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Curvature-driven instabilities are ubiquitous in magnetised fusion plasmas. By analysing
the conservation laws of the gyrokinetic system of equations, we demonstrate that the
well-known spatial localisation of these instabilities to regions of ‘bad magnetic curva-
ture’ can be explained using the conservation law for a sign-indefinite quadratic quantity
that we call the gyrokinetic field invariant. Its evolution equation allows us to define the
local effective magnetic curvature whose sign demarcates the regions of ‘good’ and ‘bad’
curvature, which, under some additional simplifying assumptions, can be shown to cor-
respond to the inboard (high-field) and outboard (low-field) sides of a tokamak plasma,
respectively. We find that, given some reasonable assumptions, electrostatic curvature-
driven modes are always localised to the regions of bad magnetic curvature, regardless
of the specific character of the instability. More importantly, we also deduce that any
mode that is unstable in the region of good magnetic curvature must be electromag-
netic in nature. As a concrete example, we present the magnetic-drift mode, a novel
good-curvature electromagnetic instability, and compare its properties with the well-
known electron-temperature-gradient instability. Finally, we discuss the relevance of the
magnetic drift mode for high-β fusion plasmas, and in particular its relationship with
microtearing modes.

Key words: plasma instabilities, fusion plasma

1. Introduction

Designing successful magnetic-confinement-fusion devices relies on understanding
the transport of energy and particles in hot magnetised plasmas. In most modern
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fusion experiments, the majority of this transport out of the confined region of the
plasma is a result of turbulent fluctuations on scales much smaller than the size
of the device (and usually associated with the Larmor radius of one or more of
the particle species in the plasma). These fluctuations are continuously excited by
small-scale instabilities (often called ‘microinstabilities’) driven by the gradients of
temperature and density of the large-scale plasma equilibrium. Understanding the
conditions for the triggering of these instabilities and how they can be suppressed
is therefore of crucial importance for designing devices that can support the larger
gradients necessary for higher fusion performance.

Some of the early work on microinstabilities considered a simple inhomoge-
neous plasma in a straight magnetic field that is either uniform (Rudakov &
Sagdeev 1961; Coppi et al. 1966) or sheared (Coppi, Rosenbluth & Sagdeev
1967; Cowley, Kulsrud & Sudan 1991; Newton, Cowley & Loureiro 2010). Such
magnetic-field configurations are often called ‘slabs’ and so these instabilities are
known as ‘slab instabilities’. However, the equilibrium magnetic field in magnetic-
confinement-fusion devices is never completely straight. There exists a separate class
of instabilities, often called ‘curvature-driven’ (or sometimes ‘toroidal’), that rely on
the magnetic drifts resulting from the non-uniform magnetic field (Pogutse 1968;
Terry, Anderson & Horton 1982; Guzdar et al. 1983; Romanelli 1989; Biglari,
Diamond & Rosenbluth 1989). By definition, these instabilities do not exist in the
slab geometry, sheared or otherwise. In toroidal geometry, one often finds that the
corresponding eigenmodes are peaked near the outboard midplane, where the local
gradients of the magnetic field and the plasma pressure are aligned. In some simple
cases, e.g. the curvature-driven ion-temperature-gradient (cITG) mode, this can be
demonstrated by ignoring the parallel variation of the magnetic drifts and solving
the dispersion relation in what is sometimes called the ‘local kinetic limit’ (Romanelli
1989). With this simplification, it is easy to show that cITG modes are unstable when
the aforementioned gradients are aligned, and become stable at the inboard side of
the device, where the gradients oppose each other (Beer 1995). Therefore, magnetic
curvature that is aligned with the plasma-pressure gradient is often referred to as ‘bad
curvature’, on account of its ability to excite plasma microinstabilities. The same bad
magnetic curvature is also responsible for large-scale magnetohydrodynamic (MHD)
instabilities (Bateman & Peng 1977; White 2014), further underscoring its destabil-
ising nature. Analogously, ‘good curvature’ refers to magnetic curvature that points
opposite to the pressure gradient.

Combined with the magnetic drifts, trapped particles can also drive linear insta-
bilities. There are various trapped-electron (Adam et al. 1973, 1976; Catto & Tsang
1978; Cheng & Chen 1981) and trapped-ion (Xu & Rosenbluth 1991) modes, which
are often considered to be important sources of turbulent fluctuations. These insta-
bilities cannot be described using the same local analysis that is applicable to the
cITG mode. In axisymmetric geometry, particles are trapped at the outboard, low-
field side of the device, which coincides with the bad-curvature region. However,
in non-axisymmetric geometry, the trapped-particle and bad-curvature regions may
not necessarily overlap. This, combined with the fact that trapped-particle modes are
typically only unstable in the bad-curvature regions, underlies some schemes for opti-
mising stellarator configurations (Proll et al. 2012; Helander, Proll & Plunk 2013;
Rodríguez et al. 2024).

In this work, we investigate the properties of gyrokinetic (GK) curvature-driven
microinstabilities and their localisation to regions of either good or bad magnetic
curvature. Our analysis is based on GK conservation laws and is largely agnostic
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to the physical mechanisms that destabilise the fluctuations. First, we show that the
conservation of a quantity we call the GK field invariant can be used to classify
modes as either slab-like or curvature-driven. Furthermore, the evolution equation
of this invariant provides a natural definition of good and bad magnetic curvature.
Given a few reasonable assumptions (stated in detail in § 2.4), we show that the
sign of the field invariant is related to the localisation of the curvature-driven modes
to regions of either good or bad magnetic curvature. In the electrostatic limit, the
field invariant is negative definite. This allows us to conclude that a large class of
electrostatic curvature-driven modes (viz. those satisfying the assumptions of § 2.4),
must be localised to regions of bad magnetic curvature. Consequently, we expect
that modes driven unstable by good magnetic curvature are electromagnetic.

In the second half of this paper, we present a novel low-β, electromagnetic,
curvature-driven instability that we call the magnetic-drift mode (MDM) and that
is triggered only in good-curvature regions. By comparing it with the well-known
electrostatic, curvature-driven electron-temperature-gradient (cETG) instability, we
discuss some of the distinctive features of the MDM. We argue that it may be
related to some exotic species of microtearing modes seen in GK simulations in
toroidal geometry (Jian et al. 2021; Patel 2021).

The rest of this paper is structured as follows. Its first part, § 2, which begins with
a short summary of the relevant parts of GK theory and toroidal magnetic geome-
try (§ 2.1), is devoted to the conservation laws of free energy and of the GK field
invariant defined in § 2.3. In § 2.4, we discuss the implications of the field invariant’s
conservation for the stability of curvature-driven modes and define the local mag-
netic curvature whereby good- and bad-curvature regions can be distinguished. We
discuss the local magnetic curvature in both simplified toroidal geometry (§ 2.4.1)
and Z -pinch geometry (§ 2.4.2). Then, in §3, we turn to the MDM and its prop-
erties. First, in § 3.1, we discuss the low-β, drift-kinetic ordering in the magnetic
geometry of a Z -pinch, which provides the minimal model for the MDM. In § 3.2,
we restrict ourselves to the two-dimensional limit, wherein we find that the electro-
static and electromagnetic fluctuations decouple. Here, we discover the MDM and
compare it with the cETG mode. In §3.3, we provide qualitative estimates for the
destabilisation threshold of the MDM in toroidal geometry and argue that this mode
might have already been observed in GK simulations. Finally, in § 4, we summarise
and discuss our results.

2. Gyrokinetic conservation laws

In this section, we recap the GK framework (Frieman & Chen 1982) before mov-
ing on to discuss the conservation laws that will prove relevant for curvature-driven
instabilities. For a more comprehensive review of GK, see, for example Abel et al.
(2013) or Catto (2019).

2.1. Gyrokinetic equations in a magnetised plasma
In this work, we consider fluctuations that satisfy the GK ordering,

ω

�s
∼ νss′

�s
∼ k‖

k⊥
∼ qsφ

Ts
∼ δB‖

B
∼ |δB⊥|

B
∼ ρs

L
� 1, (2.1)

where ω is the characteristic frequency (or growth rate) of the fluctuations; k‖ and
k⊥ are the characteristic fluctuation wavenumbers in the directions parallel and per-
pendicular to the equilibrium magnetic field B, respectively; L is any characteristic

https://doi.org/10.1017/S0022377825000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000510


4 P.G. Ivanov, P. Luhadiya, T. Adkins and A.A. Schekochihin

length scale associated with the equilibrium; φ is the fluctuating electrostatic poten-
tial (the equilibrium electric field is assumed to be zero); δB‖ and δB⊥ are the
magnetic-field fluctuations parallel and perpendicular to the mean field, respec-
tively; s labels the particle species (e.g. ions and electrons); νss′ is the collision
frequency between species s and s ′. For each species s, we define its charge qs ,
mass ms , thermal speed vths , equilibrium temperature Ts = msv

2
ths/2, gyrofrequency

�s = qs B/msc, and gyroradius ρs = vths/|�s|.
Under (2.1), we expand the particle distribution function as

fs = Fs + δ fs, (2.2)

where δ fs/Fs ∼ ρs/L and the perturbed distribution function is further decomposed
as

δ fs(r, v, t)= −qsφ(r, t)

Ts
Fs(Rs, εs)+ hs(Rs, εs, μs, t), (2.3)

where Rs = r − b̂ × v⊥/�s ≡ r − ρs(ϑ) is the guiding-centre position, b̂ = B/B,
ϑ is the gyroangle, εs = msv

2/2 is the particle kinetic energy and μs = msv
2
⊥/2B

is the particle magnetic moment. The equilibrium distribution Fs is a Maxwellian
(i.e. an exponential distribution in εs) with (nonuniform) density ns and temperature
Ts . Assuming that the collisions between particles are sufficiently rare, and provided
that there are no sonic mean flows, hs evolves according to the collisionless GK
equation

∂

∂t

(
hs − qs 〈χ〉Rs

Ts
Fs

)
+

(
v‖ b̂ + vds + 〈

vχ
〉

Rs

)
· ∂hs

∂Rs
+ 〈

vχ
〉

Rs
· ∂Fs

∂Rs
= 0, (2.4)

where the parallel velocity is v‖ = σ
√

2(εs −μs B)/ms and σ = ±1 is its sign. In
(2.4), 〈. . . 〉Rs denotes the standard gyroaverage (over ϑ) at constant Rs . The GK
potential χ = φ − v · δA/c is defined in terms of the fluctuating electrostatic poten-
tial φ and vector potential δA.

1
This potential determines the GK drift velocity

vχ = (c/B)b̂ × ∇χ , which gives rise to the nonlinear advection of hs , as well as to
the linear drive associated with the gradients of the equilibrium distribution. The
magnetic drifts in (2.4), which will be a central feature of the discussion below, are

vds = b̂
�s

×
(
v2

‖ b̂ · ∇b̂ + 1
2
v2

⊥∇ log B

)
. (2.5)

Finally, under the GK ordering (2.1) and with the additional assumption that all
fluctuations are on scales much larger than the plasma Debye length, the electro-
magnetic fields appearing in the GK equation (2.4) are determined by Ampère’s law

∇ × δB = 4π
c
δ J = 4π

c

∑
s

qs

∫
d3v 〈vhs〉r (2.6)

and the quasineutrality condition

0 =
∑

s

qsδns =
∑

s

qs

[
−qsφ

Ts
ns +

∫
d3v〈hs〉r

]
. (2.7)

1Throughout this work, we have assumed the Coulomb gauge ∇ · A = 0.

https://doi.org/10.1017/S0022377825000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000510


Journal of Plasma Physics 5

Equation (2.6) is more commonly split into its parallel and perpendicular parts, as
follows:

∇2
⊥δA‖ = −4π

c

∑
s

qs

∫
d3vv‖ 〈hs〉r , (2.8)

∇2
⊥δB‖ = −4π

B
∇⊥∇⊥ :

∑
s

ms

∫
d3v 〈v⊥v⊥hs〉r , (2.9)

in which form the latter obviously expresses perpendicular pressure balance.

2.2. Axisymmetric magnetic geometry
We assume that the equilibrium is axisymmetric and that there exist well-defined

flux surfaces labelled by the poloidal flux ψ . In this case, it can be shown (see, e.g.
Abel et al. 2013) that the plasma equilibrium is, to lowest order in (2.1), a function
only of ψ , i.e. ns = ns(ψ), Ts = Ts(ψ), etc. The equilibrium magnetic field is given by
B = ∇α× ∇ψ , where the Clebsch angle is α = ϕ − q(ψ)θ , ϕ is the toroidal angle
(the symmetry angle of the axisymmetric equilibrium), θ is the straight-field-line
poloidal angle and q is the safety factor (Kruskal & Kulsrud 1958; D’haeseleer et al.
1991). We take θ = 0 to correspond to the outboard midplane of the device.

In what follows, we shall be working in a field-line-following coordinate system
(x, y, z), where we use z as the coordinate along the equilibrium magnetic field,
while x ∝ψ and y ∝ α are the radial and binormal coordinates, respectively, with
suitable constant normalisations so that they have units of length. In such a coor-
dinate system, ∇x × ∇y = B/B0, where B0 is some constant normalising magnetic
field that depends on the choice of x and y. An example of such a choice for x , y
and z is given in § 2.4.1.

Finally, let us note that even though the results in this section are derived and pre-
sented in axisymmetric geometry, they are readily generalisable to non-axisymmetric
geometries.

2.3. Free energy and the GK field invariant
The GK system of equations conserves the free energy

W =
∑

s

〈 〈∫
d3v

Tsδ f 2
s

2Fs

〉
⊥

〉
ψ

+
〈 〈 |δB|2

8π

〉
⊥

〉
ψ

, (2.10)

where 〈.〉⊥ and 〈.〉ψ denote an intermediate-scale perpendicular average and the
flux-surface average, respectively [see (A.1) and (A.6) for their precise definitions].
Physically, their combination is an average over a finite volume around a given flux
surface whose radial size is large compared with the fluctuation wavelength ∼ ρs

but small compared with the scale of equilibrium variation L. It can be shown (see
Appendix B) that the (collisionless)

2
time evolution of the free energy is given by

dW

dt
=

∑
s

Ts

(
1

Lns

− 3
2

1
LTs

)
Γs +

∑
s

Qs

LTs

, (2.11)

2Collisions enter as a negative-definite term on the right-hand side of (2.11).
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where the right-hand side of (2.11) depends on the radial particle and heat (more
precisely, energy) fluxes for each species, denoted by Γs and Qs , respectively,

Γs =
〈 〈∫

d3v
〈
hsvχ

〉
r
· ∇x

〉
⊥

〉
ψ

, (2.12)

Qs =
〈 〈∫

d3v
1
2

msv
2
〈
hsvχ

〉
r
· ∇x

〉
⊥

〉
ψ

, (2.13)

and the density and temperature gradient length scales are defined as

1
Lns

≡ −d ln ns

dx
,

1
LTs

≡ −d ln Ts

dx
. (2.14)

Note that (2.11) is a local conservation law valid at any given flux surface. Thus,
to lowest order in (2.1), free energy is injected and dissipated at every flux surface
separately, i.e. there is no overall transport of free energy across flux surfaces (Abel
et al. 2013). The right-hand side of (2.11) shows that free energy is injected into fluc-
tuations by the density and heat fluxes along the gradients of the plasma equilibrium.
The magnetic drifts are absent from (2.11). This is the well-known result that GK
fluctuations cannot directly access the energy stored in the equilibrium magnetic
field (Abel et al. 2013). Thus, even though the magnetic drifts are, by definition,
required for any curvature-driven instability, we cannot use the conservation of free
energy by itself to determine their role in the said instabilities.

To elucidate the role of the magnetic drifts, we construct another nonlinearly
conserved quantity, which we call the GK field invariant, defined as

Y ≡
∑

s

〈 〈∫
d3v

Ts

2Fs

〈(
hs − qs 〈χ〉Rs

Ts
Fs

)2
〉

r

〉
⊥

〉
ψ

− W, (2.15)

where 〈.〉r is the standard gyroaverage at fixed r. The field invariant can be shown
to satisfy (see Appendix B.4)

dY

dt
=

∑
s

〈 〈∫
d3v

〈
qs 〈χ〉Rs

v‖ b̂ · ∇hs + qs 〈χ〉Rs
vds · ∇⊥hs

〉
r

〉
⊥

〉
ψ

. (2.16)

It is related to the general two-dimensional invariants of GK (Schekochihin et al.
2009; Plunk et al. 2010) and can be thought of as a generalisation of the so-called
‘electrostatic invariant’ (Schekochihin et al. 2009; Plunk et al. 2010; Helander et al.
2013; Plunk & Helander 2023). Note that even though the nonlinear terms do not
contribute to the evolution of Y , it still evolves collisionlessly in a uniform plasma
and a uniform magnetic field due to the presence of the parallel streaming term on
the right-hand side of (2.16). In contrast, W is a ‘true’ invariant for which dW/dt
vanishes exactly in the absence of equilibrium gradients and collisions. Thus, the
relevance of the field invariant to the study of nonlinear turbulent saturation is
likely limited to two-dimensional or nearly two-dimensional situations wherein the
parallel-streaming term can be ignored (Plunk et al. 2010).

Nevertheless, the field invariant can be a powerful tool in the study of linear
instabilities.

3
The (collisionless) time evolution of Y , given by (2.16), contains two

3Indeed, this was already realised by Helander et al. (2013) for electrostatic trapped-electron modes in
stellarators.
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contributions: one from parallel streaming and one from the magnetic drifts. We
will shortly argue that the former is the physically important source of Y for slab
instabilities. The latter will turn out to determine the instability of curvature-driven
modes. In Appendix B.4, we show that it can be written as

∑
s

〈 〈∫
d3vqs

〈〈χ〉Rs
vds · ∇⊥hs

〉
r

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v

(
msv

2
‖ + 1

2
msv

2
⊥

) 〈
hsvχ

〉
r
· ∇⊥ ln B

〉
⊥

〉
ψ

+ β
d ln p

dx

∑
s

〈 〈∫
d3v

1
2

msv
2
‖
〈
hsvχ

〉
r
· ∇x

〉
⊥

〉
ψ

, (2.17)

where β = 8πp/B2 is the plasma beta and p =∑
s ns Ts is the equilibrium pressure.

Equation (2.17) suggests that the injection of Y due to the magnetic drifts has a
form very similar to that of W , viz. it is proportional to the turbulent heat flux
across the equilibrium magnetic field, but also depends directly on the gradient of
the magnetic field. As the vector ∇⊥ ln B is, in general, not aligned with ∇x , it is not
straightforward to relate the injection terms of W and Y , i.e. the right-hand sides of
(2.11) and (2.17). In § 2.4, we deal with this by making some additional assumptions
about the nature of the instabilities and the magnetic geometry.

2.3.1. Local limit
To make further progress, we restrict ourselves to what is commonly known as
the ‘local δ f gyrokinetics’. Here ‘local’ means that we are integrating (2.4) in a
domain of perpendicular size that is infinitesimal in comparison with the length
scales associated with the plasma equilibrium Fs and the equilibrium magnetic field
B, and so the (perpendicular) gradients associated with the equilibrium are taken
to be constant; ‘δ f ’ means that we only consider the evolution of small-amplitude
fluctuations over times that are short compared with the transport time scale (over
which the equilibrium evolves), with the equilibrium therefore assumed constant in
time.

In the local approximation, any fluctuating quantity g(r) can be written as

g(r)=
∑
k⊥

gk⊥(z)e
ikx x+iky y, (2.18)

where the field-line-following coordinate system (x, y, z) is defined at the end of
§ 2.2. Equation (2.18) can be thought of as an ensemble of modes in the ballooning
representation (Connor, Hastie & Taylor 1978). Alternatively, and perhaps more
practically for numerical simulations, fluctuations have the form (2.18) when solving
(2.4) in a field-line-following flux tube (Beer, Cowley & Hammett 1995) and impos-
ing periodic boundary conditions in the plane perpendicular to the magnetic field.

4

Further details on the validity of (2.18) and the relationship between the ballooning
transformation and the local GK formulation can be found in Beer et al. (1995) and

4We are not, however, interested in the practical numerical implementation of solving (2.4) in a flux tube.
Thus, we are allowed to let our flux tube be ‘true’ to the ballooning representation and hence be infinite along the
magnetic-field lines.

https://doi.org/10.1017/S0022377825000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000510


8 P.G. Ivanov, P. Luhadiya, T. Adkins and A.A. Schekochihin

Appendix A. For the purposes of the following discussion, we consider modes in a
periodic flux tube with an infinite extent along the field lines. In this case, the free
energy (2.10) and field invariant (2.15) can be expressed as

W =
∑

s

∑
k⊥

〈∫
d3v

Ts

∣∣δ fsk⊥
∣∣2

2Fs

〉
‖
+

∑
k⊥

〈∣∣δB‖k⊥
∣∣2 + k2

⊥
∣∣δA‖k⊥

∣∣2
8π

〉
‖

(2.19)

and

Y =
∑
k⊥

〈
−

∑
s

q2
s ns

2Ts
(1 − �0s)

∣∣φk⊥
∣∣2 +

(
k2

⊥
8π

+
∑

s

�0s

8πd2
s

) ∣∣δA‖k⊥
∣∣2

+
(

1 +
∑

s

βs�1s

) ∣∣δB‖k⊥
∣∣2

8π
+ 1

2

∑
s

qsns�1s

(
φk⊥

δB∗
‖k⊥

B
+ φ∗

k⊥
δB‖k⊥

B

)〉
‖
,

(2.20)

respectively, where 〈.〉‖ denotes the parallel average [defined in (A.15)]. It is defined
in such a way that the combination of the sum over k⊥ and the parallel average
is equivalent to the combination of the perpendicular and flux-surface average (see
Appendix A.1 for details). In (2.20), ds = ρs/

√
βs and βs = 8πns Ts/B2 are the skin

depth (or inertial length) and plasma beta of species s, respectively, and

�0s = I0(αs)e−αs , �1s = [I0(αs)− I1(αs)] e−αs , (2.21)

where αs = k2
⊥ρ

2
s /2, k2

⊥ = (kx∇x + ky∇y)2, and I0 and I1 are the modified Bessel
functions of the first kind.

When written as (2.19) and (2.20), it is evident that the field invariant Y differs
from the free energy W in two crucial ways. First, the distribution function δ fs

does not enter explicitly into the former, which contains contributions only from
the electromagnetic fields, justifying the name ‘field’ invariant. Secondly, unlike the
free energy, which is always positive, Y is not sign definite, as is evident in (2.20).
Since 1 − �0s is strictly positive, the electrostatic part of the invariant, viz. the part
proportional to |φk⊥|2 in (2.20), is negative definite, while including electromagnetic
effects makes Y sign-indefinite. In particular, Y can be positive only for large enough
δA‖k⊥ and/or δB‖k⊥ . These observations will be crucial for the arguments presented
in § 2.4.

In general, the physical meaning of Y is not transparent. However, in certain
limits, it can be related to other, better-known conserved quantities. For instance,
in the electrostatic limit, viz. δA‖k⊥ = 0 and δB‖k⊥ = 0, (2.20) becomes the usual
electrostatic invariant (Schekochihin et al. 2009; Plunk et al. 2010; Helander et al.
2013)

lim
|δB|→0

Y = −
∑
k⊥,s

q2
s ns

2Ts

〈
(1 − �0s)

∣∣φk⊥
∣∣2〉

‖
≈

〈 〈
−1

2
� |vE |2

〉
⊥

〉
ψ

, (2.22)

where the last (approximate) equality holds in the long-wavelength limit (k⊥ρs � 1
for all species s). In this limit, Y is simply (the negative of) the total kinetic energy
associated with the E × B velocity of the particles vE = (c/B)b̂ × ∇φ and its total
density �≡∑

s msns . Restoring the contributions from the magnetic fluctuations,
we find
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Y ≈
〈 〈

−1
2
� |vE |2 + |δB|2

8π
+

∣∣δA‖
∣∣2

8πd2
e

〉
⊥

〉
ψ

, (2.23)

where we have assumed a ‘typical’ plasma of multiple ion species and one elec-
tron species of significantly lower mass. The last term in (2.23), which dominates
when k⊥de � 1, can be recognised as anastrophy (or ‘A2

‖-stuff’) – a well-known
two-dimensional invariant of MHD (Fyfe & Montgomery 1976; Pouquet 1978;
Schekochihin 2022). Thus, in the MHD limit, the field invariant can be though
of as the anastrophy with an additional correction due to kinetic physics.

Using (2.18), the free-energy conservation law (2.11) can be written as

dW

dt
=

∑
s

Ts

(
1

Lns

− 3
2

1
LTs

)
Γs +

∑
s, k⊥

1
LTs

〈Q‖
sk⊥ +Q⊥

sk⊥
〉
‖ , (2.24)

where we have defined the local (in z) radial fluxes of energy associated with parallel
and perpendicular particle motion,

Q‖
sk⊥(z)≡ Im

[
cky

B0

∫
d3v

1
2

msv
2
‖h∗

sk⊥〈χ〉k⊥

]
, (2.25)

Q⊥
sk⊥(z)≡ Im

[
cky

B0

∫
d3v

1
2

msv
2
⊥h∗

sk⊥〈χ〉k⊥

]
, (2.26)

where 〈χ〉k⊥ is the Fourier-transformed gyroaveraged GK potential [see (B.18)].
These fluxes are related to the total heat flux by Qs =∑

k⊥〈Q‖
sk⊥ +Q⊥

sk⊥〉‖.
Similarly, for the field invariant, we find

dY

dt
= dY

dt

∣∣∣∣
slab

+ dY

dt

∣∣∣∣
curv

, (2.27)

where we have separated the ‘slab’ contribution to (2.16) arising from the parallel
streaming,

dY

dt

∣∣∣∣
slab

=
∑
s, k⊥

〈∫
d3v qsv‖〈χ〉k⊥ b̂ · ∇h∗

sk⊥

〉
‖
, (2.28)

and the ‘curvature’ one due to the magnetic drifts,

dY

dt

∣∣∣∣
curv

= 2
∑
k⊥

〈Ck⊥Q‖
k⊥
〉
‖ . (2.29)

Here the local magnetic curvature is defined as

Ck⊥(z)≡ (2 + ak⊥)
B0

B
(b̂ × ∇⊥ ln B) ·

(
∇y + kx

ky
∇x

)
+ β

2
d ln p

dx
, (2.30)

where ak⊥(z)≡ (Q⊥
k⊥ − 2Q‖

k⊥)/2Q
‖
k⊥ is the heat-flux anisotropy parameter, defined

as the ratio of the total parallel Q‖
k⊥ ≡∑

s Q‖
sk⊥ and perpendicular Q⊥

k⊥ ≡∑
s Q⊥

sk⊥
heat fluxes. For isotropic fluctuations, in particular, ak⊥ = 0.

When considering a single mode, the contributions to the right-hand side of (2.27)
provide a natural distinction between slab and curvature-driven dynamics. By def-
inition, the former are those that survive in a straight uniform magnetic field,
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where the magnetic drifts vanish, and so does (2.29). Thus, the parallel-streaming
term (2.28) is the physically important source of Y for slab instabilities even if
both (2.28) and (2.29) happen to be nonzero in the presence of magnetic drifts.
In contrast, curvature-driven modes are those whose dominant Y -injection term is
(2.29). These modes are destabilised by the combination of the thermal-equilibrium
gradients and the magnetic geometry.

2.4. Curvature-driven temperature-gradient instabilities
Let us consider a single unstable mode, i.e. a fluctuation with given kx and ky ,

with amplitude proportional to e−iωt , where Im(ω) > 0 is the growth rate. As both
W and Y are quadratic in the fluctuation amplitude, this implies that the free energy
and the field invariant associated with a single mode satisfy

dW

dt
= 2Im(ω)W,

dY

dt
= 2Im(ω)Y. (2.31)

We now make three simplifying assumptions.

(i) We assume that the injection of free energy of the mode is dominated by the
heat rather than the particle fluxes, so we can ignore the latter in (2.24). We
refer to such fluctuations as ‘temperature-gradient’ modes. While this might
seem very restrictive, there are, in fact, many instabilities that satisfy this condi-
tion. One example are modes for which there is a main species s, with all other
species s ′ assumed adiabatic (or ‘modified’ adiabatic in the case of ion-scale
turbulence: see Hammett et al. 1993). For such instabilities, the non-adiabatic
distribution functions hs′ for the species s ′ �= s are small, in which case the
particle flux vanishes.

(ii) We assume that the unstable mode is curvature-driven and so the slab injection
term in (2.27) can be ignored. The ratio of (2.28) and (2.29) for a curvature-
driven mode can be estimated as

dY/dt |slab

dY/dt |curv
∼ k‖vths

ωds
, (2.32)

where ωds = k⊥ · vds is the magnetic-drift frequency and k‖ ∼ (b̂ · ∇hs)/hs is
the effective parallel wavenumber. Therefore, the assumption of neglecting
(2.28) in favour of (2.29) in (2.27) can be made asymptotic in the limit
k‖vths �ωds , i.e. in the limit of long parallel length scales.

5

(iii) We assume that the heat flux is dominated by a single, ‘main’ species s. We
make this choice purely for the purposes of simplifying the discussion below.
Our arguments hold even if multiple species contribute to the injection of W
and Y if the temperature gradients of the species that contribute the majority
of the heat flux are aligned.

Without loss of generality, we can choose the flux-surface label x so that
LTs > 0. Therefore, due to (2.31) and the positive-definiteness of W , the heat flux

5While this is one of the simplest orderings for a curvature-driven mode, it is certainly not the only one. For
example, Helander et al. (2013) argues that, for trapped-electron modes, the injection of Y is dominated by magnetic
curvature even though the ordering of the parallel streaming and magnetic drifts is more complicated.
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Qs = 〈Q‖
sk⊥ +Q⊥

sk⊥〉‖ appearing in (2.24) must be positive for any unstable mode
with Imω> 0. This is intuitively clear: temperature-gradient-driven instabilities pre-
dominantly transport heat down the temperature gradient, from the hot to the cold
regions of the equilibrium.

Assuming that Q‖
sk⊥ ∼Q⊥

sk⊥ (or at least that they have the same sign), (2.27), (2.29)
and (2.31) imply that

6

Im(ω)≈
〈Ck⊥Q‖

k⊥
〉
‖

Y
> 0. (2.33)

Since the heat flux Q‖
k⊥(z) is positive and the local magnetic curvature Ck⊥(z) changes

sign along the field line (we provide a simple example of this in § 2.4.1), in order
for (2.33) to be satisfied, the heat flux must be larger at those locations along the
field line where Ck⊥(z) has the same sign as Y . Therefore, if Y > 0, the heat flux,
and thus the mode amplitude, must peak at the places where Ck⊥(z) > 0: we call
these the regions of good curvature. Analogously, if Y < 0, then the mode amplitude
must peak in the bad-curvature regions where Ck⊥(z) < 0. As we saw previously,
for electrostatic modes, Y becomes the well-known electrostatic invariant (2.22),
which is negative definite. Thus, we conclude that electrostatic curvature-driven
temperature-gradient modes must be localised to regions of bad curvature, regard-
less of the precise details of the physical mechanism of their instability. Analogously,
any curvature-driven temperature-gradient mode that is unstable in a good-curvature
region must be predominantly electromagnetic in the sense that the positive-definite
δA‖k⊥ and δB‖k⊥ contributions to (2.20) must be larger than the negative-definite
electrostatic ones, in order to ensure Y > 0. While such instabilities have been seen
before in numerical simulations (Jian et al. 2021; Patel 2021), we shall provide
in § 3 the first known example of a simple, solvable model of a curvature-driven
electromagnetic instability that exists only in good-curvature regions.

Shortly, we shall see that, in simple geometry, (2.30) corroborates the expectation
that the inboard, high-field side of the plasma has predominantly good curvature,
while the outboard, low-field one has mostly bad curvature. However, the correlation
between inboard–outboard side and good–bad curvature is not perfect. Indeed, as
shown by Parisi et al. (2020),

7
modes driven by bad curvature can be found far away

from the outboard midplane.
8

Finally, let us note that if Q‖
sk⊥ and Q⊥

sk⊥ have opposite signs, it may be possible to
have an unstable, curvature-driven electrostatic mode in the good-curvature regions
of the plasma. For instance, such a mode can exist if its heat fluxes peak where
Ck⊥ > 0 and satisfy

6The reader might be worried about the appearance of the sign-indefinite, and thus possibly vanishing, Y in
the denominator of (2.33). This problem has been previously noted by Plunk & Helander (2023), who used the
electrostatic version of Y in their study of the ITG modes. However, using the conservation of free energy (2.24),
the growth rate Im(ω) of a single unstable mode can be shown to be bounded from above (Helander & Plunk 2022).
Thus, when it exists, the singularity in (2.33) is a removable one.

7The quantities ωκe and ω∇Be used by Parisi et al. (2020) to quantify the local magnetic curvature and its
effect on the ETG instability are closely related to (2.30). Indeed, their sum is proportional to Ck⊥ for ak⊥ = 0.

8Given the assumptions made in § 2.3.1, our statements of localisation along the field line do not apply to
the global structure of the curvature-driven modes. For example, even when the most unstable modes in the local
domain (i.e. the flux tube) are localised to the outboard midplane, the global modes need not be (Dickinson et al.
2014; Abdoul et al. 2015).
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−1
2
Q⊥

sk⊥ <Q‖
sk⊥ < 0. (2.34)

This puts significant constraints on such modes, but does not necessarily rule out
their existence. Such exotic fluctuations would transport perpendicular and paral-
lel heat in opposite radial directions, thus driving the plasma towards a pressure
anisotropy.

Before we consider a concrete example of a good-curvature electromagnetic insta-
bility, let us briefly discuss the meaning of Ck⊥ in two different simplified magnetic
geometries and show that it recovers the intuitive picture of good and bad curvature.

2.4.1. Large-aspect-ratio circular flux surfaces
Using the standard choice of field-line-following coordinates made by Beer et al.
(1995), viz.

x ≡ q0

B0r0
(ψ −ψ0) , y ≡ − r0

q0
(α − α0), z ≡ θ, (2.35)

the local curvature in large-aspect-ratio, circular-flux-surface, low-β configurations is

Ck⊥ = −2 + ak⊥
R0

[
cos θ + ŝ(θ − θ0) sin θ

]
. (2.36)

In the above, ψ0 and α0 are the coordinates of the field line at x = y = 0, q0 = q(ψ0)
is the safety factor, R0 and r0 are the major and minor radius of its flux surface,
respectively, B0 is any suitable normalising magnetic field, ŝ = (r0/q0)dq/dr is the
magnetic shear at r = r0, and θ0 = −kx/ŝky is the poloidal angle at which the radial
projection of the wavenumber vanishes, viz. k⊥(θ0) · ∇x = 0.

In figure 1, we plot (2.36) for different values of ŝ and θ0. Figure 1(a) shows the
simplest case of zero magnetic shear (ŝ = 0), wherein the local magnetic curvature

Ck⊥ ≈ −2 + ak⊥
R0

cos θ (2.37)

is independent of θ0. In this case, the regions of good and bad curvature coincide per-
fectly with the inboard and outboard sides of the device, respectively. Figures 1(b)
and 1(c) demonstrate the inherent symmetry of (2.36) whereby the local effective
magnetic curvature Ck⊥ changes from bad to good (or vice versa) as a function of
θ − θ0 if the mode is ‘reflected’ to the diametrically opposite side of the flux sur-
face. More concretely, Ck⊥ �→ −Ck⊥ under the mapping θ �→ θ + π and θ0 �→ θ0 + π ,
which is evident from (2.36).

Note that the definition of good and bad curvature as Ck⊥ > 0 or Ck⊥ < 0 is mode-
specific because (2.37) [and, indeed, (2.30)] depends explicitly on the structure of
the mode via ak⊥ . Indeed, ak⊥ <−2 reverses the relationship between the sign of Ck⊥
and the outboard/inboard location in the toroidal geometry. However, this is a rather
exotic scenario wherein the parallel and perpendicular heat fluxes have opposite signs
[see also (2.34) and the discussion surrounding it]. As far as the authors are aware,
no such instabilities are known to exist in fusion plasmas.

2.4.2. The Z -pinch
An even simpler description of curvature-driven modes can be obtained by ignoring
entirely the variation of the field along z. Sometimes called the ‘local kinetic approx-
imation’ (Terry et al. 1982; Romanelli 1989; Zocco et al. 2018), this is equivalent
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(a) ŝ = 0

−3π 0 3π

θ

−5

0

5
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(c) ŝ = 1 , θ0 = π

⊥
⊥

FIGURE 1. Panels (a) to (c) visualise the circular-flux-surface local curvature (2.36) as a function
of θ for three different values of ŝ and θ0, as indicated in the title of each panel. The regions of
good and bad local curvature are shaded in blue and red, respectively. The grey shaded regions
correspond to the outboard side of the device, viz. −π/2 + 2πn < θ < π/2 + 2πn for some
n ∈Z.

to the magnetic geometry of a Z -pinch if we also ignore the radial magnetic drifts.
This Z -pinch geometry is the minimal model for curvature-driven instabilities in the
absence of trapped-particle effects and has been a popular setting for simple models
of both linear and nonlinear physics (Ricci, Rogers & Dorland 2006; Kobayashi
& Rogers 2012; Kobayashi, Gürcan & Diamond 2015; Ivanov et al. 2020, 2022;
Adkins et al. 2022; Hallenbert & Plunk 2022; Adkins, Ivanov & Schekochihin 2023;
Ivanov & Adkins 2023; Hoffmann, Frei & Ricci 2023).

In this geometry, we take (x, y, z) to be local Cartesian coordinates, where z is
now the distance along the field lines, and define the gradient scale length of the
magnetic field B = B(x):

1
L B

≡ −d ln B

dx
. (2.38)

Hence, we obtain

Ck⊥ = −2 + ak⊥
L B

. (2.39)

Therefore, in the Z -pinch geometry, L B < 0 and L B > 0 correspond to good and bad
curvature, respectively. As discussed before, we expect to find electrostatic curvature-
driven instabilities only in the case L B > 0 (note that we are still assuming LTs > 0).
In the next section, we present an example of an electromagnetic instability in the
Z -pinch geometry that exists exclusively in good-curvature regions, viz. L B < 0.

3. Low-β, drift-kinetic fluctuations in the local kinetic limit
3.1. Ordering and equations

Our goal is to simplify the GK equation (2.4) in order to distil a minimum
model for the good-curvature electromagnetic instability discussed in § 3.2.2. We
limit ourselves to the low-β, zero-magnetic-shear, Z -pinch geometry, and consider
fluctuations that obey the ordering

me

mi
� βe ∼ k2

⊥ρ
2
e � k2

⊥d2
e ∼ 1 � k2

⊥ρ
2
i (3.1)
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and evolve on time scales

ω∼ k‖vthe ∼ω∗e ∼ωT e ∼ωde (3.2)

in a plasma of two species, electrons and ions. The drift frequencies in (3.2) are

ω∗e = kycTe

eBLne

, ωT e = kycTe

eBLTe

, ωds = kycTe

eBL B
. (3.3)

In Appendix C, we show that, under the above assumptions, the fluctuations obey the
electron drift-kinetic equation [see (C.12)]. Under the low-β assumption, δB‖ is small
and this drift-kinetic equation is closed by quasineutrality (2.7) and the parallel com-
ponent of Ampère’s law (2.8) [see (C.13) and (C.14), respectively]. In Appendix C.1,
we derive the forms of the free-energy and field-invariant conservation laws under the
orderings (3.1) and (3.2). As expected, the free energy is a positive-definite quantity,
injected by the radial heat flux. In contrast, the field invariant contains negative-
definite electrostatic and positive-definite electromagnetic contributions. It is injected
by the slab term, proportional to k‖, and by the curvature term, proportional to the
magnetic-field gradient (2.38) and the radial heat flux.

In Appendix D, we outline the derivation of the dispersion relation for the low-β,
drift-kinetic fluctuations. In the three-dimensional case (viz. k‖ �= 0), the dispersion
relation is given by unwieldy and mostly unenlightening expressions that can be
found in Appendix D. We now focus on the two-dimensional case, which represents
a minimal model for (at least one example of) the good-curvature-driven instabilities.

3.2. Two-dimensional fluctuations
In the two-dimensional limit, viz. k‖ = 0, the electron drift-kinetic equation decou-

ples into its even and an odd parts in v‖ [see (C.15) and (C.16)]. The former, together
with quasineutrality, describes purely electrostatic (δA‖ = 0) modes. Their dispersion
relation is found to be

− 1 − τ−1 + ω−ω∗e

2ωde
Z
(√

ω

2ωde

)2

− ωT e

2ωde

[
2
√

ω

2ωde
Z
(√

ω

2ωde

)
+

(
ω

ωde
− 1

)
Z
(√

ω

2ωde

)2
]

= 0, (3.4)

where τ ≡ eTi/qi Te and Z(ζ ) is the usual plasma dispersion function (Faddeeva &
Terent’ev 1954; Fried & Conte 1961) given by

Z(ζ )= 1√
π

∫ +∞

−∞
du

e−u2

u − ζ
(3.5)

for Im(ζ ) > 0 and analytically continued to the entire complex plane. Equation (3.4)
is the same as the dispersion relation derived by Biglari et al. (1989) and Zocco et al.
(2018) for the electrostatic cITG instability, up to replacing τ �→ τ−1 and i �→ e,
which accounts for the fact that we are dealing with cETG instead. The solutions to
(3.4) contain the familiar cETG modes that require bad magnetic curvature to be
unstable.

The odd part of the electron drift-kinetic equation and parallel Ampère’s law
also form a closed system, this time of purely electromagnetic (φ = 0) modes.
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Physically, these are fluctuations with no density or temperature perturbations but a
nonzero parallel current. Their dispersion relation is

− k2
⊥d2

e + ω−ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z
(√

ω

2ωde

)
+ 1

2
Z
(√

ω

2ωde

)2
]

− ωωT e

ω2
de

[
1 +

√
ω

2ωde
Z
(√

ω

2ωde

)
+ 1

2
Z
(√

ω

2ωde

)2
]

= 0. (3.6)

The appearance of a square root in (3.4) and (3.6) means that additional care
must be taken due to the presence of a branch cut in the complex plane. This is a
well-known problem (Kim et al. 1994; Kuroda et al. 1998; Sugama 1999; Helander
et al. 2011; Mishchenko, Plunk & Helander 2018) stemming from the presence of
the magnetic drifts. The square-root branch must be chosen so that it agrees with
the principal branch of the square-root function in the upper-half of the complex
plane. Its branch cut can be anywhere in the lower-half of the complex ω plane.
More details on how to handle the branch cuts and the analytic continuation of the
dispersion relation in a Z -pinch can be found in Ivanov & Adkins (2023).

To avoid the complications arising from the square root, we have chosen to fix
the sign of the magnetic-field gradient to ωde > 0. This is necessary in order to put
ωde under the square root in (3.4) and (3.6). With this choice, ‘bad curvature’ corre-
sponds to ωT e > 0, ‘good curvature’ to ωT e < 0. This differs from our discussion in
§§ 2.4 and 2.4.2 where we fixed the sign of the temperature-gradient length scale LTs

but varied the local sign of the magnetic gradient. Note that we will only investigate
equilibria in which the temperature and density gradients are aligned, i.e. LTs and
Lns will always have the same relative sign.

Before we investigate the novel, good-curvature electromagnetic instability that is
about to emerge, let us recap some of the properties of the more widely known
electrostatic cETG instability. This will be useful later on in order to compare and
contrast the electrostatic and electromagnetic curvature-driven instabilities.

3.2.1. Two-dimensional cETG instability
In the two-dimensional limit, the electrostatic dispersion relation (3.4) has three
independent parameters, which are the temperature ratio τ and the normalised
equilibrium gradients

κT ≡ ωT e

ωde
= L B

LTe

, κn ≡ ω∗e

ωde
= L B

Lne

. (3.7)

In this notation, κT > 0 corresponds to bad magnetic curvature. Note that if we nor-
malise ω to any of the diamagnetic frequencies (or, indeed, a combination of them),
then the dispersion relation for the normalised frequency is independent of the per-
pendicular wavenumber k⊥. Equivalently, any linear solution to the (electrostatic)
electron drift-kinetic equation (C.15) obeys ω∝ ky. This is a reflection of the scale
invariance of electrostatic drift kinetics (Adkins et al. 2023), which is only broken
at small scales by the finite-Larmor-radius effects (viz. the Bessel functions) that we
neglected in § 3.1. Figure 2 shows the growth rate and frequency of the unstable
cETG mode. The instability exists only when κT > κT crit, where κT crit > 0 is some
positive critical temperature gradient that depends on τ and κn. Additionally, the
(real) frequency of the cETG mode satisfies Re(ω)/ωT e > 0, i.e. the phase velocity
of the mode is in the electron diamagnetic direction.
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FIGURE 2. Growth rate (a) and frequency (b) of the cETG mode as a function of the normalised
temperature gradient κT and inverse temperature ratio τ−1 at zero density gradient (κn = 0).
These are the solutions of (3.4). The growth rate and frequency have been normalised by the
fluid growth rate (3.9). Only the unstable, i.e. Imω> 0, region is shown.

A key characteristic of the cETG instability is that it has a physically transparent
‘fluid’ limit. Mathematically, this limit corresponds to ω�ωde, wherein we can use
the asymptotic expansion

Z(ζ )∼ −1
ζ

− 1
2ζ 3

− 3
4ζ 5

+ O
(
ζ−7

)
, (3.8)

valid for |ζ | � 1 and Im ζ > 0. The electrostatic dispersion relation (3.4) then
simplifies to

ω2 = −2ωT eωdeτ. (3.9)

This is the well-known fluid cETG dispersion relation (Pogutse 1968; Horton, Hong
& Tang 1988) that yields unstable solutions only if the curvature is bad, i.e. if ωT e and
ωde have the same sign (or, equivalently, κT > 0). Evidently, the ‘fluid’ assumption
ω�ωde is consistent with (3.9) only in the strongly driven regime ωT e �ωde.

The ‘fluidisation’ of ETG in the limit ω�ωde can be justified rigorously by per-
forming a systematic decomposition of the drift-kinetic equation into an infinite
hierarchy of fluid moments. One popular way of doing this is the Hermite–Laguerre
decomposition (Smith 1997; Watanabe & Sugama 2004; Zocco & Schekochihin
2011; Zocco et al. 2015; Loureiro et al. 2016; Mandell, Dorland & Landreman
2018; Adkins et al. 2022; Frei et al. 2022, 2023; Mischenko 2024). In the limit where
the mode frequency is much larger than the ‘kinetic’ frequencies k‖vthe and ωde, the
moment hierarchy is naturally truncated to the six lowest-order fluid moments listed
in Appendix A.5.4 of Adkins et al. (2022). Reducing this to the two-dimensional limit
(k‖ = 0), we find a closed system of fluid equations describing the perturbations of
the electron density δne, parallel temperature δT‖e and perpendicular temperature
δT⊥e (Adkins et al. 2022), as follows:
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∂

∂t

δnek

ne
+ iωde

(
δT‖ek

Te
+ δT⊥ek

Te

)
= 0, (3.10)

∂

∂t

δT‖ek

Te
+ iωT e

eφk

Te
= 0, (3.11)

∂

∂t

δT⊥ek

Te
+ iωT e

eφk

Te
= 0, (3.12)

where the density and electrostatic potential are related by δnek/ne = −eφk/τTe.
The system (3.10)–(3.12) is the minimal fluid model for the strongly driven, two-
dimensional, electrostatic collisionless cETG instability. It is straightforward to
confirm that its dispersion relation is (3.9). The fluidisation of cETG is discussed
further in Appendix E.

3.2.2. Two-dimensional MDM
The electromagnetic dispersion relation (3.6) has three independent parameters,
which are k2

⊥d2
e and the normalised gradients (3.7). Note that, in contrast with the

electrostatic case, the perpendicular wavenumber enters explicitly as a parameter
because the presence of the electron skin depth de breaks the scale invariance of the
equations. Figure 3 shows the growth rate and frequency of the unstable solutions
of (3.6) as a function of k2

⊥d2
e and κT . The instability is present only when κT < 0,

i.e. when the magnetic curvature is good. This is the MDM. There are three stabil-
ity boundaries, where the growth rate of the MDM vanishes. The details of their
derivation can be found in Appendix F.

The first of these (the dotted grey line in figure 3) lies at k2
⊥d2

e = k2
⊥,mind2

e , where

k2
⊥,mind2

e = −4 − π

2
κn (3.13)

and is bounded by

−4 − π

π − 2
+ κn � κT � 2

3
κn. (3.14)

On this line, ω= 0, i.e. both the frequency and growth rate of the MDM vanish.
Note that, as promised above, we only consider equilibria where the temperature
and density gradients are aligned. In particular, if κT is negative, then so is κn.

The upper stability boundary (the solid black line in figure 3) asymptotes to

k2
⊥d2

e ≈ −0.61κT (3.15)

at large κT . To the left of it, the MDM solution of (3.6), having crossed the positive
real line in the ω plane, is a damped mode. The lower stability boundary (the other
solid black line in figure 3) asymptotes to

k2
⊥d2

e ≈ −0.09κT (3.16)

at large κT . On this boundary, the MDM solution and its complex conjugate collapse
into a repeated root of (3.6), which, to the right of the boundary, splits into two
purely real solutions. There is an ambiguity as to which of these should be thought
of as the continuation of the MDM, so we have omitted that part of the plot. A
similar issue occurs below k2

⊥,mind2
e , and so we have left that part of the plot empty as

well. There are no unstable solutions in either of these regions, whether continuously
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−κT

(b) Re ω

−2 −1 0 1 2

ω/ωde

FIGURE 3. Growth rate (a) and frequency (b) of the MDM as a function of k2⊥d2
e and κT at

κn = −1. These are the solutions of (3.6). The solid black lines are the stability boundaries,
on which Imω= 0. Their asymptotic slopes at large κT are given by (3.15) and (3.16). On the
horizontal dotted grey line, the MDM root of (3.6) is ω= 0. The value of k2⊥d2

e there is given
by (3.13). The vertical dashed–dotted grey lines denote the ends of the solid black stability
boundaries and are given by the limits of the black dashed line (3.14). In the hatched region,
there does not exist a unique root that is continuously connected to the unstable MDM solution,
thus we have omitted that part of the plot [see also the discussion after (3.16)].

connected to the MDM solution or not. We shall continue the discussion of the
MDM solution in the complex plane in § 3.2.3.

A characteristic feature of the MDM is that the sign of its real frequency is
not given by either ωT e or ωde. The mode can propagate in either the electron
(Reω/ωT e > 0) or the ion (Reω/ωT e < 0) diamagnetic direction, depending on the
size, but not the sign, of the temperature gradient. In contrast, the electrostatic
cETG instability can be understood as a destabilised drift wave whose phase velocity
is always in the electron diamagnetic direction. This variability of the direction of
poloidal propagation of the MDM is not entirely surprising. Indeed, a defining
property of the good magnetic curvature is that the magnetic drifts oppose the
diamagnetic drifts that arise from the equilibrium gradients. Therefore, both poloidal
directions can be associated with one of the electron drifts. In the strongly driven
limit |κT | → ∞, the maximum growth rate is attained at

k2
⊥d2

e ≈ −0.14κT , (3.17)

where the complex frequency is given by

ω

ωde
≈ 0.12 + 1.88i. (3.18)

Thus, the phase velocity of the fastest-growing, strongly driven MDM is in the
direction of the electron magnetic drifts, which is opposite to that of the electron
diamagnetic flows.
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FIGURE 4. A visualisation of the motion of the MDM solution to (3.6) in the complex ω plane
as a function of κT . The colours indicate the value of κT , as indicated in the colour bar on the
right-hand side. The zigzagging black line is the branch cut of the square root in (3.6).

There is, however, an important physical distinction between the magnetic drifts,
caused by the magnetic-field gradients, and the diamagnetic ones, resulting from
the inhomogeneous plasma equilibrium. The magnetic drifts are ‘real’ particle drifts,
while the diamagnetic ones are only ‘apparent’ drifts, in the sense that they are
not associated with the motion of individual particles. Thus, resonant effects (like
Landau damping) are possible only with the magnetic drifts. However, the MDM is
not a resonant instability. This is manifestly true as the mode can propagate in either
direction relative to the poloidal particle motion (given by the magnetic drift). We
discuss this further in § 3.2.3, where we show that the MDM root of the dispersion
relation (3.6) is continuously connected to a non-resonant, undamped magnetic drift
wave propagating against the magnetic drifts.

Finally, unlike cETG, the MDM is not a fluid instability since its complex fre-
quency always satisfies ω�ωde. Consequently, the MDM does not have a fluid
counterpart and cannot be captured by a low-order truncation of the infinite hierar-
chy of fluid moments of electron drift-kinetic equation. This is discussed further in
Appendix E.

3.2.3. Physical ingredients and complex-plane behaviour of the MDM
Since the MDM is neither resonant nor ‘fluidisable’, it is difficult to come up
with a convincing physical picture of the feedback mechanism that underpins this
instability. Let us explore how the root of the dispersion relation (3.6) that corre-
sponds to the MDM connects to other known low-β modes. In figure 4, we show
the complex-plane trajectory of the roots of (3.6) as functions of the temperature
gradient κT .

9

At large temperature gradients, viz. |κT | � 1, there are two weakly damped
(or undamped) solutions. The first one satisfies ω∼ωT e �ωde for |κT | � 1
and can be identified as the magnetic drift wave (Adkins et al. 2022;

9Of course, there are infinitely many roots of (3.6) below the real line. Here, we have focused on the part of
the complex plane that contains the physically important, i.e. the least damped, Landau modes.
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Chandran & Schekochihin 2024). As ω�ωde, this wave is a ‘fluid’ mode, and, as
expected, can be described using only low-order moments of the distribution func-
tion. Setting L−1

B = 0, we take the v‖ moment of the electron drift-kinetic equation
(C.16) to find the electron-momentum equation

neme
∂u‖e

∂t
= −δB⊥

B
· ∇ pe − eneδE‖. (3.19)

Physically, (3.19) expresses the change in parallel momentum of the electrons as
a result of the inductive parallel electric field (note that since k‖ = 0, δE‖ has no
electrostatic part)

δE‖ = −1
c

∂δA‖
∂t

(3.20)

and the equilibrium pressure gradient along the perturbed field line

−δB⊥
B

· ∇ pe =
(

pe

Lne

+ pe

LTe

)
δBx

B
∝ (ω∗e +ωT e)

∂δA‖
∂y

. (3.21)

Combining (3.19) and the parallel Ampère’s law (C.14), we obtain a purely
oscillating mode with frequency

ω= ω∗e +ωT e

1 + k2
⊥d2

e

. (3.22)

With the inclusion of finite but small magnetic drifts, the fate of the magnetic drift
wave is determined by the relative sign of ωde and the diamagnetic frequencies ω∗e

and ωT e. If the magnetic drifts are aligned with the direction of propagation, i.e. if
κT > 0, then the wave experiences a form of Landau damping due to the resonance
between the poloidal drift of the electrons and the phase velocity of the wave.

10
In

contrast, if the magnetic drifts are opposite to the direction of propagation of the
magnetic drift wave, i.e. if κT < 0, no resonance is possible and the wave remains
undamped. The difference in behaviour of copropagating and counter-propagating
drift waves is evident in figure 4. There, the dark red points show the behaviour of
the solution as κT → +∞, where the solution converges to a damped, copropagating
magnetic drift wave. In contrast, as κT → −∞ (dark blue points), the solution is an
undamped, counter-propagating magnetic drift wave.

Apart from the magnetic drift wave (3.22), a small but finite magnetic-drift
frequency |ωde| � |ωT e| gives rise to another wave whose frequency satisfies

ω∼ (k2
⊥ − k2

⊥,min)d
2
eω

2
de

ωT e
. (3.23)

This mode is purely oscillatory if κT < 0 and damped if κT > 0 due to the resonance
with the magnetic drifts. Unlike the magnetic drift wave, the wave (3.23) cannot be
described in terms of low-order moments as ω�ωde. As κT is increased from −∞
towards zero, the magnetic drift waves (3.22) and (3.23) are both undamped and

10Mathematically, this can be seen from the form of the denominator in (D.20). As the two-dimensional case
corresponds to dropping the u factor, it is clear that resonance is possible only if the signs of ζ ∝ω and ζd ∝ωde

are the same.
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counter-propagating (relative to the magnetic drift) if k2
⊥d2

e > k2
⊥,mind2

e . The MDM
appears when their frequencies meet at some finite, negative κT . This value of κT

lies on the lower stability boundary in figure 3. As κT increases, the MDM solution
changes from counter-propagating (ω< 0) to copropagating (ω> 0), before crossing
the real line again when κT crosses the upper stability boundary in figure 3 at some
κT < 0. Increasing κT further to +∞ connects the MDM solution to the copropa-
gating mode satisfying (3.23), which is resonantly damped. As κT → +∞, there is
also a copropagating magnetic drift wave. This wave, unlike its counter-propagating
part, is not connected to the MDM solution and experiences finite damping due to
a resonance with the magnetic drifts. Figure 4 shows the motion of the modes in the
complex ω plane as a function of κT .

Finally, we can gain more insight into the MDM by artificially removing terms
from the equations. While unphysical, this can help us understand how the feed-
back mechanism works and what the minimal set of ingredients for this instability
is. We find that removing the ∇B drifts, viz. the magnetic drifts proportional to v2

⊥,
does very little to change the behaviour of the instability. Even in their absence, we
find a mode with the same qualitative behaviour as the MDM. However, removing
the curvature drifts eliminates the instability completely. This is in stark contrast
with the curvature-driven ETG instability discussed in § 3.2.1, which is qualitatively
unchanged if either (but not both!) of the drifts is removed. In the strongly driven
regime, its growth rate simply reduces by a factor of the square root of two if one
of the drifts is not present. We outline these calculations in Appendix G.1. Then,
in Appendix G.2, we abandon the Maxwellian equilibrium entirely and consider a
greatly simplified Fe made up of two infinitely narrow (in v‖) colliding beams that
allows us to obtain qualitatively the same mode. That model suggests that the stabil-
isation at Reω> 0, viz. the upper stability boundary in figure 3, is a consequence of
the Landau-like damping of the copropagating MDM.

3.3. Magnetic-drift modes in three dimensions
Restoring finite k‖ requires solving the three-dimensional dispersion relation

(D.22). Figure 5 is a visualisation of such a solution for three-dimensional fluctu-
ations in the Z -pinch geometry as a function of k2

⊥d2
e and κT . We see that finite k‖

stabilises the MDM at large scales and low temperature gradients, but the instability
survives at large gradients.

We can make the following heuristic argument about the size of k‖ that will be
sufficient to affect the MDM. Taking the strongly driven case ωT e �ωde (or, equiv-
alently, κT � 1), we expect that three-dimensional effects will not introduce any
qualitative changes to the mode if

k‖vthe �ωde ⇒ k‖L B � kyρe. (3.24)

By (3.15) and (3.16), the MDM exists at scales k2
⊥d2

e ∼ κT , so (3.24) implies

k‖ �
√

βe

L B LTe

. (3.25)

Since the MDM is destabilised only in the good-curvature region, the parallel extent
of the mode is limited by the connection length between the inboard and outboard
side of the device, viz.

k‖ �
1

q R
, (3.26)
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FIGURE 5. The MDM growth rate for κn = −1 (as in figure 3) for four different values of k‖ as
indicated in the title of each panel. Note that (3.1) and (3.2) imply that the parallel wavenum-
ber always satisfies k‖L B ∼ √

βe. Unlike figure 3, we are only showing the regions of positive
growth rate.

where q is the safety factor and R ∼ L B is the major radius. Therefore, we expect
the MDM to be destabilised in toroidal geometry if

βe L B

LTe

� 1
q2
, (3.27)

which shows that, for a fixed geometry, steeper temperature gradients and/or higher
values of βe will trigger the MDM. In (3.27), we neglect order-unity factors that
will undoubtedly impact the true condition for MDM destabilisation in toroidal
geometry. However, we expect this simple scaling estimate to capture the trend of
the MDM threshold as a function of βe and of the temperature gradient.

In addition to the threshold for the MDM, we can make a rough estimate of the
expected growth rate and compare it with that of other known instabilities. Recall
that both the real and imaginary parts of the frequency of the MDM satisfy ω∼ωde.
Combining this with the requirement that k2

⊥d2
e ∼ κT , the growth rate of the MDM

can be estimated as

γMDM ∼ ρevtheky

L B
∼ vthe√

L B LTe

√
βe. (3.28)

To put this in the context of more common GK instabilities, let us compare it with
the usual estimate for the growth rate of the cITG instability, viz.

γITG ∼ vthi√
L B LTi

. (3.29)
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Assuming similar temperature gradients, viz. LTi ∼ LTe , we find

γMDM

γITG
∼

√
βemi

me
, (3.30)

and so the MDM growth rate is (potentially) larger than the cITG one in any device
where βe � me/mi .

11
Of course, (3.28)–(3.30) are very rough estimates that are true

only within potentially important factors of order unity. They also fail to consider
the possible mitigation of the instabilities due either to neglected linear effects, like
toroidal geometry and magnetic shear, or to nonlinear effects, for example suppres-
sion of fluctuations as a result of multiscale interactions (Waltz, Candy & Fahey
2007; Candy et al. 2007; Maeyama et al. 2015, 2017; Hardman et al. 2019, 2020).
It is also worth noting that, in electron-scale simulations of GK turbulence, even if
present, the MDM is likely to be subdominant to the more common electrostatic
ETG instabilities, whose growth rate,

γETG ∼ vthe√
L B LTe

, (3.31)

is a factor of β−1/2
e larger than (3.28). While this could make it harder to identify the

MDM in linear simulations, its effects may still be crucial for the nonlinear turbulent
state because it can drive turbulence in the good-curvature regions where the ETG
modes are stable.

It is likely that what we call the MDM here is, in fact, related to other,
already observed good-curvature electromagnetic GK instabilities. The intermediate-
wavelength microtearing mode reported by Patel (2021) is an electromagnetic, good-
curvature mode with a phase speed in the ion diamagnetic direction. Additionally,
Jian et al. (2021) have performed linear and nonlinear GK simulations of
high-β DIII-D equilibria, wherein they have identified a mode that they call ‘slab
microtearing mode’. Linearly, this mode is peaked at the good-curvature side of
the device. Nonlinearly, it drives turbulent transport predominantly at the inboard
side. Furthermore, they have identified it as a slab mode due to its strong depen-
dence on q, being destabilised at large values of q, consistent with the analysis
leading to (3.27). Both of these examples match the properties of the MDM, at least
qualitatively.

4. Discussion

By considering the conservation laws of the free energy (2.11) and the field invari-
ant (2.16) in GK, we have shown that the localisation of curvature-driven modes
to regions of either good or bad magnetic curvature is a necessary condition for
instability. In particular, these conservation laws, together with some reasonable
assumptions stated in § 2.4, allow us to prove that all electrostatic curvature-driven
instabilities are localised to the so-called bad-curvature regions of the plasma, where
the local magnetic curvature (2.30) is negative. Consequently, any instabilities in the
good-magnetic-curvature region must be electromagnetic. Modulo the assumptions
stated in § 2.4, these results are independent of the precise nature of the instability.

11Indeed, our derivation of the MDM is based on this ordering, see (3.1).

https://doi.org/10.1017/S0022377825000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000510


24 P.G. Ivanov, P. Luhadiya, T. Adkins and A.A. Schekochihin

Note that a similar conclusion regarding the destabilising role of good magnetic cur-
vature for electromagnetic modes was reached by Antonsen, Lane & Ramos (1981)
who derived conditions for instability based on an MHD-like variational principle.
However, they did not provide an explicit example of such an instability and some
of their assumptions ordered out the MDM as described in § 3.

The MDM, whose dispersion relation in a low-β Z -pinch is given by (3.6), is, as far
as the authors are aware, the first example of a simple, analytically derivable, good-
curvature instability. In the simple model wherein we have derived it, the MDM
exists at perpendicular length scales comparable to the electron skin depth de and
has a growth rate that is

√
βe smaller than that of the cETG instability and much

larger than that of the cITG instability in plasmas with βe � me/mi . The fact that
it is localised to the good-curvature regions of the equilibrium, where electrostatic
modes like cETG and cITG are stable, means that the MDM can be the dominant
one there.

As discussed in § 3.2.3, the MDM is neither resonant nor fluid. Physically, it arises
as a result of the v2

‖ -dependent magnetic-curvature drifts and the parallel streaming
of electrons along perturbed field lines. Even though simplified, the model wherein
we derived the MDM is a particular asymptotic limit of GK. Therefore, we expect
that, under the right conditions (some of which are outlined in § 3.3), the MDM
exists in toroidal geometry, too. Indeed, it is likely that is related to some exotic
varieties of microtearing mode seen in recent high-β GK simulations (Patel 2021;
Jian et al. 2021).

Given that, both theoretically and experimentally, the vast majority of fusion-
plasma research has concentrated on regimes where electrostatic instabilities
dominate, it is unsurprising that the community has adopted the term ‘bad curvature’
for the locations where these modes are unstable. However, the pursuit of high-β
fusion devices, for example STEP (Tholerus et al. 2024), has opened a Pandora’s
box of electromagnetic instabilities and turbulence that challenge conventional intu-
ition and suggest that the performance of such devices could be worse than expected
if electromagnetic instabilities are not kept in check (Kennedy et al. 2023; Giacomin
et al. 2024). The unstable MDM is likely only one of a class of good-curvature
electromagnetic instabilities that are yet to be discovered and understood and whose
role in the turbulent transport of high-β plasmas is currently unknown. For example,
good-curvature instabilities driven by trapped particles in non-axisymmetric plasmas
could drive turbulence in stellarator equilibria otherwise thought to be (relatively)
immune to trapped-particle instabilities (Rodríguez et al. 2024. It is thus clear that
the study of the good-curvature instabilities, like the MDM, is a fertile field for future
work.
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Appendix A. Spatial averaging

The average 〈〈g(r)〉⊥〉ψ that appears in the GK conservation laws is a combination
of a perpendicular and a flux-surface average. The former, defined as

〈g(r)〉⊥ =
∫

Sλ

d2r g(r)

/∫
Sλ

d2r (A.1)

is an average in the plane perpendicular to B over an area Sλ with linear size λ that
is an intermediate length between the microscales associated with the gyroradii and
the macroscale of the equilibrium, viz.

ρs � λ� L . (A.2)

By assumption in deriving the GK equation, if g(r) is a fluctuating quantity with
perpendicular spatial scales

g

|∇⊥g| ∼ ρs, (A.3)

then the perpendicular average of g is an equilibrium-like quantity with

〈g〉⊥∣∣∇⊥ 〈g〉⊥
∣∣ ∼ L . (A.4)

In other words, the perpendicular average is a kind of coarse-graining that eliminates
microscales. As a consequence, averaging a gradient of a fluctuating quantity reduces
it by a factor of ρs/L , viz. ∣∣〈∇⊥g〉⊥

∣∣
|∇⊥g| ∼ ρs

L
� 1. (A.5)

The flux-surface average is defined as

〈g(r)〉ψ ≡ lim
�ψ→0

[∫
�V (ψ)

d3r g(r)

/∫
�V (ψ)

d3r

]
, (A.6)
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where �V (ψ)= V (ψ +�ψ)− V (ψ) and V (ψ) is the volume of the flux surface
labelled by ψ . The only property of the flux-surface average that we will need is that,
for any g,

〈∇ · (Bg)〉ψ = 0, (A.7)

which is straightforward to derive using (A.6), the divergence theorem, and the fact
that B · n = 0 where n is the normal vector to the flux surface (Abel et al. 2013).

A.1 Ballooning modes and local GK
Following Connor et al. (1978), we can represent any fluctuating quantity g(r)

associated with a linear mode that satisfies (2.1) as

g(r)=
+∞∑

p=−∞
ĝ(ψ, θ + 2πp)eiS(ψ,θ+2πp,ϕ) + c.c., (A.8)

where the fast (viz. on the scale of ρs) variation across the magnetic field lines is
captured entirely by the eikonal S and ĝ varies slowly (viz. on the equilibrium length
scale L) as a function of the flux-surface label ψ . The eikonal is expressed as

S(ψ, θ, ϕ)= n(qθ − ϕ)+ Sψ(ψ), (A.9)

where ϕ, q and θ are defined in § 2.2; n is the toroidal wavenumber; q(ψ) is the
safety factor; ψ is the flux-surface label (typically, the poloidal flux). Since the
perpendicular average (A.1) eliminates modes with fast perpendicular variation,

〈 f (r)g(r)〉⊥ = 2Re
+∞∑

p=−∞
f̂ (ψ, θ + 2πp)ĝ∗(ψ, θ + 2πp) (A.10)

for any two quantities f (r) and g(r) expressed as (A.8).
12

Flux-surface-averaging
(A.10), we find

〈〈 f (r)g(r)〉⊥〉ψ = 2Re
+∞∑

p=−∞
lim
�ψ→0

1
�V (ψ)

∫
�V (ψ)

d3r f̂ (ψ, θ + 2πp)ĝ∗(ψ, θ + 2πp)

= 2Re
+∞∑

p=−∞
lim
�ψ→0

1
�V (ψ)

∫
�V (ψ)

dϕdθdψ
J f̂ (ψ, θ+2πp)ĝ∗(ψ, θ+2πp)

= 2Re
+∞∑

p=−∞
lim
�ψ→0

�ψ

�V (ψ)

∫ 2π

0
dϕ

∫ 2π

0

dθ
J f̂ (ψ, θ + 2πp)ĝ∗(ψ, θ + 2πp)

= 2Re
〈

f̂ (ψ, θ)ĝ∗(ψ, θ)
〉
‖
, (A.11)

where we have defined the parallel average of any function f̂ (ψ, θ) to be

〈
f̂ (ψ, θ)

〉
‖
≡

∫ +∞

−∞

dθ
J f̂ (ψ, θ)

/∫ 2π

0

dθ
J . (A.12)

12Strictly speaking, we have assumed that q is irrational. Here we do not discuss the complications that arise
at rational flux surfaces.
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In the above, J = (∇ϕ × ∇θ) · ∇ψ is the Jacobian, and we have used the fact that,
in axisymmetric geometry, J is independent of ϕ at fixed θ and ψ .

Alternatively, in a GK flux tube with local coordinates (x, y, z) and periodic
boundary conditions across the field lines, we can Fourier transform in x and y
as in (2.18). In such a flux tube, we define 〈〈.〉⊥〉ψ as the average over the entire flux
tube

〈〈g(r)〉⊥〉ψ = 1
V1

∫
d3rg(r) (A.13)

where V1 is an appropriate normalising volume. Then, using (2.18) and (A.13), we
find that, for two flux-tube quantities f (r) and g(r),

〈〈 f (r)g(r)〉⊥〉ψ = S⊥
V1

∑
k⊥

∫ +∞

−∞

dz

J fk⊥ g∗
k⊥, (A.14)

where S⊥ = ∫
dxdy is the perpendicular surface area of the flux tube and

J = (∇x × ∇y) · ∇z is the Jacobian of the flux-tube coordinate system. Note that
J is a function only of z since it is an equilibrium quantity whose length scale of
variation L is much larger than the perpendicular extent of the flux tube (which is
comparable to ρs). The above is equivalent to summing a spectrum of ballooning
modes and averaging as per (A.12) if we define the parallel average in the flux tube
as

〈g〉‖ ≡ S⊥
V1

∫ +∞

−∞

dz

J g. (A.15)

Note that the choice of x ∝ψ and y ∝ α that we made in § 2.1, together with z = θ
implies J ∝ (∇ϕ × ∇θ) · ∇ψ . In this case, the normalising volume is

V1 =
∫
θ∈(0,2π)

d3r = S⊥

∫ 2π

0

dθ
J , (A.16)

i.e. it is the volume of the flux tube per 2π period in θ , and (A.15) becomes

〈g〉‖ =
∫ +∞

−∞

dθ
J g

/∫ 2π

0

dθ
J . (A.17)

Thus, (A.12) and (A.15) do indeed represent the same average.
More details on the correspondence between the ballooning representation and

the local flux tubes can be found in Beer et al. (1995).

Appendix B. Gyrokinetic conservations laws
B.1 Alternative expression for W

Let us show that the free energy (2.10) can also be expressed as

W =
∑

s

〈 〈∫
d3v

〈
Tsh2

s

2Fs

〉
r

〉
⊥

〉
ψ

+
〈 〈

δB2
‖

8π
+

∣∣∇⊥δA‖
∣∣2

8π
−

∑
s

q2
s ns

2Ts
φ2

〉
⊥

〉
ψ

. (B.1)

This is a standard result (see, e.g. Abel et al. 2013), but we prove it here for
completeness. Using (2.3), we find∑

s

〈 〈∫
d3v

Tsδ f 2
s

2Fs

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v

〈
Tsh2

s

2Fs
− qsφhs + q2

s φ
2

2Ts
Fs

〉
r

〉
⊥

〉
ψ

, (B.2)
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where the overall gyroaverage 〈.〉r signifies that the d3v integral is performed with r
held constant. By (2.7), we have∑

s

〈 〈∫
d3v 〈qsφhs〉r

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v qsφ 〈hs〉r

〉
⊥

〉
ψ

=
∑

s

〈 〈
q2

s ns

Ts
φ2

〉
⊥

〉
ψ

,

(B.3)
and so (B.2) becomes∑

s

〈 〈∫
d3v

Tsδ f 2
s

2Fs

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v

〈
Tsh2

s

2Fs

〉
r

〉
⊥

〉
ψ

−
∑

s

〈 〈
q2

s ns

2Ts
φ2

〉
⊥

〉
ψ

. (B.4)

Finally, using

|δB|2 =
∣∣∣δB‖ b̂ − b̂ × ∇⊥δA‖

∣∣∣2 = δB2
‖ + ∣∣∇⊥δA‖

∣∣2 , (B.5)

we obtain (B.1). Note that, in the local limit, (B.1) can be written as

W =
∑

s

〈 〈∫
d3v

〈
Tsh2

s

2Fs

〉
r

〉
⊥

〉
ψ

+
∑
k⊥

〈∣∣δB‖k⊥
∣∣2

8π
+ k2

⊥
∣∣δA‖k⊥

∣∣2
8π

−
∑

s

q2
s ns

Ts

∣∣φk⊥
∣∣2〉

‖
. (B.6)

B.2 Injection terms for W

Here, we derive (2.11) and give explicit formulae for the particle and heat fluxes.
To begin, using (2.4), we find

d
dt

∑
s

〈 〈∫
d3v

〈
Tsh2

s

2Fs

〉
r

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v

〈
Tshs

Fs

[
∂

∂t

qs 〈χ〉Rs

Ts
Fs − v‖ b̂ · ∇hs − vds · ∇hs

− 〈
vχ

〉
Rs

· ∇Fs

]〉
r

〉
⊥

〉
ψ

, (B.7)

where the hsvds · ∇hs term vanishes by (A.5) because it is an exact derivative, viz.

hsvds · ∇⊥hs = 1
2
∇⊥ · (vdsh

2
s

)
(B.8)

where the equality is correct to lowest order in (2.1) because vds is an equilibrium-
like quantity whose perpendicular derivatives are small compared with those of hs .
Writing the velocity-space integral in terms of εs, μs and ϑ using∫

d3v =
∑
σ

∫
dεsdμsdϑ

m2
s

∣∣v‖
∣∣ B, (B.9)
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we find that the parallel streaming term in (B.7) also vanishes,〈 〈∫
d3v

〈
Tshs

Fs
v‖ b̂ · ∇hs

〉
r

〉
⊥

〉
ψ

∝
〈 〈∫

d3v v‖ b̂ · ∇
(

Ts

Fs

〈
h2

s

〉
r

)〉
⊥

〉
ψ

=
〈 〈∑

σ

∫
dεsdμsdϑ

m2
s

∣∣v‖
∣∣ v‖ B · ∇

(
Ts

Fs

〈
h2

s

〉
r

)〉
⊥

〉
ψ

=
〈 〈

∇ ·
∑
σ

∫
σ

dεsdμsdϑ
m2

s

B
Ts

Fs

〈
h2

s

〉
r

〉
⊥

〉
ψ

= 0, (B.10)

where we used ∇ · B = 0, (A.7), and the fact that Ts and Fs vary only in the
perpendicular direction to lowest order in (2.1).

To handle the first term in the square bracket in (B.7), we will need the following
identity:〈 〈∫

d3v
〈
hs 〈χ〉Rs

〉
r

〉
⊥

〉
ψ

=
〈 〈∑

σ

∫
dεsdμsdϑ

m2
s

∣∣v‖
∣∣ Bhs

(
r − ρs(ϑ), εs, μs

)
∫

dϑ ′

2π
χ
(

r − ρs(ϑ)+ ρs(ϑ
′), εs, μs, ϑ

′
)〉

⊥

〉
ψ

=
〈 〈∑

σ

∫
dεsdμsdϑ

m2
s

∣∣v‖
∣∣ B

∫
dϑ ′

2π
hs

(
r ′ − ρs(ϑ

′), εs, μs

)
χ(r ′, εs, μs, ϑ

′)

〉
⊥

〉
ψ

=
〈 〈∑

σ

∫
dεsdμsdϑ ′

m2
s

∣∣v‖
∣∣ Bhs

(
r ′ − ρs(ϑ

′), εs, μs

)
χ(r ′, εs, μs, ϑ

′)

〉
⊥

〉
ψ

=
〈 〈∫

d3v 〈hsχ〉r

〉
⊥

〉
ψ

, (B.11)

where, to obtain the final line, we have relabelled r ′ �→ r , ϑ ′ �→ ϑ and used (B.9);
the change of variables r ′ = r − ρs(ϑ)+ ρs(ϑ

′) does not change the perpendicular
spatial average in 〈〈.〉⊥〉ψ to lowest order as

∣∣ρs

∣∣∼ ρs � L. Using (B.11), we find

∑
s

qs

〈 〈〈∫
d3vhs

∂〈χ〉Rs

∂t

〉
r

〉
⊥

〉
ψ

=
〈 〈

∂φ

∂t

∑
s

qs

∫
d3v 〈hs〉r

〉
⊥

〉
ψ

−
〈 〈

∂δA
∂t

·
∑

s

qs

c

∫
d3v 〈vhs〉r

〉
⊥

〉
ψ

= d
dt

∑
s

〈 〈
q2

s ns

2Ts
φ2

〉
⊥

〉
ψ

−
〈 〈
∂δA
∂t

· ∇ × δB
4π

〉
⊥

〉
ψ

= d
dt

∑
s

〈 〈
q2

s ns

2Ts
φ2

〉
⊥

〉
ψ

− d
dt

〈 〈 |δB|2
8π

〉
⊥

〉
ψ

, (B.12)
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where we used (2.6) and (2.7). Therefore, adding together (B.4) and the second
integral in (2.10) and taking a time derivative, we find

dW

dt
= −

∑
s

〈 〈∫
d3v

〈
Ts

Fs
hs

〈
vχ

〉
Rs

· ∇Fs

〉
r

〉
⊥

〉
ψ

. (B.13)

To calculate the right-hand side of (B.13), we use (2.14) to write, for a Maxwellian
Fs ,

∇Fs = −∇x

[
1

Lns

+ 1
LTs

(
v2

v2
ths

− 3
2

)]
Fs . (B.14)

Finally, using (B.11), we find that the time evolution of W is given by (2.11)–(2.13).

B.3 Expression for Y

Let us now derive the expression (2.20) for the GK field invariant Y . Expanding
the first term in the integrand in (2.15), we find

∑
s

〈 〈∫
d3v

〈
Tsh2

s

2Fs
− qs 〈χ〉Rs

hs + q2
s

(〈χ〉Rs

)2

2Ts
Fs

〉
r

〉
⊥

〉
ψ

. (B.15)

The second term in (B.15) is handled just like (B.12) to find

∑
s

〈 〈∫
d3v

〈
qs 〈χ〉Rs

hs

〉
r

〉
⊥

〉
ψ

=
〈 〈∑

s

q2
s ns

Ts
φ2 −

∣∣∇⊥δA‖
∣∣2

4π
− δB2

‖
4π

〉
⊥

〉
ψ

. (B.16)

For the last term in the integrand in (B.15), we use the Fourier-space representation
of the GK potential

〈χ〉Rs
=

∑
k

〈χ〉k⊥eik·Rs , (B.17)

where

〈χ〉k⊥ ≡ J0(bs)

(
φk⊥ − v‖δA‖k⊥

c

)
+ 2J1(bs)

bs

Ts

qs

v2
⊥
v2

ths

δB‖k⊥
B

. (B.18)

Then,

∑
s

〈 〈∫
d3v

〈
q2

s

(〈χ〉Rs

)2

2Ts
Fs

〉
r

〉
⊥

〉
ψ

=
∑
k⊥,s

〈∫
d3v

[
q2

s

2Ts

∣∣φk⊥
∣∣2 J2

0 + q2
s v

2
‖

2c2Ts

∣∣δA‖k⊥
∣∣2 J2

0 + Tsv
4
⊥

2v4
ths

∣∣∣∣δB‖k⊥
B

∣∣∣∣
2 4J2

1

b2
s

+ qsv
2
⊥

2v2
ths

(
φk⊥

δB∗
‖k⊥

B
+ φ∗

k⊥
δB‖k⊥

B

)
2J1J0

bs

]
Fs

〉
‖
. (B.19)
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Using the identity∫ +∞

0
dx xJn(px)Jn(qx)e−ax2 = 1

2a
In

( pq

2a

)
e−(p2+q2)/2a, (B.20)

valid for any n ∈Z, one can show that∫
d3v J2

0 Fs = ns�0s, (B.21)∫
d3v

2J1J0

bs

v2
⊥
v2

ths

Fs = ns�1s, (B.22)

∫
d3v J2

0

v2
‖

v2
ths

Fs = 1
2

ns�0s, (B.23)

∫
d3v

4J2
1

b2
s

v4
⊥
v4

ths

Fs = 2ns�1s, (B.24)

where �0s and �1s are defined in (2.21). Substituting (B.21)–(B.24) into (B.19), we
find

∑
s

〈 〈∫
d3v

〈
q2

s

(〈χ〉Rs

)2

2Ts
Fs

〉
r

〉
⊥

〉
ψ

=
∑
k⊥,s

〈
q2

s ns�0s

2Ts

∣∣φk⊥
∣∣2 + �0s

∣∣δA‖k⊥
∣∣2

8πd2
s

+ βs�1s

∣∣δB‖k⊥
∣∣2

8π

+qsns�1s

2

(
φk⊥

δB∗
‖k⊥

B
+ φ∗

k⊥
δB‖k⊥

B

)〉
‖
. (B.25)

Finally, combining (B.6), (B.15), (B.16) and (B.25), we arrive at (2.20). Note that
combining the last two terms in (2.20) using

βs

∣∣δB‖k⊥
∣∣2

8π
+ 1

2
qsns

(
φk⊥

δB∗
‖k⊥

B
+ φ∗

k⊥
δB‖k⊥

B

)
= ns Ts

∣∣∣∣δB‖k⊥
B

+ qsφk⊥
2Ts

∣∣∣∣
2

− q2
s ns

4Ts

∣∣φk⊥
∣∣2, (B.26)

we can express Y in terms of squares of the amplitudes as

Y =
∑
k⊥

〈
−

∑
s

q2
s ns

2Ts

(
1 − �0s + �1s

2

) ∣∣φk⊥
∣∣2 +

(
k2

⊥
8π

+
∑

s

�0s

8πd2
s

) ∣∣δA‖k⊥
∣∣2

+
∣∣δB‖k⊥

∣∣2
8π

+
∑

s

ns Ts�1s

∣∣∣∣δB‖k⊥
B

+ qsφk⊥
2Ts

∣∣∣∣
2
〉

‖
, (B.27)

where �0s , 1 − �0s and �1s are all strictly positive.
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B.4 Injection terms for Y

Taking a time derivative of the integral in (2.15) and substituting (2.4), we obtain

d
dt

∑
s

〈 〈∫
d3v

Ts

2Fs

〈(
hs − qs 〈χ〉Rs

Ts
Fs

)2
〉

r

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v

Ts

Fs

〈 (
hs−qs 〈χ〉Rs

Ts
Fs

)(
−v‖ b̂ · ∇hs− vds·∇hs−

〈
vχ

〉
Rs
·∇Fs

)〉
r

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v

〈
qs 〈χ〉Rs

v‖ b̂ · ∇hs + qs 〈χ〉Rs
vds · ∇hs − Ts

Fs
hs

〈
vχ

〉
Rs

· ∇Fs

+ qs 〈χ〉Rs

〈
vχ

〉
Rs

· ∇Fs

〉
r

〉
⊥

〉
ψ

, (B.28)

where the terms proportional to hsvds · ∇hs and hsv‖ b̂ · ∇hs have vanished for the
same reason they did in (B.7). Additionally,

〈χ〉Rs

〈
vχ

〉
Rs

· ∇Fs = 〈χ〉Rs

c

B

(
b̂ × ∇⊥ 〈χ〉Rs

)
· ∇Fs = −1

2
∇⊥ ·

(
〈χ〉2

Re
b̂ × ∇Fs

)
(B.29)

also vanishes to lowest order after integration [cf. (B.8)]. Finally, subtracting (B.13)
from (B.28), we obtain (2.16).

Using (2.5) and (B.11), the magnetic-drift injection term becomes

∑
s

qs

〈 〈∫
d3v

〈〈χ〉Rs
vds · ∇⊥hs

〉
r

〉
⊥

〉
ψ

=
∑

s

〈 〈∫
d3v

〈
hs

[
msv

2
‖vχ · (b̂ · ∇b̂)+ 1

2
msv

2
⊥vχ · ∇⊥ ln B

]〉
r

〉
⊥

〉
ψ

. (B.30)

Using ∇ × B = (4π/c)J and J × B = c∇ p, where J is the equilibrium current and
p =∑

s ns Ts is the equilibrium pressure, (B.30) is simplified to (2.17).

Appendix C. Derivation of the low-β drift-kinetic model

Our goal is to simplify the GK equation (2.4) in order to distil a minimum model
for the good-curvature, electromagnetic instability discussed in § 3.2.2. First, we
limit ourselves to the low-β, zero-magnetic-shear Z -pinch geometry, wherein (2.5)
simplifies to

vds = − 1
�s L B

(
v2

‖ + 1
2
v2

⊥

)
ŷ, (C.1)

where
L B

−1 ≡ − ŷ · (b̂ × ∇ ln B) (C.2)

is the (inverse) length scale associated with the gradient of the magnetic-field
strength. The main benefit of the Z -pinch geometry is that (2.4) becomes homoge-
neous along the field lines. We are thus free to impose periodic boundary conditions
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in all three spatial dimensions and Fourier transform the distribution functions
13

hs =
∑

k

hskeik·Rs (C.3)

and fields

φ =
∑

k

φkeik·r, δA‖ =
∑

k

δA‖keik·r, δB‖ =
∑

k

δB‖keik·r . (C.4)

Like in (B.18), the Fourier-transformed gyroaveraged GK potential is

〈χ〉Rs
=

∑
k

〈χ〉keik·Rs =
∑

k

[
J0(bs)

(
φk − v‖δA‖k

c

)
+ 2J1(bs)

bs

Ts

qs

v2
⊥
v2

ths

δB‖k

B

]
eik·Rs .

(C.5)

The GK equation (2.4) can then be written as

∂

∂t

(
hsk − qs〈χ〉k

Ts
Fs

)
+ ik‖v‖hsk + iωds

(
2v2

‖
v2

ths

+ v2
⊥
v2

ths

)
hsk

− i
[
ω∗s +ωT s

(
v2

v2
ths

− 3
2

)]
qs 〈χk〉Rs

Ts
Fs = 0, (C.6)

where the drift frequencies are

ω∗s = − kycTs

qs BLns

, ωT s = − kycTs

qs BLTs

, ωds = − kycTs

qs BL B
. (C.7)

The field equations (2.7)–(2.9) become

∑
s

q2
s ns

Ts
φk =

∑
s

qs

∫
d3v J0(bs)hsk, (C.8)

k2
⊥δA‖k = 4π

c

∑
s

qs

∫
d3v v‖J0(bs)hsk, (C.9)

δB‖k

B
= −1

2

∑
s

βs

ns

∫
d3v

v2
⊥
v2

ths

2J1(bs)

bs
hsk. (C.10)

By restricting ourselves only to fluctuations that obey the orderings (3.1) and
(3.2), we are able to make several simplifications. First, the contributions of hi

to Maxwell’s equations (C.8)–(C.10) can be neglected because J0(bi)∼ J1(bi)∼
(k⊥ρi)

−1/2 � 1 in the limit k⊥ρi � 1, i.e. averaging over the large Larmor orbits

13Geometrically, in a ‘true’ Z -pinch, the field lines are closed circles with radius R. This implies that the
parallel wavenumber is quantised as k‖ = n/R, where n ∈Z. Here, however, we will not necessarily limit ourselves
to these values of k‖. Physically, this can be achieved by deforming the Z -pinch into a screw pinch. Practically
speaking, our set-up is that of a shearless, triply periodic flux tube (Beer et al. 1995) with magnetic geometry that is
artificially constant along the field lines.
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of the ions results in an adiabatic ion response. Secondly, k⊥ρe � 1 implies that
the electrons become drift kinetic. This simplifies the Bessel functions in (C.5) and
(C.8)–(C.10) to J0(be)≈ 2J1(be)/be ≈ 1. Additionally, βe � 1 implies that the parallel
magnetic-field fluctuations are small. Indeed, using (C.9) and (C.10), we find

δB‖
|δB⊥| ∼ δB‖k

k⊥δA‖k
∼ mev

2
the

B

ck⊥
evthe

∼ k⊥ρe ∼√
βe � 1. (C.11)

Putting everything together, under the ordering (3.1), the low-β dynamics are
described by the electron drift-kinetic equation

∂

∂t

(
hek + eφk

Te
Fe − 2v‖

vthe

δA‖k

ρe B
Fe

)
+ ik‖v‖hek + iωde

(
2v2

‖
v2

the

+ v2
⊥
v2

the

)
hek

+ i
[
ω∗e +ωT e

(
v2

v2
ths

− 3
2

)] (
eφk

Te
− 2v‖
vthe

δA‖k

ρe B

)
Fe = 0 (C.12)

and the field equations

−(1 + τ−1)
eφk

Te
= 1

ne

∫
d3vhek, (C.13)

−k2
⊥d2

e

δA‖k

ρe B
= 1

ne

∫
d3v

v‖
vthe

hek = u‖ek

vthe
, (C.14)

where u‖e is the perturbed parallel electron flow. In the two-dimensional limit, viz.
k‖ = 0, (C.12) decouples into its even part (in v‖)

∂

∂t

(
h(even)

ek + eφk

Te
Fe

)
+ iωde

(
2v2

‖
v2

the

+ v2
⊥
v2

the

)
h(even)

ek

+ i
[
ω∗e +ωT e

(
v2

v2
ths

− 3
2

)]
eφk

Te
Fe = 0, (C.15)

closed by (C.13), and its odd part

∂

∂t

(
h(odd)

ek − 2v‖
vthe

δA‖k

ρe B
Fe

)
+ iωde

(
2v2

‖
v2

the

+ v2
⊥
v2

the

)
h(odd)

ek

− i
[
ω∗e +ωT e

(
v2

v2
ths

− 3
2

)]
2v‖
vthe

δA‖k

ρe B
Fe = 0 (C.16)

closed by (C.14).

C.1 Low-β conservation laws
Here, we use the orderings (3.1) and (3.2) to derive the asymptotic forms of the

conservation laws (2.11) and (2.16).
First, the hi contribution to the free energy (B.1) is independently conserved and

thus can be ignored. To see this, we use (2.4) to find
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d
dt

∫
d3r
V

∫
d3v

〈
Ti h2

i

2Fi

〉
r

=
∫

d3r
V

∫
d3v

〈
Ti hi

Fi

(
qi 〈χ〉Ri

Fi
− v‖ b̂ · ∇hi − vdi · ∇hi − 〈

vχ
〉

Ri
· ∇Fi

)〉
r

=
∫

d3r
V

∫
d3v

〈
Ti hi

Fi

(
qi 〈χ〉Ri

Fi
− 〈

vχ
〉

Ri
· ∇Fi

)〉
r

, (C.17)

where the parallel-streaming and magnetic-drift terms vanish for the same reason as
they do in the derivation of the free energy’s evolution equation given in Appendix
B.2. For the remaining terms, we take advantage of the fact that, under (3.1), the
ion gyroaverage of the GK potential is small, viz.

〈χk〉Ri
∼ χk√

k⊥ρi

� χk, (C.18)

where we used (B.18) and the asymptotic expansions

|J0(x)| ∼ |J1(x)| ∼ 1√
x
, (C.19)

valid for x � 1. Therefore, the last line of (C.17) vanishes to lowest order.
Neglecting the hi contributions to (B.1), taking advantage of k⊥ρe � 1, dropping

the parallel magnetic fluctuations, and using

�0i = O

(
1

k⊥ρi

)
, �0e = 1 − k2

⊥ρ
2
e

2
+ O

(
k4

⊥ρ
4
e

)
, (C.20)

(2.24) and (2.29) become

dW

dt
= Q‖

e + Q⊥
e

LTe

,
dY

dt
= dY

dt

∣∣∣∣
slab

+ dY

dt

∣∣∣∣
drift

, (C.21)

where

dY

dt

∣∣∣∣
slab

= neTevthe

∫
d3r
V

(
u‖e

vthe

∂

∂z

eφ

Te
+ δA‖
ρe B

∂

∂z

δp‖e

neTe

)
, (C.22)

dY

dt

∣∣∣∣
curv

= −2Q‖
e + Q⊥

e

L B
. (C.23)

The free energy and field invariant are given by

W =
∫

d3r
V

∫
d3v

Teh2
e

2Fe
+

∫
d3r
V

(∣∣∇⊥δA‖
∣∣2

8π
−

∑
s

q2
s ns

2Ts
φ2

)
, (C.24)

Y =
∫

d3r
V

(
δA2

‖
8πd2

e

+
∣∣∇⊥δA‖

∣∣2
8π

− q2
i ni

2Ti
φ2

)
, (C.25)
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respectively. In the above, δp‖e ≡ ∫
d3vmev

2
‖he is the perturbed parallel electron

pressure and

Q‖
e = ρevtheTe

∫
d3r
V

∫
d3v

v2
‖

v2
the

(
−1

2
∂

∂y

eφ

Te
+ v‖
vthe

∂

∂y

δA‖
ρe B

)
he, (C.26)

Q⊥
e = ρevtheTe

∫
d3r
V

∫
d3v

v2
⊥
v2

the

(
−1

2
∂

∂y

eφ

Te
+ v‖
vthe

∂

∂y

δA‖
ρe B

)
he (C.27)

are the radial fluxes of energy associated with parallel and perpendicular electron
motion, respectively. The first terms in the parentheses in (C.26) and (C.27) repre-
sent advection of parallel and perpendicular temperature, respectively, by the radial
component of the E × B drift

vE · ∇x = − c

B

∂φ

∂y
, (C.28)

the second ones are the radial projection of transport along the exact field lines
(sometimes called ‘flutter’ transport; Callen 1977; Manheimer & Cook 1978), whose
radial perturbation is

δBx = ∂δA‖
∂y

. (C.29)

Appendix D. Derivation of the low-β dispersion relation

The derivation of the dispersion relation is a direct application of the results of
Ivanov & Adkins (2023). The linear GK dispersion relation for a two-species, Z -
pinch plasma is ∣∣∣∣∣

Lφφ LφA LφB

L Aφ L AA L AB

L Bφ L B A L B B

∣∣∣∣∣= 0, (D.1)

where

Lφφ = −
∑

s

q2
s ns Tr

q2
r nr Ts

{
1 +

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
I (s)a,b

∣∣
a=b=1

}
, (D.2)

LφA = 2
∑

s

q2
s nsvths Tr

q2
r nrvthr Ts

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
J (s)

a,b

∣∣
a=b=1

, (D.3)

LφB =
∑

s

qsns

qr nr

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
∂b K(s)

a,b

∣∣
a=b=1

, (D.4)

L Aφ = −
∑

s

q2
s nsvths Tr

q2
r nrvthr Ts

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
J (s)

a,b

∣∣
a=b=1

, (D.5)

L AA = − B2
0 (k⊥ρr)

2

8πnr Tr
− 2

∑
s

q2
s nsmr

q2
r nr ms

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
∂a I (s)a,b

∣∣
a=b=1

,

(D.6)

L AB =
∑

s

qsnsvths

qr nrvthr

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
∂b L(s)

a,b

∣∣
a=b=1

, (D.7)
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L Bφ = −
∑

s

βs

2
qs Tr

qr Ts

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
∂b K(s)

a,b

∣∣
a=b=1

, (D.8)

L B A =
∑

s

βs
qs Trvths

qr Tsvthr

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
∂b L(s)

a,b

∣∣
a=b=1

, (D.9)

L B B = −1 +
∑

s

βs

2

[
ζs − ζ∗s + ηsζ∗s

(
∂a + ∂b + 3

2

)]
∂2

b M(s)
a,b

∣∣
a=b=1

, (D.10)

where have normalised our expressions using an arbitrary reference species r . We
have also defined the following integrals:

I (s)a,b = 1√
π

∫ ∞

−∞
du

∫ ∞

0
dμ

e−au2−bμ

u − ζs + (2u2ζκs +μζBs)
J2

0(bs), (D.11)

J (s)
a,b = 1√

π

∫ ∞

−∞
du

∫ ∞

0
dμ

ue−au2−bμ

u − ζs + (2u2ζκs +μζBs)
J2

0(bs), (D.12)

K(s)
a,b = 1√

π

∫ ∞

−∞
du

∫ ∞

0
dμ

e−au2−bμ

u − ζs + (2u2ζκs +μζBs)

2J0(bs)J1(bs)

bs
, (D.13)

L(s)
a,b = 1√

π

∫ ∞

−∞
du

∫ ∞

0
dμ

ue−au2−bμ

u − ζs + (2u2ζκs +μζBs)

2J0(bs)J1(bs)

bs
, (D.14)

M(s)
a,b = 1√

π

∫ ∞

−∞
du

∫ ∞

0
dμ

e−au2−bμ

u − ζs + (2u2ζκs +μζBs)

[
2J1(bs)

bs

]2

, (D.15)

and normalised frequencies

ζs = ip
|k‖|vths

, ζ∗s = ω∗s

|k‖|vths
, ζκs = ωκs

|k‖|vths
, ζ∇Bs = ω∇Bs

|k‖|vths
, (D.16)

where ω∗s is defined in (C.7) and the frequencies associated with the curvature and
∇B drifts are, respectively,

ωκs = v2
ths

2�s
k⊥ ·

[
b̂ × (b̂ · ∇)b̂

]
, ω∇Bs = v2

ths

2�s
k⊥ ·

(
b̂ × ∇ ln B

)
. (D.17)

Using the orderings (3.1) and (3.2), we can make several simplifications to (D.2)–
(D.10). First, k⊥ρi � 1 implies that the ion integrals (D.11)–(D.15) are small
since bi = k⊥v⊥/�i ∼ k⊥ρi and J0(bi)→ 0, J1(bi)→ 0 as bi → ∞. Secondly, as
the electrons are drift kinetic, viz. be ∼ k⊥ρe � 1, we find that J0(be)→ 1 and
2J1(be)/be → 1. Finally, the equilibrium pressure balance implies that, in the low-β
limit, ωκs =ω∇Bs =ωds , where the latter is defined in (C.7).

Combining all of this, the electron integrals (D.11)–(D.15) simplify as

I (e)a,b =K(e)
a,b =M(e)

a,b = Ia,b, (D.18)

J (e)
a,b =L(e)

a,b = Ja,b, (D.19)
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where Ia,b and Ja,b are given by

Ia,b = 1√
π

∫ +∞

−∞
du

∫ +∞

0
dμ

e−au2−bμ

u − ζ + ζd(2u2 +μ)
, (D.20)

Ja,b = 1√
π

∫ +∞

−∞
du

∫ +∞

0
dμ

ue−au2−bμ

u − ζ + ζd(2u2 +μ)
. (D.21)

We have normalised the frequencies as per (D.16) with s = e, the normalised
magnetic-drift frequency is ζde ≡ωde/|k‖|vthe, and the e subscript has been dropped.
Finally, as βe � 1, (D.8)–(D.10) imply L Bφ → 0, L B A → 0 and L B B → −1, so (D.1)
becomes

0 =
∣∣∣∣∣
Lφφ LφA LφB

L Aφ L AA L AB

L Bφ L B A L B B

∣∣∣∣∣=
∣∣∣∣∣
Lφφ LφA LφB

L Aφ L AA L AB

0 0 −1

∣∣∣∣∣= −(LφφL AA − LφA L Aφ), (D.22)

where, using electrons as the reference species in (D.6)–(D.10) (i.e. setting r = e),
we have

Lφφ = −1 − τ−1 −
[
ζ − ζ∗ + ζT

(
∂a + ∂b + 3

2

)]
Ia,b

∣∣
a=b=1

, (D.23)

L AA = −k2
⊥d2

e − 2
[
ζ − ζ∗ + ζT

(
∂a + ∂b + 3

2

)]
∂a Ia,b

∣∣
a=b=1

, (D.24)

LφA = −2L Aφ = 2
[
ζ − ζ∗ + ζT

(
∂a + ∂b + 3

2

)]
Ja,b

∣∣
a=b=1

. (D.25)

Using the results of Ivanov & Adkins (2023), we find

Ia,b

∣∣
a=b=1

= − 1
2ζd

Z+Z−, (D.26)

∂a Ia,b

∣∣
a=b=1

= − 1
2ζd

[
2 + 1

ζd
(Z+ − Z−)+ ζ+Z− + ζ−Z+ −

(
1

4ζ 2
d

− 1
2

Z+Z−

)]
,

(D.27)

Ja,b

∣∣
a=b=1

= − 1
2ζd

(
Z+ − Z− − Z+Z−

2ζd

)
, (D.28)(

∂a + ∂b + 3
2

)
Ia,b

∣∣
a=b=1

= 1
2ζd

[
ζ+Z− + ζ−Z+ +

(
ζ

ζd
+ 1

4ζ 2
d

− 1
)

Z+Z−

]
, (D.29)(

∂a + ∂b + 3
2

)
∂a Ia,b

∣∣
a=b=1

= 1
2ζd

[
1

2ζ 2
d

+ ζ

ζd
− 1

2ζd
(Z+ − Z−)− 1

4ζ 2
d

(ζ+Z− + ζ−Z+) ,

+ 1
ζd

(
ζ 2

+Z+ − ζ 2
−Z−

)+ ζ

2ζd
(ζ+Z+ + ζ−Z−)+ 1

4ζ 2
d

(
3
2

− 1
4ζ 2

d

− ζ

ζd
+ 2ζ ζd

)
Z+Z−

]
,

(D.30)
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∂a + ∂b + 3

2

)
Ja,b

∣∣
a=b=1

= 1
2ζd

[
1

2ζd
− 1

2
(Z+ − Z−)− 1

2ζd
(ζ+Z− + ζ−Z+)

+ ζ 2
+Z+ − ζ 2

−Z− + 1
2ζd

(
1 − 1

4ζ 2
d

− ζ

ζd

)
Z+Z−

]
, (D.31)

where Z± = Z(ζ±) and

ζ± ≡
√

1 + 8ζdζ ± 1
4ζd

. (D.32)

Substituting (D.26)–(D.31) into (D.23)–(D.25) and then into (D.22), we obtain
a bulky but explicit dispersion relation for the system (C.12)–(C.14) that is
straightforward to solve numerically.

D.1 Two-dimensional limit
The two-dimensional limit, i.e. k‖ → 0, corresponds to ζ ∼ ζd → ∞, and so (D.32)

becomes

ζ± ≈
√
ζ

2ζd
=

√
ω

2ωde
. (D.33)

In writing (D.33), we have made use of our choice ωde > 0, which we discussed at
the end of § 3. The two-dimensional limit is equivalent to dropping the u term in the
denominator of the integrands in (D.20) and (D.21). As its integrand becomes odd
in u, (D.21) vanishes. In this case, LφA = L Aφ = 0, so the dispersion relation (D.22)
becomes

D2D ≡ LφφL AA = 0, (D.34)

where Lφφ and L AA are given by

Lφφ = −1 − τ−1 + ω−ω∗e

2ωde
Z
(√

ω

2ωde

)2

− ωT e

2ωde

[
2
√

ω

2ωde
Z
(√

ω

2ωde

)
+

(
ω

ωde
− 1

)
Z
(√

ω

2ωde

)2
]
, (D.35)

L AA = −k2
⊥d2

e + ω−ω∗e

ωde

[
2 + 2

√
ω

2ωde
Z
(√

ω

2ωde

)
+ 1

2
Z
(√

ω

2ωde

)2
]

− ωωT e

ω2
de

[
1 +

√
ω

2ωde
Z
(√

ω

2ωde

)
+ 1

2
Z
(√

ω

2ωde

)2
]

= 0. (D.36)

Thus, the two-dimensional dispersion relation (D.34) splits into the electrostatic (3.4)
and the electromagnetic (3.6) ones, given by Lφφ = 0 and L AA = 0, respectively.

Appendix E. Fluid approximation for the MDM

To explore the cETG and MDM instabilities using a set of fluid moments, we
follow Appendix A.5 of Adkins et al. (2022) and project the drift-kinetic equation
(C.12) onto a set of Hermite (in v‖) and Laguerre (in v⊥) basis functions. After
truncating the infinite hierarchy to a total of M Hermite and L Laguerre functions,
we obtain a set of L M fluid equations, whose normal modes can be found by com-
puting the eigenvalues of an L M × L M matrix. The details of the decomposition
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FIGURE 6. Panels (a) and (b) show the relative error between the unstable solution of (3.4) and
that of the truncated Hermite–Laguerre hierarchy [see (A 64) of Adkins et al. (2022)] at varying
numbers of Hermite and Laguerre moments, denoted by M and L , respectively, and two different
values of κT , as labelled on the panels. We have set κn = 0. Here, we define the relative error
between two quantities a and b as |a − b|/max{|a|, |b|}. Black denotes cases where the truncated
fluid hierarchy has no unstable solution. For either L = 0 or M < 2, as κT → ∞, the growth rate
is underpredicted by a factor of

√
2 and so the relative error converges to 1 − 1/

√
2 ≈ 0.29.

Panels (c) and (d) show the relative error for the MDM dispersion relation (3.6) at two different
values of κT and k2⊥d2

e , as labelled on each panel.

can be found in Adkins et al. (2022). For the purposes of the discussion here, L
and M can be thought of as the ‘resolution’ of the fluid approximation in v⊥ and v‖,
respectively.

In figure 6(a,b), we show the relative error between the complex cETG frequency,
obtained by solving (3.4) directly, and by finding the unstable normal mode of the
truncated Hermite–Laguerre fluid hierarchy. As we increase the temperature gradi-
ent, the fluid and kinetic solutions converge as long as M > 2 and L > 1, i.e. if the
fluctuations of parallel (3.11) and perpendicular (3.12) temperature are included in
the fluid truncation. This is the expected behaviour given the discussion in § 3.2.1.
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FIGURE 7. Relative error between the unstable solutions obtained by solving the ETG (3.4) and
the MDM (3.6) kinetic dispersion relations and those obtained from the truncated Hermite–
Laguerre hierarchy at two different values of (L , M) as a function of the temperature gradient
κT (as labelled in the legend). The ETG and MDM solutions are found at κT > 0 and κT < 0,
respectively. For both cases, κn = 0 and τ = 1. To ensure that the MDM remains unstable as we
increase |κT |, we have set k2⊥d2

e = −κT /5.

If either δT‖e or δT⊥e is not included, it is easy to show that the resulting fluid dis-
persion relation is ω2 = −ωT eωdeτ , and thus the growth rate is underpredicted by a
factor of

√
2 (see also Appendix G.1).

The convergence of the kinetic and truncated-fluid solutions shows that the cETG
instability is ‘fluidisable’, i.e. it can be described (asymptotically) using a set of fluid
equations. The strongly driven limit κT → ∞ is the natural one for the collision-
less ‘fluidisation’ of the electron drift-kinetic equation (C.12). To see this, note that
the frequencies in (C.12) can be split into two groups: the ‘kinetic frequencies’,
containing the parallel streaming k‖v‖ and the magnetic drifts ωde; and the ‘fluid
frequencies’, ω∗e and ωT e, which are proportional to the gradients of the plasma
equilibrium profiles. In the Hermite–Laguerre decomposition, the terms propor-
tional to the fluid frequencies appear only in the equations for the six lowest-order
moments (Zocco & Schekochihin 2011; Adkins et al. 2022), while those proportional
to the kinetic frequencies are responsible for coupling to higher-order moments.

14

Thus, in the strongly driven limit, wherein the fluid frequencies are asymptotically
larger than the kinetic ones, if the mode frequency scales with the fluid frequencies
[which is the case for the cETG dispersion relation (3.9)], the infinite hierarchy is
asymptotically truncated to (at most) the six lowest-order moments. Note that this
truncation is entirely collisionless.

In contrast to cETG, as discussed in § 3.2.2, the MDM satisfies ω�ωde, and
so we do not expect to be able to ‘fluidise’ it. In figure 6(c,d), we show the rela-
tive error between the MDM frequency, obtained by solving (3.6) directly, and by
finding the unstable normal mode of the truncated Hermite–Laguerre fluid hierar-
chy. We observe that, even at very large values of the temperature gradient, the fluid
approach does not provide a good approximation to the kinetic solution. To be more

14In the representation of the kinetic system via the moment hierarchy, this coupling is the manifestation of
phase mixing.
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precise, for a fixed choice of L and M , it is impossible to find parameters κT and
k2

⊥d2
e for which the kinetic and fluid solutions converge to each other. This is further

illustrated in figure 7 where we vary κT for fixed L and M . We find that as κT → ∞,
the error in the ETG solution decreases to zero. In contrast, as κT → −∞, the error
in the MDM solution converges to a finite, non-zero value. Thus, we conclude that
the MDM cannot be captured by a finite set of fluid equations.

15

Appendix F. The MDM stability boundaries

Since the complex solutions ω to (3.6) are a smooth function of the parameters
k2

⊥d2
e , L B/LTe and L B/Lne , the region of instability seen in figure 3 is bounded by

lines on which ω ∈R, the stability boundaries. Recall that we have assumed that
ωde > 0. Therefore,

√
ω/2ωde, which appears as the argument of the Z functions in

(3.6), lies on the positive real or positive imaginary axes if ω> 0 or ω< 0, respec-
tively. When ω> 0, we recover the upper solid black line in figure 3, while the lower
one corresponds to ω< 0. The dashed black line in figure 3 is a special case of the
stability boundary where ω= 0, not just its imaginary part. Let us try to understand
this feature of figure 3 first.

F.1 Small-ω limit
In the limit ω/ωde ∼ δ� 1, we can expand the Z functions in the dispersion

relation using

Z(ζ )= i
√
π − 2ζ − iζ 2 + 4

3
ζ 3 + O

(
ζ 4

)
, (F.1)

to obtain from (D.36)

L AA = − k2
⊥d2

e − 4 − π

2
κn + 4 − π − (π − 2)(κn − κT )

2
ω

ωde

− i

√
π

2
2κn − 3κT

3

(
ω

ωde

)3/2

+ O
(
δ2
)
. (F.2)

Keeping only terms to O(δ0), we find that ω�ωde solutions to L AA = 0 exist only if
k2

⊥d2
e + (4 − π)κn/2 ∼ δ� 1. Indeed, the horizontal dotted line in figure 3, which

specifies the minimum k2
⊥d2

e for the instability and on which ω= 0 is an exact
solution, is k2

⊥d2
e = k2

⊥,mind2
e , where

k2
⊥,mind2

e = −4 − π

2
κn. (F.3)

Note that (3.13) implies that ω= 0 is a solution only if κn < 0. Expanding

ω=ω0 +ω1 + . . . (F.4)

in δ� 1, we find
ω0

ωde
= 2k2

⊥d2
e + (4 − π)κT

4 − π − (π − 2)(κn − κT )
. (F.5)

15Of course, if we were to increase L and M at fixed κT and k2⊥d2
e , the unstable normal mode of the truncated

fluid system would approach the kinetic solution. Indeed, figure 7 shows that doubling both L and M decreases the
error significantly.
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Thus, to lowest order, ω≈ω0 ∈R.
To determine the growth rate, we proceed to next order, which, in combination

with (F.5), yields

ω1

ωde
= i

√
2π
3

(2κn − 3κT )
[
2k2

⊥d2
e + (4 − π)κn

]
[4 − π − (π − 2)(κn − κT )]

2

√
ω0

ωde
. (F.6)

If ω0/ωde < 0, then ω1 is again purely real. In fact, it is not difficult to see that
if ω0/ωde < 0, then all terms in the perturbative expansion (F.4) are purely real.
This happens because all integer powers of ω in the expansion (F.2) have real coef-
ficients while the half-integer ones have purely imaginary ones, which is itself a
consequence of the pattern of alternating purely imaginary and purely real coeffi-
cients in the expansion of the Z function (F.1). Therefore, the small-ω expansion can
yield solutions with finite Imω only if ω0/ωde > 0.

If this is satisfied, then (F.6) has a positive imaginary part if

(2κn − 3κT )
[
2k2

⊥d2
e + (4 − π)κn

]
> 0. (F.7)

Suppose that
2k2

⊥d2
e + (4 − π)κn < 0 (F.8)

and
2κn − 3κT < 0. (F.9)

Since we have demanded ω0/ωde > 0, we need, from (F.5),

κT <−4 − π

π − 2
+ κn, (F.10)

which, together with (F.9), yields

κn

3
>

4 − π

π − 2
, (F.11)

which is a contradiction with the assumption (F.8), which is impossible when κn < 0.
Thus, (F.7) can be fulfilled only if

2k2
⊥d2

e + (4 − π)κn > 0 (F.12)

and

2κn − 3κT > 0 =⇒ κT <
2
3
κn. (F.13)

Combining (F.12) and (F.5), we find also that

κT >−4 − π

π − 2
+ κn. (F.14)

Together, (F.13) and (F.14) give the left- and right-hand ends of the horizontal
dashed line in figure 3, respectively.
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F.2 Finite positive ω
Now, we turn to the case of marginal stability with the real frequency ω> 0 and

let s ≡ √
ω/2ωde, so the Z functions in (3.6) become

Z(s)= 1√
π

∫ +∞

−∞
du

e−u2

u − s
= Re Z(s)+ i

√
πe−s2

, (F.15)

where, since s ∈R
+, the real part of Z is given by the principal value of (3.5), viz.

Re Z(s)= 1√
π
P

∫ +∞

−∞
du

e−u2

u − s
. (F.16)

Taking the imaginary part of the dispersion relation (3.6), we find

Re Z(s)
s

+ 2s2(2 − κT )− 2κn

2s2(1 − κT )− κn
= 0. (F.17)

We now take two limits of (F.17): s � 1 and κT � 1.
When s � 1, we can use (F.1), to expand

Re Z(s)
s

+ 2s2(2 − κT )− 2κn

2s2(1 − κT )− κn
= 2

(
2
3

− κT

κn

)
s2 + O

(
s4
)
, (F.18)

which then implies that the solution of (F.17) satisfies s → 0 only if κT → 2κn/3.
This connects the positive-ω stability boundary to the left end of the small-ω stability
boundary given by (F.13).

In the strongly driven limit κT � 1, (F.17) gives Re Z(s)≈ −s, which has a unique
solution at s ≈ 1.063. In this limit, the dispersion relation (3.6) becomes

k2
⊥d2

e ≈ −2s2κT

{
1 + sRe Z(s)+ 1

2
[Re Z(s)]2 − π

2
e−2s2

}
, (F.19)

which, upon substitution of s ≈ 1.063, gives us

k2
⊥d2

e ≈ −0.61κT . (F.20)

This is the asymptotic slope of the top solid line in figure 3.

F.3 Finite negative ω
If ω< 0, then the argument of the Z functions in (3.6) is purely imaginary. Let√

ω

2ωde
≡ iv, (F.21)

where v > 0. Then, (3.5) implies Z(iv)= iIm Z(iv), where

Im Z(iv)= v√
π

∫ +∞

−∞
du

e−u2

u2 + v2
. (F.22)

In this case, the dispersion relation (3.6) is purely real and can be written as

k2
⊥d2

e = − (
2v2 + κn

) [
2 − 2v Im Z − 1

2
(Im Z)2

]
+ 2v2κT

[
1 − v Im Z − 1

2
(Im Z)2

]
.

(F.23)
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Once again, we consider two limits: v� 1 and κT � 1.
When v� 1, we expand (F.23) to find

k2
⊥d2

e = − 4 − π

2
κn − [4 − π − (π − 2) (κn − κT )] v2

+ 2
√
π

(
κT − 2

3
κn

)
v3 + O

(
v4
)
. (F.24)

Anticipating that the negative-ω stability boundary connects to the right-hand end
(F.14) of the small-ω one, (F.13) and (F.14) imply that the coefficients of v2 and v3

in (F.24) are positive and negative, respectively. Thus, the right-hand side of (F.24)
peaks at finite v > 0, and so (F.24) can be solved for any k2

⊥d2
e up to the value of

that peak. Differentiating the right-hand side of (F.24) and substituting the value of
v at the local maximum, we find

k2
⊥d2

e = −4 − π

2
κn − [4 − π − (π − 2) (κn − κT )]

3

3π (3κT − 2κn)
2 . (F.25)

Thus, the start of the bottom solid line in figure 3 is a cubic curve.
In the strongly driven limit κT � 1, (F.23) simplifies to

k2
⊥d2

e

κT
≈ 2v2

[
1 − vIm Z − 1

2
(Im Z)2

]
. (F.26)

The right-hand side of (F.26) is a positive function with a peak at v ≈ 0.95.
Substituting this value into (F.26), we find that (F.26) has solutions for v ∈R only if
k2

⊥d2
e < k⊥,cd2

e , where
k⊥,cd2

e ≈ −0.09κT . (F.27)

This is the asymptotic slope at κT � 1 of the lower solid black line in figure 3.

Appendix G. Reduced models of the MDM

In this appendix, we consider two different simplifications of the two-dimensional
MDM dispersion relation (3.6). Note that these simplifications are ad hoc in the
sense that they cannot be captured by any subsidiary asymptotic expansion of
(3.6). Nevertheless, they allow us to understand the qualitative ingredients of our
instability.

G.1 The ∇B versus curvature drifts
First, let us discuss the consequences of turning off either the ∇B or curvature

drift, starting with the former. Removing the ∇B drift, i.e. the v2
⊥-dependent con-

tribution to the magnetic drifts in (C.12), is equivalent to changing the definition of
Ia,b in (D.20) to

I (no ∇B)
a,b = 1√

π

∫ +∞

−∞
du

∫ +∞

0
dμ

e−au2−bμ

−ζ + 2ζdu2
= 1

b
√
π

∫ +∞

−∞
du

e−au2

−ζ + 2ζdu2
, (G.1)

where we have explicitly taken the two-dimensional limit discussed in § 3.2. Assuming
without loss of generality that ζd > 0, we can carry out the integration in (G.1) as
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FIGURE 8. (a) Growth rates and (b) frequencies obtained by solving (G.3) numerically for the
same parameters as figure 3. Here, we are plotting only the unstable modes.

I (no ∇B)
a,b = 1

b
√

8ζ ζd

1√
π

∫ +∞

−∞
du e−au2

(
1

u − √
ζ/2ζd

− 1

u + √
ζ/2ζd

)

= 1

b
√

2ζ ζd

1√
π

∫ +∞

−∞
du

e−au2

u − √
ζ/2ζd

= 1

b
√

2ζ ζd
Z

(√
aζ

2ζd

)
, (G.2)

where we changed variables u �→ −u to go from the first to the second line and then
used the definition (3.5) of the plasma dispersion function. Substituting (G.2) into
(D.24), we obtain the dispersion relation

0 = L (no ∇B)
AA = − k2

⊥d2
e + ω−ω∗e

ωde

[
1 +

√
ω

2ωde
Z
(√

ω

2ωde

)]

− ωωT e

2ω2
de

[
1 +

√
ω

2ωde
Z
(√

ω

2ωde

) (
1 − ωde

ω

)]
, (G.3)

where the similarity with (3.6) is evident. The numerical solution of (G.3) shown
in figure 8 reveals a good-curvature, viz. κT =ωT e/ωde < 0, instability with the same
qualitative behaviour as was seen in figure 3.

In contrast, let us consider turning off the curvature drift, i.e. the v2
‖ -dependent

contributions to the magnetic drifts in (C.12). Analogously to (G.1), we find that
(D.20) becomes

I (no curv)
a,b = 1√

π

∫ +∞

−∞
du

∫ +∞

0
dμ

e−au2−bμ

−ζ + ζdμ
= 1
ζd

√
a

∫ +∞

0
dμ

e−bμ

μ− ζ/ζd
. (G.4)

Again, we assume that ζd > 0. Additionally, we know that (G.4) is an analytic func-
tion in the upper half-plane, and so let us look for an alternative integral expression
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for (G.4) for Re ζ < 0 that we will later analytically continue to Re ζ > 0. For
Re ζ < 0 and ζd > 0, we let μ= −(t − 1)ζ/ζd to find

I (no curv)
a,b = 1

ζd
√

a
exp

(
−bζ

ζd

) ∫ +∞

1

dt

t
exp

(
bζ

ζd
t

)
= 1
ζd

√
a

exp
(

−bζ

ζd

)
E1

(
−bζ

ζd

)
,

(G.5)
where E1 is the exponential integral

E1(x)≡
∫ +∞

1
dt

e−t x

t
. (G.6)

The function E1 is analytic in the complex plane with a branch cut along the negative
real axis. Substituting (G.5) into (D.24), we find the dispersion relation

0 = L (no curv)
AA = − k2

⊥d2
e + ω−ω∗e

ωde
e−ω/ωdeE1

(
ω

ωde

)

− ωT e

ωde

[
1 + ω

ωde
e−ω/ωdeE1

(
ω

ωde

)]
. (G.7)

To show that this dispersion relation does not contain an MDM-like instability,
we consider the simpler case ω∗e = 0, wherein, using (G.4)–(G.6), we can express
the entirety of (G.7) as ∫ +∞

0
dμ

μe−μ

μ−ω/ωde
= 1 + k2

⊥d2
e

1 − κT
. (G.8)

Since the right-hand side of (G.8) is always real, the imaginary part of the left-hand
side,

Im
∫ +∞

0
dμ

μe−μ

μ−ω/ωde
= Im(ω/ωde)

∫ +∞

0
dμ

μe−μ

|μ−ω/ωde|2
, (G.9)

must vanish. However, (G.9) is non-zero as long as Im(ω) > 0.
16

Therefore, we
conclude that the MDM is destabilised exclusively by the curvature drifts.

This behaviour is drastically different from that of the ETG instability discussed in
§ 3.2.1. Indeed, analogously to (G.3) and (G.7), we can derive the two-dimensional
ETG dispersion relations in the absence of ∇B,

0 = L (no ∇B)
φφ = − 1 − τ−1 −

(
1 − ω∗e

ω

)√
ω

2ωde
Z
(√

ω

2ωde

)

+ ωT e

2ωde

[
1 +

(
1 − ωde

ω

)√
ω

2ωde
Z
(√

ω

2ωde

)]
, (G.10)

or of curvature drifts,

0 = L (no curv)
φφ = − 1 − τ−1 − ω−ω∗e

ωde
e−ω/ωdeE1

(
− ω

ωde

)

+ ωT e

ωde

[
1 +

(
ω

ωde
− 1

)
e−ω/ωdeE1

(
− ω

ωde

)]
. (G.11)

16The integral expression (G.4) is valid only for unstable modes, so we cannot use (G.9) to conclude that there
are no damped modes without picking a branch and performing the relevant analytical continuation.
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Expanding in the strongly driven (ωde �ω�ωT e), zero-density-gradient (ω∗e = 0)
limit considered in § 3.2.1, we find that both (G.10) and (G.11) yield

ω2 = −ωT eωdeτ. (G.12)

This dispersion relation can also be obtained directly from (3.10)–(3.12) by noticing
that dropping the ∇B drift simplifies the fluid equations to

∂

∂t

δnek

ne
+ iωde

δT‖ek

Te
= 0, (G.13)

∂

∂t

δT‖ek

Te
+ iωT e

eφk

Te
= 0, (G.14)

whereas dropping the curvature drift yields

∂

∂t

δnek

ne
+ iωde

δT⊥ek

Te
= 0, (G.15)

∂

∂t

δT⊥ek

Te
+ iωT e

eφk

Te
= 0. (G.16)

In either case, we obtain the dispersion relation (G.12). This confirms that the
curvature-driven ETG instability is indifferent to which magnetic drift couples the
density and temperature fluctuations.

G.2 Colliding beams
Possibly the simplest version of the MDM can be obtained if we make the

unphysical assumption that the unperturbed distribution function is

Fe = 1
2

neδ(vx)δ(vy)
[
δ(v‖ − v0)+ δ(v‖ + v0)

]
, (G.17)

where v0 = v0(x) can be thought of as a spatially varying thermal speed: by
definition,

1
2
v2

the = 1
ne

∫
d3v v2 Fe = v2

0 . (G.18)

The temperature-gradient length scale (2.14) is then

1
LTe

= −2
d ln v0

dx
. (G.19)

The distribution function (G.17) is made up of two counter-propagating beams
aligned with the z direction, with zero net momentum but radially varying energy.
Such a distribution function is entirely unphysical in the sense that it would give rise
to high-frequency instabilities that are outside the ordering (2.1). In other words,
(G.17) is not a valid GK equilibrium distribution. Nevertheless, we can use it as an
ad hoc toy model for the MDM.

Note that the last term in the odd (in v‖) drift-kinetic equation (C.16) comes from
the last term in (2.4), and thus (C.16) is

∂

∂t

(
h(odd)

ek − 2v‖
vthe

δA‖k

ρe B
Fe

)
+ iωde

(
2v2

‖
v2

the

+ v2
⊥
v2

the

)
h(odd)

ek + iky
ρevthe

2
2v‖
vthe

δA‖k

ρe B

dFe

dx
= 0.

(G.20)
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FIGURE 9. Same as figures 3 and 8 but for the unstable solutions of (G.22).

Substituting (G.17) instead of a Maxwellian Fe into (G.20), we find that the odd
drift-kinetic equation for a mode with complex frequency ω is

−ω

(
h(odd)

ek − 2v‖
vthe

δA‖k

ρe B
Fe

)
+ωde

(
2v2

‖
v2

the

+ v2
⊥
v2

the

)
h(odd)

ek −ω∗e
2v‖
vthe

δA‖k

ρe B
Fe

−ωT e
2v‖
vthe

δA‖k

ρe B

nev0

4
δ(vx)δ(vy)

∂

∂v‖

[
δ(v‖ − v0)− δ(v‖ + v0)

]= 0. (G.21)

Substituting h(odd)
ek from (G.21) into Ampère’s law (C.14), we obtain the following

dispersion relation:

−k2
⊥d2

e − ω−ω∗e −ωT e

ω−ωde
+ ωT eωde

(ω−ωde)2
= 0. (G.22)

It is straightforward to show that (G.22) has unstable solutions when

(κn + κT − 1)2 + 4κT (1 + k2
⊥d2

e ) < 0, (G.23)

which is possible only if κT < 0. Note that in the case of zero magnetic drifts, viz.
ωde = 0, (G.22) reproduces the magnetic drift wave (3.22).

Figure 9 shows the unstable solutions of (G.22) for the same parameters as
figures 3 and 8. The qualitative similarity between these is evident, in particular
the fact that the unstable solutions of (G.22) can have either sign of Reω. The main
difference is that, in the limit k2

⊥d2
e � 1, the stability boundary associated with the

Reω> 0, i.e. copropagating, modes asymptotes to κT → 0−, as can be seen directly
from (G.23). This is consistent with the hypothesis that the stabilisation of the MDM
at positive real frequency is due to the Landau-like damping arising from the mag-
netic drifts. The discontinuous nature of the distribution function (G.17) implies that
only a single ω, viz. ω=ωde, is resonant, unlike in the continuous case, where every
ω> 0 resonates with some particles.
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