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Abstract. An étale structure over a topological space X is a continuous
family of structures (in some first-order language) indexed over X. We give
an exposition of this fundamental concept from sheaf theory and its relevance
to countable model theory and invariant descriptive set theory. We show
that many classical aspects of spaces of countable models can be naturally
framed and generalized in the context of étale structures, including the Lopez-
Escobar theorem on invariant Borel sets, an omitting types theorem, and various
characterizations of Scott rank. We also present and prove the countable version
of the Joyal–Tierney representation theorem, which states that the isomorphism
groupoid of an étale structure determines its theory up to bi-interpretability;
and we explain how special cases of this theorem recover several recent results
in the literature on groupoids of models and functors between them.
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1. Introduction

A standard technique in countable model theory associates, to each (possibly
infinitary) first-order theory T in some language L, a topological space X parametriz-
ing all of its countable models up to isomorphism. This enables the application
to model theory of powerful tools from topology, dynamics, descriptive set theory,
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2 RUIYUAN CHEN

and computability theory, such as Baire category techniques and Borel complexity
theory. See [Kec95, §16.C], [BK96], [Gao09, §3.6, §11.4], [Mon21].

In fact, there are several variants of such a “topological space of models” X.
Perhaps the best-known consists of all models on a fixed countably infinite set
such as N, regarded as a subspace of a Cantor space X ⊆

∏
i 2Nni specifying the

interpretations of each relation and function symbol in the language L; see [Gao09,
§3.6]. By taking instead models on (certain) subsets of N, one can also encompass
finite models up to isomorphism; see [Che19a]. One can also broaden (e.g., to all
finitary first-order) or narrow (e.g., to only atomic) the class of formulas which
define an open subset of X; see [Gao09, §11.4], [B+24]. Alternatively, one can
consider marked models over a fixed generating set, e.g., groups generated by N,
hence quotients of the free group ⟨N⟩ by a normal subgroup, represented as the
space of all normal subgroups of ⟨N⟩; see e.g., [Tho08].

This landscape is clarified by the observation that such X, as a space of codes
of countable structures, may be meaningfully distinguished from the structures
themselves. That is, rather than a “space of models” X, one really has a topological
space X together with a “continuous map”

X −→ {all L-structures}
x 7−→Mx

where the right-hand side is not a topological space, but a higher-order analog
thereof, crucially differing in that two “points” (i.e., structures) may be “equal” (i.e.,
isomorphic) in more than one way. Such a generalized “space” is made precise by
the concept of the classifying topos of L-structures. Classifying toposes have been
widely influential in such areas as algebraic geometry, topology, and category theory;
see [AGV72], [MM94], [Joh02]. However, to our knowledge, topos-theoretic ideas
are not very well-known or used in the countable model theory literature, perhaps
due to the substantial amount of category theory needed to define and work with
them.1

1.A. Étale structures. The goal of this article is to give a self-contained devel-
opment of the above perspective from a classical model-theoretic and descriptive
set-theoretic angle, minimizing the category theory needed. The central concept of a
“continuous family of structures” (Mx)x∈X parametrized over a topological space X,
as above, may be represented more concretely as an étale bundle of structures
M → X, where M is the disjoint union of the structures Mx equipped with a
global topology that captures the “continuity” of the fibers Mx over x ∈ X. This
concept is well-known in topos theory, perhaps more commonly in the equivalent
form of a sheaf of structures. However, by taking an étale structure M → X as
the formal meaning of a “continuous map” X → {L-structures} as above, one may
develop much of classifying topos theory (for countable structures and theories)
in a point-set topological manner, without reference to toposes, sheaves, or other
categorical notions.

A recurring theme of our account is that many standard concepts and construc-
tions in point-set topology and descriptive set theory have precise analogs for étale
structures, thought of as “continuous families of structures” as above. Often, these

1There are of course exceptions, such as [Car12], [DL19], [Kub22], as well as parts of model
theory further from the countable realm where categorical tools are more routinely used, e.g.,
[MR77], [BR07], [Pre11], [LRV19].
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topology étale model theory

continuous map X
f−→ Y étale structure M→ X (Definition 4.8)

continuous open map (onto image) étale structure with Σ1 saturations (5.1)
Borel (Σ0

α) set V ⊆ Y Lω1ω (Σα) formula ϕ (3.1)
preimage f−1(V ) of V ⊆ Y interpretation ϕM of formula ϕ (4.9)
image f(U) of U ⊆ X theory/type of U ⊆M
saturation [U ]ker(f) = f−1(f(U)) saturation IsoX(M) · U
Baire quantifier ∃∗

f (U) Vaught transform U△IsoX (M) (10.1)
kernel ker(f) ⊆ X2 isomorphism groupoid IsoX(M) (4.15)
composition Z → X

f−→ Y pullback Z ×XM (4.11)
change of topology on Y Morleyization (4.12)

Table 1. Correspondence between topological and étale model-
theoretic notions, when Y is replaced with the “space of all struc-
tures”.

analogies yield more precise formulations of well-known folklore connections. For
instance, it is well-known that the classical Baire category theorem is closely related
to the omitting types theorem in (infinitary) first-order logic, and in fact these two
results may be used to prove each other; see e.g., [ET17]. In Section 7, we explain
how the omitting types theorem is the literal first-order generalization of the Baire
category theorem; and we show how the former may be reduced to the latter via
an étale structure, as a higher-order instance of the fact that a continuous open
surjection (is category-preserving, hence) may be used to transfer Baire category
from its domain to its codomain. Table 1 depicts various other topological concepts
with an étale model-theoretic analog that we will discuss.

In the course of developing this dictionary, we also prove generalizations to
arbitrary étale parametrizations of classical descriptive set-theoretic results known
for specific parametrizations. For instance, the Lopez-Escobar theorem [Lop65] and
its strengthening by Vaught [Vau74] show that every Borel isomorphism-invariant set
of models, in the classical space of countably infinite models on N, is axiomatizable
by an infinitary formula, of the same quantifier complexity as the Borel complexity
of the given set. Recently in [B+24], the authors prove a similar result, for a different
parametrizing space, that takes positive (i.e., negation-free) formulas into account.2
In [Che19a], we proved such a result that also takes finite models into account. One
could also ask whether a Lopez-Escobar theorem holds for the space of marked
structures. We prove a result encompassing all of these as special cases:

Theorem 1.1 (Lopez-Escobar for étale structures; see Theorem 10.2). For any
étale parametrization of countable structures M→ X with Σ1 saturations, every
isomorphism-invariant Σ0

α set of tuples A ⊆Mn
X is defined by a Σα formula.

Here Σα refers to the αth level of the complexity hierarchy of the countably
infinitary logic Lω1ω. To say that the étale structure M→ X has Σ1 saturations
means that the isomorphism saturation of each open set in M (or a finite power) is

2The papers [B+24], [CMR22], [H+17], [HMM18] are also largely concerned with tracking the
effective (lightface) complexity of formulas and models, which we do not consider at all in this
paper; we therefore recover only the boldface versions of the mentioned results from these papers.
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Σ1-definable; see Definition 5.1. This is the key property on an étale structure that
implies it is a “nice” parametrization of countable models obeying the usual results,
and holds for all of the aforementioned “spaces of countable models” commonly
considered in practice (subject to minor conditions on the theory); see Section 6.

As shown in Table 1, this condition is analogous to a continuous map between
topological spaces f : X → Y being open, or more precisely, being open onto
its image f(X) ⊆ Y , since that is equivalent to each open U ⊆ X having open
saturation by the equivalence relation ker(f) ⊆ X2 induced by f . Such maps play
an important role in descriptive set theory: for nice (e.g., Polish) spaces X,Y , the
image f(X) ⊆ Y must be Π0

2, by a combination of classical results of Sierpiński
[Kec95, 8.19] (that an open T3 quotient of a Polish space is Polish) and Alexandrov
[Kec95, 3.11] (that Polish subspaces are Π0

2). We prove the analogous result for
étale structures:

Theorem 1.2 (see Theorem 5.4). For any étale parametrization of countable
structures M → X with Σ1 saturations, over a (quasi-)Polish base X, the class
of parametrized models (i.e., those isomorphic to a fiber of M) is axiomatizable
among countable structures by a Π2 sentence.

Here quasi-Polish refers to a generalization [deB13] of Polish spaces that we find
more convenient; one definition is that they are precisely the open T0 quotients of
Polish spaces. See Definition 2.4.

In fact, Theorem 1.2 generalizes not only the aforementioned classical results of
Sierpiński and Alexandrov in topology, but also (by taking X = 1) the classical
model-theoretic fact that an atomic model has a Π2 Scott sentence (relative to a
countable fragment of Lω1ω; see [Gao09, 11.5.7]). That these three classical results
are connected at all may come as a surprise, and is an example of the conceptual
clarification we believe is provided by the perspective of étale structures.

1.B. The Joyal–Tierney and Moerdijk representation theorems. Classically,
given a continuous open surjection f : X ↠ Y between topological spaces, the
topology on Y is necessarily the quotient topology induced by the topology on X.
This fact means that if one is interested in studying a class of spaces Y , which can
all be parametrized as open quotients of a restricted class of spaces X, then in some
sense it “suffices” to study the spaces X together with the equivalence relations
ker(f) ⊆ X2. For example, this provides one formal explanation of the idea that
to do descriptive set theory, one really only needs to consider the Baire space NN,
whose open quotients yield all Polish spaces.

While this topological fact is rather easy, the analogous fact for étale structures
with Σ1 saturations, i.e., “continuous open maps X → {all structures}”, is much
deeper, since the “space” we are parametrizing is a much more complicated object
than the genuine space of parameters X. The analog of the equivalence relation
ker(f) ⊆ X2, which consists of pairs of points x, y ∈ X such that f(x) = f(y), is
the isomorphism groupoid IsoX(M) of an étale structure M→ X, consisting of
x, y ∈ X together with an isomorphism g :Mx

∼=My. There is a natural “pointwise
convergence” topology on IsoX(M) (generalizing the pointwise convergence topology
on Aut(M) for a single countable structure M) that turns it into a topological
groupoid with space of objects X; see Definition 4.15. We now have one of the
central results of topos theory, which we state and prove for the restricted context
of countable structures and Lω1ω in Section 8:
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Theorem 1.3 (Joyal–Tierney [JT84]; see Theorem 8.4 and Remark 8.6). Let
M→ X be an étale parametrization of countable structures with Σ1 saturations,
and let T be the Π2 theory of its fibers from Theorem 1.2. Then the Σ1 imaginaries
over T are canonically equivalent (as a category) to the continuous étale actions of
the groupoid IsoX(M).

Here by Σ1 imaginaries, we mean the usual model-theoretic concept [Hod93,
Ch. 5] adapted to the infinitary setting: namely, a Σ1-definable quotient of a count-
able disjoint union of Σ1-definable sets (represented syntactically as families of Σ1
formulas); see Definition 8.2. Analogously to the topological setting, this result really
says that étale structures in some sense “fully parametrize” countable models, since
the theory T of the parametrized models may be “recovered” from the topological
groupoid IsoX(M). More precisely, we recover T up to Σ1 bi-interpretability, since
a theory is determined up to bi-interpretability by its imaginaries.

While Theorem 1.3 concerns the topological context, meaning on the model-
theoretic side that we restrict to Σ1 formulas, there is an analogous result in the Borel
context, which shows that a theory may be recovered up to Lω1ω bi-interpretability
from its Borel groupoid of isomorphisms. The proof combines Theorem 1.3 with
a (Becker–Kechris-type) topological realization theorem for groupoid actions from
[Che24] in order to translate between the topological and Borel settings. (As
explained in Section 1.C below, this generalizes results from [Che19a], [HMM18].)

Theorem 1.4 (see Theorem 10.7 and Remark 10.8). Let M → X be an étale
parametrization of countable structures with Σ1 saturations, and let T be the theory
of its fibers. Then the Lω1ω imaginaries over T are canonically equivalent (as a
category) to the fiberwise countable Borel actions of the groupoid IsoX(M).

As we explain in Section 9, it is in fact possible to make this recovery of a theory
from its groupoid of models fully precise, provided that one is willing to make full
use of category-theoretic language (which is why we postpone this discussion until
Section 9). We are saying that

{theories} −→ {groupoids}
T 7−→ isomorphism groupoid of some parametrization of T

is an “embedding”: we can recover a theory T from its isomorphism groupoid.
To make this precise, we should specify the kind of structure on the domain and
codomain of this map. Namely, they are 2-categories: between theories T1, T2, we
have interpretations F : T1 → T2 as morphisms; and between parallel interpretations,
we have definable isomorphisms as 2-cells (all either Σ1 or Lω1ω):

T1 T2 T3

F

G

⇓h H

Similarly, between groupoids, we have functors, between which we have natural
isomorphisms (continuous or Borel, respectively). See Definition 9.2 and Remark 9.7
for details.
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Theorem 1.5 (see Corollaries 11.13 and 11.14). We have contravariant equivalences
of 2-categories

countable Π2 theories
Σ1 interpretations

Σ1-definable isomorphisms

 ≃


open non-Archimedean quasi-Polish groupoids
continuous functors

continuous natural transformations

,
countable Lω1ω theories
Lω1ω interpretations

Lω1ω-definable isomorphisms

 ≃


open non-Archimedean quasi-Polish groupoids
Borel functors

Borel natural transformations

,
taking a theory to the isomorphism groupoid of some parametrization of it.

As alluded to above, the “injectivity” of these maps (more precisely, that they
are fully faithful 2-functors) boils down to the Joyal–Tierney Theorem 1.3 and its
Borel analog, Theorem 1.4.

The “surjectivity”, that every topological groupoid satisfying certain conditions
listed on the right-hand side above (see Definition 11.1 for details) can be represented
as an isomorphism groupoid, boils down to a topos-theoretic argument of Moerdijk
[Moe90], which constructs from an abstract topological groupoid G (satisfying
certain conditions) an étale structure M over the objects of G. We present a
self-contained proof in Theorem 11.5, and show that in the countable case, via a
Baire category argument, we get a full representation of the groupoid G as Iso(M);
see Theorem 11.11. This result simultaneously generalizes the Yoneda lemma
from category theory (which shows that every discrete groupoid is canonically an
isomorphism groupoid, via the left action on itself), and the classical result that
non-Archimedean Polish groups are precisely the automorphism groups of countable
structures (see e.g., [Gao09, 2.4.4]).

1.C. Connections to other work. This article was largely motivated by several
recent works in the countable model theory literature showing connections between
the syntax and semantics of infinitary logic. The earliest inspiration for this line of
work seems to be [AZ86], showing that the automorphism group of an ℵ0-categorical
(in the usual finitary first-order sense) structure determines it up to (finitary) bi-
interpretability. Analogously, [HMM18] showed that the automorphism group of
an arbitrary countable structure determines it up to Lω1ω bi-interpretability. In
that paper, respectively [H+17], the authors also showed that Borel, respectively
continuous, functors between the groupoids of all isomorphic copies of two structures
on underlying set N correspond to Lω1ω, respectively Σ1, interpretations between
those structures. In [CMR22], the authors prove a finer result in the continuous
context keeping more detailed track of negations in formulas.

From the étale perspective, these results can be seen as special cases of the
Joyal–Tierney Theorem 1.3 and its Borel version, Theorem 1.4, for specific examples
of étale parametrizations M→ X (whose fibers are all isomorphic).2 The special
case of bi-interpretations follows from general categorical considerations, once
Joyal–Tierney is recast into its 2-categorical “injectivity” form of Theorem 1.5. In
[Che19a], whose main result was yet another special case of Theorem 1.4 (again for
a specific parametrization), we made this categorical perspective explicit, including
the connections to the Joyal–Tierney and Becker–Kechris theorems (as noted above
Theorem 1.4).
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We should also note that, in the categorical literature, there have been previous
point-set topological presentations of the Joyal–Tierney theorem, such as [BM98]
and [AF13]. The latter paper also used the Joyal–Tierney machinery to give a
2-categorical “duality” between theories and groupoids, as in Theorem 1.5, but for
finitary first-order logic, and again considering only a specific étale parametrization
(or rather, its sheaf-theoretic formulation).

We view this paper as a sequel to [Che19a], that is informed by the realization
that working with an abstract étale structure, rather than a specific “space of
countable models” as was done in that paper, yields a cleaner and more general
presentation. In the preprint [Che19b], we proved the Borel version of Theorem 1.5
using [Che19a] and the aforementioned Moerdijk groupoid representation, in the
process developing the needed parts of countable étale model theory in a rather
dense fashion; the present paper is a more comprehensive and (hopefully) readable
rewrite of the first half of [Che19b]. The second half of [Che19b], dealing with
continuous logic for metric structures [BBHU08], will be subsumed in a future work
that also includes a metric version of the Joyal–Tierney theorem and [Che19a].

Finally, as mentioned in Footnote 2, several of the aforementioned works that
inspired this article were rooted in computable structure theory, and proved effective
strengthenings of the Lopez-Escobar theorem, Joyal–Tierney theorem, and related
results, albeit for specific parametrizations; see [Mon21] for a detailed survey. While
we work entirely in the boldface setting in this paper, it would be interesting to
develop an effective version of the theory of étale structures presented here.
Acknowledgments. I would like to thank Anush Tserunyan for providing useful
comments on a draft of this paper, as well as the anonymous referee for several
helpful comments and suggestions. Research supported by NSF grant DMS-2224709.

2. Preliminaries on topology

Recall that a Polish space is a second-countable, completely metrizable topolog-
ical space. We will be working in a more general non-Hausdorff setting, that obeys
better closure properties:
Definition 2.1 (Selivanov [Sel06]). In an arbitrary topological space X, possibly
non-metrizable (hence closed sets may not be Gδ), we define the Borel hierarchy
as follows:

• A Σ0
1 set is an open set.

• For α ≥ 2, a Σ0
α set is a countable union

⋃
i(Ai \Bi) where each Ai, Bi is

Σ0
β for some β < α.

• A Π0
α set is the complement of a Σ0

α set, thus for α ≥ 2 is of the form⋂
i(Ai ⇒ Bi), where Ai, Bi ∈ Σ0

β for some β < α, and (Ai ⇒ Bi) :=
¬Ai ∪Bi. (Here ¬ denotes set complement.)

• As usual, a ∆0
α set is a set that is both Σ0

α and Π0
α.

Example 2.2. In a second-countable T0 space X, the equality relation is Π0
2 in X2:

x = y ⇐⇒ ∀ basic open U (x ∈ U ⇐⇒ y ∈ U).
Definition 2.3. Sierpiński space is the topological space S := 2 with {1} open
but not closed.

3This was not the original definition used in [deB13], but was proved to be equivalent in that
paper.
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Definition 2.4 (de Brecht [deB13]3). A quasi-Polish space is a topological space
homeomorphic to a Π0

2 subspace of SN.

In [deB13], de Brecht introduced quasi-Polish spaces and proved that they satisfy
almost all of the usual descriptive set-theoretic properties of Polish spaces, including
the following which we will freely use. For proofs, see [deB13] or [Che18].
(2.5) All quasi-Polish spaces are T0, second-countable, and obey the Baire category

theorem (which automatically then holds also for intersections of dense Π0
2

sets, not just dense Gδ).
(2.6) A topological space is Polish iff it is quasi-Polish and regular (T3).
(2.7) If X is a quasi-Polish space, and Ai ⊆ X are countably many Σ0

α sets, then
there is a finer quasi-Polish topology containing each Ai and contained in
Σ0
α(X). In more detail,

(a) adjoining a single ∆0
2 set to the topology ofX preserves quasi-Polishness;

(b) if the intersection of countably many quasi-Polish topologies contains
a quasi-Polish topology, then their union generates a quasi-Polish
topology.

(2.8) A quasi-Polish space can be made zero-dimensional Polish by adjoining
countably many closed sets to the topology.

(2.9) Countable products of quasi-Polish spaces are quasi-Polish.
(2.10) A space with a countable cover by open quasi-Polish subspaces is quasi-

Polish. In particular, a countable disjoint union of quasi-Polish spaces is
quasi-Polish.

(2.11) A subspace of a quasi-Polish space is quasi-Polish iff it is Π0
2.

(2.12) A continuous open T0 quotient of a quasi-Polish space is quasi-Polish.
Conversely, every quasi-Polish space is an open quotient of a zero-dimensional
Polish space.

Definition 2.13. For a topological space X, its lower powerspace F(X) is the
space of all closed subsets F ⊆ X equipped with the topology generated by the
open subbasis consisting of

♢U := {F ∈ F(X) | F ∩ U ̸= ∅}

for each open U ⊆ X. Equivalently, fix any open basis U for X; then the topology
on F(X) is induced via the embedding

F(X) −→ SU(2.14)
F 7−→ {U ∈ U | F ∩ U ̸= ∅}.

If X is quasi-Polish, then so is F(X) [dBK19] (see also (5.5) below).
We will also need the fiberwise lower powerspace FX(Y ) of a continuous map

p : Y → X (thought of as a continuous bundle of spaces Yx := p−1(x) indexed over
X), which is the disjoint union of the lower powerspaces of the fibers F(Yx), i.e.,

FX(Y ) := {(x, F ) | x ∈ X & F ∈ F(Yx)},

equipped with the topology generated by the first coordinate projection FX(Y )→ X
as well as

♢XU := {(x, F ) ∈ FX(Y ) | F ∩ U ̸= ∅}
for each open U ⊆ Y . When X,Y are quasi-Polish, so is FX(Y ) [Che24, 2.5.9].
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3. Preliminaries on infinitary logic

We now review some conventions on infinitary first-order logic. Throughout, L will
denote a countable first-order language. We note that we allow both nullary function
symbols (i.e., constants) and nullary relation symbols (i.e., atomic propositions). In
particular, L could consist entirely of nullary relation symbols, in which case we are
working essentially with propositional logic. Everything we do will also generalize
straightforwardly to multi-sorted languages, although we will rarely bother to spell
out the details of such a generalization.

The countably infinitary first-order logic Lω1ω is constructed like the usual
finitary first-order logic, but allowing countable conjunctions

∧
i ϕi(x⃗) and disjunc-

tions
∨
i ϕi(x⃗) of formulas. We will use the symbols ⊤,⊥ for nullary conjunction

and disjunction. We adopt the convention that each Lω1ω formula ϕ(x⃗) may only
have finitely many free variables x⃗. For general background on Lω1ω, see [AK00,
Ch. 6], [Gao09, Ch. 11], [Mar16].

For a first-order L-structureM and formula ϕ(x0, . . . , xn−1), we write ϕM ⊆Mn

for the interpretation of ϕ in M. We always allow structures to be empty.
There are completeness theorems for various deductive systems for Lω1ω [Kar64],

[Lop65], [FG82], which say that an Lω1ω sentence has a proof iff it is true in every
countable L-structure.

Definition 3.1 (complexity classes of Lω1ω formulas).
• A basic formula is a finite conjunction of atomic formulas (including

equality, but no negations, not even ̸=).
• A positive-primitive formula is one built from atomic formulas using
∧,⊤,∃. Up to logical equivalence, these may all be written in the prenex
normal form ∃y⃗ ϕ(x⃗, y⃗) where ϕ is basic; we will also call this a ∃∧ formula.

• A Σ1 formula is built from atomic formulas using ∧,⊤,∃,
∨

. These have a∨
∃∧ normal form.

• For α ≥ 2, a Σα formula is built from Σβ formulas and their negations, for
β < α, using ∧,⊤,∃,

∨
. These have a normal form∨

i

∃y⃗i
(
ϕi(x⃗, y⃗i) ∧ ¬ψi(x⃗, y⃗i)

)
where each ϕi, ψi is Σβ for some β < α.
• For α ≥ 2, a Πα formula is the dual of a Σα formula, or equivalently, for
ϕi, ψi as above, ∧

i

∀y⃗i
(
ϕi(x⃗, y⃗i)→ ψi(x⃗, y⃗i)

)
.

Convention 3.2. We will assume whenever convenient that every Lω1ω formula
is built using ∧,⊤,∃,

∨
,¬ only, with

∧
,∀ treated as abbreviations for ¬

∨
¬,¬∃¬

respectively. Thus, every formula is Σα in the above sense for some α.

The above definitions of Σα,Πα are not the standard ones found in e.g., [AK00],
which count all finitary quantifier-free formulas as Σ1. (They are almost the
“positive Σp

α, Πp
α formulas” of [B+24], except that we do not even admit ̸= as

Σ1.) While the standard definitions interact well with the Borel hierarchy of the
usual zero-dimensional Polish space parametrizing L-structures on N (see [Gao09,
Ch. 11], [Kec95, §16.C], and Example 6.1 below), the above definitions are the
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natural counterpart to Selivanov’s non-Hausdorff Borel hierarchy (Definition 2.1)
for quasi-Polish spaces.

Just as the non-Hausdorff Borel hierarchy generalizes the usual Borel hierarchy
for Polish spaces, so too can the above “non-Hausdorff” hierarchy of formulas be
regarded as generalizing the usual hierarchy. For given a theory T , we may replace
it with another T ′ whose Σα,Πα formulas, in the above sense, correspond to the
usual Σα,Πα formulas of T ′, via the following standard device:

Definition 3.3. A fragment of Lω1ω is a set F of formulas which contains all
atomic formulas and is closed under variable substitutions and subformulas. (Note
that this generalizes Sami’s notion of fragment from [Sam94] which requires closure
under ¬, which in turn generalizes the more common notion requiring closure under
all finitary operations [Gao09, 11.2.3].)

The Morleyization of a fragment F of Lω1ω consists of an expanded language
L′ ⊇ L with a new n-ary relation symbol Rϕ for each ϕ(x0, . . . , xn−1) ∈ F , together
with the following Π2 L′-theory T ′ which says that this is an expansion by definitions:

∀x⃗
(
Rϕ(x⃗)↔ ϕ(x⃗)

)
for atomic ϕ,

∀x⃗
(
Rϕ∧ψ(x⃗)↔ Rϕ(x⃗) ∧Rψ(x⃗)

)
,

∀x⃗
(
R⊤(x⃗)↔ ⊤

)
,

∀x⃗
(
R∨

i ϕ
(x⃗)↔

∨
iRϕ(x⃗)

)
,

∀x⃗
(
R∃y ϕ(x⃗)↔ ∃y Rϕ(x⃗, y)

)
,

∀x⃗
(
Rϕ(x⃗) ∧R¬ϕ(x⃗)→ ⊥

)
,

∀x⃗
(
⊤ → Rϕ(x⃗) ∨R¬ϕ(x⃗)

)
,

whenever the formulas in the subscripts are in F , and adopting here Convention 3.2.
Then each L-structure M has a unique expansion to a model M′ of T ′, where
RM′

ϕ := ϕM; and Σα L′-formulas ϕ′ up to equivalence mod T ′ are in bijection with
L-formulas ϕ which are “Σα over F”, meaning constructed as in Σα-formulas but
replacing atomic formulas with formulas in F . We also call such an expansionM′ a
Morleyization of the structure M (over the fragment F).

If we start with an L-theory T , then we may instead add the above axioms to T
to obtain a new theory T ′ ⊇ T , whose models correspond bijectively to models of
T . We may furthermore replace each original axiom ϕ ∈ T which is “Πα over F”
with the equivalent Πα L′-axiom ϕ′.

Example 3.4. If we Morleyize the fragment F consisting of all atomic and negations
of atomic formulas, we obtain a theory T ′ modulo which the Σα,Πα L′-formulas, in
our “non-Hausdorff” sense, are equivalently the Σα,Πα L-formulas in the traditional
sense.

Example 3.5. Suppose L is a countable propositional language, consisting only
of nullary relation symbols. It is best to regard such a language as being 0-sorted,
so that an “L-structure” has no underlying set, and is simply a truth assignment
M : L → 2. The Σ1 formulas define the open sets of a topology, namely the
Sierpiński power topology on SL (also known as the Scott topology). The Σα,Πα

formulas define precisely the Σ0
α,Π0

α subsets of SL. Thus, quasi-Polish spaces are
up to homeomorphism precisely the spaces of models of countable Π2 propositional
theories.
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The Morleyization of the preceding remark corresponds in this case to changing
topology on SN to turn it into 2N, as in (2.8). More generally, Morleyization of an
arbitrary countable fragment F corresponds to changing topology to make countably
many Borel sets open as in (2.7).

(In Definition 4.12, we relate Morleyization of non-propositional languages to
change of topology.)
Remark 3.6. More generally, given an arbitrary countable language L and countable
Π2 L-theory T , and n ∈ N, the Σ1 formulas ϕ(x0, . . . , xn−1) up to T -provable
equivalence yield a quasi-Polish topology on the space of Σ1 n-types of T , meaning
countably prime (i.e., complement closed under countable disjunctions) filters of
such formulas, or equivalently (by the completeness theorem) complete Σ1 theories
of n-tuples in countable models of T . When n = 0, this space has equivalent names
in other contexts: the localic reflection of a topos (see [Joh02, A4.6.12]), and the
topological ergodic decomposition of a Polish group(oid) action (see [Kec10, 10.3],
[Che21, §2]).

4. Étale spaces and structures

Definition 4.1. Let X be a topological space. An étale space over X is another
topological space Y equipped with a continuous map p : Y → X which is a local
homeomorphism, i.e., Y has an open cover consisting of open sets S ⊆ Y such that
p|S : S → X is an open embedding. We will refer to such an S ⊆ Y as an open
section, and to p as the projection map.

We may think of an étale space as a bundle of discrete sets indexed over X,
namely the fibers Yx := p−1(x), with the discreteness witnessed uniformly across
all fibers by the open sections. For this reason, when discussing étale spaces, we
usually emphasize the space Y rather than the map p. For general background on
étale spaces (and their close relatives, sheaves), see [Ten75].
Remark 4.2. By (2.10), for a quasi-Polish base space X, an étale space Y over it
is quasi-Polish iff it is second-countable, in which case it has a countable basis of
open sections.
Definition 4.3. If p : Y → X is an étale space, and f : Z → X is a continuous
map, we write f∗(Y ) = Z ×X Y for the pullback or fiber product

f∗(Y ) = Z ×X Y := {(z, y) ∈ Z × Y | f(z) = p(y)}
fitting into a commutative square:

f∗(Y ) Y

Z X

f∗(p) p

f

Here f∗(p) is the first coordinate projection, and turns f∗(Y ) into an étale space,
with a cover by open sections f∗(S) for open sections S ⊆ Y . The second projection
yields canonical bijections

f∗(Y )z ∼= Yf(z).

If Z is also étale over X, then so is f∗(Y ) = Z×X Y , with open sections consisting
of T ×X S for open sections T ⊆ Z and S ⊆ Y . We also write

Y nX := Y ×X · · · ×X Y
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for the n-fold fiber power. When n = 0, by convention Y 0
X := X. Sometimes, it is

convenient to use the following alternative (canonically isomorphic to the above)
definition of Y nX that explicitly records the basepoint in X, hence extends “uniformly”
to the case n = 0:
(4.4) Y nX := {(x, y0, . . . , yn−1) ∈ X × Y n | x = p(y0) = · · · = p(yn−1)}.

Remark 4.5. It is easily seen that an equivalent characterization of local home-
omorphism p : Y → X is that both p and the diagonal embedding Y ↪→ Y ×X Y
are open maps. The latter can be thought of as saying that the equality relation is
open in each fiber, uniformly across all fibers.

Remark 4.6. If p : Y → X and q : Z → X are two étale spaces over the same base,
and f : Y → Z is a continuous map over X, i.e., making the triangle

Y Z

X

p

f

q

commute, then f is automatically open, since for an open p-section S ⊆ Y , we have

f(S) =
⋃
T

(
T ∩ q−1(p(S ∩ f−1(T )))

)
where T varies over open q-sections in Z. It follows that each such S is an open
f -section, whence f is in fact étale.

Remark 4.7. If p : Y → X is a second-countable étale space, then p (is not only
open but) maps Σ0

α sets onto Σ0
α sets, since this is clearly true for subsets of each

open section S ⊆ Y .
It follows that in the preceding remark, assuming Y is second-countable, f also

maps Σ0
α sets onto Σ0

α sets.

Definition 4.8. Let L be a countable language, X be a topological space. An étale
L-structureM over X is defined by “internalizing the usual definition of first-order
structure into the category of étale spaces over X”. Concretely, M consists of the
following data:

• an underlying étale space p : M → X (in place of an underlying set);
• for each n-ary function symbol f ∈ L, a continuous map fM : Mn

X → M
over X;

• for each n-ary relation symbol R ∈ L, an open set RM ⊆Mn
X .

By an abuse of notation, we will often refer to these data as “the étale structure
p :M→ X”.

Given such M, we may inductively interpret each term τ(x0, . . . , xn−1) in the
obvious manner to get a continuous map τM : Mn

X → M over X. We may then
interpret each Σα Lω1ω formula ϕ(x0, . . . , xn−1) to get a subset ϕM ⊆Mn

X , which
is Σ0

α assuming that M is second-countable, by an easy induction using the three
preceding remarks in the =,∃ cases.

If ϕ is a sentence, then ϕM ⊆M0
X = X (recall Definition 4.3); if ϕM = X, then

we call M an étale model of ϕ, denoted M |= ϕ.

Remark 4.9. For an étale structure p :M→ X, for each x ∈ X, we may restrict
everything to the fiber over x to get an ordinary structure Mx. Thus, we may
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think of M as a “continuous bundle of discrete structures, indexed over X”, or as a
“continuous map” (as explained in the introduction):

M : X −→ {all L-structures}
x 7−→Mx.

Here the right-hand side is meant in a vague, informal sense; we do not literally
mean a continuous map to a topological space whose elements are L-structures. The
whole point is that M provides a way to regard X itself as a “space of structures”.
(One may make the above map precise using the classifying topos of L-structures;
see [Joh02, D3].)

For each n-ary formula ϕ, the fibers ϕM
x of ϕM ⊆ Mn

X are the ordinary inter-
pretations ϕMx . In particular, for a sentence ϕ, to say that M |= ϕ just means
Mx |= ϕ for each x.

Example 4.10. For a countable propositional language L, regarded as a 0-sorted
first-order language as in Example 3.5, an étale L-structure p :M→ X consists
simply of an open set PM ⊆ X for each 0-ary relation symbol P ∈ L, hence literally
corresponds to a continuous map X → SL (whose P th coordinate is the indicator
function of PM).

Remark 4.11. If p :M→ X is an étale structure, and f : Z → X is a continuous
map, then we have a pullback structure f∗(M)→ Z, given by pulling back the
underlying étale space M and the interpretations of all the symbols (Definition 4.3).
Clearly, for z ∈ Z and a formula ϕ,

f∗(M)z ∼=Mf(z),

ϕf
∗(M) = f∗(ϕM).

In particular, if M satisfies some theory, then so does f∗(M).

Definition 4.12. Let p :M→ X be a second-countable étale structure, and F be
a countable fragment of Lω1ω as in Definition 3.3, with Morleyization T ′. We may
then Morleyize each fiber Mx over F as in Definition 3.3; however, the resulting
bundle may no longer be an étale structure in the original topologies on M,X.
Instead, we refine the topologies as follows.

Let X ′ be X with the finer topology generated by all subbasic open sets of the
form

p(U ∩ ϕM) =
{
x ∈ X

∣∣ ∃a⃗ ∈ Ux (ϕMx (⃗a))
}
,

where U ⊆Mn
X is a (basic) open set and ϕ ∈ F is an n-ary formula. This topology

indeed refines that of X, since we may take n = 0 and ϕ = ⊤. Since for m-ary ϕ
and n-ary ψ,
p(U ∩ ϕM) ∩ p(V ∩ ψM) = p

(
(U ×X V ) ∩ (ϕ(x0, . . . , xm−1) ∧ ψ(xm, . . . , xm+n−1))M),

a basis for this topology consists of all sets p(U ∩ ϕM) as above but now with ϕ
“basic over F”, i.e., a finite conjunction of formulas in F .

Now let p′ :M′ → X ′ be the pullback of M along the identity X ′ → X. Thus,
for each n ∈ N, an open basis for M ′n

X′ consists of
U ∩ p−1(p(V ∩ ϕM))

for U ⊆ Mn
X (basic) open, V ⊆ Mm

X (basic) open for some other m ∈ N, and ϕ a
finite conjunction of m-ary formulas in F . For U = V ⊆Mn

X an open section, the
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above set becomes simply U ∩ϕM; taking a union over all U yields that ϕM ⊆M ′n
X′

is open for each n-ary ϕ ∈ F , so that we may canonically expand M′ to an étale
model of T ′ over X ′, which we call the Morleyization of the étale structure
M (over F).
Lemma 4.13. If X above is quasi-Polish, then so is X ′.
Proof. Adjoining each p(U ∩ ϕM) (in the notation above) to the topology of X
yields a quasi-Polish topology, by an induction on ϕ, using that fragments are closed
under subformulas (Definition 3.3), and using (2.7)(a) and (b) to handle ¬,

∨
,∃. □

Remark 4.14. From the perspective of Remark 4.9, the “space of all models of T ′”
can be seen as the “space of all L-structures, with a finer topology (generated by
F)”. The Morleyized base space X ′ above is then the result of “pulling back this
finer topology along M : X → {all L-structures}”:

X ′ X

{all T ′-models} {all L-structures}

M′ M

Definition 4.15. Let p : M → X be an étale structure. Its isomorphism
groupoid IsoX(M) is the set of all triples (x, y, g) where x, y ∈ X and g :Mx

∼=My

is an isomorphism. We equip it with the topology generated by the first and second
projections to X as well as the subbasic open sets

JU 7→ V K :=
{

(x, y, g) ∈ IsoX(M)
∣∣ g(Ux) ∩ Vy ̸= ∅

}
for open U, V ⊆M . Equivalently, IsoX(M) has an open basis consisting of the sets
JU 7→ V K, defined in the same way, for all open U, V ⊆Mn

X where n ∈ N.
Since the expression JU 7→ V K is easily seen to preserve unions in each of the

variables U, V , it is enough to consider U, V in any basis, e.g., a basis of open
sections. This reveals the topology on IsoX(M) to be a generalization of the usual
pointwise convergence topology on the automorphism group of a single structure, to
which IsoX(M) reduces when X = 1.

As its name suggests, the isomorphism groupoid IsoX(M) is (the space of
morphisms of) a topological groupoid with space of objects X. The domain and
codomain of a morphism are

dom(x, y, g) := x, cod(x, y, g) := y.

These maps dom, cod : IsoX(M)→ X and the evident composition, identity, and
inverse operations are easily seen to be continuous. (For the abstract notion of
topological groupoid, see Definition 11.1.)

We have a natural action of IsoX(M) on the underlying étale space M → X:
IsoX(M)×X M −→M

((x, y, g), a) 7−→ g(a).
In other words, each morphism (x, y, g) : x → y ∈ IsoX(M) acts as the bijection
g : Mx →My. This action is easily seen to be jointly continuous. Similarly, IsoX(M)
acts continuously on the fiber powers Mn

X . (For the abstract notion of groupoid
action, again see Definition 11.1.)

We will often abuse notation and refer to (x, y, g) ∈ IsoX(M) simply as g :Mx
∼=

My.
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Lemma 4.16. If L is a countable language and p :M→ X is a second-countable
étale L-structure over a quasi-Polish space X, then IsoX(M) is quasi-Polish.

Proof. First, consider the case where L = ∅, so that M is just a second-countable
étale space and IsoX(M) = {all bijections between fibers}. The definition of the
topology on IsoX(M) amounts to embedding it in the fiberwise lower powerspace
(Definition 2.13) of p× p : M ×M → X ×X via

IsoX(M) −→ FX×X(M ×M)
(x, y, g) 7−→ (x, y, graph(g)).

So we need only check that the image of this embedding is Π0
2. Fix a countable

basis S of open sections in M . For (x, y, F ) ∈ FX×X(M ×M), F ⊆ Mx ×My is
the graph of a function iff

∀S ∈ S
(
x ∈ p(S) =⇒ ∃T ∈ S (F ∩ (S × T ) ̸= ∅)

)
,

∀S, T1, T2 ∈ S
(
F ∩ (S × T1), F ∩ (S × T2) ̸= ∅ =⇒ ∃S ∋ T3 ⊆ T1 ∩ T2 (F ∩ (S × T3) ̸= ∅)

)
(which say that for each a ∈ Mx, there is at least, resp., at most, one b ∈ My

such that (a, b) ∈ F ); these conditions are Π0
2 in the topology on FX×X(M ×M).

Similarly, to say that F−1 is the graph of a function is a Π0
2 condition.

Now if R ∈ L is an n-ary relation symbol, then to say that g : Mx
∼= My preserves

R means

∀S⃗, T⃗ ∈ Sn
(
x ∈ p((S0 ×X · · · ×X Sn−1) ∩RM) & g ∈

⋂
iJSi 7→ TiK

=⇒ y ∈ p((T0 ×X · · · ×X Tn−1) ∩RM)

)
.

Similarly for g−1 to preserve R, and for preservation of functions. □

Remark 4.17. If X and M are both zero-dimensional Polish, then so is IsoX(M).
Indeed, we may find countable bases for each Mn

X consisting of clopen sections
S ⊆ Mn

X such that p(S) ⊆ X is also clopen. If S, T ⊆ Mn
X are two such sections,

then the basic open JS 7→ T K ⊆ IsoX(M) has open complement (dom−1(p(S)) ∩
cod−1(p(T ))⇒ JS 7→ ¬T K) ⊆ IsoX(M).

Remark 4.18. We have the following evident generalization of IsoX(M): if p :
M → X and q : N → Y are two étale structures over two base spaces, then we
have a space IsoX,Y (M,N ) of isomorphisms between a fiber ofM and a fiber of N .
If M,N are both second-countable over quasi-Polish X,Y , then IsoX,Y (M,N ) is
quasi-Polish (zero-dimensional if X,Y,M,N are).

5. Étale structures with Σ1 saturations

We now come to the crucial condition on an étale L-structure, that implies
that it is a “nice” parametrization of countable L-structures obeying the usual
model-theoretic results.

Definition 5.1. LetM be a second-countable étale L-structure over a space X. We
say that M has Σ1-definable saturations of open sets, or more succinctly has
Σ1 saturations, if for every n ∈ N and (basic) open set U ⊆Mn

X , the saturation
IsoX(M) · U under the natural action of IsoX(M) (recall Definition 4.15) is equal
to ϕM for some Σ1 formula ϕ(x0, . . . , xn−1).
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Remark 5.2. From the perspective of Remark 4.9, this means that

M : X −→ {all L-structures}

is a “continuous open map onto its image”. (This is literally true for a propositional
language L via Example 4.10, and is made precise for general first-order L by the
notion of an open geometric surjection between toposes; see [Joh02, C3.1], [MM94,
IX.6].)

Remark 5.3. Definition 5.1 may also be regarded as saying thatM is “uniformly Σ1-
atomic”: when X = 1, it means that every Lω1ω-type realized in M is axiomatized
by a Σ1 formula.

Theorem 5.4. If L is a countable language and M is a second-countable étale
L-structure with Σ1 saturations over a quasi-Polish space X, then the class of
countable L-structures isomorphic to a fiber of M is axiomatizable by a countable
Π2 theory.

This result can be regarded as a common generalization of the well-known special
cases alluded to by the two preceding remarks: that a continuous map between
(quasi-)Polish spaces which is open onto its image has Π0

2 image (the combination
of (2.12), (2.11)), and that an atomic model has a Π2 Scott sentence (relative to a
fragment; see [Gao09, 11.5.7]). The following proof can be seen as combining these
two special cases, namely the proofs of (2.12), (2.11) in [Che18, 10.1, 4.1] and the
usual back-and-forth construction of Scott sentences in e.g., [Mon15, §3.3].

Proof. For each n ∈ N, let Un be a countable open basis for the fiber power Mn
X .

We use the fact that every quasi-Polish space has a countable posite representation;
see [Che18, §8] for details. Briefly, each a⃗ ∈Mn

X is determined by its neighborhood
filter basis Na⃗ ⊆ Un; and this map a⃗ 7→ Na⃗ yields an embedding Mn

X ↪→ SUn , which
thus has Π0

2 image (2.11). Using that Un is a basis, one can manipulate a Π0
2

definition of this image into the following form: for a countable binary relation ▷n
consisting of certain pairs (V, U) of open covers V ⊆ Un and U ∈ Un with

⋃
V = U ,

such that

V ▷n U ⊇ U ′ ∈ Un =⇒ ∃V ′ ▷N U ′ ∀V ′ ∈ V ′ ∃V ∈ V (V ⊇ V ′)

(“every cover of U refines to one of U ′ ⊆ U”), we have that A ⊆ Un is a neighborhood
filter of some a⃗ ∈ Mn

X iff it is a ▷n-prime filter, meaning a filter satisfying the
further Π0

2 condition

(5.5) ∀V ▷n U
(
U ∈ A =⇒ ∃V ∈ V (V ∈ A)

)
.

It then follows that the C ⊆ Un which are merely upward-closed and satisfy this
condition correspond via (2.14) to arbitrary closed sets F ∈ F(Mn

X); see [Che18,
proof of 9.2].

For each U ∈ Un, let ϕU (x0, . . . , xn−1) be a Σ1 formula defining IsoX(M) · U ⊆
Mn
X . We claim that the following Π2 sentences axiomatize the countable L-structures

isomorphic to a fiber ofM. For each n, let πn : Mn+1
X →Mn

X denote the projection
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onto the first n coordinates.

∀x⃗
(
ϕU (x⃗)→ ϕV (x⃗)

)
for U, V ∈ Un, U ⊆ V ,(5.6)

∀x⃗
(
ϕU (x⃗)→

∨
V ∈V

ϕV (x⃗)
)

for V ▷n U,(5.7)

∀x⃗
(
ϕU (x⃗)→ ψ(x⃗)

)
for basic n-ary ψ
and Un ∋ U ⊆ ψM,

(5.8)

∀x⃗
(
ϕU (x⃗) ∧ ψ(x⃗)→

∨
Un∋V⊆U∩ψM

ϕV (x⃗)
)

for basic n-ary ψ,(5.9)

∀x⃗
(
∃y ϕU (x⃗, y)↔

∨
Un∋V⊆πn(U)

ϕV (x⃗)
)

for U ∈ Un+1,(5.10)

∀x⃗, y
(
ϕU (x⃗)→

∨
Un+1∋V⊆π−1

n (U)

ϕV (x⃗, y)
)

for U ∈ Un,(5.11)

⊤ →
∨
U∈U0

ϕU .(5.12)

It is straightforward to check that each Mx indeed satisfies these axioms.
Now let N be another countable L-structure satisfying these axioms. For each

b⃗ ∈ Nn,

C⃗b := {U ∈ Un | ϕN
U (⃗b)}

is upward-closed and satisfies (5.5) by (5.6), (5.7), thus corresponds to a closed
Fb⃗ ⊆M

n
X such that

Fb⃗ ∩ U ̸= ∅ ⇐⇒ U ∈ C⃗b ⇐⇒ ϕN
U (⃗b) ∀U ∈ Un.

Using this equivalence, for N to satisfy the other 5 axioms above means the following:

• (5.8) means Fb⃗∩ψ
M ≠ ∅ =⇒ ψN (⃗b) for each basic formula ψ, which means

that each a⃗ ∈ Fb⃗ yields a well-defined partial homomorphism Mx ⇀ N
given by ai 7→ bi. (Well-definedness follows by taking ψ(x⃗) to be an equality
xi = xj , so that ai = aj =⇒ bi = bj .)

• (5.9) means Fb⃗ ∩ U ≠ ∅ & ψN (⃗b) =⇒ Fb⃗ ∩ U ∩ ψ
M ̸= ∅, i.e., the set

of a⃗ ∈ Fb⃗ for which the above partial homomorphism ai 7→ bi is a partial
isomorphism (onto its image) is dense Gδ.

• (5.10) means (
⋃
d∈N Fb⃗,d)∩U ̸= ∅ ⇐⇒ Fb⃗ ∩ πn(U) ̸= ∅, i.e.,

⋃
d∈N Fb⃗,d =

π−1
n (Fb⃗).

• In particular, πn : Mn+1
X →Mn

X restricts to a map Fb⃗,d → Fb⃗; (5.11) says it
has dense image.

• (5.12) means F∅ ̸= ∅.

Consider now the forest of all a⃗ ∈ Fb⃗, each of which determines a partial
homomorphism as above, as well as all infinite branches through this forest, which
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we arrange into a space as follows:

Yn :=
⊔
b⃗∈Nn

Fb⃗ =
{

(⃗b, a⃗) ∈ Nn ×Mn
X

∣∣ a⃗ ∈ Fb⃗} ⊆ Nn ×Mn
X ,

Yω := lim←−
n∈N

Yn =
{

(⃗b, a⃗) ∈ NN ×MN
X

∣∣ ∀n ∈ N ((⃗b|n, a⃗|n) ∈ Yn)
}
,

Y :=
⊔
n≤ω

Yn.

For m ≤ n ≤ ω, let πnm : Yn → Ym denote the projection. Put a topology on Y
with an open basis consisting of, for each m ∈ N and (basic) open U ⊆ Ym (where
Ym has the disjoint union topology),

⇑U :=
⊔

ω≥n≥m

π−1
nm(U).

This topology is quasi-Polish; see [Che21, A.2], where it was called the lax colimit of
the levels Yn. Since each πn : Fb⃗,d → Fb⃗ has dense image by (5.11), the closure in Y
of each Fb⃗ ⊆ Yn ⊆ Y is all Fb⃗|m for initial segments b⃗|m of b⃗. Thus each ⇑Yn ⊆ Y
is dense, and so Yω =

⋂
n ⇑Yn is dense Gδ. And by (5.12), Y0 = F∅ ̸= ∅, i.e., the

forest has at least one root.
We now verify that the set of all (⃗b, a⃗) ∈ Y for which the partial homomorphism

ai 7→ bi is an isomorphism Mx
∼= N is comeager, which will complete the proof:

• The set of (⃗b, a⃗) ∈ Y for which the partial homomorphism ai 7→ bi is a
partial isomorphism is dense Π0

2, since it is the intersection, over all n ∈ N,
of the union of the lower levels Y0, . . . , Yn−1 (which is closed) and ⇑ of the
disjoint union over all b⃗ ∈ Nn of those a⃗ ∈ Fb⃗ for which ai 7→ bi is a partial
isomorphism; and this latter ⇑ is dense Gδ in ⇑Yn by (5.9).

• The set of (⃗b, a⃗) ∈ Y for which b⃗ enumerates N is clearly Gδ, and is dense
because for a nonempty basic open ⇑(Fb⃗ ∩ U) ⊆ Y where U ∈ Un, also
Fb⃗,d ∩ π

−1
n (U) ̸= ∅ by (5.11).

• Finally, the set of (⃗b, a⃗) ∈ Y for which a⃗ ∈Mn
X enumerates the fiber Mx in

which it lies is dense Π0
2: we will show that for each open section S ∈ U1,

the set of (⃗b, a⃗) such that if a⃗ lies in a fiber over p(S), then a⃗ includes a
point in S (which is a Π0

2 set), is dense, which suffices because each point
in M is in some open section. For a nonempty basic open ⇑(Fb⃗ ∩ U) ⊆ Y
where U ∈ Un, pick any a⃗ ∈ Fb⃗ ∩ U , say lying in the fiber Mx. If x ∈ p(S),
then U ×X S ⊆Mn+1

X is an open set such that Fb⃗ ∩ πn(U ×X S) ̸= ∅, since
it contains a⃗. Thus by the ⇐= direction of (5.10), for some d ∈ N , we have
Fb⃗,d ∩ (U ×X S) ̸= ∅; an element (⃗a′, c) of this intersection then belongs to
⇑(Fb⃗ ∩ U) (since a⃗′ ∈ U) and includes c ∈ S. □

Definition 5.13. If M→ X is a second-countable étale structure, and a theory
T axiomatizes the countable structures isomorphic to some Mx, we say that X
parametrizes models of T via M.

Thus, Theorem 5.4 says that if X is quasi-Polish and M has Σ1 saturations,
then X parametrizes models of a Π2 theory. Conversely, every Π2 theory has a
quasi-Polish parametrization with Σ1 saturations; see Example 6.9.
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Lemma 5.14. If p : M → X is a second-countable étale structure with Σ1
saturations, and f : Z → X is a continuous open map, then the pullback structure
f∗(M)→ Z (Remark 4.11) also has Σ1 saturations.

Via Remark 5.2, this says that “the composite of open maps M◦ f is still open”.

Proof. Let π2 : f∗(M) → M be the pullback projection (see the diagram in Defi-
nition 4.3), which is open because it is a pullback of f . It is easily seen that for
U ⊆ f∗(M)nZ , we have

IsoZ(f∗(M)) · U = π−1
2 (IsoX(M) · π2(U)).

Thus if ϕ defines IsoX(M) · π2(U) ⊆Mn
X , then ϕ also defines IsoZ(f∗(M)) · U . □

Remark 5.15. If p : M → X is a second-countable étale structure with Σ1
saturations, and Z = {x ∈ X | Mx |= T } for a theory T , then the restriction M|Z,
i.e., pullback of M along the inclusion Z ↪→ X, clearly also has Σ1 saturations, as
witnessed by the same Σ1 formulas.

(This is not an instance of the preceding lemma, since Z ⊆ X need not be open.)

Results such as 5.14, 5.15 clearly work just as well if “Σ1 saturations” is replaced
with “Σα saturations” throughout, for some α < ω1. The following calculation
provides a rigorous way of systematically making such generalizations.

Lemma 5.16. Let p : M → X be a second-countable étale structure, and F be
a countable fragment of Lω1ω. Suppose that saturations of open sets in M are
definable by formulas which are Σ1 over F . Then the Morleyized étale structure
p′ :M′ → X ′ (Definition 4.12) has Σ1 saturations.

Proof. From Definition 4.12, M ′n
X′ has an open basis of sets of the form

U ∩ p−1(p(V ∩ ϕM)) = π1(U ×X (V ∩ ϕM))
= π1((U ×X V ) ∩ ϕ(xn, . . . , xn+m−1)M)

where U ⊆ Mn is open, V ⊆ Mm is open for some other m ∈ N, ϕ is a finite
conjunction of m-ary formulas in F , π1 : Mn ×X Mm →Mn is the first coordinate
projection, and ϕ(xn, . . . , xn+m−1)M = Mn

X ×X ϕM; since the last is isomorphism-
invariant, we get

IsoX′(M′) · (U ∩ p−1(p(V ∩ ϕM))) = π1
(
(IsoX(M) · (U ×X V )) ∩ ϕ(xn, . . . , xn+m−1)M)

=
(
∃xn, . . . , xn+m−1 ψ(x0, . . . , xn+m−1) ∧ ϕ(xn, . . . , xn+m−1)

)M

where ψ is a formula defining IsoX(M) · (U ×X V ) ⊆ Mn+m
X which is Σ1 over

F , hence may be replaced in M′ by an equivalent Σ1 formula in the Morleyized
language L′. □

Corollary 5.17. If p :M→ X is a second-countable étale structure over quasi-
Polish X with Σα saturations, then the class of structures isomorphic to one of its
fibers is Πα+1-axiomatizable.

This is the Σα version of Theorem 5.4, and generalizes (U1) =⇒ (U2) of Mon-
talbán’s characterization of Scott rank [Mon15] (see Theorem 7.4 below for other
parts of the characterization).

https://doi.org/10.1017/bsl.2025.10086 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10086


20 RUIYUAN CHEN

Proof. Let F be the countable fragment generated by Σα formulas defining the
saturations of basic open sets in M. By Lemma 5.16, the Morleyized p′ :M′ → X ′

has Σ1 saturations. Thus by Theorem 5.4, its fibers are Π2-axiomatizable in the
Morleyized language L′, hence Πα+1-axiomatizable in the original language L. □

Lemma 5.18. If p : M → X is a second-countable étale structure with Σ1
saturations, then IsoX(M) is an open topological groupoid, i.e., dom, cod :
IsoX(M) ⇒ X are open.

Proof. For open U, V ⊆ Mn
X , we have cod(JU 7→ V K) = p((IsoX(M) · U) ∩ V );

similarly for dom. □

Remark 5.19. More generally, if p : M → X and q : N → Y are two étale
structures, and M has Σ1 saturations, then cod : IsoX,Y (M,N ) → Y (recall
Remark 4.18) is open.

6. Examples of parametrizations

We begin by recasting the standard zero-dimensional Polish parametrization of
countably infinite models in terms of an étale structure; see [Kec95, 16.5], [Gao09,
§3.6].

Example 6.1 (space of structures on N). Let L be a countable language,

X :=
∏

n-ary fn f∈L

NNn

×
∏

n-ary rel R∈L

2N
n

be the zero-dimensional Polish space of L-structures on N, with the product topology,
and

M := X × N

equipped with the first projection p : M → X; this is clearly étale. On each fiber
Mx = {x} × N ∼= N of M , we may put the structure Mx := (Mx, x); that is,

PM(x, a0, . . . , an−1) := x(P )(a0, . . . , an−1)

for each symbol (function or relation) P ∈ L, using here the “based” representation
(4.4) of Mn

X . This defines an étale L-structureM over X. The isomorphism groupoid
is

IsoX(M) = {(x, y, g) ∈ X ×X × S∞ | g · x = y}

where S∞ is the infinite symmetric group of all bijections N ∼= N, acting on X via
pushforward of structure (the logic action). Up to topological groupoid isomor-
phism, we may forget about the second coordinate y above, yielding IsoX(M) ∼=
X × S∞ (the action groupoid of the logic action).

This M does not have Σ1 saturations, however, but only Σ2 saturations. The
complement of the diagonal in M2

X is open and IsoX(M)-invariant, but not Σ1-
definable, since ̸= is not Σ1; similarly for negations of any relation symbols in L. In
fact, this is the only issue: by definition of the product topology on X, a basic open
set in Mn

X
∼= X × Nn is of the form

{(x, a0, . . . , an−1) | ϕx(an, . . . , an+m−1)}
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for some fixed a⃗ ∈ Nn+m and finite conjunction ϕ(yn, . . . , yn+m−1) of atomic L-
formulas and their negations; the IsoX(M)-saturation of this set is easily seen to be
defined by the Σ2 formula

ψ(y0, . . . , yn−1) := ∃yn, . . . , yn+m−1

(
ϕ(yn, . . . , yn+m−1) ∧

∧
ai=aj

(yi = yj) ∧
∧

ai ̸=aj

(yi ̸= yj)
)
.

(This is the base case of the proof of the classical Lopez-Escobar theorem; see [Kec95,
16.9].)

We may thus Morleyize all negated atomic formulas, as in Example 3.4, to obtain
an expanded language L′ ⊇ L and a Π2 L′-theory T ′. Let M′ be the unique
expansion of M to an étale model of T ′, by interpreting the newly added relation
symbols as the complements of the atomic formulas interpreted in M (which are
clopen). Then M′ has Σ1 saturations, namely given by the Morleyized formulas
ψ′ corresponding to the above ψ (as in Definition 3.3). A Π2 axiomatization of
the fibers of M′ is given by T ′ together with the “infinite models” axioms for each
n ∈ N

∃x0, . . . , xn−1
∧
i̸=j

(xi ̸= xj).(6.2)

If we started with a Π2 L-theory T which already has only infinite models, then
we may restrict this M′ to the models of T (as in Remark 5.15) to obtain a
parametrization of the models of the Morleyized T ; if furthermore T already implied
that every negated atomic formula is equivalent to a Σ1 formula, then there is no
need to Morleyize.

The “infinite models” restriction in the above example may be lifted, by enlarging
the parametrizing space X to include finite models. There are several ways to do so,
however, that affect the saturation complexity of the resulting M, i.e., the amount
of Morleyization needed to obtain Σ1 saturations. The simplest approach is the
following:

Example 6.3 (space of structures on ≤ N with ∆1 sizes). For each N ≤ N (i.e.,
N ∈ N ∪ {N}), define an étale structure MN → XN over the space XN of L-
structures on N , exactly as above. We may then simply take the disjoint unions
X :=

⊔
N≤NXN and M :=

⊔
N≤NMN . The groupoid IsoX(M) consists of the

disjoint union of the logic actions of each symmetric group SN on XN .
However, each XN ⊆ X = M0

X is clopen invariant, while “the model has size N”
is Σ3-definable for finite N (by a conjunction of a sentence (6.2) and a negation of
such a sentence) and Π3-definable for infinite N (by the infinite conjunction of all
(6.2)); thus this M only has Σ4 saturations. Even if we first Morleyize ̸=, i.e., use
the traditional Σ1 that includes ̸=, we still only get Σ3 saturations. (It is easy to
see that Morleyizing the above sentences (6.2), their subformulas, their negations,
and their conjunction, thereby rendering each XN ⊆ X Σ1-definable, is sufficient to
yield Σ1 saturations, since each MN individually has Σ1 saturations by the same
argument as in the preceding example.)

The worst feature of this approach is that infinite models are clopen in X but
only Π3-definable. In order to reduce this gap, we need a coarser topology on the
disjoint union X =

⊔
N XN that allows finite models to converge to infinite ones.

In the next few examples, we assume for simplicity that L is relational; there is
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little loss of generality in doing so, since a Π2 theory may be used to impose that a
relation is the graph of a function.

Example 6.4 (space of structures on ≤ N with ∆1 finite sizes). Let N :=
{0, 1, 2, . . . ,N}, with the topology of the one-point compactification of N, i.e.,
0, 1, 2, . . . are isolated points converging to N. We may realize the disjoint union X
in the preceding example as

X := {(N, x) | N ∈ N & x ∈ XN} where XN is as above

=
{

(N, x(R))R∈L ∈ N×
∏
R∈L

2N
n
∣∣∣ ∀ n-ary R ∈ L (x(R) ⊆ Nn ⊆ Nn)

}
,

regarded now as a closed subspace of the compact zero-dimensional space N ×∏
R∈L 2Nn , and

M := {(N, x, a) ∈ X × N | a ∈ N} ⊆ N×
∏
R∈L

2N
n

× N,

RM(N, x, a0, . . . , an−1) := x(R)(a0, . . . , an−1) for R ∈ L.

A basic open set in N is some finite Boolean combination of the sets {n, n+1, . . . ,N}
which are axiomatized by the sentences (6.2). Thus, a basic open set in Mn

X is{
(N, x, a0, . . . , an−1)

∣∣∣∣∣ (N, x) ∈ X & a0, . . . , an−1 ∈ N

& ϕ(N,x)(an, . . . , an+m−1) ∧ ψN

}
(6.5)

for some a⃗ ∈ Nn+m, finite conjunction ϕ(yn, . . . , yn+m−1) of atomic L-formulas and
their negations, and finite conjunction ψ of the sentences (6.2) and their negations.
Note that in addition to the condition “a0, . . . , an−1 ∈ N”, for each non-negated
atomic formula in ϕ, each of its arguments among an, . . . , an+m−1 is also implicitly
required to be in N . (Once we remember these implicit conditions, we may assume
ϕ contains no equalities, which have constant truth value given a⃗.) All of these
conditions of the form “ai ∈ N” together mean N ≥ maxi(ai + 1), which can itself
be expressed by a single sentence θ of the form (6.2). Thus the saturation of the
above set is defined by

∃yn, . . . , yn+m−1

(
ϕ(yn, . . . , yn+m−1) ∧

∧
ai=aj

(yi = yj) ∧
∧

ai ̸=aj

(yi ̸= yj)
)
∧ ψ ∧ θ

(6.6)

which is Σ3; it suffices to Morleyize negations of atomic formulas and of (6.2). As
before, if we are only interested in parametrizing models of a Π2 theory modulo
which negations of atomic formulas and “the model has size ≤ n” are already
Σ1-definable, then there is no need to Morleyize anything.

We may further reduce the need for Morleyization, provided we are willing to
coarsen the topology to be quasi-Polish:

Example 6.7 (space of structures on ≤ N with Σ1 lower bounds on size). Modify the
preceding
example by putting the Scott topology on N, with open sets {n, n + 1, . . . ,N}.
Then the ψ in (6.6) above will only be a conjunction of the sentences (6.2), no
longer their negations, and so the final formula defining the saturation will be Σ2; it
suffices to Morleyize negations of atomic formulas.

https://doi.org/10.1017/bsl.2025.10086 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10086


ÉTALE STRUCTURES IN COUNTABLE MODEL THEORY 23

If we also replace 2 with S in the definition of X, then the ϕ in (6.6) will become
basic (and equality-free); and so we only need to Morleyize ̸=. In other words, we
obtain a parametrization of any Π2 theory modulo which ̸= is Σ1-definable. (This
parametrization was used in [Che19a]; its restriction to the countably infinite models
was used in [CMR22], [B+24].)
Remark 6.8. In fact, the quasi-Polishness is not essential here: by (2.12), we
may find a continuous open surjection Z ↠ X from a zero-dimensional Polish Z
(e.g.,

∑
: 2N ↠ N), and then pull back M→ X from above to an étale structure

over Z, with underlying étale space ⊆ Z × N which is clearly also zero-dimensional.
Thus every Π2 theory modulo which ̸= is Σ1-definable has a zero-dimensional Polish
parametrization via a zero-dimensional étale structure with Σ1 saturations.

The final step of removing the need to Morleyize ̸= requires a more drastic change.
We need to render the diagonal in M2

X open but not closed, which clearly cannot be
achieved by merely coarsening the topology on the base X while keeping the fibers
subsets of some fixed set such as N.
Example 6.9 (space of partially enumerated structures). Let L be a countable
relational language, and let L′ := {∼} ⊔ L where ∼ is a binary relation symbol.
Construct as in the second part of Example 6.7 a parametrization M′ → X ′ of all
L′-structures which has Σ1 saturations modulo ̸=. Let X ⊆ X ′ be the structures
in which ∼ is an equivalence relation and all relations in L are ∼-invariant. Then
∼M′ , which is open in (M ′)2

X′ , restricted to the fibers over X is an open fiberwise
equivalence relation on the étale space M ′|X → X, i.e., only equating pairs of
elements in the same fiber. It follows that the quotient M := (M ′|X)/(∼M′ |X)→ X
is also an étale space, and that the quotient map M ′|X ↠M is open. Let M be
the étale structure on M descended from M′|X.

Explicitly, the space X consists of tuples (N,∼, x), consisting of N ∈ N (with the
Scott topology), an equivalence relation ∼ on N , and a ∼-invariant L-structure x
on N (both with the Sierpiński topology), so that x descends to the quotient N/∼;
this descended structure is then the fiber M(N,∼,x) of M→ X. It is clear that M
parametrizes all countable L-structures up to isomorphism, since for any countable
L-structure, we may enumerate it with an initial segment N ≤ N and then lift the
structure to N .

We now check that M has Σ1 saturations. A basic open set in Mn
X is the image

under the quotient map of one in (M ′)nX′ as in (6.5) restricted to X, where (in the
notation of that example) a⃗ is fixed, ϕ is a basic equality-free formula and ψ only
asserts that “the model has size ≥ · · ·” as in Example 6.7, since we used the Scott
topology for X ′. We claim that the saturation of such an image in Mn

X is defined
by (6.6) with all occurrences of ∼ in ϕ replaced with = and all ̸= replaced with ⊤.
Suppose ([b0], . . . , [bn−1]) ∈ (N ′/∼′)n = Mn

(N ′,∼′,x′) satisfies this modified version of
(6.6), as witnessed by ([bn], . . . , [bn+m−1]) ∈ (N ′/∼′)m = Mm

(N ′,∼′,x′); we must find
N,∼, x such that (N,∼, x, a0, . . . , an−1) is in (6.5) and there is an isomorphism of
the quotient structures (N, x)/∼ ∼= (N ′, x′)/∼′ mapping [ai] 7→ [bi] for i < n. Let
N ⊆ N be an initial segment such that

(i) if N ′ = ∅, then N = ∅;
(ii) each a0, . . . , an+m−1 ∈ N (this is consistent with (i) since [b0], . . . , [bn+m−1] ∈

N ′/∼′);
(iii) N is at least as big as required by ψ (consistent with (i) since N ′/∼′ |= ψ);
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(iv) N \ {a0, . . . , an+m−1} is at least as big as (N ′/∼′) \ {[b0], . . . , [bn+m−1]}.
By virtue of the

∧
ai=aj

(yi = yj) in (6.6), ai 7→ [bi] is a well-defined function
{a0, . . . , an+m−1} → {[b0], . . . , [bn+m−1]} ⊆ N ′/∼′; extend it to a surjection h :
N ↠ N ′/∼′, which is easily seen to be possible using the above conditions. Now
define c ∼ d :⇐⇒ h(c) = h(d), and lift the rest of the quotient structure
on (N ′, x′)/∼′ to the structure x on N . Then h descends to an isomorphism
N/∼ ∼= N ′/∼′ mapping [ai] 7→ [bi], whence (N,∼, x, a0, . . . , an−1) is in (6.5).

As usual, by further restricting this construction to the models of a Π2 theory
T , we obtain that every Π2 theory has a quasi-Polish parametrization with Σ1
saturations. As in Remark 6.8, we may further pull back to a zero-dimensional
Polish Z ↠ X; however, unlike there, we can no longer assume that the underlying
étale space M is also zero-dimensional.

Remark 6.10. Minor variations of Examples 6.3, 6.4, 6.7 and 6.9 are to allow
arbitrary subsets N ⊆ N, not just initial segments. (Such a variation of Example 6.7
was essentially used in [AF13].)

Remark 6.11 (space of totally enumerated structures). A further variation of
Example 6.9 is to again require N = N, as in Example 6.1 (while still using the
Sierpiński space for relations including the equivalence relation ∼). In the above
verification that M has Σ1 saturations, the possibility of N ̸= N only comes into
play in (i), and is clearly not needed if also N ′ = N. The minor downside is that
nowM only parametrizes nonempty models. (This was the original parametrization
used by Joyal–Tierney [JT84, VII §3 Th. 1].)

Finally, we consider a parametrization of a somewhat different flavor, which
only differs from that in Remark 6.11 for languages with function symbols. This
parametrization or a variant thereof is widely used for studying classification of
algebraic structures such as groups; see e.g., [Tho08].

Example 6.12 (space of marked structures). Let L be an arbitrary countable
language, possibly with function symbols. Let T be the set of L-terms over countably
many variables a0, a1, . . .. Let X ′ be the space of enumerated L-structures as in
Remark 6.11, where function symbols in L are encoded via their graphs, and where
the role of the index set N is replaced by T ; let M′ → X ′ be the corresponding
étale structure. Thus a point in X ′ consists essentially of an equivalence relation ∼
on T and an L-structure on T/∼. Let X ⊆ X ′ be the Π0

2 subspace where ∼ is a
congruence with respect to the usual syntactic action of function symbols on terms,
and where the quotient structure on T/∼ interprets each function symbol via this
syntactic action. In other words,

X ∼=
{

(∼, x)
∣∣∣ x ∈ ∏

n-ary rel R∈L

ST
n

& ∼ ∈ ST
2

is a congruence on (T, x)
}

∼= {(∼, x̃) | ∼ is a congruence on T & x̃ interprets relation symbols on T/∼}
∼= {L-structures generated by a0, a1, . . . }.

Let M :=M′|X, so that M(∼,x) = (T/∼, x̃) is said generated structure.
Note that X ⊆ X ′ is not IsoX′(M′)-invariant; thus we cannot immediately

conclude that M has Σ1 saturations by Remark 5.15. Nonetheless, this is the case,
as we now check. Chasing through Remark 6.11, Example 6.9, and ultimately (6.5),
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a basic open set in Mn
X is

(6.13)
{

(∼, x, [t0], . . . , [tn−1])
∣∣ (∼, x) ∈ X & ϕx(tn, . . . , tn+m−1)

}
for some fixed terms t0, . . . , tn+m−1 ∈ T and basic (L ∪ {∼})-formula ϕ not men-
tioning =; by absorbing function applications into tn, . . . , tn+m−1, we may assume
ϕ only mentions relation symbols in L and ∼. Let k ∈ N be sufficiently large so
that t0, . . . , tn+m−1 only mention the variables a0, . . . , ak−1. Then the IsoX(M)-
saturation of (6.13) is defined by
(6.14) ∃a0, . . . , ak−1

(
(x0 = t0) ∧ · · · ∧ (xn−1 = tn−1) ∧ ϕ′(tn, . . . , tn+m−1)

)
where ϕ′ is ϕ with all occurrences of ∼ replaced with =. Indeed, if N is a countable
nonempty (which the fibers of M all are) L-structure which satisfies this formula
under an assignment x⃗ 7→ b⃗ ∈ Nn, as witnessed by some h : {a0, . . . , ak−1} → N ,
we may extend h to the remaining variables ak, ak+1, . . . to yield an enumeration
of N , and then to all terms to obtain a surjective homomorphism h : T ↠ N with
respect to the function symbols in L, and finally pull back the relations as well
as = in N along h to obtain (∼, x) ∈ X such that h : T ↠ N descends to an
isomorphism M(∼,x) ∼= N and (∼, x, [t0], . . . , [tn−1]) is in (6.13) where t0, . . . , tn−1

are any h-preimages of b⃗.

Remark 6.15. For finite N ∈ N, one could analogously construct a space XN

as above starting from only N variables a0, . . . , aN−1, parametrizing N -generated
structures. However, saturations would only be Σ3, since in the defining formulas
(6.14) (where without loss we can take k := N), we need to add a clause ∀y

∨
t∈T (y =

t) saying that a0, . . . , aN−1 are generators.

7. Omitting types and Scott rank

The classical Baire category theorem states that in sufficiently nice topological
spaces, a countable intersection of dense open (or even Π0

2) sets is still dense. The
omitting types theorem in model theory, and its infinitary variants, state that a
countable conjunction of “dense Σ1 (or even Π2) formulas” is still “dense”. It is
well-known folklore that these two results are closely related, and in fact omitting
types can also be reduced to Baire category via some standard coding tricks; see
e.g., [ET17] and the references therein. As an application of the “continuous open
map” perspective of Remark 5.2, we give here an easy and transparent version of
such a reduction.

Theorem 7.1 (omitting types). Let T be a satisfiable countable Π2 theory.
(a) Let ϕi(x⃗i) be countably many Π2 formulas of various arities ni ∈ N, such

that for each Σ1 θ(x⃗i) satisfiable in some model of T , ϕi∧θ is also satisfiable
in some model of T . Then T ∪ {∀x⃗i ϕi(x⃗i)}i is satisfiable.

(b) Let ψi(x⃗i) be countably many Σ2 formulas of various arities ni ∈ N, such
that for each Σ1 θ(x⃗i), if T |= ∀x⃗i (θ(x⃗i)→ ψi(x⃗i)), then T |= ∀x⃗i ¬θ(x⃗i).
Then T ∪ {∀x⃗i ¬ψi(x⃗i)}i is satisfiable.

Proof. The statements are dual; we prove (a). By Example 6.9, there is a quasi-
Polish parametrization p : M→ X of T with Σ1 saturations, i.e., a “continuous
open map M : X ↠ {models of T }”. Then “the M-preimage of each dense Π2 ϕi
is dense Π0

2”, i.e., each ϕM
i ⊆M

ni

X is dense Π0
2, since for each open ∅ ̸= U ⊆Mni

X ,
letting θ be Σ1 with θM = IsoX(M) · U ⊇ U , θ is satisfiable in a model of T ,
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whence so is ϕ ∧ θ, whence ∅ ̸= ϕM ∧ θM = IsoX(M) · (ϕM ∩ U) since ϕM is
IsoX(M)-invariant. Hence, each ϕM

i ⊆ Mni

X is comeager. It follows that each
(∀x⃗i ϕi(x⃗i))M ⊆ X is comeager, since dually, the p-image of each meager set in Mni

X

is easily seen to be meager in X, by considering a countable basis of open sections
in Mni

X . Thus
⋂
i(∀x⃗i ϕi(x⃗i))M is also comeager, hence dense by Baire category;

picking any x in this set, we have Mx |= T ∪ {∀x⃗i ϕi(x⃗i)}i. □

Example 7.2. Taking T to be a propositional theory, as in Example 3.5 (and the
arities ni above to all be 0), we recover the Baire category theorem for quasi-Polish
spaces as a special case.

Remark 7.3. Via Morleyization, Theorem 7.1 generalizes to an omitting types
theorem for an arbitrary countable fragment F , which generalizes the classical
omitting types for Lω1ω (see e.g., [Mar16, 4.9]) to our more general fragments
(Definition 3.3) not necessarily closed under ¬,∧,∨,∀,∃.

In particular, Theorem 7.1 is sufficiently general to imply Montalbán’s omitting
types theorem for Πα [Mon15, 3.2], using which we may generalize most parts of
Montalbán’s characterization of Scott rank [Mon15, 1.1] to our weaker notions of
Σα,Πα:

Theorem 7.4 (characterization of Scott rank). Let p : M → X be a second-
countable étale structure with Σ1 saturations over a quasi-Polish space X, and let
x ∈ X. The following are equivalent:

(i) Every automorphism orbit of Mx is Σα-definable without parameters.
(ii) Mx has a Πα+1 Scott sentence ϕ.
(iii) IsoX(M) · x ⊆ X is Π0

α+1.
(iv) For every Πα formula ψ(z⃗) with ψMx ̸= ∅, there is a Σα formula θ(z⃗) with

∅ ̸= θMx ⊆ ψMx .

To recover [Mon15, 1.1], Morleyize negated atomic formulas as in Example 3.4
and take the standard parametrization from Example 6.1. The proof is the same as
in [Mon15] but with results used therein replaced by their generalizations from this
paper, namely Corollary 5.17 for (i) =⇒ (ii), the Lopez-Escobar Theorem 10.2 for
(ii)⇐⇒ (iii), and Theorem 7.1 for (ii) =⇒ (iv).

Remark 7.5. The omitting types theorem has an analog in topos theory, called
the ¬¬-subtopos, which is the “theory of models of T omitting all non-isolated Π1
types”; see [Joh02, A4.5.9].

8. Imaginary sorts and the Joyal–Tierney theorem

Definition 8.1. For an étale structure p :M→ X, an étale IsoX(M)-space over
X is an étale space q : A→ X equipped with a (jointly) continuous action of the
topological groupoid IsoX(M), where each g : Mx

∼= My ∈ IsoX(M) acts via a
bijection Ax ∼= Ay. (See Definition 11.1 for the formal definition of an abstract
groupoid action.)

The prototypical étale IsoX(M)-space is M (recall Definition 4.15). We may
build other étale IsoX(M)-spaces via the following basic operations:

• Each fiber power Mn
X is also an étale IsoX(M)-space. More generally, a

fiber product of finitely many étale IsoX(M)-spaces is again such a space,
under the diagonal action.
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• If A→ X is an étale IsoX(M)-space, and U ⊆ A is an open set invariant
under the action of IsoX(M), then U is itself an étale IsoX(M)-space.
If A = Mn

X , and M has Σ1 saturations, then such U are precisely the
Σ1-definable n-ary relations ϕM ⊆Mn

X .
• A (possibly infinite) disjoint union of étale IsoX(M)-spaces is again such.
• If p : A→ X is an étale IsoX(M)-space, and ∼ ⊆ A×X A is an IsoX(M)-

invariant open (in A ×X A) equivalence relation, then p and the action
descend to the quotient space A/∼ which again becomes an étale IsoX(M)-
space.

We now introduce syntactic names for these last two operations, generalizing
formulas:

Definition 8.2. For a countable Lω1ω theory T , a Σ1 imaginary sort over T is
an expression

Φ =
(⊔
i

ϕi

)
/
(⊔
i,j

εij

)
where i, j run over the same countable index set, each ϕi is a Σ1 formula in some
number of free variables ni ∈ N, each εij is a Σ1 formula in ni + nj variables, and
T proves the sentences

∀x⃗, y⃗
(
εij(x⃗, y⃗)→ ϕi(x⃗) ∧ ϕj(y⃗)

)
,

∀x⃗
(
ϕi(x⃗)→ εii(x⃗, x⃗)

)
,

∀x⃗, y⃗
(
εij(x⃗, y⃗)→ εji(y⃗, x⃗)

)
,

∀x⃗, y⃗, z⃗
(
εij(x⃗, y⃗) ∧ εjk(y⃗, z⃗)→ εik(x⃗, z⃗)

)
.

Equivalently by the completeness theorem, in each M |= T ,⊔
i,j

εM
ij ⊆

⊔
i,j

Mni+nj ∼=
(⊔
i

Mni

)2
is an equivalence relation on

⊔
i

ϕM
i ⊆

⊔
i

Mni .

We then define the interpretation of Φ in M to be the quotient set

ΦM :=
(⊔
i

ϕM
i

)
/
(⊔
i,j

εM
ij

)
.

Similarly, if p :M→ X is an étale model of T , then we have an étale IsoX(M)-space
ΦM → X defined in the same way, as the quotient of

⊔
i ϕ

M
i → X by the open

equivalence relation
⊔
i,j ε

M
ij .

Remark 8.3. Thus, a Σ1 imaginary is a syntactic name for a quotient of a countable
disjoint union of Σ1-definable subsets of finite products Mn of copies of the underlying
set or étale space M of an (étale) model M. We may always distribute these 4
types of operations over each other to put them into this order; thus, imaginaries
are themselves closed under these operations:

• If Φ = (
⊔
i ϕi)/(

⊔
i,j εij) and Ψ = (

⊔
k ψk)/(

⊔
k,l ηkl) are imaginaries, we

may define their product sort Φ×Ψ := (
⊔
i,k ϕi ∧ ψk)/(

⊔
i,j,k,l εij ∧ ηkl).

There is also the singleton sort (nullary product) 1 := ⊤/⊤ where here ⊤
is regarded as having no free variables.

• If Φ = (
⊔
i ϕi)/(

⊔
i,j εij) is a Σ1 imaginary sort over T , a Σ1-definable

subsort Ψ ⊆ Φ is given by countably many Σ1 formulas ψi such that
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“
⊔
i ψi ⊆

⊔
i ϕi is T -provably (

⊔
i,j εij)-invariant”, which can be expressed

by certain Π2 sentences much as in Definition 8.2. Such Ψ can also be thought
of as a Σ1 imaginary in its own right, namely Ψ = (

⊔
i ψi)/(

⊔
i,j εij∧ψi∧ψj),

such that ΨM ⊆ ΦM for every M |= T .
• A countable disjoint union of imaginaries

⊔
i Φi is given by simply

merging the formulas.
• Finally, if Φ = (

⊔
i ϕi)/(

⊔
i,j εij) is an imaginary, and H ⊆ Φ × Φ is a

Σ1-definable subsort which is T -provably an equivalence relation, then we
may define the quotient sort Φ/H by replacing the εij ’s with the formulas
ηij defining H.

Theorem 8.4 (Joyal–Tierney [JT84]). Let T be a countable Lω1ω theory, p :M→
X a second-countable étale structure with Σ1 saturations parametrizing models of
T . Then every second-countable étale IsoX(M)-space q : A→ X is isomorphic to
ΦM for some Σ1 imaginary Φ over T .

The following proof is a streamlined version of the proofs in [AF13, §1.4] and
[Che19a, 8.1] for two specific parametrizations (namely those in Remark 6.10
and Example 6.7).

Proof. Let a ∈ Ax, and let a ∈ S ⊆ A be an open section. Since the identity
1Mx

∈ IsoX(M) fixes a, by continuity of the action, there are open neighborhoods
a ∈ S′ ⊆ S and 1Mx ∈ JT 7→ T ′K ⊆ IsoX(M), where we may assume T, T ′ ⊆ Mn

X

are open sections, such that JT 7→ T ′K · S′ ⊆ S. Since 1Mx ∈ JT 7→ T ′K, we
have x ∈ p(T ∩ T ′). By replacing S with S′ ∩ q−1(p(T ∩ T ′)) and T, T ′ with
T ∩ T ′ ∩ p−1(q(S′)), we get p(T ) = q(S) and JT 7→ T K · S ⊆ S.

So we have shown that A has a basis of open sections S ⊆ A for which there exists
an open section T ⊆Mn

X for some n such that p(T ) = q(S) and JT 7→ T K · S ⊆ S.
For such S, T , consider

hS,T : IsoX(M) · T −→ A

(g :My
∼=Mz) · Ty 7−→ g · Sy.

(Here we are abusing notation by writing Ty for the unique element of Ty, etc.) We
claim that this is a well-defined, continuous IsoX(M)-equivariant map, whose image
contains S. Well-definedness is because if Ty ̸= ∅ then Sy ≠ ∅ as p(T ) ⊆ q(S), and
if g · Ty = g′ · Ty′ , where g :My

∼=Mz and g′ :My′ ∼=Mz and both y, y′ ∈ p(T ),
then g′−1 ◦ g :My

∼=My′ ∈ JT 7→ T K and so g · Sy = g′ · Sy′ . Equivariance is clear;
and S ⊆ im(hS,T ) by taking g = 1, using p(T ) = q(S). For continuity: suppose

hS,T (g · Ty) = g · Sy ∈ S′,

where S′ ⊆ A is another open section for which there is an open section T ′ ⊆Mn′

X

such that p(T ′) = q(S′) ∋ z and JT ′ 7→ T ′K · S′ ⊆ S′. Let g−1 · T ′
z ∈ T ′′ ⊆ Mn′

X be
another open section, and let

U := q(S ∩ (JT ′ 7→ T ′′K · S′)) ⊆ X.
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Then Sy = g−1 · S′
z ∈ JT ′ 7→ T ′′K · S′ whence y ∈ U whence g · Ty ∈ JT ′′ 7→

T ′K · (T ∩ p−1(U)); and
hS,T (JT ′′ 7→ T ′K · (T ∩ p−1(U))) = JT ′′ 7→ T ′K · (S ∩ q−1(U))

= JT ′′ 7→ T ′K · (S ∩ (JT ′ 7→ T ′′K · S′)) since q|S is injective
⊆ JT ′ 7→ T ′K · S′ ⊆ S′.

Now since A is second-countable, hence Lindelöf, it has a countable cover by open
sections Si ⊆ A for which there exist corresponding Ti ⊆Mni

X as above. For each i,
let ϕi be a Σ1 formula defining IsoX(M) · Ti ⊆ Mni

X . We then have a continuous
equivariant surjection

h :=
⊔
i

hSi,Ti :
⊔
i

ϕM
i −↠ A.

Its congruence kernel ∼ = {(⃗a, b⃗) ∈ (
⊔
i ϕ

M
i )2

X | h(⃗a) = h(⃗b)} ⊆ (
⊔
iM

ni

X )2
X
∼=⊔

i,jM
ni+nj

X is an invariant open set, thus there are Σ1 formulas εij defining ∼
restricted to each M

ni+nj

X . Then Φ := (
⊔
i ϕi)/(

⊔
i,j εij) is a Σ1 imaginary over

T , because the interpretation of
⊔
i,j εij in each countable model of T , which is

isomorphic to some fiber Mx, is the equivalence relation ∼x on
⊔
i ϕ

Mx
i . And h

descends to an isomorphism of étale IsoX(M)-spaces ΦM = (
⊔
i ϕ

M
i )/∼ ∼= A. □

Example 8.5. If X = 1 andM is a countable structure with Σ1-definable automor-
phism orbits, as in Remark 5.3, then Theorem 8.4 says that every continuous action
of Aut(M) on a countable discrete space A is named by some Σ1 imaginary of M.
To see this directly: for every a ∈ A, the stabilizer Aut(M)a ⊆ Aut(M) is a clopen
subgroup, hence contains some basic clopen subgroup Aut(M, b⃗), the automorphism
group of M expanded with finitely many fixed constants b⃗ ∈ Mn; then the orbit
Aut(M) · a is a definable quotient of the Σ1-definable orbit Aut(M) · b⃗. The above
proof can be seen as the natural generalization of this to étale structures.

Remark 8.6. Theorem 8.4 says that the map
{Σ1 imaginaries over T } ∼−→ {second-countable étale IsoX(M)-spaces}

Φ 7−→ ΦM

is surjective up to isomorphism. The full Joyal–Tierney theorem says that it is in
fact an equivalence of categories; Theorem 8.4 above is merely the key ingredient.
Namely, the category on the left has:

• Σ1 imaginary sorts Φ as objects;
• subobjects of Φ are Σ1-definable subsorts Ψ ⊆ Φ (Remark 8.3), which

(modulo T -provable equivalence) correspond bijectively to open invariant
subsets of ΦM by Σ1 saturations;

• morphisms Θ : Φ → Ψ are Σ1-definable functions, i.e., Σ1-definable
subsorts Θ ⊆ Φ × Ψ which are T -provably the graph of a function. We
usually identify definable functions modulo T -provable equivalence.

For a countable Π2 theory T , this category of Σ1 imaginaries is called the syntactic
σ-pretopos (also known as classifying σ-pretopos) of the theory T , and can be
thought of as a canonical algebraic representation of the syntax of T ; see [Joh02,
D1.4], [Che19a, §10]. Now the above equivalence boils down to the standard
category-theoretic fact [Joh02, D3.5.6] that a functor preserving finite categorical
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limits is an equivalence iff it is surjective on objects up to isomorphism and bijective
on subobjects (in the usual categorical parlance, essentially surjective, conservative,
and full on subobjects).

9. Interpretations and functors

Taking a more global view, the equivalence of categories in Remark 8.6 says that
the map

{countable Π2 theories} ↪−→ {(quasi-)Polish groupoids}(9.1)
T 7−→ Iso(some parametrization of T )

is “injective”: we may recover a theory from the groupoid of its parametrization.
To make this statement precise, we need to discuss the appropriate structure on the
class of all theories.
Definition 9.2. Let T1, T2 be countable Π2 theories in two respective countable
languages L1,L2. A Σ1 interpretation F : T1 → T2 is a “model of T1 within the
category of Σ1 imaginaries over T2”:

• First, one defines an interpretation F : L1 → T2 to be an “L1-structure in
T2-imaginaries”, consisting of an underlying Σ1 imaginary F over T2, an
interpretation of each n-ary R ∈ L1 as a Σ1-definable subsort RF ⊆ Fn,
and an interpretation of each n-ary f ∈ L1 as a Σ1-definable function
fF : Fn → F .

• Next, one inductively defines, in the usual way, interpretations of L1-terms
and formulas as definable functions and subsorts over T2.

• One then says that F satisfies an L1-sentence ϕ ∈ T1 if its interpretation
ϕF , which will be a definable subsort of the singleton sort 1 over T2 (recall
Remark 8.3), is the entirety of 1.

• Finally, one can extend the interpretation of L1-formulas to imaginaries Φ
over T1, which become interpreted as imaginaries ΦF over T2.

The categorical viewpoint of Remark 8.6 is particularly useful when dealing with
interpretations: a Σ1 interpretation F : T1 → T2 is simply a functor Φ 7→ ΦF

from the syntactic σ-pretopos of T1 to the syntactic σ-pretopos of T2, preserving
finite limits and countable colimits. For instance, this makes it easy to define the
composition of interpretations T1 → T2 → T3. See [Che19a, §10].

A Σ1-definable isomorphism h : F ∼= G : T1 → T2 between two interpretations
is defined in the same way as a usual isomorphism, but replacing the underlying func-
tion with a Σ1-definable function over T2. Equivalently, it is a natural isomorphism
between functors.

An interpretation
F : T1 −→ T2

can be thought of as a syntactic specification for a map
{models of T1} ←− {models of T2} : F∗(9.3)

FM ←− [M.

Namely, given a (countable/étale) M |= T2, the model F∗(M) = FM |= T1 has
underlying set/étale space FM and each symbol P ∈ L1 interpreted as (PF )M.
Similarly, a Σ1-definable isomorphism h : F ∼= G between interpretations yields, for
each M |= T2, an L1-isomorphism hM : FM ∼= GM.
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For detailed background on interpretations and imaginaries (albeit in the context
of finitary first-order logic), see [Hod93, Ch. 5]. We first give a familiar finitary
example:
Example 9.4. The construction from each integral domain R of its field of fractions
is specified by an interpretation F : (theory of fields)→ (theory of integral domains):

• The underlying imaginary is F = ϕ/ε where ϕ, ε are the formulas in the
language of rings:
ϕ(x, y) := (y ̸= 0), ε(x1, y1, x2, y2) := (x1y2 = x2y1).

Thus given an integral domain R, the field of fractions FR has underlying
set

FR = {(a, b) ∈ R2 | b ̸= 0}/∼ where (a1, b1) ∼ (a2, b2) :⇐⇒ a1b2 = a2b1.

• The operation + of fields is interpreted as the definable function +F = ψ/ε3

where
ψ(x1, y1, x2, y2, x3, y3) := ε(x1y2 + x2y1, y1y2, x3, y3).

In other words, for an integral domain R, this defines the graph of + on
FR:
[(a1, b1)] + [(a2, b2)] = [(a3, b3)] ⇐⇒ (a1b2 + a2b1, b1b2) ∼ (a3, b3).

Similarly for the other operations. (This is not a Σ1 interpretation, unless we include
a unary relation symbol for “nonzero” in the language of integral domains.)

For an example that uses the availability of countable disjoint unions:
Example 9.5. We have an interpretation from the theory of groups to the theory
of sets, that specifies the construction from a set X of the free group over X.
Its underlying imaginary is a countable disjoint union

⊔
s⃗∈{±1}<ω ϕs where for

each s⃗ = (s0, . . . , sn−1), the formula ϕs⃗(x0, . . . , xn−1) :=
∧
si ̸=si+1

(xi ̸= xi+1) says
“xs0

0 · · ·x
sn−1
n−1 is a reduced word in the free group”.

Example 9.6. The notion of Σ1 interpretation subsumes that of étale structure,
which is essentially the same thing as an interpretation into a propositional theory.
Indeed, recall from Example 3.5 that a quasi-Polish space X is the space of models
of a countable Π2 propositional theory T0. A second-countable étale space p :
A→ X then corresponds to a Σ1 imaginary over T0 (this is the trivial case of the
Joyal–Tierney Theorem 8.4, for the trivial étale structure X → X). Thus, a Σ1
interpretation M from another countable Π2 theory T into T0 is a model of T in
T0-imaginaries, i.e., étale spaces over X, i.e., an étale model of T over X. The
induced map M∗ as in (9.3), from models x ∈ X of T0 to models of T , is just the
“continuous map x 7→ Mx” from Remark 4.9.
Remark 9.7. Thus, a natural structure to put on the class of all countable Π2
theories, on the left-hand side of (9.1), is that of a 2-category, whose objects are
countable Π2 theories T , morphisms are Σ1 interpretations F : T1 → T2, and 2-cells
are Σ1-definable isomorphisms4 between interpretations h : F ∼= G : T1 → T2. We

4It makes sense to consider more generally non-invertible 2-cells which are definable homo-
morphisms; however, in order to reflect these on the semantic (right) side of (9.1), one should
then replace IsoX(M) with the homomorphism category, a topological category, which is a more
involved notion than a topological groupoid. See Remark 11.10.
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may visualize this 2-category as follows:

T1 T2 T3

F

G

⇓h H

For general background on 2-categories, see [Joh02, B1.1], [Bor94, I Ch. 7].

However, there remain annoying technicalities in defining a map (technically, a
2-functor) from this 2-category of theories to groupoids, as in (9.1). This is due
to non-canonical coding choices. To define such a 2-functor on objects, we have to
pick, for each countable Π2 theory T , some particular quasi-Polish parametrization
M → X of it, and then take its isomorphism groupoid IsoX(M). Worse yet, to
define the 2-functor on morphisms, we have to pick, for an interpretation between
theories F : T1 → T2, some map f : X2 → X1 between the respective chosen
parametrizing spaces which realizes the operation on models specified by F , i.e., so
that (M1)f(x) ∼= F (M2)x .

It is possible to make all of these coding choices in some explicit ad hoc manner,
and this was done in [H+17] and [Che19a]. Here, we take the opportunity to
illustrate a more abstract approach, via a standard trick in higher-dimensional
category theory: instead of defining the 2-functor (9.1) directly, we first “cover” its
domain with a bigger 2-category that is equivalent, but contains isomorphic copies
that include all possible coding choices beforehand.

Definition 9.8. A quasi-Polish parametrized Π2 theory will mean a tuple
(L, T , X,M, p), consisting of a countable Π2 theory T in some countable language L,
together with some quasi-Polish parametrization X of models of T via an étale model
p :M→ X with Σ1 saturations. We will often abbreviate the tuple (L, T , X,M, p)
to (T , X,M).

A parametrized Σ1 interpretation (F , f) : (L1, T1, X1,M1, p1)→ (L2, T2, X2,M2, p2)
consists of a Σ1 interpretation F : T1 → T2, a continuous map f : X2 → X1,
and a (specified, but left nameless) isomorphism of étale structures (over X2)
f∗(M1) ∼= FM2 :

M1 f∗(M1) ∼= FM2 M2

X1 X2

p1
p2

F∗

f

Regarding M1,M2 as “continuous maps to countable models” as in Remark 4.9,
the picture becomes

X1 X2

{models of T1} {models of T2}

T1 T2

M1 M2

f

F∗

F

Two consecutive parametrized interpretations may be composed in the obvious
manner. A Σ1-definable isomorphism between parametrized interpretations
h : (F , f) ∼= (G, g) is simply one between the underlying intepretations h : F ∼= G.
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We thus get a 2-category of quasi-Polish parametrized Π2 theories, parametrized
Σ1 interpretations, and Σ1-definable isomorphisms, which admits canonical maps to
both sides of (9.1):

(9.9)
{quasi-Polish parametrized Π2 theories}

{countable Π2 theories} {quasi-Polish groupoids}

The left leg simply forgets about the parametrizations. The right leg, a contravariant
2-functor, takes a parametrized theory (T , X,M) to the isomorphism groupoid
IsoX(M); takes a parametrized interpretation (F , f) : (T1, X1,M1)→ (T2, X2,M2)
to the continuous functor

(F , f)∗ : IsoX2(M2) −→ IsoX1(M1)
(9.10)

(
g : (M2)x ∼= (M2)y

)
7−→

(
(M1)f(x) = f∗(M1)x ∼= FM2

x

g∼= FM2
y
∼= f∗(M1)y = (M1)f(y)

)
;

and takes a Σ1-definable isomorphism h : (F , f) ∼= (G, g) to the continuous natural
isomorphism

h∗ : X2 −→ IsoX1(M1)
(9.11)

x 7−→
(
(M1)f(x) = f∗(M1)x ∼= FM2

x

hx∼= GM2
x
∼= g∗(M1)x = (M1)g(x)

)
between the continuous functors (F , f)∗ and (G, g)∗ as defined above.

Theorem 9.12. In the above diagram (9.9):
(a) The right leg is a full and faithful contravariant 2-functor, i.e., restricts

to an equivalence between each hom-groupoid of parametrized interpreta-
tions (T1, X1,M1)→ (T2, X2,M2) and the corresponding hom-groupoid of
continuous functors IsoX2(M2)→ IsoX1(M1).

(b) The left leg restricts to an equivalence of 2-categories between the full sub-
2-category of zero-dimensional Polish parametrized Π2 theories (meaning
the base space X of the parametrization is zero-dimensional Polish, not
necessarily the étale space M), and all countable Π2 theories.

Thus, we have a composite full and faithful 2-functor, i.e., “embedding of 2-
categories”,
(9.13)
{ctbl Π2 theories} ≃ {0-d Pol parametrized Π2 theories} −→ {q-Pol groupoids}

taking each countable Π2 theory to the isomorphism groupoid of any of its zero-
dimensional Polish parametrizations with Σ1 saturations.

Proof. (a) follows from the Joyal–Tierney theorem. Indeed, for a parametrized
interpretation (F , f) : (T1, X1,M1) → (T2, X2,M2), F is a model of T1 in the
category of Σ1 imaginaries over T2, which by Joyal–Tierney in the form of Remark 8.6
is equivalently a model FM2 in the category of second-countable étale IsoX2(M2)-
spaces, i.e., an étale model of T1 over X2 equipped with a continuous action
of IsoX2(M2) via isomorphisms; this action corresponds, via the isomorphism
f∗(M1) ∼= FM2 , to the extension of f : X2 → X1 to a functor IsoX2(M2) →
IsoX1(M1) via (9.10). Conversely, given such a continuous functor f : IsoX2(M2)→
IsoX1(M1), the unique-up-to-definable-isomorphism interpretation F : T1 → T2
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inducing f in the above manner takes a Σ1 imaginary over T1, which is equivalently
by Remark 8.6 an étale IsoX1(M1)-space q : A → X1, to the Σ1 imaginary over
T2 corresponding to the pullback IsoX2(M2)-space f∗(A); then FM2 ∼= f∗(M1) by
definition. It is straightforward to check that this correspondence is functorial via
(9.11).

For (b), the left leg is essentially surjective, i.e., every countable Π2 theory has a
zero-dimensional Polish parametrization, by Example 6.9; and it is locally full and
faithful, i.e., bijective on 2-cells between each fixed pair of morphisms, by definition
of said 2-cells as Σ1-definable isomorphisms. It remains only to check that it is locally
(essentially) surjective, i.e., for two zero-dimensional Polish parametrized theories
(T1, X1,M1), (T2, X2,M2), every Σ1 interpretation F : T1 → T2 can be parametrized
via some continuous map f : X2 → X1 and isomorphism f∗(M1) ∼= FM2 . That
is, for each fiber (M2)x of M2, we know the model F (M2)x |= T1 is isomorphic to
some fiber (M1)f(x) of M1; we need to find the fiber f(x) and the isomorphism in
a continuous manner. Form the space

IsoX1,X2(M1,FM2) =
{

(y, x, g)
∣∣ y ∈ X1 & x ∈ X2 & g : (M1)y ∼= F (M2)x

}
as in Remark 4.18. By Remark 5.19, the second projection cod : IsoX1,X2(M1,FM2)→
X2 is open, and it is also surjective, since as noted before, each F (M2)x is isomor-
phic to some (M1)y. Thus by Michael’s selection theorem [Mic56a, 1.4] (see also
[Mic56b], [dBPS20]; to deal with the fact that IsoX1,X2(M1,FM2) is quasi-Polish
instead of Polish, use the latter paper or (2.12)), cod has a continuous section
X2 → IsoX1,X2(M1,FM2), whose first coordinate yields f and third coordinate
yields the isomorphism f∗(M1) ∼= FM2 . □

Remark 9.14. If one is only interested in certain restricted kinds of theories, then
it suffices in Theorem 9.12 to restrict to a full sub-2-category of zero-dimensional
Polish parametrizations which are known to parametrize all such theories.

For example, if one is only interested in theories with no finite models, and
modulo which negated atomic formulas are equivalent to Σ1 formulas (e.g., from
Morleyizing to recover the traditional definition of Σ1 as in Example 3.4), then it
suffices to consider the usual Polish space of models on N as in Example 6.1, thereby
recovering the boldface version of [H+17, 1.5].

Likewise, if one wants to keep track of positive atomic formulas other than =,
then applying Theorem 9.12 to the parametrization of Example 6.7 recovers the
boldface version of [CMR22, 3.3]. (In fact, as long as ̸= is Σ1, one may replace
“quasi-Polish groupoids” with “zero-dimensional Polish groupoids” in (9.13), by
Remarks 6.8 and 4.17.)

10. The Lopez-Escobar theorem and Lω1ω imaginaries

An important tool in descriptive set theory is the Baire category quantifier ∃∗

(and its dual ∀∗); see [Kec95, §8.J, 22.22], [MT13, §A], [Che24, §2.3–4]. Given a
continuous open map f : X → Y between quasi-Polish spaces, each A ∈ X has a
“Baire-categorical image” under f :

∃∗
f (A) :=

{
y ∈ Y

∣∣ A is nonmeager in the fiber f−1(y)
}
.

The usefulness of ∃∗
f is largely because it, unlike ordinary image, preserves Borel

sets; in fact, it preserves Σ0
α sets for all α.
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We have an analogous result for étale structures M→ X with Σ1 saturations,
thought of as “maps x 7→ Mx : X → {all structures}” as in Remark 5.2. The
“fibers” of such a map should be thought of as the isomorphism orbits IsoX(M) · a⃗
of each a⃗ ∈ Mn

X (and not the fiber structures Mx, which are the “values” of the
map x 7→ Mx). Thus, “image” becomes “saturation”.

Definition 10.1. For an étale structure p :M→ X, open U ⊆ IsoX(M), and any
A ⊆Mn

X , the Vaught transform is the “Baire-categorical saturation”

U ∗A :=
{
a⃗ ∈Mn

x

∣∣ ∃ nonmeagerly many g ∈ U ∩ cod−1(x) s.t. (⃗a ∈ g ·A)
}
.

(Here cod : IsoX(M)→ X is the codomain map; recall Definition 4.15.)

The more common notation for U ∗A is A△U−1 , including in [Lup17] where it was
first studied for groupoids; the above notation suggestive of the ordinary saturation
U ·A is from [Che24, 4.2.1].

Theorem 10.2 (Lopez-Escobar for étale structures). Let L be a countable language,
p :M→ X be a second-countable étale L-structure with Σ1 saturations over a quasi-
Polish X. For any Σ0

α set A ⊆Mn
X , there is a Σα formula defining IsoX(M) ∗A.

Remark 10.3. It follows from this statement that more generally, for any basic
open JU 7→ V K ⊆ IsoX(M), where U, V ⊆Mm

X are open,

JU 7→ V K ∗A =
{
a⃗ ∈Mn

x

∣∣ {g ∈ JU 7→ V K | a⃗ ∈ g ·A} is nonmeager in cod−1(x)
}

=
{
a⃗ ∈Mn

x

∣∣ ∃⃗b ∈ Vx ({g | (⃗a, b⃗) ∈ g · (A×X U)} is nonmeager in cod−1(x)
)}

=
{
a⃗ ∈Mn

x

∣∣ ∃⃗b ∈ Vx ((⃗a, b⃗) ∈ IsoX(M) ∗ (A×X U)
)}

is the fiberwise inverse image of V under a binary relation ϕM ⊆Mn
X ×X Mm

X , for
some Σα formula ϕ with n+m variables depending only on U .

Proof of Theorem 10.2. By induction on α. For α = 1, this is just the fact that M
has Σ1 saturations. For a countable union of sets for which the result holds, we
may take the disjunction of the formulas. By Definition 2.1 of the Borel hierarchy,
it thus remains to show, assuming the result holds for all Σ0

α sets, that for any
two A,B ∈ Σ0

α(Mn
X), the result holds for A \B ∈ Σ0

α+1(Mn
X). Fix countable bases

Um for each Mm
X , so that JU 7→ V K for U, V ∈ Um form a basis for IsoX(M). For

a⃗ ∈Mn
x ,

a⃗ ∈ IsoX(M) ∗ (A \B)
⇐⇒ {g | a⃗ ∈ g(A \B)} is nonmeager in cod−1(x);

by the property of Baire (see [Kec95, 8.26]), this holds iff {g | a⃗ ∈ g(A\B)} = {g | a⃗ ∈
gA}\{g | a⃗ ∈ gB} is comeager in some nonempty basic open set JU 7→ V K∩cod−1(x),
and so this is

⇐⇒ ∃m ∃U, V ∈ Um

(
{g ∈ JU 7→ V K ∩ cod−1(x) | a⃗ ∈ gA} nonmeager,
{g ∈ JU 7→ V K ∩ cod−1(x) | a⃗ ∈ gB} meager

)
⇐⇒ ∃m ∃U, V ∈ Um

(
a⃗ ∈ (JU 7→ V K ∗A) \ (JU 7→ V K ∗B)

)
;
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by the induction hypothesis and preceding remark, there are Σα formulas ϕU , ψU
such that this is

⇐⇒ ∃m ∃U, V ∈ Um
(
(∃⃗b ∈ Vx)ϕM

U (⃗a, b⃗) ∧ ¬(∃c⃗ ∈ Vx)ψM
U (⃗a, c⃗)

)
⇐⇒ ∃m ∃U ∈ Um ∃⃗b ∈Mm

x

(
ϕM
U (⃗a, b⃗) ∧ ¬ψM

U (⃗a, b⃗)
)

where ⇐= is because b⃗ belongs to some open section V ∈ Um. So this is defined by
the Σα+1 formula∨

m

∨
U∈Um

∃y0, . . . , ym−1
(
ϕU (x⃗, y⃗) ∧ ¬ψU (x⃗, y⃗)

)
. □

Example 10.4. Applying Theorem 10.2 to the standard Polish space of models on
N (Example 6.1) recovers the classical Lopez-Escobar theorem [Lop65], or rather its
strengthening adapted levelwise to the Borel hierarchy by Vaught [Vau74] (see also
[Kec95, 16.8], [Gao09, 11.3.6]).

Applying it instead to the parametrization of Example 6.7 yields the version of
the Lopez-Escobar theorem used in [Che19a], which is the boldface version of the
effective “positive” (but still admitting ̸= as Σ1) Lopez-Escobar theorem in [B+24].

We now have the Borel analogs of the material from the two preceding sections:

Definition 10.5. For a second-countable étale structure p :M→ X over quasi-
Polish X, a (fiberwise) countable Borel IsoX(M)-space over X is a standard
Borel space A equipped with a countable-to-1 Borel map q : A → X and a Borel
action of IsoX(M).

Definition 10.6. For a countable Lω1ω theory T , a Lω1ω imaginary sort Φ =
(
⊔
i ϕi)/(

⊔
i,j εij) over T is defined exactly as in Definition 8.2, except that the

formulas ϕi, εij may be Lω1ω instead of Σ1. These may be interpreted in a second-
countable étale p :M→ X over quasi-Polish X to yield a countable Borel IsoX(M)-
space ΦM → X.

Theorem 10.7. Let T be a countable Lω1ω theory, p : M → X be a second-
countable étale space with Σ1 saturations parametrizing models of T . Then every
countable Borel IsoX(M)-space q : A → X is isomorphic to ΦM for some Lω1ω

imaginary Φ over T .

This was proved in [Che19a] for a particular parametrization M, namely that
of Example 6.7 (and implicitly in [HMM18] for the standard parametrization of
Example 6.1).

Proof. By [Che24, proofs of 4.5.13 and 4.3.9], we may topologically realize A as
a second-countable étale IsoX(M)-space, after refining the topology on the space
of objects X of the groupoid IsoX(M) by adjoining countably many sets of the
form JUi 7→ ViK ∗ Bi to the topology, where Ui, Vi ⊆ Mmi

X are open and Bi ⊆ X
are Borel. By Remark 10.3, each JUi 7→ ViK ∗ Bi = p(Ui ∩ ϕM

i ) for some Lω1ω

formula ϕi(x0, . . . , xmi−1). Morleyize the formulas ϕi to obtain a new theory T ′

in an expanded language L′ ⊇ L, and then Morleyize the étale structure M via
Definition 4.12, to obtain a new étale structure p′ : M′ → X ′, now with Σ1
saturations by Lemma 5.16, such that X ′ is X with a finer topology in which
each p(Ui ∩ ϕM

i ) becomes open. Pulling back the topologically realized étale space
A to X ′, we thus obtain a second-countable étale IsoX′(M′)-space, which by the
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Joyal–Tierney Theorem 8.4 is named by some Σ1 imaginary in M′, hence by an
Lω1ω imaginary in M. □

Remark 10.8. As in Remark 8.6, it follows that we in fact have an equivalence of
categories

{Lω1ω imaginaries over T } ∼−→ {countable Borel IsoX(M)-spaces}
Φ 7−→ ΦM

where the subobjects on the left, namely Lω1ω-definable subsorts of Lω1ω imag-
inaries, correspond to IsoX(M)-invariant Borel subspaces by the Lopez-Escobar
Theorem 10.2.

This recovers one of the main results of [Che19a] (extending the boldface result
of [HMM18]). To recover the rest, we need to convert Theorem 10.7 into the
2-categorical form of Theorem 9.12.

Definition 10.9. An Lω1ω interpretation between two Lω1ω theories is defined
exactly as in Definition 9.2, except that the formulas and imaginaries used may be
Lω1ω rather than Σ1.

Definition 10.10. Recall the notion of quasi-Polish parametrized Π2 theory (L, T , X,M, p)
from Definition 9.8. A quasi-Polish parametrized Lω1ω theory will mean such
a tuple where T is a countable Lω1ω theory in the countable language L, and
p :M→ X is a second-countable étale structure over the quasi-Polish space X with
Lω1ω saturations of open sets.

A parametrized Lω1ω interpretation (F , f) : (L1, T1, X1,M1, p1)→ (L2, T2, X2,M2, p2)
between two such parametrized theories consists of an Lω1ω interpretation F : T1 →
T2, a Borel map f : X2 → X1, and a Borel isomorphism of fiberwise countable Borel
structures f∗(M1) ∼= FM2 .

We have the Borel analog of the diagram (9.9):

(10.11)
{quasi-Polish parametrized Lω1ω theories}

{countable Lω1ω theories} {quasi-Polish groupoids}

≃

in which the three 2-categories and both 2-functors are as before (see (9.10) and
(9.11)), but with Lω1ω interpretations and definable isomorphisms and Borel functors
and natural transformations.

Theorem 10.12. In the above diagram:
(a) The right leg is a full and faithful 2-functor.
(b) The left leg is an equivalence of 2-categories (on its entire domain).

Thus, we have a composite full and faithful 2-functor {ctbl Lω1ω theories} →
{quasi-Polish groupoids}.

Proof. As in Theorem 9.12, (a) follows from Theorem 10.7 or rather Remark 10.8.
For (b), essential surjectivity follows from the fact that every countable Lω1ω theory
has a quasi-Polish (or even zero-dimensional Polish) parametrization with Lω1ω

saturations by Morleyization and any of the examples from Section 6 that admit
finite models, and local full faithfulness is trivial as before. For fullness, we again
follow the proof of Theorem 9.12; the added ingredient needed is that (in the
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notation from there) surjectivity of the Borel map cod : IsoX1,X2(M1,FM2)→ X2
is already enough to imply the existence of a Borel section, which follows by a
straigtforward application of Kechris’s large section uniformization theorem [Kec95∗,
18.6∗] applied to the meager ideal; see [Che18, 7.9]. □

11. Groupoid representations

Theorems 9.12 and 10.12 show that the operation of taking the semantics of
a theory is an “embedding” from the 2-category of theories to the 2-category of
groupoids (in both the continuous and Borel settings). It is natural to ask what is
the image of this 2-functor, i.e, which quasi-Polish groupoids arise as the groupoid
of models of a theory. The corresponding question in topos theory was answered by
Moerdijk [Moe90], who proved what can be called the topos-theoretic analog of the
Yoneda lemma (which says that absent any topological structure, every groupoid is
canonically a groupoid of isomorphisms between structures, via the left translation
action on itself). In this final section, we adapt Moerdijk’s result to the countable
model-theoretic setting.

First, we clarify what we mean by an abstract topological groupoid (e.g., IsoX(M))
and action:

Definition 11.1. A topological groupoid G⇒ X consists of topological spaces
G,X of morphisms and objects respectively, with continuous domain and codomain
maps dom, cod : G⇒ X, as well as identity 1(−) : X → G, inverse (−)−1 : G→ G,
and composition ◦ (or simply juxtaposition) of adjacent morphisms, subject to the
usual axioms of associativity, identity, and inverse.

As is common when working with topological groupoids, we identify each object
x ∈ X with the corresponding identity morphism 1x ∈ G, so that X ⊆ G is a
subspace.

By an open subgroupoid of G, we mean an open subset U ⊆ G of morphisms
which is closed under composition and inverse. It follows that for each g : x→ y ∈ U ,
the identity morphisms at both its source 1x = g−1 ◦ g and target 1y = g ◦ g−1 are
in U as well, whence we may regard U as the space of morphisms of a groupoid in
its own right, with objects {x ∈ X | 1x ∈ U} = dom(U).

We call G a non-Archimedean topological groupoid if every identity morphism
1x ∈ G has a neighborhood basis of open subgroupoids.

A continuous action of the groupoid G on a topological space A equipped with
a continuous map q : A→ X, regarded as a topological bundle over X, is a map

· : G×X A = {(g, a) ∈ G×A | dom(g) = q(a)} −→ A,

jointly continuous in both variables, taking g : x→ y ∈ G and a ∈ Ax to g · a ∈ Ay,
and obeying the usual associativity and identity axioms. We also call (A, q) equipped
with the action a G-space, and an étale G-space if A is an étale space over X.

Definition 11.2. Now suppose G ⇒ X is an open topological groupoid, i.e.,
dom, cod are open maps (see Lemma 5.18). For an open subgroupoid U ⊆ G as
above, let (by an abuse of notation)

G/U = dom−1(U)/U =
{
gU

∣∣ g ∈ G & dom(g) = 1dom(g) ∈ U
}

denote the space of left cosets of U . This is naturally an étale G-space over
X via cod : G/U → X and the left multiplication action of G. An open section
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S/U ⊆ G/U may be identified with its lift in G, which is an open right-U -invariant
subset S ⊆ dom−1(U) such that S−1S ⊆ U .

For two open subgroupoids U, V ⊆ G and an open right-V -invariant S ⊆
dom−1(V ), we have

U ⊆ SS−1 ⇐⇒ the right multiplication map (−)S : G/U → G/V is well-defined.
(11.3)

Note also that such a right multiplication map, when defined, is clearly left-G-
equivariant.

Definition 11.4. Let G⇒ X be an open non-Archimedean topological groupoid.
Fix a family U of open subgroupoids forming a neighborhood basis for each identity
morphism, and for each U ∈ U , an open cover SU of dom−1(U) by open right-U -
invariant sets S such that S−1S ⊆ U (corresponding to a cover of G/U by open
sections S/U). Note that when G is second-countable, U and each SU may be
chosen to be countable, whence each G/U is a second-countable étale space over X.

The canonical G-structureM =MG,U,(SU )U
(determined by the U ,SU ) is the

multi-sorted étale structure over X with a sort G/U for each U ∈ U , and a unary
function (−)S : G/U → G/V for each U, V ∈ U and S ∈ SV obeying (11.3). The
canonical left translation action of G on each G/U is an action via isomorphisms
between fibers of MG, yielding a canonical functor

ι : G −→ IsoX(M)

which is the identity on objects and sending each g : x → y ∈ G to its action
Mx
∼=My.

Theorem 11.5 (Moerdijk [Moe90]). For any open non-Archimedean T0 topological
groupoid G with canonical structure M = MG,U,(SU )U

as above, the canonical
functor ι : G→ IsoX(M) is a topological embedding with cod-fiberwise dense image.

Proof. First, we convert to an alternate description of IsoX(M). An isomorphism
f :Mx →My in this groupoid is determined by its values f(gU) for each element
gU of each sort (G/U)x of Mx. But preservation of the right multiplication maps
(−)S means that f is in fact determined by its values on just the identity cosets
1xU : indeed, for any other coset gU ∈ (G/U)x, we may find

g ∈ S ∈ SU & 1x ∈ V ∈ U & V ⊆ SS−1, which implies f(gU) = f(1xV S) = f(1xV )S.
(11.6)

(This is the part most analogous to the Yoneda lemma.) Moreover, these values
f(1xU) must obey

(11.7) 1x ∈ U ⊆ V ∈ U =⇒ f(1xU)V = f(1xV ),

by finding 1x ∈ S ∈ SU and 1x ∈ T ∈ SV and then a neighborhood 1x ∈ W ⊆
SS−1 ∩ TT−1 in U , so that f(1xU)V = f(1xWS)V = f(1xW )SV = f(1xW )T =
f(1xWT ) = f(1xV ). In other words, we have a canonical injection

{isomorphisms f :Mx
∼=My ∈ IsoX(M)} ↪−→ lim←−

1x∈U∈U
(G/U)y(11.8)

into the set of all families (f(1xU) ∈ (G/U)y)1x∈U∈U obeying the coherence condition
(11.7).
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Moreover, the above injections (11.8) together form a topological embedding of
IsoX(M) into the inverse limit topology on the right-hand side, in the following
sense. For each U ∈ U and open right-U -invariant S ⊆ dom−1(U), the set

(11.9) JU/U 7→ S/UK =
{
f :Mx

∼=My

∣∣ 1x ∈ U & f(1xU) ⊆ S
}
⊆ IsoX(M),

which is the preimage under (11.8) of the coherent families containing a fiber of
the open section S/U ⊆ G/U , is open. We claim that these sets together with the
maps dom, cod : IsoX(M) ⇒ X suffice to generate the topology of IsoX(M) (from
Definition 4.15). Indeed, by (11.6), a subbasic open JS/U 7→ T/UK ⊆ IsoX(G),
where S/U, T/U ⊆ G/U are basic open sections, may be written in terms of the
sets (11.9) as

JS/U 7→ T/UK =
⋃

U∋V⊆SS−1

S′⊆S
T ′/V⊆G/V
T ′S′⊆T

JV/V 7→ T ′/V K

(where T ′/V ⊆ G/V is an open section containing f(1xV ) in (11.6)).
Now the ι-preimage of such a set JU/U 7→ S/UK consists of all g : x → y ∈ G

such that 1x ∈ U and gU ∈ S/U , which is just the open right-U -invariant S ⊆ G.
Since G is non-Archimedean, its open right-U -invariant sets over all U ∈ U are
easily seen to form a basis; thus ι is an embedding.

Finally, the image of ι is cod-fiberwise dense: from above, IsoX(M) has an open
basis of sets ⋂

i<n

JUi/Ui 7→ Si/UiK ∩ dom−1(V ) ∩ cod−1(W )

where U0, . . . , Un−1 ∈ U , Si/Ui ⊆ G/Ui are open sections, and V,W ⊆ X are open.
If such a set is nonempty in some cod−1(y), then it contains some isomorphism
f : Mx → My where x = 1x ∈ V ∩

⋂
i Ui, y ∈ W , and each f(1xUi) ⊆ Si. Let

U ∈ U with 1x ∈ U ⊆ V ∩
⋂
i Ui, and pick g ∈ f(1xU). Then g : x → y ∈ G with

each gUi ⊇ gU ⊆ f(1xU) ⊆ f(1xUi), whence gUi = f(1xUi) since both are left
cosets of Ui, whence ι(g) ∈

⋂
i<nJUi/Ui 7→ Si/UiK ∩ dom−1(V ) ∩ cod−1(y). □

Remark 11.10. The inverse limits on the right-hand side of (11.8) above may be
patched together, over all x, y ∈ X, into a topological category, which can be seen as
a “left completion” of G analogous to the left completion of a Polish automorphism
group [Bec98]. This is studied in depth by Moerdijk [Moe90] in the topos-theoretic
context.

Theorem 11.11. For an open non-Archimedean quasi-Polish groupoid G, with
canonical second-countable étale structure M =MG,U,(SU )U

with respect to some
countable U ,SU as above, the canonical functor ι : G→ IsoX(M) is a topological
groupoid isomorphism.

Proof. By Theorem 11.5, we may identify G with a cod-fiberwise dense quasi-
Polish (hence cod-fiberwise dense Π0

2) subgroupoid of IsoX(M); since (−)−1 is a
homeomorphism, G ⊆ IsoX(M) is also dom-fiberwise dense Π0

2. By Pettis’s theorem
for the left translation action of the open quasi-Polish groupoid G on the bundle
cod : IsoX(M) → X (proved the same way as Pettis’s theorem for Polish groups;
see [Che24, 4.2.8]), it follows that G = GG = IsoX(M)IsoX(M) = IsoX(M). □
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Remark 11.12. We note that the last step above of applying Pettis’s theorem
also has precedent in topos theory, namely the “closed subgroupoid theorem” of
Johnstone [Joh89]; see [Che21b]. In the terminology of [Moe88], [Moe90], we have
shown that an open quasi-Polish groupoid is non-Archimedean iff it is étale-complete.

Corollary 11.13. The 2-functor from Theorem 9.12 is an equivalence of 2-categories
{countable Π2 theories} ≃ {open non-Archimedean quasi-Polish groupoids}

(with continuous functors and natural isomorphisms on the right).

Corollary 11.14. The 2-functor from Theorem 10.12 is an equivalence of 2-
categories
{countable Lω1ω theories} ≃ {open non-Archimedean quasi-Polish groupoids}

(with Borel functors and natural isomorphisms on the right).

As before (see Theorem 9.12), these equivalences of 2-categories take a theory to
the isomorphism groupoid of any of its parametrizations, hence are not completely
canonical (depending on a choice of parametrization). Also, in the latter result we
may replace “quasi-Polish” with “zero-dimensional Polish”, due to the freedom to
Morleyize arbitrarily (see Remark 9.14).

Remark 11.15. It may seem a bit strange that Theorem 10.12 and Corollary 11.14
are mostly about the Borel setting, yet still mention quasi-Polish spaces and
groupoids. This is an instance of the subtle interactions between topological and
Borel structure in the presence of a group(oid) action, as exemplified by results such
as Pettis’s theorem and the Becker–Kechris theorem; see [Che24] for an extended
discussion on this point.

To our knowledge, it is an open problem to give a purely Borel-theoretic charac-
terization of the standard Borel groupoids equivalent to the isomorphism groupoid
of some countable Lω1ω theory.
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