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Images of multilinear graded polynomials
on upper triangular matrix algebras
Pedro Fagundes and Plamen Koshlukov
Abstract. In this paper, we study the images of multilinear graded polynomials on the graded
algebra of upper triangular matrices UTn . For positive integers q ≤ n, we classify these images on
UTn endowed with a particular elementary Zq-grading. As a consequence, we obtain the images of
multilinear graded polynomials onUTn with the natural Zn-grading. We apply this classification in
order to give a new condition for a multilinear polynomial in terms of graded identities so that to
obtain the traceless matrices in its image on the full matrix algebra. We also describe the images of
multilinear polynomials on the graded algebras UT2 and UT3 , for arbitrary gradings. We finish the
paper by proving a similar result for the graded Jordan algebra UJ2 , and also for UJ3 endowed with
the natural elementary Z3-grading.

1 Introduction

Let A be an associative algebra over a field F, and let f ∈ F⟨X⟩ be a multilinear
polynomial from the free associative algebra F⟨X⟩. Lvov posed the question to
determine whether the image of a multilinear f when evaluated on A = Mn(F), is
always a vector subspace of Mn(F) (see [17, Problem 1.93]). The original question is
attributed to Kaplansky and asks the determination of the image of a polynomial f
on A. It is well known that the above question is equivalent to that of determining
whether the image of a multilinear f on Mn(F) is 0, the scalar matrices, sln(F),
or Mn(F). Clearly, the first possibility corresponds to f being a polynomial identity
on Mn(F), and the second gives the central polynomials.

Recall here that the description of all polynomial identities on Mn(F) is known
only for n ≤ 2 (see [12, 36] for the case when F is of characteristic 0 and [28] for the
case of F infinite of characteristic p > 2). The same holds for the central polynomials
[9, 35].The theoremofAmitsur and Levitzki gives the least degree polynomial identity
for Mn(F), the standard polynomial s2n (see [2]). Recall also that one of the major
breakthroughs in polynomial identities (PI) theory was achieved by Formanek and
by Razmyslov [18, 37], who proved the existence of nontrivial (that is not identities)
central polynomials for the matrix algebras. As for sln(F), a theorem of Shoda [38]
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gives that every n × n matrix over a field of zero characteristic is the commutator of
twomatrices; later on, Albert andMuckenhoupt [1] generalized this to arbitrary fields.
Hence, all four conjectured possibilities for the image of a multilinear polynomial on
Mn(F) can be achieved.

The study of images of polynomials on the full matrix algebra is of considerable
interest for obvious reasons, among these the relation to polynomial identities. In [24],
the authors settled the conjecture due to Lvov in the case of 2 × 2 matrices over a
quadratically closed field F (that is, if f is a given polynomial in several variables,
then every polynomial in one variable of degree ≤ 2deg f over F has a root in F).
They proved that for every multilinear polynomial f and for every field F that is
quadratically closed with respect to f, the image of f on M2(F) is 0, F, sl2(F), or
M2(F). It should be noted that the authors in [24] proved a stronger result. Namely,
they considered a so-called semi-homogeneous polynomial f : a polynomial in m
variables x1, . . ., xm ofweights d1, . . ., dm , respectively, such that everymonomial of f is
of (weighted) degree d for a fixed d. They proved that the image of such a polynomial
on M2(F) must be 0, F, sl2(F), the set of all non-nilpotent traceless matrices, or a
dense subset of M2(F). Here, the density is according to the Zariski topology. Later
on, in [33], the author gave the solution to the problem for 2 × 2 matrices for the
case when F is the field of the real numbers. In the case of 3 × 3 matrices, the known
results can be found in [25]. The images of polynomials on n × n matrices for n > 3
are hard to describe, and there are only partial results (see, for example, [26]). Hence,
in the case of n × n matrices, one is led to study images of polynomials of low degree.
Interesting results in this direction are due to Špenko [40], who proved the conjecture
raised by Lvov in case F is an algebraically closed field of characteristic 0, and f is
a multilinear Lie polynomial of degree at most 4. Further advances in the field were
made in [5–7]. In [5], the author proved that if A is an algebra over an infinite field F
and A = [A,A], then the image of an arbitrary polynomial which is neither an identity
nor a central polynomial equals A. Recently, Malev [34] described completely the
images of multilinear polynomials on the real quaternion algebra; he also described
the images of semi-homogeneous polynomials on the same algebra.

If the base field F is finite, a theorem of Chuang [8] states that the image of a
polynomial without constant term can be every subset ofMn(F) that contains 0 and is
closed under conjugation by invertible matrices. In the same paper, it was also shown
that such a statement fails when F is infinite.

Therefore, it seems likely it should be very difficult to describe satisfactorily the
images of multilinear polynomials on Mn(F). That is why people started studying
images of polynomials on “easier” algebras, and also on algebras with an additional
structure. The upper triangular matrix algebras are quite important in Linear Algebra
because of their applications to different branches of Mathematics and Physics. They
are also very important in PI theory: they describe, in a sense, the subvarieties of the
variety of algebras generated by M2(F) in characteristic 0. Block-triangular matrices
appear in the description of the so-called minimal varieties of algebras. The images
of polynomials on the upper triangular matrices have been studied rather extensively.
In [43], the author described the images of multilinear polynomials on UT2(F), the
2 × 2 upper triangular matrices over a field F. The images of multilinear polynomials
of degree up to 4 on UTn = UTn(F) for every n were classified in [16], and in [15] the
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first-named author of the present paper described the images of arbitrary multilinear
polynomials on the strictly upper triangular matrices. It turned out that if f is a
multilinear polynomial of degree m, then its image on the strictly upper triangular
matrix algebra J is either 0 or Jm . The following conjecture was raised in [16]: Is the
image of a multilinear polynomial on UTn(F) always a vector subspace of UTn(F)?
This conjecture was solved independently in [32], for infinite fields (or finite fields
with sufficiently many elements), and in [19]. Further results concerning images of
polynomials on the upper triangular matrix algebra can be found in [10, 44, 45].

Gradings on algebras appeared long ago; the polynomial ring in one or several
variables is naturally graded by the infinite cyclic group Z by the degree. Gradings
on algebras by finite groups are important in Linear Algebra and also in Theoretical
Physics: the Grassmann (or exterior) algebra is naturally graded by the cyclic group
of order 2, Z2. In fact, the Grassmann algebra is the most well-known example
of a superalgebra. It should be noted that while in the associative case, the term
“superalgebra” is synonymous to “Z2-graded algebra,” if one considers nonassociative
algebras, these notions are very different: a Lie or a Jordan superalgebra seldom is a
Lie or a Jordan algebra. We are not going to discuss further such topics because these
are not relevant for our exposition.

In [42], Wall classified the finite-dimensional Z2-graded algebras that are graded
simple. Later on, the description of all gradings onmatrix algebraswas obtained aswell
as on simple Lie and Jordan algebras. We refer the readers to the monograph [14] for
the state-of-the-art and for further references. In PI theory, gradings appeared in the
works of Kemer (see [27]), and constituted one of the main tools in the classification
of the ideals of identities of associative algebras, which in turn led him to the positive
solution of the long-standing Specht Problem. It turns out that the graded identities
are easier to describe than the ordinary ones; still they provide a lot of information
on the latter. It is somewhat surprising that the images of polynomials have not been
studied extensively in the graded setting. In [31], Kulyamin described the images of
graded polynomials on matrix algebras over the group algebra of a finite group over a
finite field.

Theupper triangularmatrix algebra admits various gradings, and thesewere shown
to be isomorphic to elementary ones (see [41]). A grading on a subalgebra A of
Mn(F) is elementary if all matrix units e i j ∈ A are homogeneous in the grading. All
elementary gradings on UTn were classified in [11]; in the same paper, the authors
described the graded identities for all these gradings. In this paper, we fix an arbitrary
field F and the upper triangular matrix algebra UTn .

In Section 3, we prove that for an arbitrary group grading on UTn , n > 1, there are
no nontrivial graded central polynomials. (Hence, the image of a graded polynomial
on UTn cannot be equal to the scalar matrices whenever n > 1.) In Section 4, we con-
sider a specific grading onUTn , and describe all possible images of multilinear graded
polynomials for that grading. It turns out that the images are always homogeneous
vector subspaces. We impose a mild restriction on the cardinality of the base field. As
a by-product of the proof, we obtain a precise description of the graded identities for
this grading.

In Section 5, we give a sufficient condition for the tracelessmatrices to be contained
in the image of a multilinear graded polynomial. Once again, we require a mild
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condition on the cardinality of the field. Section 6 studies the graded algebras UT2
and UT3. We prove that the image of a multilinear graded polynomial on UT2, for
every group grading, is a homogeneous subspace. In the case ofUT3, the image of such
a polynomial is also a homogeneous subspace provided that the grading is nontrivial.
In the case of the trivial grading, if the field contains at least three elements, then the
image of every multilinear polynomial is a vector subspace.Then we proceed with the
Jordan algebra structure UJn obtained from UTn by the Jordan (symmetric) product
a ○ b = ab + ba provided that the characteristic of the base field is different from2.The
description of all group gradings on UJn is more complicated than that on UTn (see
[30]), there appear gradings that are not isomorphic to elementary ones.The gradings
onUJ2 were described in [29].We consider each one of these gradings, and prove that
the image of a multilinear graded polynomial is always a homogeneous subspace. No
restrictions on the base field are imposed (apart from the characteristic being different
from 2). An analogous result is deduced for the Lie algebraUT(−)2 obtained fromUTn
by substituting the associative product by the Lie bracket [a, b] = ab − ba. Finally, we
consider UJ3 equipped with the natural Z3-grading: deg e i j = j − i(mod 3) for every
i ≤ j, assuming the base field infinite and of characteristic different from 2. We prove
that the image of a multilinear graded polynomial is always a homogeneous subspace.

We hope that this paper will initiate amore detailed study of images of polynomials
on algebras with additional structures.

2 Preliminaries

Unless otherwise stated, we denote by F an arbitrary field andA an associative algebra
over F. Given a group G, a G-grading on A is a decomposition of A in a direct sum
of subspaces A = ⊕g∈G Ag such that AgAh ⊂ Agh , for all g, h ∈ G. We define the
support of a G-grading on A as the subset supp(A) = {g ∈ G ∣ Ag ≠ 0}. A subspace
U of A is called homogeneous if U = ⊕g∈G(U ∩Ag). A graded homomorphism
between two graded algebrasA = ⊕g∈G Ag andB = ⊕g∈G Bg is defined as an algebra
homomorphism φ∶A→ B such that φ(Ag) ⊂ Bg for every g ∈ G. We denote by
F⟨X⟩gr the free G-graded associative algebra generated by a set of noncommuting
variables X = {x(g)i ∣ i ∈ N, g ∈ G}. We also denote the neutral (that is of degree 1 ∈ G)
variables by y and call them even variables, and the nonneutral ones by z, and we
call them odd variables. We draw the reader’s attention that odd variables may have
different degrees in the G-grading.

We define the image of a graded polynomial on an algebra as in [31].

Definition 2.1 Let f ∈ F⟨X⟩gr be a G-graded polynomial. The image of f on the
G-graded algebraA is the set

Im( f ) = {a ∈ A ∣ a = φ( f ) for some graded homomorphism φ∶ F⟨X⟩gr → A}.
Equivalently, if f (x(g1)1 , . . . , x(gn)n ) ∈ F⟨X⟩gr , then the image of f on the algebraA

is the set Im( f ) = { f (a(g1)1 , . . . , a(gn)n ) ∣ a(g i)i ∈ Ag i}. We will also denote the image
of f onA by f (A).

We now recall some basic properties of images of graded polynomials on algebras
that will be used throughout the paper.
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Proposition 2.2 Let f ∈ F⟨X⟩gr be a polynomial, and letA be a G-graded algebra.
(1) Let U be one-dimensional subspace of A such that Im( f ) ⊂ U and assume that

λIm( f ) ⊂ Im( f ) for every λ ∈ F. Then either Im( f ) = {0} or Im( f ) = U.
(2) If 1 ∈ A and f ∈ F⟨X⟩gr is a multilinear polynomial in neutral variables such that

the sum of its coefficients is nonzero, then Im( f ) = A1.
(3) Im( f ) is invariant under graded endomorphisms of F⟨X⟩gr .
(4) If supp(A) is abelian and f ∈ F⟨X⟩gr is multilinear, then Im( f ) is a homogeneous

subset.

Proof The proofs of the first and third items are straightforward. For the second
item, it is enough to recall that if A is a graded algebra with 1, then 1 ∈ A1. Hence,
given a ∈ A1, we have a = f (α−1a, 1, . . . , 1), where α ≠ 0 is the sum of the coefficients
of f, and then Im( f ) = A1. For the last item, let g1, . . ., gm be the homogeneous
degree of the variables that occur in f. If some g i ∉ supp(A), then Im( f ) = {0}
is a homogeneous subspace. Otherwise, since supp(A) is abelian, we have that each
monomial of f is of homogeneous degree g1 ⋅ ⋅ ⋅ gm , and hence the same holds for f. ∎

We say that a nonzero polynomial f ∈ F⟨X⟩gr is a graded polynomial identity for a
G-graded algebraA if its image onA is zero.The set of all graded polynomial identities
of A will be denoted by Idgr(A). It is easy to check that Idgr(A) is actually an ideal
of F⟨X⟩gr invariant under graded endomorphisms of F⟨X⟩gr . It is called the TG-ideal
ofA. Given a nonempty subset S of F⟨X⟩gr , we denote by ⟨S⟩TG the TG-ideal generated
by S, that is the least TG-ideal that contains the set S. The linearization process also
holds for graded polynomials, and as in the ordinary case, we have the following
statement.

Proposition 2.3 If A satisfies a graded polynomial identity, then A also satisfies a
multilinear one. Moreover, if char(F) = 0, then Idgr(A) is generated by its multilinear
polynomials.

Let nowA = UTn be the algebra of n × n upper triangularmatrices over the field F.
AG-grading onA is said to be elementary if all elementarymatrices are homogeneous
in this grading, or equivalently, if there exists an n-tuple (g1 , . . . , gn) ∈ Gn such that
deg(e i j) = g−1i g j . A theorem of Valenti and Zaicev states that every grading on UTn
is essentially elementary.

Theorem 2.4 [41] Let G be a group, and let F be a field. Assume that UTn = A =
⊕g∈G Ag is G-graded. Then A is G-graded isomorphic to UTn endowed with some
elementary G-grading.

By Proposition 1.6 of [11], we have that an elementary grading onUTn is completely
determined by the sequence (deg(e12), deg(e23), . . . , deg(en−1,n)) ∈ Gn−1.

We recall now some recent results about the description of images of multilinear
polynomials on the algebra of upper triangular matrices. We start with the definition
of the so-called commutator degree of an associative polynomial.

Definition 2.5 Let f ∈ F⟨X⟩ be a polynomial. We say that f has commutator
degree r if

f ∈ ⟨[x1 , x2] ⋅ ⋅ ⋅ [x2r−1 , x2r]⟩T and f ∉ ⟨[x1 , x2] ⋅ ⋅ ⋅ [x2r+1 , x2r+2]⟩T .
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In [19], Gargate and de Mello used the above definition to give a complete
description of images ofmultilinear polynomials onUTn over infinite fields. Denoting
by J the Jacobson radical of UTn and J0 = UTn , they proved the following theorem.
Theorem 2.6 Let F be an infinite field, and let f ∈ F⟨X⟩ be a multilinear polynomial.
Then Im( f ) on UTn is Jr if and only if f has commutator degree r.

One of the main steps in the proof of Theorem 2.6 was the characterization of the
polynomials of commutator degree r in terms of their coefficients. An instance of such
characterization has already been known (see [19, Lemma 3.3(2)]).
Lemma 2.7 [19] Let F be an arbitrary field, and let f ∈ F⟨X⟩ be a multilinear
polynomial. Then f ∈ ⟨[x1 , x2]⟩T if and only if the sum of its coefficients is zero.

It is worth mentioning that the above theorem has been extended for a larger class
of fields by Luo and Wang in [32].
Theorem 2.8 [32] Let n ≥ 2 be an integer, let F be a field with at least n(n − 1)/2
elements, and let f ∈ F⟨X⟩ be a multilinear polynomial. If f has commutator degree r,
then Im( f ) on UTn is Jr .

In the next corollary, we denote byUT(−)n the Lie algebra defined onUTn bymeans
of the Lie bracket [a, b] = ab − ba.
Corollary 2.9 Let F be a field with at least n(n − 1)/2 elements, and let f ∈ L(X) be a
multilinear Lie polynomial. Then Im( f ) on UT(−)n is Jr , for some 0 ≤ r ≤ n.
Proof We use the Poincaré–Birkhoff-Witt theorem (and more precisely the Witt
theorem) to consider the free Lie algebra L(X) as the subalgebra of F⟨X⟩(−) gen-
erated by the set X. Since F⟨X⟩ is the universal enveloping algebra of L(X), given a
multilinear Lie polynomial f ∈ L(X), there exists an associative polynomial f̃ ∈ F⟨X⟩
such that Im( f ) on UT(−)n is equal to Im( f̃ ) on UTn . Now, it is enough to apply
Theorem 2.8. ∎

Let UTn(d1 , . . . , dk) be the upper block-triangular matrix algebra, that is, the
subalgebra of Mn(F) consisting of all block-triangular matrices of the form

⎛⎜⎝
A1 ∗⋱
0 Ak

⎞⎟⎠ ,

where n = d1 + ⋅ ⋅ ⋅ + dk and A i is a d i × d i matrix.Wewill denote by T the subalgebra
of UTn(d1 , . . . , dk), which consists of only triangular blocks of sizes d i on the main
diagonal and zero elsewhere. That is,

T = ⎛⎜⎝
UTd1 0⋱
0 UTdk

⎞⎟⎠ .

As a consequence of the above theorem, we obtain the following lemma.
Lemma 2.10 Let F be a field with at least n(n − 1)/2 elements, and let f ∈ F⟨X⟩ be a
multilinear polynomial of commutator degree r.Then the image Im( f ) on T is Jr , where
J = Jac(T) is the Jacobson radical of T.
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Proof We note that T ≅ UTd1 × ⋅ ⋅ ⋅ ×UTdk . Hence, by [4, Proposition 5.60],

J = ⎛⎜⎝
Jd1 ⋱

Jdk

⎞⎟⎠ ,

where Jd i = Jac(UTd i ). Therefore, by Theorem 2.8, we have

f (T) = ⎛⎜⎝
f (UTd1) ⋱

f (UTdk)
⎞⎟⎠ = ⎛⎜⎝

Jrd1 ⋱
Jrdk

⎞⎟⎠ = Jr .

∎
Throughout this paper, we use the letters w i and w( j)i to denote commuting

variables. We recall the following well-known result about commutative polynomials.

Lemma 2.11 Let F be an infinite field, and let f1(w1 , . . . ,wm), . . ., fn(w1 , . . . ,wm) be
nonzero commutative polynomials. Then there exist a1, . . ., am ∈ F such that

f1(a1 , . . . , am) ≠ 0, . . . , fn(a1 , . . . , am) ≠ 0.

A similar result also holds for finite fields, as long as some boundedness on the
degrees of the variables is given (see [13, Proposition 4.2.3]).

Lemma 2.12 Let F be a finite field with n elements, and let f1(w1 . . . ,wm), . . .,
fn−1(w1 , . . . ,wm) be nonzero polynomials in commuting variables. If degw i

( f j) ≤ 1 for
all i and j, then there exist a1, . . ., am ∈ F such that

f1(a1 , . . . , am) ≠ 0, . . . , fn−1(a1 , . . . , am) ≠ 0.

3 Graded central polynomials for UTn

Our goal in this section is to prove the nonexistence of graded central polynomials
for the graded algebra of upper triangular matrices with entries in an arbitrary field.
It is well known that the algebra of upper block triangular matrices has no central
polynomials (see [20, Lemma 1]).

We will denote by Z(A) the center of the algebraA.

Definition 3.1 Let f ∈ F⟨X⟩gr . We say that f is a graded central polynomial for the
algebraA if Im( f ) ⊂ Z(A) and f ∉ Idgr(A).

We recall the following fact from [11, Lemma 1.4].

Lemma 3.2 Let UTn be endowed with some elementary grading. Then the subspace of
all diagonal matrices is homogeneous of neutral degree.

Theorem 3.3 Let UTn = A = ⊕g∈G Ag be a G-grading on the algebra of upper tri-
angular matrices over an arbitrary field. If n > 1, then there exist no graded central
polynomials forA.

Proof By Theorem 2.4, we have that A is graded isomorphic to some elementary
grading onUTn . Hence, wemay reduce our problem to elementary gradings. Now, we
assume that f ∈ F⟨X⟩gr is a polynomial with zero constant term, such that Im( f ) onA
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is contained in F = Z(A). We write f as f = f1 + f2 where f1 contains neutral variables
only and f2 has at least one nonneutral variable in each of its monomials. Consider
a1, . . ., am ∈ A1, and b1, . . ., b l are nonneutral variables (of homogeneous degree ≠ 1)
that occur in f. Hence, f (a1 , . . . , am , b1 , . . . , b l) = f1(a1 , . . . , am) + j, where j ∈ J, the
Jacobson radical of A, and a i is the diagonal part of a i . Since Im( f ) ⊂ F, then j = 0
and hence Im( f ) = Im( f1), where the image of f1 is taken on diagonal matrices only.
Now, note that if λ1, . . ., λm ∈ F are arbitrary, then

f1(λ1e11 , . . . , λme11) = f1(λ1 , . . . , λm)e11 .
Since Im( f1) ⊂ F, we must have f1(λ1 , . . . , λm) = 0. Hence, for diagonal matrices

D i = n∑
k=1

λ(i)k ekk , we have

f1(D1 , . . . ,Dm) = n∑
k=1

f1(λ(k)1 , . . . , λ(m)k )ekk = 0,

and thus Im( f ) = {0}. We conclude the nonexistence of graded central polynomials
for UTn . ∎

4 Certain Zq-gradings on UTn

Throughout this section, we denote UTn = A, endowed with the elementary Zq-
grading given by the following sequence in Z

n
q :

(0, 1, . . . , q − 2, q − 1, q − 1, . . . , q − 1�������������������������������������������������������������������������������������������������������������� 
n−q+1 times

).

Given q ≤ n an integer, we study the images of multilinear graded polynomials onA.
One can see that, for q = n, we have the natural Zn-grading on UTn given by

deg e i j = j − i(mod n) for every i ≤ j.
We note that the neutral component of UTn is given by a block triangular matrix

with q − 1 triangular blocks of size one each and a triangular block of size n − q + 1 in
the bottom right corner:

A0 =
⎛⎜⎜⎜⎝

∗ 0⋱ ∗
0 UTn−q+1

⎞⎟⎟⎟⎠
.

For l ∈ {1, . . . , q − 1}, we have that the homogeneous component of degree l is given
by

Al = span{e i , i+l , eq−l , j ∣ i = 1, . . . , q − l , j = q + 1, . . . , n}.
For 1 ≤ r ≤ n − q, we also define the following homogeneous subspaces of A l :

Bl ,r = span{eq−l , j ∣ j = q + r, . . . , n}.
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An immediate computation shows that the following are graded identities forA:

[y1 , y2]z ≡ 0,(1)

z1z2 ≡ 0,(2)

[y1 , y2] ⋅ ⋅ ⋅ [y2(n−q+1)−1 , y2(n−q+1)] ≡ 0,(3)

where the variables y i are neutral ones, z, z1, z2 are nonneutral variables, and
deg(z1) + deg(z2) = 0. A complete description of the graded polynomial identities for
elementary gradings on UTn was given in [11] for infinite fields and in [21] for finite
fields.

We state several lemmas concerning the description of some graded polynomials
on A. In the upcoming lemmas, unless otherwise stated, we assume that the field F
has at least n(n − 1)/2 elements and f ∈ F⟨X⟩gr is a multilinear polynomial.

Lemma 4.1 If f = f (y1 , . . . , ym), then Im( f ) onA is a homogeneous vector subspace.

Proof It is enough to apply Lemma 2.10. ∎
In the next two lemmas, we will assume that f = f (z1 , . . . , z l , y l+1 , . . . , ym), where

deg(z i) = 1, 1 ≤ i ≤ l . It is obvious that, in this case, one must have Im( f ) on A as a
subset ofAl . Modulo the identity (1), we rewrite the polynomial f as

f = ∑
i1 , . . . , i l

yi1z1 yi2z2 ⋅ ⋅ ⋅ yi l z l gi1 , . . . , i l + h,

where yi j = y i j1 ⋅ ⋅ ⋅ y i jk j is such that i j1 < ⋅ ⋅ ⋅ < i jk j .Moreover gi1 , . . . , i l is the polynomial
obtained by permuting the neutral variables whose indices are different from either of
i1, . . ., i l , and forming a linear combination of such monomials. Furthermore, h is the
sum of polynomial that differ from the first summand of f by nontrivial permutations
of the odd variables.

Among all polynomials gi1 , . . . , i l (including those in h), we choose one of least
commutator degree, say g, of commutator degree r. Up to permuting the odd variables,
we can assume that the polynomial g occurs in the first summand of f.

Hence, in case 1 ≤ r ≤ n − q, we can improve the inclusion Im( f ) ⊂ Al to
Im( f ) ⊂ Bl ,r . Our goal is to prove that Im( f ) = Al in case r = 0 and Im( f ) = Bl ,r
otherwise.

Lemma 4.2 If 1 ≤ r ≤ n − q, then Im( f ) = Bl ,r .

Proof Let g = yi1z1 yi2z2 ⋅ ⋅ ⋅ yi l z l g be a nonzero summand of f written as above,
where the commutator degree of g is r. We consider the following evaluations: the
variables in yi1 by eq−l ,q−l , the ones in yi2 by eq−l+1,q−l+1,. . ., and all variables in
yi l by eq−1,q−1. We also put z1 = eq−l ,q−l+1, z2 = eq−l+1,q−l+2, . . ., z l−1 = eq−2,q−1, and
z l = ∑n

k=q wk eq−1,k . Since g is of commutator degree r, Theorem 2.8 enables us to
evaluate the even variables in g by matrices from

(0 0
0 UTn−q+1

)
in order to obtain the matrix eq ,q+r + eq+1,q+r+1 + ⋅ ⋅ ⋅ + en−r ,n .
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Note that the evaluations that we have considered allow us to reduce the study of
the image of f to the polynomial g. Under these evaluations, we have

g = (wqeq−l ,q +wq+1eq−l ,q+1 + ⋅ ⋅ ⋅ +wneq−l ,n)(eq ,q+r + eq+1,q+r+1 + ⋅ ⋅ ⋅ + en−r ,n)
= wqeq−l ,q+r +wq+1eq−l ,q+r+1 + ⋅ ⋅ ⋅ +wn−req−l ,n .

Taking a matrix B ∈ Bl ,r , say B = bqeq−l ,q+r + ⋅ ⋅ ⋅ + bn−req−l ,n , we can easily real-
ize B as image of g by choosing w j = b j , j = q, . . ., n − r.

Hence, f (A) = Bl ,r . ∎
Lemma 4.3 If F is a field with at least n elements and r = 0, then Im( f ) = Al .

Proof Denoting by D the homogeneous subspace of diagonal matrices of A, we
consider the following homogeneous subalgebra ofA:

S =D⊕ ⊕
1≤l≤q−1

Al .

We will show that Im( f ) on S is Al , which is enough to conclude the lemma. Note
that S still satisfies the identity (2) and it also satisfies [y1 , y2] ≡ 0.

By the identity [y1 , y2] ≡ 0, we may write the polynomial g as

βyi1z1 yi2z2 ⋅ ⋅ ⋅ yi l z l yi l+1 ,
where β is the sum of all coefficients of the polynomial g and yi l+1 is the product of the
variables of g in increasing order of the indices. Since r = 0, we get fromDefinition 2.5
that β ≠ 0.

Now, we write f = f (z1 , . . . , z l , y l+1 , . . . , ym) as
f = l∑

j=1
f j ,

where f j is the sum of all monomials of f such that the variable z l is in the jth position
in relation to the odd variables.

For each j = 1, . . ., l, we write

f j = ∑
σ∈S( j)l

f j,σ ,

where S( j)l = {σ ∈ S l ∣σ(l) = j}, and f j,σ is the sum of all monomials of f j where the
order of the odd variables is given by the permutation σ .

Taking z i =
q−1∑
k=1

w(i)k ek ,k+1 +w(i)q eq−1,q+1 + ⋅ ⋅ ⋅ +w(i)n−1eq−1,n and y j = n∑
k=1

w( j)k ekk ,

we have

f l , id(z1 , . . . , z l , y l+1 , . . . , ym) =
q−l∑
k=1

pkw(1)k w(2)k+1 ⋅ ⋅ ⋅w(l)k+l−1ek ,k+l

+ pq−l+1w(1)q−l ⋅ ⋅ ⋅w(l−1)q−2 w(l)q eq−l ,q+1 + ⋅ ⋅ ⋅ + pn−lw(1)q−l ⋅ ⋅ ⋅w(l−1)q−2 w(l)n−1eq−l ,n ,

where pk , k = 1, . . ., n − l , are polynomials in the variables w(l+1), . . ., w(m). We note
that all polynomials pk , k = 1, . . ., n − l , are nonzero ones. Indeed,we just have to check
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that different monomials in f l , id give different monomials in pk . To this end, note that
if m1 and m2 are different monomials in f l , id , then there exists some even variable
y j such that the quantity of preceding odd variables in relation to y j is distinct in m1
andm2.This gives us variablesw( j) with different lower indices in the twomonomials
in pk given by m1 and m2, which proves our claim. Moreover, we note that every
variable in each monomial of the polynomial pk appears exactly once.

Since we have at most n − 1 polynomials pk , by Lemma 2.12, there exist evaluations
of the even variables y j by diagonal matrices D j such that pk take nonzero values
simultaneously for all k. In case F is infinite, the same conclusion holds by applying
Lemma 2.11. Hence,

f l =
q−l∑
k=1

( ∑
σ∈S(l)l

ασw(σ(1))k ⋅ ⋅ ⋅w(σ(l−1))k+l−2 )w(l)k+l−1ek ,k+l

+ ( ∑
σ∈S(l)l

ασw(σ(1))q−l ⋅ ⋅ ⋅w(σ(l−1))q−2 )w(l)q eq−l ,q+1

+ ⋅ ⋅ ⋅ + ( ∑
σ∈S(l)l

ασw(σ(1))q−l ⋅ ⋅ ⋅w(σ(l−1))q−2 )w(l)n−1eq−l ,n ,

with α id ≠ 0. So the polynomials inside the brackets above are nonzero ones, and each
of their monomials has variables of degree one. Applying Lemma 2.12 once again, we
may evaluate the variables z1, . . ., z l−1 by matrices in C1, . . ., C l−1 ∈ A1 such that all
these polynomials take nonzero values on F (in case F is infinite, we apply Lemma
2.11). Denote by α l ,k ∈ F/{0}, k = 1, . . ., q − l , the values of the polynomials inside the
brackets after such evaluations.

Therefore,

f (C1 , . . . ,C l−1 , z l ,D l+1 , . . . ,Dm)
= q−l∑

k=1
(α1,kw(l)k + ⋅ ⋅ ⋅ + α l−1,kw(l)k+l−2 + α l ,kw(l)k+l−1)ek ,k+l

+ (α1,qw(l)q−l + ⋅ ⋅ ⋅ + α l−1,qw(l)q−2 + α l ,q−lw(l)q )eq−l ,q+1
+ ⋅ ⋅ ⋅ + (α1,n−1w(l)q−l + ⋅ ⋅ ⋅ + α l−1,n−1w(l)q−2 + α l ,q−lw(l)n−1)eq−l ,n ,

where α l ,k ≠ 0 for every k = 1, . . ., q − l .

Then, given a matrix B = q−l∑
k=1

bk ek ,k+l + bq−l+1eq−l ,q+1 + ⋅ ⋅ ⋅ + bn−l eq−l ,n ∈ Al , we

take

f (C1 , . . . ,C l−1 , z l ,D l+1 , . . . ,Dm) = B,

and we obtain a linear system in the variables w(l) whose solution (not necessarily
unique) can be found recursively. ∎
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Theorem 4.4 Let F be a field with at least n(n − 1)/2 elements, let UTn = ⊕k∈Zq Ak

be endowed with the elementary Zq-grading given by the sequence (0, 1, . . . , q − 2,
q − 1, . . . , q − 1), and let f ∈ F⟨X⟩gr be amultilinear polynomial.Then Im( f ) onUTn is{0}, Jr ,Bl ,r , orAl , where J = Jac(A0). In particular, the image is always a homogeneous
vector subspace.

Proof By Lemmas 4.1–4.3, we only need to analyze the case where f is a polynomial
in neutral variables and nonneutral ones (that is of degree different from 1). However,
we can reduce this case to the aforementioned lemmas. Indeed, modulo the graded
identities (1)–(3), let f and g be as in the comments before Lemma 4.2 and let r be
the commutator degree of g. Hence, Im( f ) ⊂ Bl ,r if r ≠ 0 and Im( f ) ⊂ Al otherwise.
By Proposition 2.2(3), the image of the polynomial f̃ obtained from f by evaluating
every nonneutral variable z i of homogeneous degree k by a product of k variables of
homogeneous degree 1, is contained in Im( f ). However, the polynomial g defined for f
(see the comments before Lemma 4.2) is the same as the one defined for f̃ .This allows
us to getBl ,r ⊆ Im( f̃ ) in case r ≠ 0 andAl ⊆ Im( f̃ ) otherwise. ∎
Remark 4.5 Considering similar computations, one can easily see that the result
is also valid for the elementary grading defined by the identities z[y1 , y2] ≡ 0, (2),
and (3).

In the next corollary, we are assuming that F is a field of characteristic zero
and A = UTn is endowed with the elementary Zq-grading given by the sequence(0, 1, . . . , q − 2, q − 1, . . . , q − 1).
Corollary 4.6 The TG-ideal Idgr(A) is generated by the graded identities (1)–(3).
Proof Let f ∈ Idgr(A). By Proposition 2.3, wemay assume that f is multilinear. Note
that in the proof ofTheorem 4.4 and in the lemmas that precede it, we have shown that
if f is not a consequence of the identities (1)–(3), then Im( f ) ≠ {0}. In other words, if
f ∈ Idgr(A), then f is a consequence of the aforementioned identities. ∎

We recall that in case q = n, we have the natural Zn-grading on UTn .

Corollary 4.7 Let F be a field with at least n elements, let UTn be endowed with the
natural Zn-grading, and let f ∈ F⟨X⟩gr be a multilinear polynomial. Then the image of
f on UTn is either zero or some homogeneous component.

Proof It follows from Proposition 2.2(2), Lemma 2.7, and the proof of
Lemma 4.3. ∎
Remark 4.8 Note that the same result also holds if we consider the naturalZ-grading
on UTn . Analogous results hold for the lower triangular matrix algebra LTn as well
(we will use this remark in the next section).

5 Graded identities and traceless matrices

In this section, we give a sufficient condition for the subspace of the traceless matrices
to be contained in the image of a multilinear polynomial on the full matrix algebra.

We start by recalling the following result from [3].
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Theorem 5.1 [3] Let D be a division ring, n ≥ 2 an integer, and A ∈ Mn(D) a
noncentral matrix. Then A is similar (conjugate) to a matrix in Mn(D) with at most
one nonzero entry on the main diagonal. In particular, if A has trace zero, then it is
similar to a matrix in Mn(D) with only zeros on the main diagonal.

Consider the natural Z-grading on Mn(F) = ⊕r∈Z(Mn(F))r given by

(Mn(F))r =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

span{ek ,k+r ∣ k = 1, . . . , n − r}, if 0 ≤ r ≤ n − 1,
span{ek−r ,k ∣ k = 1, . . . , n + r}, if − n + 1 ≤ r ≤ −1,{0}, elsewhere.

In this section, we denote F⟨X⟩gr the free Z-graded algebra. We also keep the
notation of using variables y’s for neutral variables and z’s for nonneutral ones.

Theorem 5.2 Let n ≥ 2 be an integer, let F be a field with at least (n − 1)n + 1 elements
where char(F) does not divide n, and let f ∈ F⟨X⟩ be a multilinear polynomial. If
f (y1 , . . . , ym−1 , z) ∉ ⟨[y1 , y2]⟩TZ for every nonneutral variable z, then Im( f ) onMn(F)
contains sln(F).
Proof Since char(F) does not divide n, then we have that any nonzero traceless
matrix is noncentral. Using further that Im( f ) is invariant under automorphisms,
by Theorem 5.1, it is enough to show that Im( f ) contains all matrices with zero
diagonal. Let A be a zero diagonal matrix, and write A as the sum of its homogeneous
components

A = −1∑
i=−n+1

A i + n−1∑
i=1

A i ,

where A i = n+i∑
k=1

ak−i ,k ek−i ,k , for i = −n + 1, . . ., −1, and A i = n−i∑
k=1

ak ,k+i ek ,k+i , for i = 1,

. . ., n − 1.
By hypothesis, f (y1 , . . . , ym−1 , z(i)) is not a graded polynomial identity for UTn

with the natural Z-grading, for every variable z(i) of homogeneous degree i where
1 ≤ i ≤ n − 1.

We now consider the following evaluations on generic matrices: y j = n∑
k=1

w( j)k ekk ,

for all j = 1, . . ., m − 1, and z(i) = n−i∑
k=1

w(m , i)
k ek ,k+i .

Hence,

f (y1 , . . . , ym−1 , z(i)) = n−i∑
k=1

pk , iw(m , i)
k ek ,k+i ,

where pk , i is a polynomial in the variables w( j)k . Since f ∉ Idgr(UTn), Corollary 4.7
gives us that the image of f (y1 , . . . , ym−1 , z(i)) on UTn is exactly (UTn)i . Hence, all
pk , i are nonzero polynomials. Moreover, note that pk , i is such that all its monomials
are multilinear ones.
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Analogously, we also have that f (y1 , . . . , ym−1 , z(i)) is not a graded polynomial
identity for the lower triangular matrix algebra LTn endowed with the natural
Z-grading, for i = −n + 1, . . ., −1. Therefore,

f (y1 , . . . , ym−1 , z(i)) = n−i∑
k=1

qk , iw(m ,−i)
k ek+i ,k ,

where z(i) = n+i∑
k=1

w(m ,−i)
k ek−i ,k and qk , i are nonzero commutative polynomials with

multilinear monomials.
The number of polynomials pk , i and qk , i is exactly (n − 1)n. We now apply

Lemma 2.12 to get an evaluation of all variables w( j)k such that the polynomials pk , i
and qk , i assume simultaneously nonzero values in F. Such evaluations give us diagonal
matrices D1, . . ., Dm−1 such that

f (D1 , . . . ,Dm−1 , z(i)) = n−i∑
k=1

α i ,kw(m , i)
k ek ,k+i ,

where α i ,k are nonzero scalars. Therefore, each matrix A i can be realized as
f (D1 , . . . ,Dm−1 , B i) for a suitable matrix B i ∈ (UTn)i , for every i = 1, . . ., n − 1.
Similarly, we also have that each matrix A i can be realized as f (D1 , . . . ,Dm−1 ,C i)
for a suitable matrix C i ∈ (LTn)i , for all i = −n + 1, . . ., −1. Hence,

A = −1∑
i=−n+1

A i + n−1∑
i=1

A i = −1∑
i=−n+1

f (D1 , . . . ,Dm−1 ,C i) + n−1∑
i=1

f (D1 , . . . ,Dm−1 , B i),
and it is enough to use the linearity of f in one variable to get A ∈ Im( f ). ∎

6 The low-dimension cases

6.1 Arbitrary gradings on UT2 and UT3

We start this section with the following proposition.

Proposition 6.1 Let G be a group, and let A and B be two G-graded algebras such
thatB is a graded homomorphic image ofA. Let f ∈ F⟨X⟩gr be a graded polynomial and
assume that f (A) is a homogeneous subspace of A. Then f (B) is also a homogeneous
subspace ofB.

Proof Let ϕ∶A→ B be a graded epimorphism. We start by noting that ϕ( f (A)) =
f (ϕ(A)). Then taking b(1)i , b(2)i ∈ Bg i , i = 1, . . ., m, we have b( j)i = ϕ(a( j)i ) for some
a( j)i ∈ Ag i , since ϕ is surjective. This leads us to

α f (b(1)1 , . . . , b(1)m ) + f (b(2)1 , . . . , b(2)m )
= α f (ϕ(a(1)1 ), . . . , ϕ(a(1)m )) + f (ϕ(a(2)1 ), . . . , ϕ(a(2)m ))
= ϕ(α f (a(1)1 , . . . , a(1)m ) + f (a(2)1 , . . . , a(2)m )),
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which is an element from ϕ( f (A)) = f (ϕ(A)) since we are assuming that f (A) is a
subspace. Then f (B) is also a subspace.

Now, we assume that f (A) is a homogeneous subspace and let b = bh1 + ⋅ ⋅ ⋅ + bhk

be an element in f (B) written as the sum of its homogeneous components. Since
b ∈ f (B), let

b = f (b1 , . . . , bm) = f (ϕ(a1), . . . , ϕ(am)) = ϕ( f (a1 , . . . , am))
for some b i = ϕ(a i), and let

f (a1 , . . . , am) = ag1 + ⋅ ⋅ ⋅ + ag l
be the sum of its homogeneous components. It follows that

b = ϕ(ag1) + ⋅ ⋅ ⋅ + ϕ(ag l ),
and that since ϕ is a graded homomorphism, we must have k = l and every gt must
be equal to some hs . Without loss of generality, we assume that bg t = ϕ(ag t). Now, it
is enough to use that f (A) is homogeneous and ϕ( f (A)) = f (ϕ(A)). ∎
Remark 6.2 In the proof of Proposition 6.1, we have not used the associativity ofA.
Therefore, it also holds for arbitrary algebras, in particular an analogous proposition
holds for graded Jordan algebras.

As a consequence of Proposition 6.1, we have the following theorem.

Theorem 6.3 Let UT2 = A = ⊕g∈G Ag be some grading onA, and let f ∈ F⟨X⟩gr be a
multilinear graded polynomial. Then f (A) is a homogeneous subspace ofA.

Proof By Theorem 2.4 and Proposition 6.1, it is enough to consider images of
multilinear graded polynomials on elementary gradings only. We note that just two
elementary G-gradings can be defined on A = UT2. Indeed, an elementary grading
on UT2 is completely determined by the homogeneous degree of e12. If deg(e12) = 1,
then we have the trivial grading, and we apply Theorem 2.8. Hence, we assume that
A1 = span{e11 , e22} and Ag = span{e12}, where g ≠ 1. In this grading, the images of
multilinear polynomials in neutral variables are handled by Lemma 2.7 and Proposi-
tion 2.2(2). Since A2

g = {0}, it is enough to consider multilinear polynomials in one
variable of homogeneous degree g and all remaining variables of neutral degree. In
this case, the image is contained inAg , and by Proposition 2.2(1), we are done. ∎

Now, we prove an analogous fact to Theorem 6.3 with A = UT3 instead of UT2.
From now on, in this subsection, we assume thatA is endowed with some elementary
G-grading given by a tuple (g1 , g2) ∈ G2. Hence, g1 = deg(e12), g2 = deg(e23), and
g3 ∶= g1g2 = deg(e13).

Hence, the elementary gradings on UT3 are exactly the ones given by following
relations.
(I) {1} ∩ {g1 , g2 , g3} ≠ ∅.

(a) g1 = g2 = 1, which implies g3 = 1;
(b) g1 = 1, which implies g2 = g3;
(c) g2 = 1, which implies g1 = g3;
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(d) g3 = 1 and g1 = g2;
(e) g3 = 1 and g1 ≠ g2.

(II) {1} ∩ {g1 , g2 , g3} = ∅.
(a) 1, g1 , g2 , g3 are pairwise distinct elements;
(b) g1 = g2 ≠ g3.

In the following lemmas, we discuss the grading on UT3 determined by each
relation above and the respective image of a multilinear graded polynomial on such a
graded algebra.

Lemma 6.4 Let UT3 be endowed with the grading (I)(b). Then Im( f ) on UT3 is a
homogeneous subspace.

Proof We denote g2 = g, then we have A1 = span{e11 , e22 , e33 , e12} and Ag =
span{e13 , e23}. Note that A2

g = {0} and hence we only need to analyze multilinear
polynomials in at most one variable of homogeneous degree g.

The case when f is a multilinear polynomial in neutral variables is settled by
Lemma 2.7 and Proposition 2.2(2).

Now, we consider f as a multilinear polynomial in one nonneutral variable and
m − 1 neutral ones. Since A satisfies the graded identity z[y1 , y2] ≡ 0, then modulo
this identity, we write f as

∑
1≤i1< ⋅ ⋅ ⋅ <ik≤m−1 h i1 , . . . , ik zm y i1 ⋅ ⋅ ⋅ y ik .

If all polynomials h i1 , . . . , ik have commutator degree different from 0, then Im( f ) ⊂
span{e13} and then we apply Proposition 2.2(1). Otherwise, we may assume, with-
out loss of generality, that h1, . . . ,k has commutator degree 0. Then we perform the
following evaluations: y1 = ⋅ ⋅ ⋅ = yk = e33, y j = e11 + e22 for every j ∉ {1, . . . , k}, and
zm = α−1(a1e13 + a2e23), where α is the sum of the coefficients of h1,. . . ,k . Note
that, under such an evaluation, we have a1e13 + a2e23 ∈ Im( f ), which proves that
Im( f ) = Ag . ∎
Lemma 6.5 Let UT3 be endowed with the grading (I)(c). Then Im( f ) on UT3 is a
homogeneous subspace.

Proof Note that A1 = span{e11 , e22 , e33 , e23}, Ag1 = span{e12 , e13}, and A satisfies
the identities [y1 , y2]z ≡ 0 and z1z2 ≡ 0. Thus, the proof is similar to the one for
(I)(b). ∎
Lemma 6.6 Let UT3 be endowed with the grading (I)(e). Then Im( f ) on UT3 is a
homogeneous subspace.

Proof Here, we must have A1 = span{e11 , e22 , e33 , e13}, Ag1 = span{e12}, and
Ag2 = span{e23}. Note thatA2

g1 = A2
g2 = {0},Ag2Ag1 = {0}, andAg1Ag2 ⊂ span{e13}.

The case when f is a multilinear polynomial in neutral variables can be treated as
in the grading (I)(b). Hence, we may consider f is a multilinear polynomial in one
variable of degree g1 (resp. g2) andm − 1 neutral variables, or in one variable of degree
g1, one of degree g2, and m − 2 neutral ones. In each of these situations, we have that
Im( f ) is contained in a one-dimensional space and we apply Proposition 2.2(1). ∎
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Lemma 6.7 Let UT3 be endowed with the grading (II)(a). Then Im( f ) on UT3 is a
homogeneous subspace.
Proof We have A1 = span{e11 , e22 , e33}, Ag1 = span{e12}, Ag2 = span{e23}, and
Ag3 = span{e13}. The only nontrivial relation among the nonneutral homogeneous
components is given byAg1Ag3 = Ag2 .

The case of f in neutral variables is the same as for the grading (I)(b).
Since the nonneutral components are one-dimensional, then the image of a multi-

linear polynomial in one nonneutral variable andm − 1 neutral ones is always zero or
the respective homogeneous component.

In case f has one variable of homogeneous degree g1, one of degree g3, and m − 2
neutral ones, then the image is contained inAg2 , and we are done. ∎
Lemma 6.8 Let UT3 be endowed with the grading (II)(b). Then Im( f ) on UT3 is a
homogeneous subspace.
Proof Note that A1 = span{e11 , e22 , e33}, Ag1 = span{e12 , e23}, and Ag3 =
span{e13}. We only need to consider the case when f is a multilinear polynomial in
m − 1 neutral variables and one of homogeneous degree g1, since the remaining cases

can be treated as above. We write f = m∑
j=1

f j where f j is the sum of all monomials from

f which contain the variable zm in the jth position. Hence, modulo [y1 , y2] ≡ 0, we
have

f j = ∑
1≤i1< ⋅ ⋅ ⋅ <i j−1≤m−1 α i1 , . . . , i j−1 y i1 ⋅ ⋅ ⋅ y i j−1zm yk1 ⋅ ⋅ ⋅ ykm− j ,

where k1 < ⋅ ⋅ ⋅ < km− j . We evaluate y i = w(i)1 e11 + e22 +w(i)3 e33 and zm = w(m)1 e12 +
w(m)2 e23. Thus, f (y1 , . . . , ym−1 , zm) is given by

⎛⎜⎜⎝
0 p1(w(1)1 , . . . ,w(m−1)1 )w(m)1 0

0 p2(w(1)3 , . . . ,w(m−1)3 )w(m)2
0

⎞⎟⎟⎠ ,

where p1(w(1)1 , . . . ,w(m−1)1 ) = m∑
j=1

∑
1≤i1< ⋅ ⋅ ⋅ <i j−1≤m−1 α i1 , . . . , i j−1w

(i1)
1 ⋅ ⋅ ⋅w(i j−1)1 and p2 is

given analogously.
We claim that p1 takes nonzero values on F. Indeed, assume that p1 is a polynomial

identity for F and denote e j = ∑
1≤i1< ⋅ ⋅ ⋅ <i j−1≤m−1 α i1 , . . . , i j−1w

(i1)
1 ⋅ ⋅ ⋅w(i j−1)1 . Note that e1 ∈

F and taking w(1)1 = ⋅ ⋅ ⋅ = w(m−1)1 = 0 we have e1 = 0. Taking w(l)1 = 1 and zero for the
remaining values of w1, we have α l = 0 for all l ∈ {1, . . . ,m − 1} and hence e2 = 0.
Now, assume e l = 0 for all l < k, and we shall prove that ek = 0. For each chosen
i1, . . ., ik−1, we take w(r)1 = 0 for all r ∉ {i1 , . . . , ik−1}, then e l = 0 for all l > k and
ek = α i1 , . . . , ik−1w

(i1)
1 ⋅ ⋅ ⋅w(ik−1)1 . Then we takew(i1)1 = ⋅ ⋅ ⋅ = w(ik−1)1 = 1, and we conclude

that α i1 , . . . , ik−1 = 0. Hence, p1 = 0, which is a contradiction. Analogous claim holds
for p2.Therefore, it is enough to use the variablesw(m)1 andw(m)2 to realize anymatrix
inAg1 in the image of f. ∎
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Lemma 6.9 Let UT3 be endowed with the grading (I)(d). Then Im( f ) on UT3 is a
homogeneous subspace.

Proof We denote g = g1 and note that A1 = span{e11 , e22 , e33 , e13} and Ag =
span{e12 , e23}. Then A2

g ⊂ span{e13} and A satisfies the identities z[y1 , y2] ≡ 0 and[y1 , y2]z ≡ 0. The case when f has one variable of homogeneous degree g and m − 1
neutral variables can be treated as in the previous lemma. The remaining cases are
considered as above. ∎

Hence, we have the following theorem.

Theorem 6.10 Let F be an arbitrary field, let UT3 = A = ⊕g∈G Ag be some nontrivial
grading on A, and let f ∈ F⟨X⟩gr be a multilinear graded polynomial. Then Im( f ) on
A is a homogeneous subspace ofA. If ∣F∣ ≥ 3 andA is equipped with the trivial grading,
then the image is also a subspace.

Proof The proof is clear from the previous lemmas and Proposition 6.1. ∎
6.2 The graded Jordan algebra UJ2

Throughout this subsection, we assume that F is a field of characteristic different
from 2 and we denote by UJn the Jordan algebra of the upper triangular matrices
with product a ○ b = ab + ba. Unlike the associative setting, gradings on UJn are not
only elementary ones. Actually, a second kind of grading also occurs on UJn , the so-
called mirror-type gradings, and we define these below. First of all, let us introduce
the following notation.

Let i,m be nonnegative integers and set

E+i∶m = e i , i+m + en−i−m+1,n−i+1 and E−i∶m = e i , i+m − en−i−m+1,n−i+1 .

Definition 6.11 A G-grading onUJn is called of mirror type if the matrices E+i∶m and
E−i∶m are homogeneous, and deg(E+i∶m) ≠ deg(E−i∶m).

We recall the following theorem from [30].

Theorem 6.12 [30] The G-gradings on the Jordan algebra UJn are, up to a graded
isomorphism, elementary or of mirror type.

In particular, we have the following classification of the gradings on UJ2.

Proposition 6.13 Up to a graded isomorphism, the gradings on UJ2 are given by
UJ2 = A = ⊕g∈G Ag where:
(I) elementary ones;

(a) trivial grading;
(b) A1 = Fe11 + Fe22,Ag = Fe12;

(II) mirror type ones;
(a) A1 = F(e11 + e22),Ag = F(e11 − e22) + Fe12;
(b) A1 = F(e11 + e22) + Fe12,Ag = F(e11 − e22);
(c) A1 = F(e11 + e22),Ag = F(e11 − e22),Ah = Fe12;

where g, h ∈ G are elements of order 2.
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In [30], it was also proved that the support of a grading on UJn is always abelian
(see [30, Theorem 24]). Hence, by Proposition 2.2(4), we have that Im( f ) on UJn is a
homogeneous subset for any multilinear graded polynomial f ∈ J(X).

Next, we analyze the images of a multilinear graded Jordan polynomial f on the
gradings considered above.

Lemma 6.14 Let U J2 be endowed with the grading (I)(b). Then Im( f ) on UJ2 is a
homogeneous subspace.

Proof We start with a multilinear polynomial f in m neutral variables. We evaluate
each variable y i to an arbitrary diagonal matrix D i . Therefore, each monomialm in f
is evaluated to 2m−1βD1 ⋅ ⋅ ⋅Dm , where β ∈ F is the coefficient ofm. Hence,

f (D1 , . . . ,Dm) = 2m−1αD1 ⋅ ⋅ ⋅Dm ,

where α ∈ F is the sum of all coefficients of f. In case α = 0, then f = 0 is a graded
polynomial identity for UJ2; otherwise, we can take D2 = ⋅ ⋅ ⋅ = Dm = I2 and use D1
in order to obtain every diagonal matrix in the image of f.

Since UJ2 satisfies the graded identity z1 ○ z2 = 0 such that deg(z1) = deg(z2) = g,
then we only need to analyze the case where f is a multilinear polynomial in m − 1
neutral variables and one of homogeneous degree g. Obviously, wemust have Im( f ) ⊂
Ag and this homogeneous component is one-dimensional, then we are done. ∎

For the grading (II)(a), we recall a lemma from [22] applied to multilinear poly-
nomials. In order to make the notation more compact, we omit the symbol ○ for the
Jordan product, and we write ab instead of a ○ b. If no brackets are given in a product,
we assume that these are left-normed, that is, abc = (ab)c.
Lemma 6.15 [22] Let U J2 be endowed with the grading (II)(a), and let f ∈ J(X)g be
a multilinear Z2-graded polynomial. Then, modulo the graded identities of U J2, we can
write f as a linear combination of monomials of the type

y1 ⋅ ⋅ ⋅ y l z i0(z i1z i2) ⋅ ⋅ ⋅ (z i2m−1z i2m), 1 < ⋅ ⋅ ⋅ < l , i1 < i2 < i3 < ⋅ ⋅ ⋅ < im < im+1 , i0 > 0.

Lemma 6.16 Let U J2 be endowed with the grading (II)(a). Then Im( f ) on UJ2 is a
homogeneous subspace.

Proof Since dimA1 = 1, it follows that if the image of a multilinear polynomial on
UJ2 is contained inA1, then it must be either {0} orA1.

Now, we consider a multilinear polynomial f in homogeneous variables of degree
1 and g such that deg f = g. Letm = y1 ⋅ ⋅ ⋅ y l z i0(z i1z i2) ⋅ ⋅ ⋅ (z i2m−1z i2m) be a monomial
as in Lemma 6.15. We note that the main diagonal of a matrix in m(UJ2) is such that
the entry (k, k) is given by (−1)k+12m+l+1a where a is the product of the entries at
position (1, 1) of all matrices y and z. Hence, every matrix in Im( f ) is of the form

(2m+l+1α ⋅ a ∗−2m+l+1α ⋅ a) ,
where α is the sum of all coefficients of f.

In case α = 0, then Im( f ) ⊂ span{e12} and then the image is completely deter-
mined.
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We consider now α ≠ 0. Without loss of generality, we assume that the nonzero
scalar occurs in the monomial y1 ⋅ ⋅ ⋅ y l z0(z1z2) ⋅ ⋅ ⋅ (z2m−1z2m). Then we make the
following evaluation: y1 = ⋅ ⋅ ⋅ = y l = I2, z0 = w1(e11 − e22) +w2e12, and z i = e11 − e22,
for every i = 1, . . ., 2m, where w1 and w2 are commutative variables. Therefore,

f (y1 , . . . , y l , z0 , . . . , z2m) = (2m+l+1αw1 2m+l+1w2−2m+l+1αw1
) .

Since char(F) ≠ 2 and α ≠ 0, it follows that Im( f ) = Ag . ∎
Now, we consider the grading (II)(b) and we recall another lemma from [22].

Lemma 6.17 [22] Let f ∈ J(X)1 be amultilinear polynomial.Then, modulo the graded
identities of U J2, f can be written as a linear combination of monomials of the form:
(1) (y i1 ⋅ ⋅ ⋅ y ir)(z j1 ⋅ ⋅ ⋅ z j l );
(2) (((y iz j1)z j2)y i1 ⋅ ⋅ ⋅ y ir)z j3 ⋅ ⋅ ⋅ z j l ,
where l ≥ 0 is even, r ≥ 0, i1 < ⋅ ⋅ ⋅ < ir , and z j1 < z j2 < z j3 < ⋅ ⋅ ⋅ < z j l .

Lemma 6.18 Let U J2 be endowed with the grading (II)(b). Then Im( f ) on UJ2 is a
homogeneous subspace.

Proof We start with a multilinear polynomial f in m neutral variables. Note that a
multilinear monomial of degree m evaluated on A1 is a matrix whose main diagonal
is given by 2m−1aI2 where a is the product of the entries on the main diagonal of the
matrices used in the evaluation. Hence, a matrix in Im( f )must be of the form

(2m−1α ⋅ a ∗
2m−1α ⋅ a) ,

where α is the sumof all coefficients of f. In case α = 0, we have Im( f ) ⊂ span{e12} and
the image is completely determined. From now on, we assume α ≠ 0, and we evaluate
m − 1 matrices by I2 and onematrix, say y1, byw1(e11 + e22) +w2e12, wherew1 andw2
are commuting variables. Therefore,

f (y1 , . . . , ym) = (2m−1αw1 2m−1αw2
2m−1αw1

) ,
and since char(F) ≠ 2 and α ≠ 0, we have that Im( f ) = A1.

Now, we consider a multilinear polynomial f which has at least one variable of
homogeneous degree g. In case deg f = g, the image Im( f ) is completely determined,
since dimAg = 1. So we assume deg f = 1. In case f is a multilinear polynomial in
variables of homogeneous degree g, then Im( f ) is contained in the vector space
of the scalars matrices, and therefore the image is completely determined. Hence,
we assume further that f has at least one variable of neutral degree and let f be a
multilinear polynomial in l neutral variables y1, . . ., y l , and m − l variables z l+1, . . .,
zm of homogeneous degree g. Then, by Lemma 6.17, we write f as

f = α1(y1 ⋅ ⋅ ⋅ y l)(z l+1 ⋅ ⋅ ⋅ zm) + l∑
i=1

α i+1(((y iz l+1)z l+2)y1 ⋅ ⋅ ⋅ ŷ i ⋅ ⋅ ⋅ y l)z l+3 ⋅ ⋅ ⋅ zm .
Here, ŷ i means that the variable y i does not appear in the product y1 ⋅ ⋅ ⋅ ŷ i ⋅ ⋅ ⋅ y l .
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We replace y i = w(i)1 (e11 + e22) +w(i)2 e12 and z j = w( j)1 (e11 − e22), where the w’s
are commuting variables. Note that the Jordan product of two matrices y1 and y2 is
given by 2y1 ⋅ y2 where the dot ⋅ stands for the usual product of matrices. On the other
hand, the usual product of nmatrices y1, . . ., yn is given by

(w(1)1 ⋅ ⋅ ⋅w(n)n w
w(1)1 ⋅ ⋅ ⋅w(n)n

) .
Here, w = ∑

1≤i1< ⋅ ⋅ ⋅ <in−1≤n
in∈{1,. . . ,n}/{i1 , . . . , in−1}

w(i1)1 ⋅ ⋅ ⋅w(in−1)1 w(in)2 , as one can see by induction on

n. Hence, the image of the monomial α i+1(((y iz l+1)z l+2)y1 ⋅ ⋅ ⋅ ŷ i ⋅ ⋅ ⋅ y l)z l+3 ⋅ ⋅ ⋅ zm is
equal to

2m−1α i+1 (w
(l)
1 ⋅ ⋅ ⋅w(l)1 w(l+1)1 ⋅ ⋅ ⋅w(m)1 w iw(l+1)1 ⋅ ⋅ ⋅w(m)1

w(l)1 ⋅ ⋅ ⋅w(l)1 w(l+1)1 ⋅ ⋅ ⋅w(m)1
) ,

where w i is given as w above but in ≠ i.
Therefore, the main diagonal of f (y1 , . . . , y l , z l+1 , . . . , zm) is given by

2m−1αw(1)1 ⋅ ⋅ ⋅w(m)1 ,

where α is the sum of all coefficients in f. The entry at position (1, 2) is
∑

1≤i1< ⋅ ⋅ ⋅ <i l−1≤l
k∈{1,. . . , l}/{i1 , . . . , i l−1}

βkw(i1)1 ⋅ ⋅ ⋅w(i l−1)1 w(k)2 w(l+1)1 ⋅ ⋅ ⋅w(m)1 ,

where βk = α1 + l∑
j=1
j≠k

α j+1.

If all βk are equal to zero, then Im( f ) is contained in the space of the scalar
matrices and we are done. So we may assume that some of the βk is nonzero, and
without loss of generality, we suppose β l ≠ 0. In this case, we claim that the image
will be the whole neutral component. Indeed, take A = a1(e11 + e22) + a2e12 ∈ A1. We
evaluate the matrices of degree g by e11 − e22, that is, we take w(l+1)1 = ⋅ ⋅ ⋅ = w(m)1 = 1.
We also evaluate the neutral matrices y1, . . ., y l−1 by the identity matrix, that is, we
take w(1)1 = ⋅ ⋅ ⋅ = w(l−1)1 = 1 and w(1)2 = ⋅ ⋅ ⋅ = w(l−1)2 = 0. Hence, the equality

f (I2 , . . . , I2 , y l , e11 − e22 , . . . , e11 − e22) = A

leads us to the following linear system:

{ 2m−1αw(l)1 = a1 ,
2m−1β lw(l)2 = a2 ,

which has w(1)1 = (2m−1α)−1a1 and w(2)2 = (2m−1β1)−1a2 as the solution. ∎
Theorem 6.19 Let U J2 = ⊕g∈G Ag be a nontrivial G-grading, and let f ∈ J(X) be a
multilinear graded Jordan polynomial. Then Im( f ) on UJ2 is a homogeneous subspace.
The same conclusion also holds for the trivial grading on UJ2 for arbitrary fields.
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Proof We first consider a nontrivial grading onUJ2. By Remark 6.2, we may reduce
the defined grading on UJ2 to one of those described above. We note that the case
of the grading (II)(c) follows from the fact that Im( f ) on UJ2 is a homogeneous
subset and all homogeneous components in this grading are one-dimensional.We use
Lemmas 6.14, 6.16, and 6.18 for the remaining nontrivial gradings. Now, we consider
the trivial grading onUJ2. Let f ∈ J(X) be a multilinear polynomial. We may assume
that f ∉ Id(UJ2). By [39], the algebra J(X)/Id(UJ2) is a special Jordan algebra, and
hence wemay assume that f is an element in the free special Jordan algebra.Therefore,
the image Im( f ) onUJ2 is equal to the image of some associative polynomial onUT2.
Hence, Im( f ) ∈ {J ,UJ2}. ∎
Remark 6.20 Consider the Lie algebraUT(−)n with product given by the Lie bracket.
Given a grading on UT(−)n , note that J = [UT(−)n ,UT(−)n ] is always a homogeneous
ideal. We also note that if f ∈ L(X)gr is a multilinear polynomial of degree ≥ 2, then
Im( f ) on UT(−)n is contained in J. In particular, for n = 2, we must have that Im( f )
is contained in span{e12} which is a homogeneous subspace. Since the image of
multilinear polynomials of degree 1 is trivial, we have that Im( f ) on the graded algebra
UT(−)2 is always a homogeneous subspace, regardless of the grading defined onUT(−)2 .

6.3 The natural elementary Z3-grading in the Jordan algebra UJ3

In this subsection, we study images of multilinear polynomials on the Jordan algebra
A = UJ3 endowedwith the elementaryZ3-grading given by the sequence (0, 1, 2), that
is,A0 = span{e11 , e22 , e33},A1 = span{e12 , e23}, andA2 = span{e13}.

We denote by (x1 , x2 , x3) = (x1x2)x3 − x1(x2x3) the associator of the elements x1,
x2, x3.

We recall the following identity which holds in any Jordan algebra.
Lemma 6.21 Let J be a Jordan algebra. Then

abcd + adcb + bdca = (ab)(cd) + (ac)(bd) + (ad)(bc)
for all a, b, c, d ∈ J.
Proof See, for example, [23, p. 34]. ∎

As an easy consequence of Lemma 6.21, we have

abcd + adcb + bdca = abdc + acdb + bcda(4)

for every a, b, c, d ∈ J.
The next lemma points out some graded identities for the algebra UJ3.

Lemma 6.22 The identities

(y1 , y2 , y3) ≡ 0, (y1 , z, y2) ≡ 0 and z1z2 ≡ 0

hold for U J3, where z is an odd variable and deg(z1) + deg(z2) = 0.
Proof A straightforward computation, hence omitted. ∎

The next lemma has the same proof as [22, Lemma 5.3]. However, we will consider
its proof here for the sake of completeness.
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Lemma 6.23 The polynomial

g = y1(y2(y3z)) − 1
2
(y1(z(y2 y3)) + y2(z(y1 y3)) + y3(z(y1 y2)) − z(y1(y2 y3)))

is a consequence of (y1 , z, y2), where deg(z) ∈ {1, 2}.
Proof By identity (4), we have

−((y2 y3)z)y1 − ((y1 y3)z)y2 − ((y1 y2)z)y3 + ((y2 y3)y1)z = −((y2z)y1)y3 − ((y3z)y1)y2 .

Hence, we can write h = 2g as

h = 2(y1(y2(y3z)) − ((y2z)y1)y3 − ((y3z)y1)y2
= (y3 , z, y2)y1 + (y2 , zy3 , y1) + (y3 , zy2 , y1),

which implies that g is a consequence of (y1 , z, y2). ∎
Given two even variables y i and y j , we set y i < y j if i < j. Hence, we define an order

on words in even variables Y1 < Y2 considering the left lexicographic order in case Y1
and Y2 have the same length, and Y1 < Y2 in case Y2 is longer than Y1. For the next
lemma, we use ideas from [22, Lemma 5.6]. We denote by T the T-ideal generated by
the identities from Lemma 6.22.

Lemma 6.24 Let f = f (y1 , . . . , ym−1 , zm) ∈ J(X) be a multilinear polynomial, where
deg(zm) ∈ {1, 2}. Then, modulo T, f is a linear combination of monomials of the form
Y1(zY2), where each Yi is an increasingly ordered product of even variables and Y1 < Y2.

Proof It is enough to consider f = f (y1 , . . . , ym−1 , zm) as a monomial. We apply
induction onm. Ifm = 1 orm = 2, then the conclusion is obvious. So we assumem ≥ 3
andwewrite f = gh where g, h ∈ J(X).Without loss of generality, wemay assume that
the odd variable zm occurs in g. Hence, h = Y1, and by the induction hypothesis, we
must have g as a linear combination of monomials of the form Y2(zY3). On the other
hand, we have

(Y2(zY3))Y1 = 1
2
(Y1(z(Y2Y3)) + Y2(z(Y1Y3) + Y3(z(Y1Y2)) − z(Y1(Y2Y3))).

Now, it is enough to use the identities (y1 , y2 , y3) ≡ 0, (y1 , z, y2) ≡ 0, and the
commutativity of the Jordan product to get the desired conclusion. ∎

Now, we are ready to prove the main theorem of this subsection.

Theorem 6.25 Let F be an infinite field of characteristic different from 2, and let
f ∈ J(X) be a multilinear graded polynomial. Then the image of f on the graded Jordan
algebra UJ3 endowed with the natural elementary Z3-grading is either {0} or some
homogeneous component.

Proof Since f is a homogeneous polynomial in the graded algebra J(X) and z1z2 ≡ 0
holds onUJ3, for deg z1 + deg z2 = 0, we will consider the following three cases in our
proof.

Case 1: deg f = 0. Here, we must have f = f (y1 , . . . , ym) and the proof is the same
as the first paragraph of the proof of Lemma 6.14.
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Case 2: deg f = 1. Let f = f (y1 , . . . , ym−1 , zm) be such that deg zm = 1. By
Lemma 6.24, modulo T, we may write f as a linear combination of monomials of the
form Y1(zmY2), where Y1 < Y2. On the other hand, given

y i = 3∑
k=1

w(i)k ekk and zm = w(m)1 e12 +w(m)2 e23 ,(5)

note that y izm =
⎛⎜⎜⎝
0 (w(i)1 +w(i)2 )w(m)1 0

0 (w(i)2 +w(i)3 )w(m)2
0

⎞⎟⎟⎠ and then

f (y1 , . . . , ym−1 , zm) =
⎛⎜⎜⎝
0 p1w(m)1 0

0 p2w(m)2
0

⎞⎟⎟⎠ ,

where p1 and p2 are polynomials in the variables w(i), i = 1, . . ., m − 1. We claim
that if f ≠ 0 modulo T, then p1 ≠ 0 and p2 ≠ 0. Indeed, consider the monomial
m = αY1(zmY2), where Y1 = y j1 ⋅ ⋅ ⋅ y jr , Y2 = y l1 ⋅ ⋅ ⋅ y ls , and Y1 < Y2. Note that the (1, 2)
entry of the image ofm under the evaluation (5) is given by

2aα(w( j1)1 ⋅ ⋅ ⋅w( jr)1 +w( j1)2 ⋅ ⋅ ⋅w( jr)2 )w(m)1 (w(l1)1 ⋅ ⋅ ⋅w(ls)1 +w(l1)2 ⋅ ⋅ ⋅w(ls)2 )
for some power of 2. Hence, p1 contains the following monomials:

2aαw( j1)1 ⋅ ⋅ ⋅w( jr)1 w(l1)2 ⋅ ⋅ ⋅w(ls)2 and 2aαw( j1)2 ⋅ ⋅ ⋅w( jr)2 w(l1)1 ⋅ ⋅ ⋅w(ls)1 .

Since Y1 < Y2, the two monomials above can only be obtained from the monomialm.
Hence, if f ≠ 0 modulo T, then f contains some monomial m as above for some
nonzero α, which will imply in nonzero monomials in p1 that are not multiple of any
other one that comes from the remaining monomials of f. The same ideas also prove
that p2 ≠ 0.

Now, we use the fact that F is infinite to get evaluations of the even variables for
diagonal matrices such that p1 and p2 assume nonzero values on F, simultaneously.
We finally use the variables w(m)1 and w(m)2 to get arbitrary odd matrices in Im( f ),
that is, Im( f ) = (UJ3)1.

Case 3: deg f = 2. This last case follows from the fact that the homogeneous
component of degree 2 is one-dimensional. ∎

Acknowledgment Thanks are due to the Referee whose careful reading and sugges-
tions, accepted with gratitude, helped us improve the exposition of the results in our
paper.
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