. Ca = 0.02),
tg increases only slowly with Ly/Bo, which is very different from the effect of aspect
ratio of particles on fg, as given in (l.1a,b). By contrast, a quick increase of fg with
Lo/By is observed for those with nonlinear deformation (e.g. Ca = 0.1 and Ly/Bgy > 2).
Therefore, for Janus drops, the change of aspect ratio due to drop deformation determines
the rotation period, rather than the equilibrium shape of the drop. Figures 6(b) and 6(c)
show the variation of 7z and D,,,, for Janus drops with different viscosity. At low Ca
(< 0.1), tg and D4, maintain more or less the same value, although the viscosity of Janus
drops undergoes a change of two orders in magnitude. At relatively high Ca (> 0.1), the
Janus drop with higher viscosity (e.g. ©1/¢3 = 10) can resist the shear flow with less
deformation, leading to an insignificant increase of D,y (and tg) with Ca. Figure 7(a)
shows the variation of 7z with Ca at different Re. At the same Re, tg maintains an
approximately constant value at low Ca, and increases rapidly with Ca at relatively large
Ca (i.e. for drops with nonlinear deformation).
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Figure 6. (a) Variation of tg for Janus drops with different Lo/Bg at Re = 0.2 and p1/pu3 = 1. The empty
symbols represent the nonlinear deformation, and the filled symbols represent the linear deformation. Variation
of (b) tg and (¢) Dy at Re = 0.2 for Ly/Bo (= 1.732) and various w1 /u3: 0.1 ((J), 0.5 (A), 1 (V), 2 (O) and
10 (O).
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Figure 7. (a) Rotating period as a function of Ca, with @1 = u3 and various Re. (b) The comparison of
tr between numerical results in (a) and theoretical prediction of (3.8) (denoted by the solid line). The inset
shows the results for different 11/u3 with Re = 0.2. In (a,b), the filled and empty symbols denote the cases
Dypax < 0.2 and Dyygy > 0.2, respectively.

The rotation of Janus drops is similar to that of particles, except for flow slip at the
interfaces and deformable shape. The slip effect at the drop interface can be approximated
by a corrected shear rate y /&, where the correction is £ > 1. Based on theoretical analysis
of tg of a fluid sphere and a spherical particle in shear flow at Re = 0, Bartok & Mason
(1958) obtained & = 2/+/3 for the fluid sphere with matched viscosity, which is adopted
in the present study. To take the effect of finite inertia further into account, § can be
approximated to the first order of Re by

’\’2+ng 3.6
ffvﬁ Ire e (3.6)

The deformations of rotating Janus drops are characterised by the maximum elongation.
An effective aspect ratio of Janus drops, Ay, is thus defined by the geometry parameters of
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Figure 8. Comparison between the results of simulation and (3.9) of 6 — 6 as a function of y (1 — g) at
Re = 0.2 and various Ca.

Janus drops at that moment:

_(B=AB)Ly 1 — Dy

= — = . (3.7)
(L+ AL)Bg I + Dinax

J

In this aspect ratio model, it is straightforward to have Ay =1 for Janus drops at
equilibrium (i.e. Dy, = 0) regardless of their differences in shape, which reflects the
dominant effect of drop deformation on the rotation period.

Jeffery’s theory (1.1a,b) was shown to be applicable to elliptical cylinders (Ding &
Aidun 2000; Zettner & Yoda 2001). Following the spirit of Jeffery’s theory, the rotation
period of 2-D Janus drops can be obtained by introducing a corrected y and an effective
aspect ratio Ay. That is,

. _ 1+ D
Ry =2nEAy + A, ) = 4né T (3.8)
max

Figure 7(b) shows the variation of 7gy /& as a function of Dy,,,. Numerical results for
Janus drops agree well with the theoretical prediction with a fitting of d§/dRe = 0.3.
Because (3.8) is consistent with the calculation of tg in (1.1a,b), the rotation period of
particles and Janus drops can be predicted in a unified manner.

Similarly, we can obtain the theoretical prediction of 6:

1+D 7 (t —t9) 1 — D?
6 — 6y = arctan + Dmax tan v( 0) max )\, (3.9)
1 — Dyax 2& 1+ D2

max

where an initial value 6y (= 7/2) and the corresponding time #y are introduced to avoid
the start-up effect in numerical simulations. Figure 8 shows the time variation of 6 of
rotating Janus drops at Re = 0.2 and different Ca. The numerical results agree well
with the theoretical prediction for drops with linear deformation (Ca = 0.07), but deviate
from it slightly for drops with nonlinear deformation (Ca = 0.15 and 0.25), owing to the
synchronization of rotation velocity w with drop deformation.
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4. Conclusion

We simulate the dynamics of a 2-D Janus drop in shear flows, with a focus on the
deformation, rotation and their coupling. A new deformation parameter is proposed to
describe the deformation of the Janus drop. Two flow regimes, i.e. linear deformation
and nonlinear deformation, are identified according to the maximum value of D, D,y In
the regime of linear deformation (D, < 0.2), the time variation of the rotation velocity
w of the Janus drop is a harmonic function, and has a noticeable phase difference from
that of D; moreover, Dy, is proportional to (1 4+ 8 Re) Ca, which can be interpreted by
a mass—spring model. In the regime of nonlinear deformation (D, > 0.2), the rotation
velocity of the Janus drop is synchronized with D, showing a close coupling between the
deformation and rotation. In addition, we find that the rotation period zg of a Janus drop is
more sensitive to the deformation than to the aspect ratio of drop at equilibrium, and that
the effect of the viscosity of the Janus drop on 7 is also related to the drop deformation. In
order to compare with the rotation of elliptic particles, we take the effect of a slip condition
at the interface and drop deformation into account, by introducing a corrected shear rate
y /& and an aspect ratio of drop deformation A;. Then a rotation model for Janus drops
is established based on the Jeffery’s theory for rigid particles. This rotation model gives
an excellent prediction of our numerical results within the parameter ranges 0.1 < Re < 2
and 0.01 < Ca < 0.8, which includes the range of linear and nonlinear deformations, and
is before the onset of breakup of Janus drops.

In the present study, we consider the dynamics of only 2-D Janus drops in shear flow.
For 3-D Janus drops, it is reasonable to expect that they would display similar dynamic
behaviours to 2-D ones, such as rotation and breakup, if the inner interface is parallel to
the vorticity of the shear flow; otherwise, one may wonder if they move on a trajectory
similar to Jeffery’s orbits observed for ellipsoidal particles, probably accompanied with
drop deformation. This will be our future research topic.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.963.
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Appendix A. Calculation of Ly and By for Janus drops at equilibrium

The shape of Janus drops at equilibrium is determined by the drop size and the surface
tensions. Figure 9 shows a sketch of the interface shape of a 2-D Janus drop at equilibrium.
Considering the balance of surface tensions at the triple-phase line where the ternary fluids
meet, we have (Zhang et al. 2016)

sing; singy  sing3

023 013 012

; (AD)

where ¢; represents the interfacial angle of fluid i (as shown in figure 1a), and clearly,
¢1 + ¢ + @3 = 27. In the present study, we consider only 013 = 073, thereby leading to
@1 = @2 = arccos(—o12/(2013)) and @3 = 21 — 2¢.
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Figure 9. Sketch of a 2-D Janus drop at equilibrium.

At equilibrium, the shape of the component droplets assumes a circular segment.
Because the two droplets have equal size, the area of the circular segment yields (¢ —
sin ¢ cos (,ol)R2 = 7tR%, where Ry is the radius of the circular segment. Therefore, Ry can

be expressed as

Ry =R \/ T (A2)

@1 — sing| cos@;

Geometrically, we have Ly = Ro(1 — cos¢;) and By = Rosin¢g;. Thus Ly and By can
be calculated by

T

Lo = R(1 — cos gol)\/ Bo = Rsin @1\/ T . (A3a,b)
?1

— sing cos ¢y @1 — sin @ cos @1
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