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Non-colloidal dynamics of a single particle suspended in a low-Reynolds-number fluid
under spherical confinement was studied numerically. We calculated hydrodynamic
mobilities of a sphere, a prolate spheroid and an oblate spheroid parallel and transverse to
the particle-cavity line of centres. The mobilities show maximum in the cavity centre and
decay as the particle moves towards the no-slip wall. For prolate and oblate spheroids, their
mobilities are also affected by the angle between the particle’s axis of revolution and the
particle-cavity line of centres due to particle anisotropy. It was observed that the effect of
particle anisotropy becomes stronger as the confinement level increases. When the external
force on the particle is not parallel or transverse to the particle-cavity line of centres, a drift
velocity perpendicular to the force occurs because of the confinement-induced anisotropy
of the mobility in the cavity. The normalized drift velocity depends on the particle location,
size, shape and orientation of the non-spherical particle. We also studied the motion of a
non-neutrally buoyant particle under external forces in a rotating flow inside the cavity.
Cooperation between the external force, rotation-induced centrifugal or centripetal force
and the force from particle–wall interactions leads to multiple modes of particle motion.
A fundamental understanding of single-particle dynamics in this work forms the basis for
studying more complex particle dynamics in intracellular transport, and can guide particle
manipulation in microfluidic applications ranging from droplet-based microreactors to
microfluidic encapsulation.
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1. Introduction

Particulate transport in low-Reynolds-number fluids has broad applications in science
and engineering. In earth sciences the formation of sediments, sand dunes and raindrops
relies on the motion and agglomeration of fine particles and droplets from micro- to
macro-scales, where hydrodynamic forces play a vital role (Happel & Brenner 1965;
Kim & Karrila 1991). In biological transport the properties of cells and microstructures
in body fluids are closely related to their biological functions and human health (Zuk
et al. 2014; Ishimoto 2019; Smith, Montenegro-Johnson & Lopes 2019). In chemical
and mining engineering, the behaviour and characteristics of particulate suspensions can
determine flow properties of paint products and the separation of minerals (Cox & Mason
1971; Kim 1986). Confinement is ubiquitous in nature, and particle dynamics under
confinement is important in a variety of scenarios. For instance, lab-on-a-chip devices
are widely used to manipulate and sort particles, where particle–wall and particle–particle
interactions mediated by hydrodynamics are crucial to the performance of these devices
(Ye et al. 2014; Hamilton et al. 2018; Kabacaoğlu & Biros 2019). The migration,
collision and squeezing of biological cells and capsules under confinements are relevant
to cardiovascular diseases, filtration and drug delivery technologies (Leyrat-Maurin &
Barthes-Biesel 1994; Pranay et al. 2010; Lee, Long & Clarke 2016; Barakat & Shaqfeh
2018; Barakat et al. 2019). Past fundamental research has considered different types of
confinement, and many studies focused on particle motion near an infinite wall (Ekanayake
et al. 2020; Ekanayake, Berry & Harvie 2021), between two parallel walls (Staben,
Zinchenko & Davis 2003, 2006; Griggs, Zinchenko & Davis 2007; Swan & Brady 2010;
Pasol et al. 2011) and confined by a cylindrical wall (Shinohara & Hashimoto 1979;
Shinohara 1996; Al Quddus, Moussa & Bhattacharjee 2008; Vitoshkin et al. 2016),
to name a few, due to their importance in realistic applications (Happel & Brenner
1965). Recently, particulate transport in the low-Reynolds-number fluid under spherical
or more generally total confinement draws much attention, as it underpins biological
functions within living cells and droplet-based microfluidic encapsulation technologies
(Aponte-Rivera & Zia 2016; Skolnick 2016; Aponte-Rivera, Su & Zia 2018; Maheshwari
et al. 2019; Li et al. 2020; Gonzalez, Aponte-Rivera & Zia 2021; Chen & Jiang 2022). In
biological cells the macromolecules suspended in the cytoplasmic fluid are enclosed by
the cell membrane, and their confined diffusion and active motion can affect intracellular
activities such as translation, transcription, signaling, cellular homeostasis and metabolism
(Xiang et al. 2020; Khoo et al. 2022; Singh 2022). In droplet-based microreactors made
by microfluidic encapsulation techniques, confined dynamics of particles and reactants is
key to suspension stability and reaction rates (Shang, Cheng & Zhao 2017; Liu, Xiang &
Ni 2020; Kim et al. 2020).

Most prior experimental studies on particle dynamics and fluid flow under total
confinement have focused on biological cells. Cytoplasmic streaming in cells has been
suggested to enhance intracellular transport and regulate metabolism. By using magnetic
resonance velocimetry, cytoplasmic streaming velocities in single living cells were
measured with sufficient spatial resolution for the first time, and experimental results
were in quantitative agreement with theoretical analysis (van de Meent et al. 2010). To
probe motor-driven stochastic properties of the cytoplasm, force spectrum microscopy was
introduced to show that aggregate random forces substantially enhance motion of small
proteins and large organelles, and fluctuations are larger in malignant cells than benign
cells (Guo et al. 2014). As one of the most fundamental processes in cells, the diffusion
of macromolecules in the cytoplasm has been studied by different experimental methods
including single-particle tracking, fluorescence correlation spectroscopy and fluorescence
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Single-particle dynamics under spherical confinement

recovery after photobleaching. The diffusion coefficient of green fluorescent protein in
Escherichia coli was found to be about one-tenth of that at infinite dilution in water
(Elowitz et al. 1999; Konopka et al. 2006).

Simulation studies have been conducted over the past decades to elucidate
characteristics and mechanisms of dynamic processes confined in the cavity. By treating
the cytoplasm as a continuum fluid and solving the coupled equations of Stokes flow
and diffusion, it was shown that the cytoplasmic streaming in algal species can enhance
internal mixing and transient response to varying external conditions, but to an extent
that depends on the pitch of the helical flow (Goldstein, Tuval & van de Meent 2008).
In a more recent work a two-phase flow model was used to study the localization of
RNA/protein condensates (P granules) in germ cells, and numerical results showed that,
with cytoplasmic streaming, the condensation/dissolution of P granules in the cytoplasm
phase are regulated by the difference between saturation pressure and hydrodynamic
pressure (Wang & Hu 2017). To explore macromolecular diffusion, Brownian and
Stokesian dynamics simulations that treat macromolecules as particles in a viscous
fluid confined within a spherical cell were performed (Chow & Skolnick 2015). In the
simulations the particle volume fraction is 0.3 to mimic the crowded cytoplasm and the
cell membrane is modelled by closely spaced wall particles. Layering of particles was
observed near the wall due to steric interactions in the confined space, and confinement
leads to an overall slower diffusion. Near the wall, motions of nearby particles were found
to be strongly correlated and the correlations increase when hydrodynamic interactions are
included.

To accurately capture the many-body hydrodynamic interactions between concentrated
particles in the spherical cavity, a theoretical model that captures both the near- and
far-field physics for any number of spherical particles has been developed (Aponte-Rivera
& Zia 2016). The model has then been utilized to study the short- and long-time
diffusion of hydrodynamically interacting particles in the cavity for different particle
concentrations and particle-to-cavity size ratios (Aponte-Rivera et al. 2018). It was found
that the short-time diffusivity along the cavity radius is smaller than that tangential to
the cavity wall, because of the confinement-induced anisotropy in particle mobility and
spatial heterogeneity in particle concentration. At intermediate times, the mean square
displacement (MSD) is anisotropic, and exhibits sub- and super-diffusive behaviours that
depend on the particle-to-cavity size ratio and particle concentration. In the long-time limit
the MSD reaches a plateau, and the time to reach the plateau becomes longer as the particle
concentration becomes higher. Recently, the model has been extended to account for size
polydispersity, and then used to study the effect of polydispersity on particle diffusion
in the cavity (Gonzalez et al. 2021). It was shown that polydispersity makes large (small)
particles diffuse slower (faster) than in the monodisperse case, and weakens hydrodynamic
couplings to drive diffusivity down (up) when a large (small) particle moves further away
from the wall. Confinement and polydispersity were found to induce radial de-mixing into
size-segregated particles in the concentrated regime.

Single-particle dynamics in the low-Reynolds-number fluid under spherical confinement
is also important, as it lays the foundation to understand more complex dynamics in
concentrated suspensions. The Green’s function for a spherical particle in a spherical
cavity was first derived analytically (Oseen 1927). Later on, translation and rotation of
a single sphere under spherical confinement were solved by theoretical and numerical
calculations (O’Neill & Majumdar 1970a,b). The mobility matrix of a spherical particle
translating and rotating in a spherical cell was also evaluated from the Oseen tensor for the
cavity by the Lorentz scheme (Felderhof & Sellier 2012). Recently, the aforementioned

969 A15-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.572


G. Chen and X. Jiang

many-body model has been used to examine the effect of spherical confinement on the
self-motion of a spherical particle. It was shown that the particle mobility is largest at
the cavity centre and decays as the particle distance to the wall decreases. These results
agree quantitatively with prior analytical results (Aponte-Rivera & Zia 2016). In an earlier
experiment, three-dimensional dynamics of a spherical particle confined in a spherical
water globule was measured by optical microscopy (Cervantes-Martínez et al. 2011). The
short-time diffusion was shown to depend on the particle’s distance to the spherical wall,
and the short-time diffusivity along the tangential direction was found to be faster than
along the radial direction. The effects of slip at the particle surface and cavity wall on the
motion of a spherical particle in a spherical cavity were analysed via analytical methods
(Keh & Lee 2010; Faltas & Saad 2011; Lee & Keh 2013). Boundary element approaches
have also been used to calculate the motion of spherical and non-spherical particles in a
spherical cavity (Sellier 2008; Chen 2011).

Dynamics of non-spherical particles in unbounded and confined fluids also drew much
attention. Near a century ago, the orientation of a neutrally buoyant ellipsoid under the
shear flow was studied, and the phenomenon of Jeffery’s orbits was discovered that
the ellipsoidal axis moves in one of an infinite family of closed periodic orbits (Jeffery
1922). The Jeffery’s orbits were later extended to almost any body of revolution in any
unidirectional flow, and also in a Couette viscometer (Bretherton 1962). Considering
rotary Brownian motion, the probability distribution function for the orientation of
a neutrally buoyant axisymmetric particle in an unbounded shear flow was derived
theoretically, and was applied to determine rheological properties of the dilute suspension
(Hinch & Leal 1972; Leal & Hinch 1972). For two particles of arbitrary shape near
contact, lubrication approximation was developed to describe their motion in a linear flow
field and when they move relative to each other in an arbitrary fashion (Claeys & Brady
1989). The ellipsoid can also be used as a probe particle to drive the microstructure of
a colloidal dispersion out of equilibrium, from which microrheological properties of the
dispersion can be inferred (Khair & Brady 2008). The translational and rotational motion
of two arbitrarily oriented spheroids under the sedimentation force were determined by
the method of reflections (Kim 1985). Different from that in an unbounded fluid, a
rod or spheroidal bodies sedimenting near a vertical or inclined planar wall can exhibit
rotational motion; multiple modes of rotational motion were identified by experimental,
theoretical and numerical studies (Russel et al. 1977; Hsu & Ganatos 1989, 1994; Mitchell
& Spagnolie 2015).

Despite significant progress, there are still questions to be answered on the
single-particle dynamics in the spherical cavity. As the particle can be non-spherical in
many applications, a natural question is how the particle shape affects its hydrodynamic
mobility and dynamics inside the cavity. In most prior studies, the force acting on the
particle is along or transverse to the particle-cavity line of centres, however, less is known
on the particle motion when the applied force is not along these directions. Moreover, when
biological cells and droplet-based vesicles move in their surrounding fluids, they will most
likely exhibit both translational and rotational motions. The rotation of the spherical cavity
will result in a rotating flow therein (Sun 2021), and the question is how the rotating flow
affects the single-particle dynamics. Lastly, the particle can be non-neutrally buoyant, and
its dynamics in the rotating flow confined by the cavity remain to be explored. In this work,
by using numerical simulations, we study the dynamics of a sphere, a prolate spheroid and
an oblate spheroid under spherical confinement to address the above questions.

The overarching theme of this work is particle motion under external forces in a
low-Reynolds-number fluid. A quiescent fluid is considered first, where particle motion
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Figure 1. (a) Schematic of the simulation system for studying single-particle dynamics in a
low-Reynolds-number fluid confined by a spherical cavity. (b) Discretizations of the sphere, prolate
spheroid and oblate spheroid considered in this work. Aspect ratios of prolate and oblate spheroids are 2.0 and
0.5, respectively.

parallel and perpendicular to the direction of the external force are analysed. These
correspond to the mobility and drift problems, respectively. Based on understandings
obtained for the quiescent fluid, we then study particle dynamics in the rotating flow. Loci
where particle velocities are zero and particle trajectories are analysed to find different
modes of particle motion. For each case mentioned above, effects of particle size, shape
and orientation are investigated. For the rotating flow, we also consider the effect of the
centrifugal/centripetal force on particle motion. The remainder of this work is organized
as follows. Section 2 describes the simulation system and numerical method. Section 3
presents the main results and discussions, in which mobility, drift and particle dynamics
in the rotating flow are discussed in §§ 3.1, 3.2 and 3.3, respectively. The conclusion, key
take-home messages and notes on future work are given in § 4.

2. Method

We consider a rigid particle suspended in a low-Reynolds-number fluid, confined by
a spherical cavity of radius Rc. The schematic of the simulation system is shown in
figure 1(a). A sphere, a prolate spheroid and an oblate spheroid are considered in this work
to study the effect of particle anisotropy on its confined dynamics. Aspect ratios of prolate
and oblate spheroids are 2.0 and 0.5, respectively. It is assumed that the Reynolds number
(Re = ωR2

c/ν), Stokes number (Sk = ωR2
p/ν) and frequency number (NFr = R2

c/νt∗) are
much smaller than unity, where ω is the angular velocity of the cavity in rotating flow
simulations, ν is the kinematic viscosity of the fluid, Rp is characteristic size of the
particle and t∗ is the characteristic time imposed by external forcing (Pozrikidis 1992).
Under these conditions, inertial acceleration and convective forces are much smaller than
viscous forces, such that the full Navier–Stokes equations are reduced to the quasi-steady
Stokes equation (Lee & Ladd 2007). Effects due to the inertia of the fluid, for example, the
added mass effect and convective inertia, are ignored (Lavrenteva, Prakash & Nir 2016).
Neglecting Brownian motion, the balance equation for force and torque on the particles is

mp
dup

dt
+ 2mpω × up = F H + F W + F C + F ext, (2.1)

where mp is particle mass, up is particle velocity, t is time, F H is the hydrodynamic
force/torque vector, F W is the force/torque vector due to particle–wall interactions, F C

represents the centrifugal or centripetal force/torque that only applies on a non-neutrally
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buoyant particle in a rotating flow and F ext contains external forces/torques. In general,
F H implicitly contains the viscous contribution, fluid acceleration mf duf /dt and fluid
Coriolis force 2mf ω × uf , where mf = 4πρf R3

p/3 and ρf is fluid density (Maxey & Riley
1983; Michaelides 1997; Rallabandi 2021; Tsai 2022). As the flow is quasi-steady and
Re� 1, we neglect inertial terms in F H . Inertial terms on the left-hand side of (2.1) are of
order mpωu0, which can be further written as Sk(ρp/ρf )Fext. Here, u0 is particle velocity
under Fext in an unbounded fluid and ρp is particle density. As Sk � 1, inertial terms on
the left-hand side are much less than Fext if ρp is not much larger than ρf , which is usually
satisfied in common applications. Under the above conditions, FC and Fext can be of the
same order as (ρp − ρf )R3

pω
2Rc ∼ Fext, and (2.1) is simplified to

F H + F W + F C + F ext = 0. (2.2)

In our numerical method the particle surface is discretized into a set of N nodes. To
model the rigid particle and maintain particle shape, each node is connected with its
neighbouring nodes by elastic springs with a large spring stiffness. The nodes are also
connected with the particle centre-of-mass by stiff springs to avoid particle deformation
(Zhao et al. 2017). Between surface nodes, the spring stiffness is 250 (360) for a spherical
(ellipsoidal) particle; between the centre-of-mass and surface nodes, the spring stiffness
is 250 (200) for a spherical (ellipsoidal) particle. Several spring stiffnesses were tested to
check the sensitivity of forces on the spring stiffness. Between surface nodes, tested spring
stiffnesses were 250, 300 and 360; between the centre-of-mass and surface nodes, tested
spring stiffnesses were 150, 200 and 250. Results from test simulations show that the
forces on the rigid particle are insensitive to the chosen spring stiffness. Discretizations
of the particles considered in this work are shown in figure 1(b). Equation (2.2) is then
translated into the N surface nodes as

f H
i + f S

i + f W
i + f C

i + f ext
i = 0. (2.3)

Here, i = 1, 2, . . . , N, f H
i is the hydrodynamic force, f S

i is the spring force, f W
i is the

force from particle–wall interactions, f C
i is the centrifugal or centripetal force and f ext

i
includes external forces. The hydrodynamic force f H

i is computed implicitly in integrating
the equation of motion for all nodes, which will be shown later. The spring force acting on
the ith node by the jth node is

f S
ij = k

(|rij| − r0
) rij

|rij| , (2.4)

where k is the spring stiffness, r0 is the equilibrium spring length for each spring, rij =
ri − rj, and ri and rj are coordinates of the ith and jth nodes. The particle–wall interaction
is included only in rotating flow simulations, in order to confine the particle within the
cavity and prevent it from penetrating the wall. Here f W

i is the negative gradient of the
Lennard–Jones (LJ) potential, which is defined as

ULJ(d) = 4ε

[(σ

d

)12 −
(σ

d

)6
]

(2.5)

for d � 21/6σ , while f W
i is set to zero for d > 21/6σ . Here, d is the radial distance between

the surface node and the wall, σ = 0.89ā is set empirically such that each node has an
excluded volume of radius ā, and ε = kBT where kB is the Boltzmann constant and T is
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Single-particle dynamics under spherical confinement

the temperature (Li et al. 2020). In a rotating flow with angular velocity ω, the centrifugal
or centripetal force is

f C
i =

ρbV
N

ω × (ω × ri), (2.6)

where ρb = ρp − ρf is the buoyancy-corrected density and V is the particle volume. Here
f C

i is centrifugal (centripetal) when ρp > ρf (ρp < ρf ). The external force is distributed
on the nodes as f ext

i = F ext/N.
The equation of motion for all nodes on the particle surface is

dR = [U0 + M · F ] dt, (2.7)

where R = (r1, r2, . . . , rN) denotes a 3N vector containing nodal coordinates, U0 denotes
a 3N vector with the undisturbed (ambient) fluid velocity at nodal positions and M is
the 3N × 3N mobility tensor. Here U = (u1, u2, . . . , uN) = M · F contains 3N disturbed
velocities from the hydrodynamic interaction, and F = ( f 1, f 2, . . . , f N) is a 3N vector
including non-hydrodynamic forces on the surface nodes. The ambient and disturbed fields
are solved separately as discussed later, and the ambient field corresponds to the flow in
the absence of the particle. The translational and rotational motions of the rigid particle
are realized by integrating (2.7) for all surface nodes, satisfying the balance equation for
force and torque. The velocity field U driven by nodal forces F can be obtained by solving
the Stokes equation

−∇p+ μ∇2u = −f , ∇ · u = 0, (2.8a,b)

where p is the fluid pressure, μ is the dynamic viscosity of the fluid, u is the fluid
velocity and f (r) =∑N

i=1 f i(ri)δs(r − ri) is the force density exerting on the fluid. To
avoid singularity due to point forces placed at nodes on the particle surface, the smoothing
function δs(r) is used to regularize the point forces, and it takes the form of a modified
Gaussian function

δs(r) = ξ3
s

π3/2 exp(−ξ2
s |r|2)

[
5
2
− ξ2

s |r|2
]

. (2.9)

The regularization parameter ξs is related to the characteristic node spacing on the particle
surface h, i.e. ξs ∼ h−1. This is to ensure that the regularized force density is spread over
the length scale of associated surface elements on the particle, preventing the fluid from
penetrating the particle surface (Pranay et al. 2010; Zhang, de Pablo & Graham 2012; Li
et al. 2020).

Similar to Ewald methods for fast computation of long-range electrostatic interactions
(Hockney & Eastwood 1988), our method exploits the linearity of the Stokes equation to
split the force density in (2.8a,b) as

f (r) = f l(r)+ f g(r), (2.10)

where the local force density is

f l(r) =
N∑
i

[δs(r − ri)− g(r − ri)]f i(r), (2.11)

and the global force density is

f g(r) =
N∑
i

g(r − ri)f i(r). (2.12)
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The screening function g(r) satisfies
∫

all space g(r) dr = 1 and it should ensure that the
contribution from the local force density to the velocity field decays exponentially. It was
found that a modified Gaussian function of the type

g(r) = α3

π3/2 exp(−α2|r|2)
[

5
2
− α2|r|2

]
(2.13)

can result in an exponentially decaying local velocity field over a length scale of α−1,
where α is the screening parameter. The typical α chosen is 0.3, and the rationalization for
making this choice is that it can well-balance near-field and far-field computations of the
hydrodynamic interaction, such that simulations can be performed efficiently. The local
velocity field contributed from the local force density can be calculated by the Green’s
function approach as

ul(r) =
N∑
i

Gl(r − ri)f i, (2.14)

Gl(r) = 1
8πμ

[
I + rr
|r|2

] [
erf(ξs|r|)
|r| − erf(α|r|)

|r|
]

+ 1
8πμ

[
I − rr
|r|2

] [
2ξs√

π
exp(−ξ2

s |r|2)−
2α√
π

exp(−α2|r|2)
]

, (2.15)

where I is the identity matrix (Zhang et al. 2012; Zhao et al. 2017). As Gl decays
exponentially on a length scale of α−1, the local velocity field can be computed by only
considering near neighbours of each node. On the other hand, the global velocity field,
ug(r), which is contributed by the global force density f g(r), is calculated by solving the
following Stokes equations numerically,

−∇pg + μ∇2ug = −f g, ∇ · ug = 0. (2.16a,b)

The total fluid velocity ul + ug should satisfy proper boundary conditions of the
computational domain. As the no-slip boundary condition is used for computing disturbed
velocities M · F in (2.7), the fluid velocity at the cavity wall is ū(rw) = 0, where rw denotes
the position at the wall. As a result, the boundary condition for the global fluid velocity
is ug(rw) = −ul(rw). The global velocity field is solved by the finite element method, and
interpolation on the finite element grid is used to obtain values of the global velocity at
nodal positions on the particle surface. For the undisturbed fluid velocity in (2.7), we set
U0 = 0 for studying hydrodynamic mobility and drift motion of the particle in the cavity.
For particle dynamics in a rotating flow, U0 is calculated by solving the Stokes equation
(2.8a,b) with f = 0 and the boundary condition of ū(rw) = ω × rw.

The above numerical method has been validated for the sedimentation of a spherical
particle between two parallel walls (Li et al. 2020). The underlying general geometry
Ewald-like method has also been used to study collision and segregation behaviour of
fluid-filled elastic capsules in confined simple shear flows (Pranay et al. 2010; Kumar,
Henríquez Rivera & Graham 2014). In the remainder of this work we will first validate
the method against analytical solutions for hydrodynamic mobilities of a spherical particle
confined in the spherical cavity; we will then apply it to study single-particle dynamics of
a sphere, a prolate spheroid and an oblate spheroid in the cavity. For ellipsoidal particles,
when we compute mobilities and drift motion, the ellipsoidal orientation is assumed to be
fixed at different radial positions. Dimensionless variables are used in this study, and they
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Figure 2. Normalized (a) radial and (b) transverse mobilities of the spherical particle plotted against the scaled
radial position of the particle centre for four particle-to-cavity radii ratios. Solid lines are our numerical results,
circles are analytical solutions by Aponte-Rivera & Zia (2016), dashed black lines are solutions by Oseen
(1927), the dashed red line is the solution by Felderhof & Sellier (2012) and vertical dashed lines denote cutoff
positions for particle–wall interactions included only in rotating flow simulations.

are based on a set of characteristic scales. The characteristic length scale is ā, the energy
scale is kBT , the force scale is kBT/ā and the time scale is ā2ζ/(kBT), where ζ = 6πμā is
the friction coefficient according to Stokes’ law.

3. Results and discussion

3.1. Mobility
We first study particle motion along the direction of the external force in a quiescent fluid,
which corresponds to the mobility problem. Hydrodynamic mobility of the particle in the
cavity is determined by factors such as particle position, shape and particle-to-cavity radii
ratio (R/Rc). We first calculate radial and transverse mobilities of the sphere with different
R/Rc in the cavity. In this work the radial (transverse) mobility means the mobility along
(transverse to) the particle-cavity line of centres. The radial and transverse mobilities
normalized by those in an unbounded fluid (M̄r and M̄ t) are presented in figure 2. For
a certain R/Rc, we can see that the mobility is largest in the cavity centre and decays
as the particle moves towards the wall; the transverse mobility is larger than the radial
mobility at the same r/Rc when the particle is not at the cavity centre. As R/Rc increases,
the mobility decreases because the confinement level increases and the no-slip wall has
a greater influence on the particle motion. For various R/Rc, our numerical results agree
well with analytical solutions (Aponte-Rivera & Zia 2016) in most regions of the cavity.
The analytical solutions agree very well with results by O’Neill & Majumdar (1970a,b)
as shown by Aponte-Rivera & Zia (2016), so only results from Aponte-Rivera & Zia
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Figure 3. Normalized (a) radial and (b) transverse mobilities of prolate and oblate spheroids and the sphere
plotted against the scaled radial position of the particle centre. Here R in the normalization of the mobility is
the equivalent hydrodynamic radius of the unconfined spheroid. At different radial positions, the particle’s axis
of revolution remains parallel to the particle-cavity line of centres. For solid/dashed lines, all particles have the
same particle-to-cavity volumes ratio (V/Vc).

(2016) are included. We also plot results by Oseen (1927) and Felderhof & Sellier (2012)
for R/Rc = 0.2. They are smaller than those by Aponte-Rivera & Zia (2016) and our
simulation in most regions; the accuracy for Felderhof & Sellier (2012) becomes better
near the wall. For R/Rc < 0.2, these theories agree fairly well, thus, only results by
Aponte-Rivera & Zia (2016) are shown. When the particle is very close to the wall,
the difference between numerical and analytical results increases as the particle–wall
distance decreases. For radial mobility, values of r/Rc when the relative error becomes
larger than 5 % are 0.76, 0.82, 0.87 and 0.94, respectively, which correspond to R/Rc of
0.2, 0.15, 0.1 and 0.05; for transverse mobility, r/Rc are 0.67, 0.76, 0.87 and 0.91. This
error is caused by the usage of the regularized Green’s function along with the boundary
condition for ug to ensure M = MT , required by the self-adjointness of the Stokes equation,
at the cost of violating the no-slip boundary condition for nodal points within ∼ ξ−1

s
from the wall (Hernández-Ortiz, de Pablo & Graham 2007). Methods that could remedy
the inaccuracy to ensure that the no-slip boundary condition is simultaneously obeyed
along with the self-adjointness of the Stokes equation include, but not limited to, (i) using
rapidly decaying regularization functions near the wall to reduce the regularization error
(Nguyen & Cortez 2014; Zhao, Lauga & Koens 2019); (ii) adopting the nearest-neighbour
discretization algorithm to optimize particle surface discretization (Gallagher, Choudhuri
& Smith 2019). In rotating flow simulations that will be discussed later, a purely repulsive
particle–wall interaction is applied when the particle is within a cutoff distance from the
wall. The cutoff positions for different R/Rc are marked out in figure 2. The repulsive
interaction can confine the particle to be within the cavity, and also prevent it from
accessing locations where the simulated dynamics would otherwise be inaccurate.

For non-spherical particles, we compute normalized radial and transverse mobilities of
prolate and oblate spheroids at different radial positions in the cavity. In these calculations
the particle’s axis of revolution remains parallel to the particle-cavity line of centres.
The radial (transverse) mobility is normalized by that parallel (transverse) to the axis of
revolution in the unbounded fluid. As shown in figure 3, mobilities of prolate and oblate
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spheroids share the same general trend as those of the sphere: they are largest in the cavity
centre and decay as particles move closer to the wall. To compare mobilities between
spherical and non-spherical particles, we consider the scenario in which all particles have
the same volume. The reason for this choice is that, if a deformable particle is considered,
the particle shape changes during movement while its volume usually remains constant,
and it is worthwhile to study how the change in shape affects particle mobility in the cavity.
Figure 3(a) shows that, under different particle-to-cavity volume ratios (V/Vc), the prolate
spheroid has the largest radial mobility at any r/Rc considered in this work. Near the wall,
the oblate spheroid’s radial mobility decreases more slowly with increasing radial position
and is larger than that of the sphere. This indicates that the distance between the wall
and the particle’s wall-facing surface is important for the near-wall radial mobility. As the
oblate spheroid’s wall-facing surface is further away from the wall compared with those
of others, the effect of the hydrodynamic interaction between the oblate spheroid and the
wall on the particle’s radial motion is weaker (see Appendix A). Figure 3(b) shows that,
under different V/Vc, the oblate (prolate) spheroid has the largest (smallest) transverse
mobility at any r/Rc studied here. This result is different from that for the radial mobility
(figure 3a), due to the effect of particle anisotropy. Near the wall, the prolate spheroid’s
transverse mobility decreases more rapidly with increasing radial position. This means
that the near-wall transverse mobility is also affected by the distance between the wall
and the particle’s wall-facing surface. As the prolate spheroid’s wall-facing surface is
closer to the wall, the effect of hydrodynamic interaction between the wall and the prolate
spheroid on the particle’s transverse motion is stronger (see Appendix A). When V/Vc
is increased from 0.00235 to 0.008, for the radial (transverse) mobility, the difference
between mobilities of the oblate (prolate) spheroid and the sphere becomes larger. It can
be inferred that, increasing the confinement level has a greater influence on oblate (prolate)
spheroid’s radial (transverse) mobility. This is because, when moving parallel (transverse)
to the axis of revolution, the oblate (prolate) spheroid’s equivalent hydrodynamic radius
is largest, and the confinement effect on the particle with a larger hydrodynamic radius is
greater (Happel & Brenner 1965).

Mobilities of non-spherical particles in the cavity are also related to particle orientation.
Here, we study how the angle (θ ) between the particle’s axis of revolution and the
particle-cavity line of centres affects radial and transverse mobilities (Mr, M t1 and M t2)
of prolate and oblate spheroids. Here M t1 is the transverse mobility that pertains to the
plane formed by the particle-to-cavity line of centres and the particle’s axis of revolution;
M t2 is the transverse mobility perpendicular to this plane. For the spherical particle,
due to the symmetry of the system, M t1 = M t2, and hence, only one transverse mobility
is discussed; for ellipsoids, M t1 = M t2 only if θ is 0 or π/2. Figures 4(a), 4(c) and
4(e) show that, for 0 < θ < π/2, the prolate spheroid’s radial (transverse) mobility at
a certain r/Rc decreases (increases) as θ increases; for π/2 < θ < π, the trend is the
opposite. Figures 4(b), 4(d) and 4( f ) show that, for 0 < θ < π/2, the oblate spheroid’s
radial (transverse) mobility at a certain r/Rc increases (decreases) as θ increases; for
π/2 < θ < π, the trend is the opposite. Thus, if the magnitude of the external force is
constant, the prolate (oblate) spheroid moves fastest when the force is parallel (transverse)
to its axis of revolution, which agrees with the results for prolate and oblate spheroids
in an unbounded fluid (Happel & Brenner 1965; Kim 1985; Khair & Brady 2008). From
a physical perspective, when moving parallel (transverse) to the axis of revolution, the
prolate (oblate) spheroid’s disturbance on the fluid is smallest, and hence, the equivalent
hydrodynamic radius and resistance of the prolate (oblate) spheroid is smallest (Happel &
Brenner 1965). As shown in figures 4(a) and 4(b), near the cavity centre, the rate of change
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Figure 4. Radial and transverse mobilities of (a,c,e) prolate and (b,d, f ) oblate spheroids for different θ plotted
against the scaled radial position of the particle centre. Insets in (a,b,e, f ) show enlarged views of the results
when the particle is near the wall. The ratio of the half-length of the particle’s axis of revolution to the cavity
radius is 0.1.

969 A15-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.572


Single-particle dynamics under spherical confinement

0.40

0.38

0.36

0.26

0.24

0.22

0.20

0.18

0.34
M

0.32

0.30

0 1/6π 1/3π 1/2π 2/3π 5/6π π 0 1/6π 1/3π 1/2π 2/3π 5/6π π

θ θ

Mr (num)

Mt1 (num)

Mt2 (num)

Equation (3.2)

Equation (3.1)

(a) (b)

Figure 5. (a) Prolate and (b) oblate spheroids’ radial and transverse mobilities at r/Rc = 0.5 plotted against
θ . The ratio of the half-length of the particle’s axis of revolution to the cavity radius is 0.1.

of Mr with r/Rc is nearly independent of θ ; near the wall, the rate of change decreases
(increases) as θ changes from 0 (π/2) to π/2 (π). For M t1, shown in figures 4(c) and 4(d),
its rate of change with r/Rc has very weak dependence on θ in the entire cavity. For M t2,
shown in figures 4(e) and 4( f ), it is nearly independent of θ in the interior of the cavity; the
dependence of M t2 and its rate of change with r/Rc on θ becomes stronger as the ellipsoids
move closer to the wall. The above observations on the variation of mobilities with θ are
caused by the effect of particle anisotropy and confinement. At an arbitrary position, we
find that the relationship between the prolate/oblate spheroid’s mobilities (Mr and M t1)
and θ can be fitted by sinusoidal functions as

M1(r, θ) = 1
2

{∣∣∣M1(r, 0)− M1

(
r,

π

2

)∣∣∣ sin
(

2θ + π

2

)
+ M1(r, 0)+ M1

(
r,

π

2

)}
, (3.1)

M2(r, θ) = 1
2

{∣∣∣M2(r, 0)− M2

(
r,

π

2

)∣∣∣ sin
(

2θ − π

2

)
+ M2(r, 0)+ M2

(
r,

π

2

)}
, (3.2)

where M1(r, θ) and M2(r, θ) are radial (transverse) and transverse (radial) mobilities of
the prolate (oblate) spheroid with angle θ at radial position r. In figures 5(a) and 5(b)
we plot mobilities as a function of θ when r/Rc = 0.5, and it is shown that numerical
results agree well with those given by (3.1) and (3.2). We note that M t2 does not show
a sinusoidal relationship with θ because it is perpendicular to the plane formed by the
particle-to-cavity line of centres and the particle’s axis of revolution. The dependence of
all mobility components on orientation is symmetric about θ = π/2, and this symmetry
corresponds to the equivalence of particle orientations for θ and π− θ . In figures 4 and 5
the scale for the mobility is 1/6πμā, and the unit of the mobility depends on units of the
fluid viscosity and the characteristic length chosen for the system in a particular problem.

The reason for why the orthogonal components Mr and M t1 can be weighted by
a sinusoidal function is as follows. Due to the linearity of the Stokes equation,
the spheroid’s radial (transverse) velocity under the radial (transverse) force F ext

is the linear superposition of radial (transverse) velocities caused by forces along
(F a) and perpendicular to (F p) the spheroid’s axis of revolution. Here, F a and
F p are decompositions of F ext. When F ext is in the radial (transverse) direction,
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Fa = Fext cos θ (Fa = Fext sin θ ) and Fp = Fext sin θ (Fp = Fext cos θ ). Dividing the total
radial (transverse) velocity by Fext, we obtain the mobility in which these trigonometric
functions remain. Hence, the orthogonal components of the mobility and θ are related
by trigonometric functions. Furthermore, due to the geometric symmetry of the spherical
cavity and spheroid, the radial (transverse) mobility of the prolate spheroid is maximal
(minimal) when θ is 0 and π; the radial (transverse) mobility is minimal (maximal) when
θ is π/2. The trend is the opposite for the oblate spheroid. Based on the above analysis
and observations, the orthogonal components can be weighted by a sinusoidal function.

For ellipsoid-wall hydrodynamic interactions to be reasonably represented, the expected
r/Rc are computed based on the fact that the no-slip boundary condition is satisfied for
nodal points from the cavity centre to ∼ ξ−1

s = 1.67 from the wall. In figure 3, when
V/Vc is 0.00235 (0.008), the expected r/Rc are 0.68 (0.57) and 0.80 (0.76) for prolate
and oblate spheroids, respectively. In figure 4, when θ = 0, the expected r/Rc is 0.79 for
both spheroids; when θ = π/2, the expected r/Rc are 0.84 and 0.69 for prolate and oblate
spheroids, respectively. Considering errors near the wall, our observations and discussions
on ellipsoidal mobility still hold.

3.2. Drift
We next consider particle motion perpendicular to the direction of the external force in a
quiescent fluid, which corresponds to the drift motion. A particle can drift perpendicular to
the external force near confining walls, due to the anisotropy of the mobility tensor induced
by the hydrodynamic interaction between the particle and confining walls (Ganatos,
Weinbaum & Pfeffer 1982). In the work of Ganatos et al. (1982), the trajectory of a sphere
settling under gravity in an inclined channel was studied using strong-interaction theory.
In the absence of the walls, the sphere would fall vertically. In horizontal and vertical
channels the sphere would also fall vertically. At other inclined angles, the sphere would
exhibit both vertical and lateral drift motion. The lateral drift results from the non-isotropy
of the fluid resistance tensor.

Here, we study the drift of a single particle confined in the spherical cavity. It is assumed
without loss of generality that the particle is on the x–y plane (z = 0), which is a symmetry
plane of the spherical cavity, and the external force is along positive the y direction. We first
examine the drift of the spherical particle. By relating particle velocity and the external
force through the mobility, the spherical particle’s main velocity (Um) along the y direction
and the drift velocity (Ud) along the x direction at any position on the x–y plane in the
cavity are

Um(r, β) =
[
Mr(r) sin2 β + M t(r) cos2 β

]
Fext, (3.3)

Ud(r, β) = 1
2 [Mr(r)− M t(r)] sin(2β)Fext, (3.4)

where r and β are polar coordinates of the particle centre in the symmetry plane and Fext

is the magnitude of the external force. The above equations indicate that, for a certain
particle-to-cavity radii ratio, the drift velocity normalized by the main velocity (Ud/Um)
does not depend on the external force, but rather depends on particle position and mobility.
From (3.4), we can see that the drift occurs when Mr(r) /=M t(r) and sin(2α) /= 0.
Figure 6(a) shows a two-dimensional distribution of Ud on the x–y plane in the cavity for
the spherical particle with R/Rc = 0.1. It is found that Ud is symmetric about the origin,
and it is zero when the particle is on the x or y axis. Figure 6(b) shows the normalized
drift velocity of the spherical particle with different R/Rc as a function of y/Rc when

969 A15-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.572


Single-particle dynamics under spherical confinement

15

10

5

0

–5

–10

–15
–15 –10 –5 0 5 10 15

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

–0.05

0

0 0.2 0.4 0.6 0.8 1.0

y

x

U
d

/U
m

y/Rc

0.20

0.15

0.10

0.05

–0.05

–0.10

–0.15

–0.20

0

R/Rc = 0.0333
R/Rc = 0.0667
R/Rc = 0.1
R/Rc = 0.133
R/Rc = 0.167
R/Rc = 0.2

(a) (b)

Figure 6. (a) Two-dimensional distribution of the spherical particle’s drift velocity on the x–y plane in the
cavity. (b) Normalized drift velocity (Ud/Um) of the spherical particle with different R/Rc plotted against the
scaled particle position in the y direction when x = −Rc/2. Here Ud and Um are drift and main velocities,
respectively.

x = −Rc/2. We can see that, as R/Rc increases, Ud/Um at a certain position generally
increases. This is mainly because mobilities decrease as the confinement level increases,
making the denominator Um smaller. Near the cavity centre, Ud/Um increases as y/Rc
increases because radial mobility decreases more rapidly than transverse mobility does
and |Mr(r)− M t(r)| increases; very close to the wall, Ud/Um decreases as y/Rc increases
because transverse mobility decreases more rapidly and |Mr(r)− M t(r)| decreases. Here
Ud/Um reaches maximum when decreasing rates of the radial and transverse mobilities
with particle position are equal.

For the non-spherical particle, we choose the prolate spheroid to illustrate how particle
position and angle θ affect the drift motion. The prolate spheroid’s centre is varied along
the radial direction, and θ is varied from 0 to 11π/12 with an interval of π/12 at each
position. For every configuration, external forces along positive radial and transverse
directions are applied, respectively. Here, the positive radial direction points from the
cavity centre to the wall; the positive transverse direction, being perpendicular to the
radial direction, points counterclockwise in the symmetry plane formed by the cavity
centre and the axis of revolution of the prolate spheroid. We compute normalized drift
velocities in different cases, and results are presented in figure 7. Figures 7(a) and 7(b)
show that, when θ is 0 or π/2, the drift velocity is zero. When θ takes other values
and the principle axes of the prolate spheroid do not align with the particle-cavity line
of centres, particle anisotropy breaks the symmetry of the system configuration and the
particle–wall hydrodynamic interaction, causing the drift motion to occur. The particle
drifts along the transverse (radial) direction when the external force is along the radial
(transverse) direction. For θ < π/2 (θ > π/2), the drift velocity is positive (negative).
As θ increases, |Ud/Um| increases when 0 < θ < π/4 and π/2 < θ < 3π/4; the trend is
the opposite when π/4 < θ < π/2 and 3π/4 < θ < π. Here |Ud/Um| reaches maximum
when θ = π/4 and 3π/4. When the external force is in the radial direction, the rate
of change of Ud/Um with θ is weakly dependent on r/Rc near the cavity centre; the
dependency becomes stronger near the wall. When the external force is in the transverse
direction, the rate of change of Ud/Um with θ is nearly independent of r/Rc in the entire
cavity.
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Figure 7. Normalized drift velocity (Ud/Um) of the prolate spheroid along the (a) transverse and (b) radial
directions plotted against the scaled radial position of the particle centre; Ud/Um along the (c) transverse and
(d) radial directions plotted against θ . In (c,d) results from the simulation and (3.5) are for r/Rc = 0.5. The
external force is along the positive (a,c) radial and (b,d) transverse direction, respectively. The ratio of the
half-length of the prolate spheroid’s axis of revolution to the cavity radius is 0.1.

In figures 7(c) and 7(d) we plot the normalized drift velocity along the transverse and
radial directions as a function of θ when r/Rc = 0.5. It is found that the normalized
drift velocity and θ show a sinusoidal relationship. We define Ū = Ud/Um and it can
be expressed as

Ū(r, θ) = 1
2

[
Ū

(
r,

π

4

)
− Ū

(
r,

3π

4

)]
sin(2θ), (3.5)

which holds for drift motion in either the radial or transverse direction at any radial
position. Numerical results in figures 7(c) and 7(d) agree well with those given by
(3.5). Drift velocities of the prolate spheroid in an unbounded fluid are also calculated
analytically (Happel & Brenner 1965; Kim 1985). Comparing results at the same θ , we
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Single-particle dynamics under spherical confinement

can see that the absolute magnitude of drift velocity inside the cavity is higher than that in
an unbounded fluid, indicating that the confinement enhances drift motion of the spheroid.
Lastly, similar to the case in figure 6, we place the prolate spheroid’s centre in the x–y
plane (z = 0) and apply an external force in the y direction on the particle. The prolate
spheroid’s main velocity along the y direction and the drift velocity along the x direction
at any position can be, on the basis of (3.3) and (3.4), computed by

Um(r, β, θ) =
{

Mr(r, θ) sin2 β + M t(r, θ) cos2 β

+1
2

[
M t(r, θ)Ūr(r, θ)+ Mr(r, θ)Ūt(r, θ)

]
sin(2β)

}
Fext, (3.6)

Ud(r, β, θ) =
{

1
2 [Mr(r, θ)− M t(r, θ)] sin(2β)

+M t(r, θ)Ūr(r, θ) cos2 β − Mr(r, θ)Ūt(r, θ) sin2 β
}

Fext, (3.7)

where Ūr(r, θ) and Ūt(r, θ) are the normalized drift velocity in the radial and transverse
directions given by (3.5). From (3.6) and (3.7), we can see that, when β and θ are not 0 or
π/2, the main velocity along the y direction of the non-spherical particle is also affected
by the drift motion, which is not observed for the spherical particle.

3.3. Rotating flow
In previous sections we have discussed particle motion under external forces in a quiescent
low-Reynolds-number fluid confined by the spherical cavity, which forms the basis for
studying more complex behaviour. In many applications, droplets and cells can exhibit
both translational and rotational motion. The rotational motion can induce a rotating
flow in the cavity, leading to more complex particle dynamics. To study how the rotating
flow affects single-particle dynamics in the cavity, we consider the spherical cavity that
rotates about the the x axis with angular velocity ω. External forces acting on the particle
include a rotation-induced centrifugal or centripetal force, depending on the sign of the
buoyancy-corrected density, and a constant external force.

3.3.1. Loci for zero particle velocities
The reason for calculating loci for zero radial and tangential velocities is to determine
the stagnation point for the particle motion where the two loci intersect. Prior work by
Lee & Ladd (2007) is related to this calculation, where loci for the point particle in a
rotating low-Reynolds-number fluid are determined. In this work we consider finite-size
particles confined in the spherical cavity to explore effects of particle size, shape and
confinement on the loci and stagnation points. If particle–wall hydrodynamic interaction
is not considered, velocities of a spherical particle in the cavity can be expressed as

Ur = (Fc − Fext sin β)ζ−1
p , (3.8)

Ut = ωr − (Fext cos β)ζ−1
p , (3.9)

where Ur and Ut denote the radial and tangential velocity of the particle, respectively, F ext

is in the negative z direction and ζp = 6πμR is the friction coefficient of the particle.
Here, positive values of Ur and Fc mean that the direction of radial velocity is from
the origin to the wall and the force is centrifugal; positive values of Ut and ω mean the
tangential velocity of the particle and angular velocity of the cavity are counterclockwise.
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Figure 8. (a) Lines for Ur = 0 (dashed) and Ut = 0 (solid) under different R/Rc. (b) Lines for Ut = 0 in
planes parallel to the y–z plane at different x for the spherical particle with R/Rc = 0.05. Here F ext is in the
negative z direction.

If particle–wall hydrodynamic interaction is considered and the particle centre is in the
y–z plane at x = 0, velocities of the spherical particle are

Ur = M̄r(r)(Fc − Fext sin β)ζ−1
p , (3.10)

Ut = ωr − [M̄ t(r)Fext cos β]ζ−1
p . (3.11)

Solving for Ur = 0 and Ut = 0 (Lee & Ladd 2007), we obtain two loci Cr and Ct. It is
found that the two loci always intersect in the cavity regardless of non-zero parameters (ω,
ρb, V and Fext) in (3.10) and (3.11), while the stagnation point’s location depends on these
parameters. We note that there is only one stagnation point (not the cavity centre).

We first study how the confinement level R/Rc affects Cr and Ct, and results are shown in
figure 8. Radial positions in the figure are scaled by the maximal radial position determined
from (3.8) and (3.9). Parameters used in the computations are Fext = −10, ρbV = 1 and
ω = 1. We can see that Cr remains the same for different R/Rc, and it is independent of the
confinement-induced mobility heterogeneity and the confinement level. On the contrary,
Ct shrinks notably as R/Rc increases, and the stagnation point becomes closer to the cavity
centre. This indicates that the confinement level is important for determining locations
where the particle’s tangential velocity is zero, which in turn affects the stagnation point’s
location and particle motion in the rotating flow. It is also observed that Ct is a circle in
the unbounded case; however, for other R/Rc, Ct is not exactly circular, which is due to the
mobility heterogeneity induced by the confining wall of the cavity.

When the spherical particle’s centre is in other planes parallel to the y–z plane at x = 0,
its in-plane mobility at the same y and z positions in the cavity varies as the x position
changes, resulting in different Ct on each plane. Figure 8(b) shows Ct in these planes at
different x positions. It is observed that the difference between neighbouring Ct is more
pronounced for 0.4 < x/Rc < 0.8667 than that for x/Rc < 0.4. This is because, when the
particle is closer to the wall, the confinement effect becomes more significant and the
mobility varies more notably. As x increases, Ct shrinks and the stagnation point becomes
closer to the x axis.

For the non-spherical particle whose centre is in the y–z plane at x = 0, Cr is the same
as that for the spherical particle, if the centrifugal or centripetal force and external force
remain the same. This is because Cr is independent of the mobility. However, Ct for the
non-spherical particle is different from that for the spherical particle, even if the forces
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Figure 9. Regions (transparent purple) where Ut can be zero for (a) prolate and (b) oblate spheroids. The
ratio of the half-length of the particle’s axis of revolution to cavity radius is 0.2. Here F ext is in the negative z
direction.

are the same, because Ct depends on the mobility and mobilities between spherical and
non-spherical particles are different as shown in previous sections. To calculate Ct for
the non-spherical particle, one needs to consider particle orientation as it also affects the
mobility and, hence, Ct. At a certain position, the non-spherical particle’s orientation can
vary in the rotating flow, so we use maximal and minimal transverse mobilities at the
position to determine a region where Ut can be zero as shown in figure 9. We can see that
the area enclosed by Cmin

t (minimal transverse mobility used) is smaller than that by Cmax
t

(maximal transverse mobility used). Hence, the stagnation point for the non-spherical
particle also depends on particle orientation.

Depending on the sign of ρb, the stagnation point can be stable (ρb < 0) or metastable
(ρb > 0). For both ρb < 0 and ρb > 0, if the particle is at the stagnation point, it will
stay there unless new external forces perturb its motion. When ρb > 0, if the particle
position deviates from the stagnation point by a small amount, the particle will gradually
move away from this point. When ρb < 0, no matter how far the particle is away from the
stagnation point, it will gradually move closer to and eventually arrive at the point. Details
of the two modes of motion will be discussed in the following subsections.

3.3.2. Motion of the spherical particle
We further study trajectories of the spherical particle released at three different positions
in the y–z plane at x = 0 in the spherical cavity, and results are shown in figure 10. Here,
the particle-to-cavity radii ratio is 0.05, Fext = −10 (F ext is in the negative z direction),
|ρbV| = 0.357 and ω = 1. In Appendix B, we plot the temporal evolution of various
force contributions along a typical trajectory, and validate the approximation of neglecting
inertial terms on the left-hand-side of equation (2.1). When Fc is centrifugal (figure 10a),
particles released at different positions eventually evolve into the same stable orbit, moving
counterclockwise along it periodically. Part of the stable orbit is along the cavity wall and
particle velocity in this part is relatively small because the particle moves against Fext; the
rest of the stable orbit is in the interior of the cavity and the particle velocity is higher
as directions of particle motion and Fext are the same. In this case, Ct does not intersect
with the wall and there are no stagnation points at the wall. When the initial position is
very close to the stagnation point (blue dots in figure 10a), the particle initially rotates
very slowly around the stagnation point and then moves faster and faster until it collides
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Figure 10. (a) Trajectories of spherical particles released at three positions r0 = (0,−7.5, 0), r0 = (0, 9, 4.3)

and r0 = (0, 5, 7) under the centrifugal force. (b) Trajectories of spherical particles released at three positions
r0 = (0,−7.5, 0), r0 = (0, 5, 0) and r0 = (0, 0, 0) under the centripetal force. Here F ext is in the negative z
direction.
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Figure 11. Projection of particle trajectories in the (a) x–y plane and (b) x–z plane under the centrifugal
force. The spherical particle’s initial positions are r0 = (10,−7.5, 0), r0 = (10, 4, 2.5) and r0 = (10, 5, 0),
respectively. We denote by← motion in the negative x direction. Here F ext is in the negative z direction.

with the wall (see supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.
572). When Fc is centripetal (figure 10b), particles released at different positions finally
focus at the stagnation point where Cr and Ct intersects (see supplementary movie 2). We
also analysed particle trajectories under the centrifugal force when initial positions are not
in the y–z plane at x = 0. The particle is released at three different positions in the plane
at x = 10 parallel to the y–z plane. As shown in figure 11, after a certain amount of time,
trajectories in all cases exhibit the same pattern and become almost the same. For initial
positions at (10, 4, 2.5) and (10, 5, 0), the time for trajectories to converge is shorter, as
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Figure 12. Projection of particle trajectories in the (a,c,e,g) x–y and (b,d, f,h) y–z planes for the spherical
particle with R/Rc = 0.05. The red circle is the initial particle position r0 = (10, 6, 0). (a–d) Centrifugal and
(e–h) centripetal forces are considered, respectively. External forces in the x direction are (a,b,e, f ) Fx = −1
and (c,d,g,h) Fx = −5, respectively; the external force in the z direction is Fz = −10. Here F x and F z are in
the negative x and z directions. We denote by← motion in the negative x direction.

the two positions are relatively close to each other. For the initial position at (10,−7.5, 0),
the time for its trajectory to become nearly the same as the others is longer. After being
released, the particle moves within the plane at x = 10. When it attaches to the wall, the
repulsive force from the wall pushes the particle towards the y–z plane at x = 0, and its
x position decreases. However, when the particle detaches the wall (see figure 10a), its x
position stops changing and the particle rotates in the plane determined by the location
where the particle detaches from the wall (see supplementary movie 3). Thereafter, the
particle attaches and detaches from the wall in a similar manner periodically until it
reaches the y–z plane at x = 0. Differences between trajectories after they exhibit the same
pattern and marginal motion in the positive x direction before the particle attaches to the
wall are observed, which could be caused by the drift motion discussed in the previous
section.

We further study trajectories of the spherical particle in the rotating flow when the
external force contains both x and z components (Fx and Fz). Here, the particle can
cross planes parallel to the y–z plane in the interior of the cavity, leading to different
particle dynamics compared with those discussed in the previous paragraph. Figure 12
shows projection of particle trajectories in the x–y and y–z planes under centrifugal and
centripetal forces. We consider Fx = −1 and Fx = −5, respectively; Fz = −10 is the same
as Fext used in rotating flow simulations mentioned earlier. Here F x and F z are in the
negative x and z directions, respectively. Figure 12(a) shows that, when Fc is centrifugal
and Fx = −1, the particle initially migrates towards the negative x direction. For x > 0,
the magnitude of the particle velocity when the particle attaches to the wall is larger than
that when the particle detaches from the wall. This is because, when x > 0 and the particle
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attaches to the wall, the x component of the force due to particle–wall interactions and Fx
are in the same direction and the magnitude of the total force is larger. For x < 0, the
x component of the force due to particle–wall interactions is in the positive x direction
and is larger than |Fx|, so the particle migrates towards the positive x direction when it
attaches to the wall; when the particle detaches from the wall, it migrates again in the
negative x direction under the action of Fx. Eventually, the particle moves back and forth
along the x and y directions periodically in a stable orbit (see supplementary movie 4),
because Fx alternates in sign and the rotating flow causes alternating particle motion
along the y direction. In the y–z plane as shown in figure 12(b), initially the region
that the particle trajectory spans becomes wider, because the particle moves closer to
the y–z plane; the region then shrinks as the particle moves away from the y–z plane.
When Fx = −5 and Fc remains centrifugal, the particle initially migrates faster towards
the negative x direction because |Fx| becomes larger; the particle eventually stays at a
stagnation point near the wall (see figure 12c,d), where the centrifugal force, external
force and the force due to particle–wall interactions balance each other (see supplementary
movie 5). Figures 12(e)–12(h) show that, under the centripetal force, the particle migrates
in the negative x direction, and eventually stays at a stagnation point regardless of the
magnitude of Fx. As |Fx| increases, the stagnation point moves further towards the
negative x direction, because stronger force in the positive x direction due to particle–wall
interactions is needed to balance Fx. It is also found that, the overall pattern of particle
trajectories under the centripetal force is similar to that under the centrifugal force shown
in figures 12(c) and 12(d). The above results indicate that the interplay between the external
force, centrifugal or centripetal force and the force from particle–wall interactions can give
rise to complex particle dynamics in the rotating flow confined by the spherical cavity.

3.3.3. Motion of ellipsoidal particles
For the spherical particle, the centrifugal or centripetal force does not induce a torque
on the particle because the particle is symmetric about the plane where its centre moves.
However, for the non-spherical particle, when it is not symmetric about the plane where its
centre moves, the centrifugal or centripetal force can induce a torque on it. We note that,
as the external force is assumed to be uniformly distributed on the particle, the direction
and magnitude of f ext

i are the same for all surface nodes. Consequently, the external force
does not induce a torque on the particle.

To calculate the torque due to centrifugal/centripetal force, two Cartesian coordinate
systems are used: one is the normal o-xyz coordinate system and the other one is fixed on
the particle (o′-x′y′z′) as shown in figure 1(a). For any point in the particle, the coordinate
transformation is ⎡

⎣x
y
z

⎤
⎦ = A

⎡
⎣x′

y′
z′

⎤
⎦+

⎡
⎣x0

y0
z0

⎤
⎦ , (3.12)

where (x0, y0, z0) is the coordinate of the particle centre in the o-xyz coordinate system,
and the matrix A is

A =
⎡
⎣cos a1 cos b1 cos c1

cos a2 cos b2 cos c2
cos a3 cos b3 cos c3

⎤
⎦ , (3.13)

where a1, a2 and a3 are angles between the x′ axis and the x, y and z axes; b1, b2 and b3
are angles between the y′ axis and the x, y and z axes; c1, c2 and c3 are angles between
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Single-particle dynamics under spherical confinement

the z′ axis and the x, y and z axes. As the cavity rotates about the x axis, the centrifugal or
centripetal force on an infinitesimal volume in the particle is

dF c = ρbω
2

⎡
⎣ 0

x′ cos a2 + y′ cos b2 + z′ cos c2 + y0
x′ cos a3 + y′ cos b3 + z′ cos c3 + z0

⎤
⎦ dV. (3.14)

By volume integration, the torque on the particle is

Tc =
∫

V
s× dF c, (3.15)

where s is the vector from the infinitesimal volume to the particle centre

s = A

⎡
⎣x′

y′
z′

⎤
⎦ . (3.16)

Performing the integration in (3.15), we obtain the torque as

Tc = 4π

15
ρbω

2abc

⎡
⎣ 0
−a2 cos a1 cos a3 − b2 cos b1 cos b3 − c2 cos c1 cos c3
a2 cos a1 cos a2 + b2 cos b1 cos b2 + c2 cos c1 cos c2

⎤
⎦ , (3.17)

where a, b and c are half-lengths of three principal axes of the ellipsoidal particle in the
x′, y′ and z′ directions, respectively. It can be seen from (3.17) that, under certain ρb and ω,
the torque depends on geometric properties of the ellipsoidal particle, such as the lengths
of the principal axes and orientation. We note that the torque does not depend on particle
location, which is only true for the torque due to centrifugal/centripetal force, but not for
other general torques on the particle.

Lastly, we study how the torque affects orientations of prolate and oblate spheroids. The
particle centre is initially at r0 = (0, 9.3, 4), and F ext is in the negative z direction. Under
the centrifugal force, temporal evolutions of angles between the x′ axis and the x, y and z
axes (a1, a2 and a3) are analysed for different initial particle orientations. Results for the
prolate spheroid are presented in figure 13(a–d), and results for the oblate spheroid are
given in figures 13(e) and 13( f ). Figures 13(a) and 13(d) show that the angle a1 remains
almost constant during particle motion. This is because, in these two cases, the particle is
symmetric about the y–z plane and Tc is zero. For figure 13(a), the x′ axis is perpendicular
to the y and z axes; for figure 13(d), the x′ axis is perpendicular to the x axis and it rotates
as the particle moves with the flow, resulting in periodic variations of a2 and a3. From
figures 13(b) and 13(c), we can see that, when the initial particle orientation deviates from
that in figure 13(a), a1 increases for a certain amount of time and then decreases sharply
(see supplementary movie 6). The increase of a1 is due to Tc, while the decrease of a1 is
due to a particle–wall collision. The above results indicate that, for the prolate spheroid,
particle orientation in figure 13(a) is in a metastable state, while a1 = π/2 (figure 13d
and supplementary movie 7) is in a stable state. If a1 deviates from 0 (even by a small
amount), it will keep rising towards π/2 unless the particle collides with the wall. For the
oblate spheroid, when the initial particle orientation is the same as that in figures 13(a)
or 13(d), temporal evolutions of the angles are almost the same as those of the prolate
spheroid, because the oblate spheroid is also symmetric about the y–z plane. However,
when the initial particle orientation is the same as that in figures 13(b) or 13(c), temporal
evolutions of the angles are different from those of the prolate spheroid (see supplementary
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Figure 13. Angles between the x′ axes of (a–d) prolate and (e, f ) oblate spheroids and x, y and z axes plotted
against time under the centrifugal force. Initial particle orientations are (a) a1 = 0, a2 = a3 = π/2; (b,e) a1 =
π/6, a2 = π/2, a3 = 2π/3; (c, f ) a1 = π/3, a2 = π/2, a3 = 5π/6 and (d) a1 = a2 = π/2, a3 = π. The ratio
of the half-length of the prolate (oblate) spheroid’s axis of revolution to the cavity radius is 0.0794 (0.0315).
Here F ext is in the negative z direction.

movie 8). In the beginning, a1 remains nearly constant and then decreases under the action
of Tc. At t = 0.2, a1 increases sharply to π/2 due to particle–wall collisions. During
particle motion along the wall, a1 remains as π/2, because the particle–wall interaction
dominates and prevents Tc changing a1. When the particle detaches from the wall, Tc
becomes dominant again, so a1 increases and the x′ axis tends to be parallel to the x axis.
We find that, for the oblate spheroid, a1 = 0 and a1 = π/2 are in stable and metastable
states, respectively. They are different from those for the prolate spheroid, because torques
for prolate and oblate spheroids considered here are opposite in sign. For both prolate
and oblate spheroids, in their stable orbits, as they move in the interior of the cavity
and along the wall alternatively and periodically, the torque and particle–wall collision
compete against each other, leading to nonlinear variations of particle orientation.

Due to the repulsive force and the entropic barrier near the wall, there exists a region
very close to the wall that is inaccessible to the particles (Sunol & Zia 2023). If the
particles are allowed to access this region, we expect that particle motion under the
centrifugal force will be quantitatively different, but qualitative behaviour will remain
unchanged. Quantitatively, particle motion along the wall will be faster without the
repulsive force. This is because the mobility in this region is lower, and particle velocity
due to the external force, which in our cases counteracts particle motion due to the rotating
flow, becomes smaller. As a result, the timing of collisions with the wall and the duration
for particles being attached to the wall will change. There will also exist minor changes in
locations where the particles attach/detach from the wall. As these locations only change
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Figure 14. Angles between the x′ axes of (a,b) prolate and (c,d) oblate spheroids and x, y and z axes plotted
against time under the centripetal force. Initial particle orientations are (a,c) a1 = π/6, a2 = π/2, a3 = 2π/3
and (b,d) a1 = π/3, a2 = π/2, a3 = 5π/6. The ratio of the half-length of the prolate (oblate) spheroid’s axis
of revolution to the cavity radius is 0.0794 (0.0315). The vertical dotted line denotes the time when the distance
between the particle centre and the stagnation point is 0.1. Here F ext is in the negative z direction.

marginally, the spheroid’s orientation and repulsive force at the point of collision will
remain almost the same, leading to the same qualitative behaviour.

Under the centripetal force, motion of the non-spherical particle is different from that
under the centrifugal force. Figure 14 shows temporal evolutions of angles a1, a2 and a3
under the centripetal force for different initial particle orientations. In the parameter space
of this work, there is no particle–wall collision in the centripetal case and the wall does not
affect particle orientation. For the prolate spheroid (figure 14a,b), under the action of Tc,
a1 gradually decreases to 0; a2 and a3 oscillates around π/2 and the oscillation amplitude
gradually decreases to 0 (see supplementary movie 9). We find that a1 = 0 (a1 = π/2)
is in a stable (metastable) state for the prolate spheroid under the centripetal force. For
the oblate spheroid (figure 14c,d), a2 and a3 also oscillate around π/2, but the oscillation
amplitude gradually increases to π (see supplementary movie 10). The overall trend for
a1 is increasing towards π/2, while a1 also oscillates under the action of Tc. Stable and
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metastable states for the oblate spheroid under the centripetal force are found to be π/2 and
0, respectively, which are opposite to those for the prolate spheroid because Tc for prolate
and oblate spheroids are opposite in sign. It is also found that stable and metastable states
for the orientation of the same ellipsoidal particle under the centripetal force are opposite
to those under the centrifugal force, because Tc under centrifugal and centripetal forces
are opposite in sign.

The above results share similar features with classical results for an ellipsoid in an
unbounded fluid or near a flat wall, while there are also differences between them. When
the ellipsoid is away from the cavity wall, its motion at stable and metastable states
are similar to the tumbling and log-rolling motion in Jeffery’s and Bretherton’s orbits
(Jeffery 1922; Bretherton 1962). Deviation from the normal tumbling motion occurs
when the ellipsoid attaches and moves along the wall, due to the repulsive force from
the confining wall. If the ellipsoid is neutrally buoyant as considered in the classical
works, the centrifugal/centripetal force and the resulting torque will be zero, such that
orientation dynamics and the stable/metastable state caused by the rotation-induced torque
will not exist. Different from results for the neutrally buoyant ellipsoid subjected to
rotary Brownian motion in steady shear flow (Hinch & Leal 1972; Leal & Hinch 1972),
ellipsoidal orientations in this work do not have a probability distribution because we
neglect Brownian motion. The stable and metastable states in this work are similar to
those for a prolate or oblate probe translating at an angle θ to its symmetry axis through
a colloidal dispersion (Khair & Brady 2008), although the underlying mechanisms are
different. For the non-spherical probe, an external torque would apply on it when θ is not
0 or π/2; θ = 0 and θ = π/2 are both steady modes of translation, while θ = 0 (θ = π/2)
is a metastable (stable) equilibrium. Prior experimental, theoretical and numerical studies
show that a flat wall can induce rotation of axisymmetric non-spherical particles, which
is due to particle–wall hydrodynamic interactions (Russel et al. 1977; Hsu & Ganatos
1989, 1994; Mitchell & Spagnolie 2015). Different modes of rotation, such as glancing
and reversing, were identified and found to be dependent on the initial particle orientation
and position and the inclined angle of the flat wall. In our case, however, particle rotation
is mainly caused by the rotating flow, the torque due to centrifugal/centripetal force and
the short-range repulsive force from the wall, while the rotation induced by particle–wall
hydrodynamic interactions plays a minor role.

4. Conclusion

In this work we studied dynamics of a single particle under external forces
in the low-Reynolds-number fluid under spherical confinement. We calculated
hydrodynamic mobilities of a spherical particle at different radial positions under various
particle-to-cavity radii ratios, and validated our numerical results against theoretical
solutions. For non-spherical particles, mobilities of prolate and oblate spheroids under
different particle-to-cavity size ratios and particle orientations were computed. Results
show that mobilities of all particles share the same general trend: they are largest in
the cavity centre and decay as particles move closer to the wall. For particles with
the same volume, it was found that relative magnitudes of mobilities at the same
position are different for radial and transverse directions, which is caused by particle
anisotropy of non-spherical particles. The effect of particle anisotropy becomes stronger
as the confinement level increases. Orientation of the non-spherical particle also affects
mobilities. We found that the relationship between mobilities in the plane formed by the
particle’s axis of revolution and particle-cavity line of centres and particle orientation
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(θ ) can be described by sinusoidal functions. At a certain position, radial mobility of the
prolate (oblate) spheroid is largest (smallest) when θ = 0, and the trend for transverse
mobility is the opposite. These results highlight the importance of particle anisotropy and
confinement on mobilities of non-spherical particles.

When the external force is not in the radial or transverse direction, a drift motion
perpendicular to the external force was observed. The drift is caused by the anisotropy
of the mobility tensor. For the spherical particle, when the confinement level increases,
the magnitude of the normalized drift velocity increases. In the interior of the cavity, the
magnitude of the normalized drift velocity increases as the radial position increases; very
close to the wall, the trend is the opposite. The nonlinear variation of the normalized drift
velocity with the radial position is due to the competition between the rates of change of
the radial and transverse mobilities with the radial position. For the non-spherical particle,
we found that the relationship between drift velocity and the angle θ can also be described
by sinusoidal functions. By comparing to drift velocities in an unbounded fluid, it was
found that the non-spherical particle’s drift motion is enhanced by the confining wall.

A common scenario in applications is that cells or capsules rotate in their surrounding
fluid, which can lead to a rotating flow in the cavity. We simulated the rotating flow with
a constant angular velocity in the cavity, and analysed particle motion therein. Depending
on the sign of the buoyancy-corrected density, the particle can exhibit centrifugal or
centripetal motion. Considering the external force and centrifugal (centripetal) force, we
determined two lines (Cr and Ct) on which radial and transverse velocities of the spherical
particle are zero. It was found that particle mobilities affect Ct but do not affect Cr. For
the non-spherical particle, as its orientation usually varies in the rotating flow, we used its
maximal and minimal mobilities at a certain position to determine a region, instead of a
line, where its tangential velocity can be zero.

Particle trajectories in the rotating flow were also analysed. Under the centrifugal force,
if Ct does not intersect with the wall, the particle that is not initially at the stagnation point
will evolve into a stable orbit. In the stable orbit the particle undergoes cyclic motion,
moving in the interior of the cavity (detaching from the wall) and along the wall (attaching
to the wall) alternatively. Under the centripetal force, if Cr and Ct intersect in the cavity,
the particle eventually arrives and stays at the stagnation point. For initial particle positions
that are not in the symmetry plane (y–z plane) perpendicular to the rotation axis (x axis), we
found that, during cyclic motion under the centrifugal force, the particle–wall interaction
makes the particle migrate towards the symmetry plane. When an additional force along
the rotation axis is applied on the spherical particle, the particle migrates across planes
parallel to the y–z plane, and eventually moves into a stable orbit or stays at a stagnation
point, depending on the interplay between external force, centrifugal or centripetal force
and the force due to particle–wall interactions.

For the non-spherical particle, the centrifugal or centripetal force induces a torque if the
particle is asymmetric about the y–z plane. An analytical expression for the torque on the
ellipsoidal particle was derived. The torque can change particle orientation during particle
motion, and we have identified stable and metastable states for orientations of prolate and
oblate spheroids. Stable and metastable states under the centrifugal force were found to be
opposite to those under the centripetal force, because the torques are opposite in sign.

To summarize, we list key take-home messages below.

(i) Under the same volume, differently shaped particles exhibit different mobilities. The
effect of shape becomes more pronounced when the confinement level is increased.
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(ii) For ellipsoids, mobility components in the plane formed by the particle-to-cavity
line of centres and the particle’s axis of revolution is a sinusoidal function of particle
orientation; the component perpendicular to this plane does not show a sinusoidal
relationship with orientation.

(iii) Drift velocity depends on particle shape, position and the confinement level. For
ellipsoids, the drift velocity is a sinusoidal function of particle orientation.

(iv) In the rotating flow, loci for zero radial (tangential) velocity are independent
(dependent) of the confinement effect.

(v) The buoyancy-corrected density plays a key role on modes of translational motion
of the particle. Centrifugal and centripetal forces can lead to distinct particle
behaviours.

(vi) The rotating flow can induce a torque on ellipsoids, which could change ellipsoidal
orientation during particle motion.

(vii) There exists different stable and metastable states for the orientations of prolate and
oblate spheroids. These states depend on particle shape and rotation-induced torque.

Results from this work on the single-particle dynamics in the spherical cavity form the
basis for studying more complex dynamics of spherical and non-spherical particles under
total confinements. Transport phenomena and mechanisms revealed here can be useful
for understanding intracellular transport and improving microfluidic applications such as
encapsulation technologies and droplet-based microreactors.

In future work multiple particle coupling and confined crowded dynamics can be
treated using the same numerical method in this work. Accuracy for the particle–wall
hydrodynamic interaction near the wall and the particle–particle hydrodynamic interaction
when particles are close to each other could be improved by reducing regularization
error through rapidly decaying regularization functions or optimizing particle surface
discretization through the nearest-neighbour discretization algorithm. Phenomena
observed in this work such as rotation-induced torque and the stable/metastable state for
spheroids could also be observed in more complex systems such as confined crowded
suspensions. As there is a coupling of rotation and translation for ellipsoidal particles due
to the particle–wall hydrodynamic interaction even in the absence of external rotations,
this coupling in the presence of the spherical confinement could also be explored. Future
studies may also consider a drop or a vesicle in an ambient shearing flow, for instance,
an ambient extensional flow. There will be internal recirculations within the drop with
the recirculation cells conforming to a four-fold symmetry. If external forces on the
particle are the same as those in this study, under the centrifugal force, the particle may
undergo rotation within the recirculation cells. If the angular velocity associated with the
circulation and, hence, the centrifugal force is large enough, the particle may move across
different recirculation cells. Under the centripetal force, the particle may eventually stay at
the stagnation point in one of the recirculation cells.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.572.
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Figure 15. Normalized (a) radial and (b) transverse mobilities of prolate and oblate spheroids and the sphere
plotted against the scaled nearest distance between the particle’s wall-facing surface and the wall. Here R in the
normalization of the mobility is the equivalent hydrodynamic radius of the unconfined spheroid. At different
distances, the particle’s axis of revolution remains parallel to the particle-cavity line of centres. For solid/dashed
lines, all particles have the same particle-to-cavity volumes ratio (V/Vc).

Appendix A

We also compare mobilities of differently shaped particles with the same V/Vc at
equivalent surface-to-surface distances, and results are presented in figure 15. The
surface-to-surface distance is defined as the nearest distance between the particle’s
wall-facing surface and the wall. The scaled surface-to-surface distance is 1− (r + a)/Rc,
where a is the half-length of the particle’s axis of revolution. As shown in figure 15,
near the wall, the prolate (oblate) spheroid has the largest (smallest) mobility at the same
surface-to-surface distance. This is because the average distance between the particle’s
wall-facing surface and the wall is largest (smallest) for the prolate (oblate) spheroid, and
the influence of the no-slip wall on the prolate (oblate) spheroid is smallest (greatest) when
the particle is close to the wall. Near the cavity centre, the prolate (oblate) spheroid has
the largest radial (transverse) mobility, which agrees with the result in an unbounded fluid.
This is due to the fact that, as the surface-to-surface distance increases, the influence of
the no-slip wall becomes weaker.

Appendix B

To validate the approximation of neglecting inertial terms in (2.1), we plot the temporal
evolution of various force contributions along a typical trajectory of a spherical particle
in the rotating flow enclosed by the spherical cavity. In this case, the particle-to-cavity
radii ratio is 0.05, Fext = −10, (ρf − ρp)V = 0.357 and ω = 1. Under the quasi-steady
assumption, the time scale for particle acceleration is much smaller than that of the
time step in our simulations, i.e. the particle reaches the steady state instantaneously at
the beginning of every time step, so the first inertial term (particle acceleration) on the
left-hand side of (2.1) is ignored and not plotted here. As shown in figure 16, the absolute
magnitude of the particle Coriolis force is much smaller than those of F C and F ext, so the
second inertial term on the left-hand side of (2.1) is ignored in this study.
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Figure 16. Temporal evolution of force contributions on the particle along the trajectory of a spherical
particle in the rotating flow enclosed by the spherical cavity.
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