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Abstract

In this paper, we show that Leavitt path algebras of weighted graphs and Leavitt path algebras of separated
graphs are intimately related. We prove that any Leavitt path algebra L(E,ω) of a row-finite vertex
weighted graph (E,ω) is ∗-isomorphic to the lower Leavitt path algebra of a certain bipartite separated
graph (E(ω), C(ω)). For a general locally finite weighted graph (E,ω), we show that a certain quotient
L1(E,ω) of L(E,ω) is ∗-isomorphic to an upper Leavitt path algebra of another bipartite separated graph
(E(w)1, C(w)1). We furthermore introduce the algebra Lab(E, w), which is a universal tame ∗-algebra
generated by a set of partial isometries. We draw some consequences of our results for the structure
of ideals of L(E,ω), and we study in detail two different maximal ideals of the Leavitt algebra L(m, n).
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1. Introduction

A weighted graph is a pair (E,ω) consisting of a directed graph E = (E0, E1, r, s) and
a weight function ω : E1 → N, where N is the set of positive integers. Leavitt path
algebras of weighted graphs were introduced in [13] to obtain a graph theoretical
model of Leavitt algebras L(m, n) for arbitrary values 1 ≤ m ≤ n. Recall that Leavitt
algebras were introduced by Leavitt in [14], who showed that the (Leavitt) type of
L(m, n) is (m, n − m). Some years later, Bergman reported in [9] the precise structure
of the monoid V(L(m, n)) of isomorphism classes of finitely generated projective
L(m, n)-modules. Recently, an interesting connection between the K-theory of Leavitt
path algebras of weighted graphs and the theory of abelian sandpile models has been
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FIGURE 1. Separated graph (E(2, 3), C(2, 3)).

developed in [2]. We refer the reader to [16] for an excellent survey on Leavitt path
algebras of weighted graphs.

The algebras L(m, n) were also described by the author and Goodearl in [6] as full
corners of the Leavitt path algebras of the separated graphs (E(m, n), C(m, n)), and this
was one of the key motivations to introduce this new type of algebras. Recall that a
separated graph [6] is a pair (E, C) consisting of a directed graph E and a partition C of
the set of edges of E that refines the natural partition induced by the source function.

For all integers 1 ≤ m ≤ n, define the separated graph (E(m, n), C(m, n)) as follows:

(1) E(m, n)0 := {v, w};
(2) E(m, n)1 := {e1, . . . , en, f1, . . . , fm} (n + m distinct edges);
(3) s(ei) = s( fj) = v and r(ei) = r( fj) = w for all i, j;
(4) C(m, n) = C(m, n)v := {X, Y}, where X = {e1, . . . , en} and Y = { f1, . . . , fm}.

By [6, Proposition 2.12], we have an isomorphism between L(m, n) and the corner
algebra wL(E(m, n), C(m, n))w, and hence L(m, n) is isomorphic to a full corner of the
Leavitt path algebra of the separated graph (E(m, n), C(m, n)). Since a full corner eRe
of a ring R is Morita-equivalent to R, the rings eRe and R share many properties. For
instance, they have the same module theory and the same lattice of (two-sided) ideals.

Observe that the graph E(m, n) is a bipartite graph, that is, there is a partition of the
set of vertices E0 = E0,0 � E0,1 such that s(E1) ⊆ E0,0 and r(E1) ⊆ E0,1. As in Figure 1,
we represent a bipartite separated graph (E, C) by a diagram in which we draw the
vertices in E0,0 in the upper level and the vertices in E0,1 in the lower level of the
diagram. According to this representation, we introduce in this paper the notions of
the upper Leavitt path algebra LV(E, C) and the lower Leavitt path algebra LW(E, C)
of a bipartite separated graph (see Section 2 for the precise definitions). Under the mild
hypothesis that s(E1) = E0,0 and r(E1) = E0,1, it follows readily from the definitions
that the upper and the lower Leavitt path algebras of a bipartite finitely separated graph
(E, C) are Morita-equivalent to the full Leavitt path algebra L(E, C). It turns out that,
in many examples, the significant algebra to consider is an upper or a lower Leavitt
path algebra of a bipartite separated graph, see [4, Section 9].
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The purpose of this paper is to show that Leavitt path algebras of weighted graphs
and Leavitt path algebras of separated graphs are intimately related. A vertex weighted
graph is a weighted graph (E,ω) such thatω(e) = ω( f ) for every pair of edges e, f such
that s(e) = s( f ). We show in Section 2 that any Leavitt path algebra of a row-finite
vertex weighted graph (E,ω) is ∗-isomorphic to the lower Leavitt path algebra of
a certain bipartite separated graph (E(ω), C(ω)). For a general row-finite weighted
graph, we cannot construct a bipartite separated graph satisfying the property above,
but we show in Section 3 that a certain quotient ∗-algebra L1(E, w) of L(E, w) is
∗-isomorphic to an upper Leavitt path algebra of another bipartite separated graph
(E(w)1, C(w)1). We furthermore introduce in Section 4 the algebra Lab(E, w), called the
abelianized Leavitt path algebra of (E,ω), for any locally finite weighted graph (E, w),
and we show that it is ∗-isomorphic to a full corner of the ∗-algebra Lab(E(w)1, C(w)1)
introduced in [4]. These abelianized algebras have a strong dynamical behaviour,
being the crossed products of certain partial actions on totally disconnected Hausdorff
topological spaces. Finally, we draw in Section 5 some consequences of our results
for the structure of ideals of L(E,ω), shedding light on the second Open Problem in
[16, Section 12]. We illustrate our results by studying the ideals of the Leavitt algebras
L(m, n). In particular, two specific examples of maximal ideals of L(m, n) are described.

2. Bipartite separated graphs and weighted graphs

We start with the definition of a separated graph. Concerning directed graphs, we
follow the conventions and notation in [1]. In particular, we use the following definition
of a path. Let E = (E0, E1, r, s) be a directed graph. Then a trivial path (or path of
length 0) is just a vertex in E and a nontrivial path is a sequence e1e2 · · · en of edges
in E such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. The extended (or double) graph of
E, denoted by Ê, is the graph obtained from E by adding a new edge e∗ for each edge
e ∈ E1, with r(e∗) = s(e) and s(e∗) = r(e).

A row-finite graph is a graph E such that |s−1(v)| < ∞ for all v ∈ E0. The set E0
reg

of regular vertices of a row-finite graph is the set of vertices v such that s−1(v) � ∅.
A locally finite graph is a graph E such that both s−1(v) and r−1(v) are finite, for all
v ∈ E0.

DEFINITION 2.1 ([6, Definition 2.1] and [4, Definition 4.1]). A separated graph is a
pair (E, C), where E is a (directed) graph and C =

⋃
v∈E0 Cv, in which Cv is a partition

of s−1(v) into pairwise disjoint nonempty subsets for each vertex v. If all the sets in C
are finite, we say that (E, C) is a finitely separated graph. This is automatically true
when E is row-finite.

A bipartite separated graph is a separated graph (E, C) such that E0 = E0,0 � E0,1,
and s(e) ∈ E0,0, r(e) ∈ E0,1 for each e ∈ E1.

Note that our notation concerning ranges and sources of edges is the same as that
from [1, 6, 13, 16], but it is distinct from the one used in [4, 7] and other sources.

https://doi.org/10.1017/S1446788722000155 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000155


4 P. Ara [4]

We can now define Leavitt path algebras of separated graphs, following [6].
We consider through the paper algebras and ∗-algebras over an arbitrary but fixed
coefficient field K, endowed with an involution ∗. Note that our definitions usually
refer to presentations of ∗-algebras in the category of ∗-algebras.

DEFINITION 2.2. The Leavitt path algebra of a separated graph (E, C) with coeffi-
cients in K is the *-algebra L(E, C) with generators {v, e | v ∈ E0, e ∈ E1}, subject to
the following relations:

(V) vv′ = δv,v′v and v = v∗ for all v, v′ ∈ E0;
(E) s(e)e = e = er(e) for all e ∈ E1;
(SCK1) e∗ f = δe, f r(e) for all e, f ∈ X, X ∈ C and
(SCK2) v =

∑
e∈X ee∗ for every finite set X ∈ Cv, v ∈ E0.

Note that the path algebra PK(Ê) of the extended graph Ê of E, endowed with its
canonical involution, is precisely the ∗-algebra defined by relations (V) and (E), so that
L(E, C) is the quotient of PK(Ê) by the ∗-ideal corresponding to the relations (SCK1)
and (SCK2).

We need the normal form of elements of L(E, C), which was obtained in [6].

DEFINITION 2.3. For two nontrivial paths μ, ν ∈ Path(E) with s(μ) = s(ν) = v, we say
that μ and ν are C-separated if the initial edges of μ and ν belong to different sets
X, Y ∈ Cv.

DEFINITION 2.4. For each finite X ∈ C, we select an edge eX ∈ X. Let μ, ν ∈ Path(E)
be two paths such that r(μ) = r(ν), and let e and f be the terminal edges of μ and ν,
respectively. The path μν∗ is said to be reduced if (e, f ) � (eX , eX) for every finite
X ∈ C. In the case where either μ or ν has length zero, then μν∗ is automatically
reduced.

THEOREM 2.5 [6, Corollary 2.8]. Let (E, C) be a separated graph. Then the set of
elements of the form

μ1ν
∗
1μ2ν

∗
2 · · · μnν

∗
n, μi, νi ∈ Path(E),

such that νi and μi+1 are C-separated paths for all i ∈ {1, . . . , n − 1} and μiν
∗
i is

reduced for all i ∈ {1, . . . , n}, forms a linear basis of L(E, C). We call μ1ν1 · · · μnν
∗
n

a C-separated reduced path.

For each edge e of a separated graph (E, C), we denote by Xe the unique element of
C such that e ∈ Xe.

We are now ready for our definitions of the upper and lower path algebras of a
bipartite separated graph. We first introduce these algebras using a presentation, and
we show below in Proposition 2.8 that these are precisely the corner algebras of L(E, C)
corresponding to the upper and lower subsets E0,0 and E0,1 of E0.

DEFINITION 2.6. Let (E, C) be a row-finite bipartite separated graph with s(E1) =
E0,0, r(E1) = E0,1. Let LV(E, C) be the universal ∗-algebra with generators PV � T ,
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where PV = {pv}v∈E0,0 and T = {τ(e, f )}{e, f∈E1 |r(e)=r( f )}, and subject to the relations:

(V’) pv pv′ = δv,v′ pv and p∗v = pv for all v, v′ ∈ E0,0;
(T) τ(e, f )∗ = τ( f , e);
(E’) τ(e, f ) · ps( f ) = ps(e) · τ(e, f ) = τ(e, f );
(SCK1’) τ(e, f ) · τ(g, h) = δ f ,gτ(e, h) for f , g ∈ E1 belonging to the same set Y ∈ C;
(SCK2’) pv =

∑
e∈Y τ(e, e) for all v ∈ E0,0 and all Y ∈ Cv.

DEFINITION 2.7. Let (E, C) be a row-finite bipartite separated graph with s(E1) = E0,0,
r(E1) = E0,1. Let LW(E, C) be the universal ∗-algebra with generators PW � R, where
PW = {pw}w∈E0,1 and R = {ρ(e, f )}{e, f∈E1 |s(e)=s( f ) and Xe�X f }, and subject to the relations:

(V”) pw pw′ = δw,w′ pw and p∗w = pw for all w, w′ ∈ E0,1;
(R) ρ(e, f )∗ = ρ( f , e);
(E”) ρ(e, f ) · pr( f ) = pr(e) · ρ(e, f ) = ρ(e, f );
(SCK1”) Suppose that e, h ∈ E1 with v := s(e) = s(h) and X ∈ Cv with X � Xe and

X � Xh. Then: ∑
f∈X

ρ(e, f ) · ρ( f , h) =

⎧⎪⎪⎨⎪⎪⎩δe,h pr(e) if Xe = Xh

ρ(e, h) if Xe � Xh.

We make use of the multiplier algebra M(A) of an algebra A, see for instance [8]
and [10, Ch. 7], as a convenient way of defining our algebras. Note that M(A) = A if A
is unital.

Let (E, C) be a row-finite bipartite separated graph such that s(E1) = E0,0 and
r(E1) = E0,1. Let V =

∑
v∈E0,0 v ∈ M(L(E, C)) and W =

∑
w∈E0,1 w ∈ M(L(E, C)). Since

the finite sums of vertices give a family of local units of L(E, C), one can easily show
that V and W exist in M(L(E, C)) and that V +W = 1. It follows readily that VL(E, C)V
is linearly spanned by all the paths μ in Ê such that s(μ) ∈ E0,0 and r(μ) ∈ E0,0.
A similar description holds for LW(E, C).

PROPOSITION 2.8. We have natural ∗-isomorphisms ϕV : LV(E, C)→ VL(E, C)V and
ϕW : LW(E, C)→ WL(E, C)W such that

ϕV (pv) = v, ϕV (τ(e, f )) = e f ∗, ϕW(pw) = w, ϕW( ρ(e, f )) = e∗ f .

PROOF. We only show the isomorphism LW(E, C) � WL(E, C)W. The other isomor-
phism is proved in the same way.

One can easily see that the assignments ϕW(pw) = w and ϕW( ρ(e, f )) = e∗ f give a
well-defined ∗-algebra homomorphism

ϕW : LW(E, C)→ WL(E, C)W.

Clearly ϕW is surjective. To show that ϕW is injective, we observe that using the
defining relations of LW(E, C), we can write each element of LW(E, C) as a linear
combination of terms of the form

ρ(e1, f1)ρ(e2, f2) · · · ρ(en, fn)
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such that s(ei) = s( fi), Xei � X fi for i = 1, . . . , n, r( fi) = r(ei+1) and fie∗i+1 is reduced for
i = 1, . . . , n − 1.

Now suppose that α is a nonzero element of LW(E, C) and that α =
∑
λiαi, where

λi ∈ K \ {0} and αi are pairwise distinct terms as described in the above paragraph.
Then ϕW(α) =

∑
λiϕW(αi) and ϕW(αi) are pairwise distinct C-separated reduced paths

in L(E, C). Since these elements are linearly independent in L(E, C), we conclude that
ϕW(α) � 0. �

In view of Proposition 2.8, we identify the algebras LV(E, C) and VL(E, C)V , and
also the algebras LW(E, C) and WL(E, C)W.

We recall now the definitions of weighted graph and of Leavitt path algebra of a
weighted graph, following [16].

An isolated vertex of a graph E is a vertex v such that s−1(v) = r−1(v) = ∅. To avoid
trivialities, we restrict attention to graphs with no isolated vertices.

DEFINITION 2.9. A weighted graph is a pair (E,ω), where E is a row-finite graph
with no isolated vertices, and ω : E1 → N is a map. For each v ∈ E0

reg, set ω(v) :=
max{ω(e) : e ∈ s−1(v)} and set ω(v) = 0 if v is a sink. We say that (E,ω) is a vertex
weighted graph if w(e) = w(v) for all e ∈ s−1(v).

DEFINITION 2.10. Let (E,ω) be a weighted graph and K a field. Then we define the
weighted Leavitt path algebra of (E,ω) to be the ∗-algebra L(E,ω) with generating set
{v, ei, | v ∈ E0, e ∈ E1, 1 ≤ i ≤ ω(e)} subject to the relations:

(1) uv = δu,v and v = v∗ for all u, v ∈ E0;
(2) s(e)ei = ei = eir(e), where e ∈ E1, 1 ≤ i ≤ ω(e);
(3)

∑
e∈s−1(v) eie∗j = δijv, where v ∈ E0

reg, 1 ≤ i, j ≤ ω(v);
(4)

∑
1≤i≤ω(v) e∗i fi = δe, f r(e), where v ∈ E0

reg and e, f ∈ s−1(v).

In relations (3) and (4), we set ei and e∗i zero whenever i > ω(e).

Now we consider a vertex weighted graph (E,ω) and we build a bipartite separated
graph (E(ω), C(ω)) such that L(E,ω) � LW(E(ω), C(ω)).

DEFINITION 2.11. Let (E,ω) be a vertex weighted graph. Define a bipartite separated
graph (E(ω), C(ω)) as follows. Let V0 and V1 be two copies of E0, with bijections
E0 → Vi given by v �→ vi, for i = 0, 1. Set E(ω)0,0 = {v0 | v ∈ E0

reg}, E(ω)0,1 = V1 and
E(ω)0 = E(ω)0,0 � E(ω)0,1. For each e ∈ E1, we define an edge ẽ ∈ E(ω)1 such that
s(ẽ) = s(e)0 and r(ẽ) = r(e)1. We set Xv = {ẽ | e ∈ s−1(v)} for v ∈ E0

reg. In addition,
we define another set of edges Yv = {h(v, i) : 1 ≤ i ≤ ω(v)} for each v ∈ E0

reg, where
s(h(v, i)) = v0 and r(h(v, i)) = v1 for all v ∈ E0

reg and all 1 ≤ i ≤ ω(v). Finally, we define
C(ω)v0 = {Xv, Yv} for each v ∈ E0

reg, and E(ω)1 =
⊔

v∈E0
reg

(Xv � Yv).
We call (E(ω), C(ω)) the separated graph of the vertex weighted graph (E,ω).

Observe that, since E has no isolated vertices, we have s(E1) = E0,0 and r(E1) = E0,1.
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THEOREM 2.12. Let (E,ω) be a vertex weighted row-finite graph. Then there is a
unique isomorphism of ∗-algebras

Φ = Φ(E,ω) : L(E,ω) −→ LW(E(ω), C(ω))

such thatΦ(v) = pv = v1 for v ∈ E0,Φ(ei) = ρ(h(s(e), i), ẽ) = h(s(e), i)∗ẽ for e ∈ E1 and
1 ≤ i ≤ ω(s(e)).

PROOF. Write (F, D) = (E(ω), C(ω)), A = L(E,ω) and B = LW(E(ω), C(ω)). To show
that Φ gives a well-defined ∗-algebra homomorphism, we need to check that the
defining relations of A = L(E,ω) are satisfied in B. It is quite easy to show that relations
(1) and (2) in Definition 2.10 are preserved by Φ. To show that (3) is also preserved,
take v ∈ E0

reg and 1 ≤ i, j ≤ ω(v). We then have∑
e∈s−1(v)

Φ(ei)Φ(ej)
∗ =

∑
e∈s−1(v)

h(v, i)∗ẽẽ∗h(v, j)

= h(v, i)∗
( ∑

e∈s−1(v)

ẽẽ∗
)
h(v, j)

= h(v, i)∗h(v, j)
= δi,jv1 = δi,jΦ(v).

For (4), let e, f ∈ s−1(v), with v ∈ E0
reg. Then we have∑

1≤i≤ω(v)

Φ(ei)
∗Φ( fi) =

∑
1≤i≤ω(v)

ẽ∗h(v, i)h(v, i)∗ f̃

= ẽ∗
( ∑

1≤i≤ω(v)

h(v, i)h(v, i)∗
)

f̃

= ẽ∗ f̃

= δe, f r(e)1 = δe, fΦ(r(e)).

Hence, we have a well-defined ∗-homomorphismΦ : A→ B. To build the inverse ofΦ,
consider the map Ψ : B→ A defined by

Ψ(pv) = v (v ∈ E0), Ψ( ρ(h(v, i), ẽ)) = ei (e ∈ s−1(v)).

Here we observe that for each v ∈ E0
reg, we have |Dv0 | = 2. Therefore, it follows from

Definition 2.7 that we only have generators of the form ρ(h(v, i), ẽ) and ρ(ẽ, h(v, i)) =
ρ(h(v, i), ẽ)∗ for e ∈ s−1(v). Therefore, to define Ψ as a ∗-homomorphism, it is enough
to define it on the given generators. We need to show the preservation of the defining
relations of LW(F, D). We only deal with (SCK1”). Let v ∈ E0

reg. There are two cases.
Suppose first that e = h(v, i) and h = h(v, j) for 1 ≤ i, j ≤ ω(v). Then the unique option
for X in (SCK1”) is X = Xv, and so
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∑
f̃∈Xv

Ψ( ρ(h(v, i), f̃ )) · Ψ( ρ( f̃ , h(v, j))) =
∑
f̃∈Xv

Ψ( ρ(h(v, i), f̃ )) · Ψ( ρ(h(v, j), f̃ ))∗

=
∑

f∈s−1(v)

fi f ∗j = δi,jv = Ψ(δi,j pr(h(v,i))).

We now consider the second case. In this case, we have two edges ẽ, h̃ ∈ Xv, that is,
e, f ∈ E1, with s(e) = s(h) = v ∈ E0, and the unique possible value for X in (SCK1”) is
X = Yv. We have∑

1≤i≤ω(v)

Ψ( ρ(ẽ, h(v, i))) · Ψ( ρ(h(v, i), h̃)) =
∑

1≤i≤ω(v)

Ψ( ρ(h(v, i), ẽ))∗ · Ψ( ρ(h(v, i), h̃))

=
∑

1≤i≤ω(v)

e∗i hi = δe,hr(e) = Ψ(δe,h pr(ẽ)).

Hence, Ψ is a well-defined ∗-homomorphism. It is clear that Ψ and Φ are mutually
inverse. This concludes the proof. �

3. The algebra L1(E,ω)

In this section, we introduce a new ∗-algebra L1(E,ω) associated to a row-finite
weighted graph. This algebra is a certain quotient of L(E,ω) and has the property of
being generated by partial isometries. This is not the case, in general, for the ∗-algebra
L(E,ω). We show that if the graph E is locally finite, then L1(E,ω) is ∗-isomorphic to
the upper Leavitt path algebra of a finitely separated graph.

DEFINITION 3.1. Let (E,ω) be a weighted graph and K a field. The ∗-algebra L1(E,ω)
is the free ∗-algebra generated by {v, ei | v ∈ E0, e ∈ E1, 1 ≤ i ≤ ω(e)} subject to the
relations:

(1) uv = δu,v and v = v∗ for all u, v ∈ E0;
(2) s(e)ei = ei = eir(e), where e ∈ E1, 1 ≤ i ≤ ω(e);
(3) eie∗j = 0 for all e ∈ E1 and all 1 ≤ i, j ≤ ω(e) with i � j;
(4) e∗i fi = 0 for all e, f ∈ s−1(v) with e � f , v ∈ E0, 1 ≤ i ≤ min{ω(e),ω( f )};
(5)

∑
e∈s−1(v),ω(e)≥i eie∗i = v, where v ∈ E0

reg, and 1 ≤ i ≤ ω(v);
(6)

∑
1≤i≤ω(e) e∗i ei = r(e) for all e ∈ E1.

REMARK 3.2

(1) Observe that relations (3) with i � j and (4) with e � f in Definition 2.10
are automatically satisfied in L1(E,ω) because of relations (3) and (4) above.
Therefore, we have

L1(E,ω) � L(E,ω)/I0,

where I0 is the ∗-ideal of L(E,ω) generated by the elements e∗i ej for
e ∈ E1 and 1 ≤ i � j ≤ ω(e), and e∗i fi for e, f ∈ s−1(v) with e � f , v ∈ E0,
1 ≤ i ≤ min{ω(e),ω( f )}.
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(2) Notice that the elements ei, for e ∈ E1 and 1 ≤ i ≤ ω(e), are partial isometries in
L1(E,ω), that is, eie∗i ei = ei. This follows by either right multiplying relation (5),
or left multiplying relation (6), by ei, and using relations (4) or (3) accordingly.

Let (E,ω) be a weighted graph and let (E,ωM) be the unique vertex weighted
graph such that ωM(v) = ω(v) for all v ∈ E0

reg. Then L(E,ω) is the quotient ∗-algebra
of L(E,ωM) by the ∗-ideal generated by ej, for ω(e) < j ≤ ω(v), for each v ∈ E0 and
e ∈ s−1(v). The corresponding quotient ∗-algebra of LW(E(ωM), C(ωM)) is an object
that cannot be exactly modelled with a separated graph.

However, through the consideration of a related graph, we show that the ∗-algebra
L1(E,ω) = L(E,ω)/I0 is an upper Leavitt path algebra of a bipartite separated graph.

We need a definition from [4] (see also [7]).

DEFINITION 3.3. Let (E, C) be any locally finite bipartite separated graph, and write

Cu = {Xu
1 , . . . , Xu

ku
}

for all u ∈ E0,0. Then the 1-step resolution of (E, C) is the locally finite bipartite
separated graph denoted by (E1, C1), and defined by:

• E0,0
1 := E0,1 and E0,1

1 := {v(x1, . . . , xku ) | u ∈ E0,0, xj ∈ Xu
j };

• E1 := {αxi (x1, . . . , x̂i, . . . , xku ) | u ∈ E0,0, i = 1, . . . , ku, xj ∈ Xu
j };

• s(αxi (x1, . . . , x̂i, . . . , xku )) := r(xi) and r(αxi (x1, . . . , x̂i, . . . , xku )) := v(x1, . . . , xku );
• for v ∈ E0,0

1 = E0,1, C1
v := {X(x) | x ∈ r−1(v)}, where

X(xi) := {αxi (x1, . . . , x̂i, . . . , xku ) | xj ∈ Xu
j for j � i}.

A sequence of locally finite bipartite separated graphs {(En, Cn)}n≥0 with (E0, C0) :=
(E, C) is then defined inductively by letting (En+1, Cn+1) denote the 1-step resolution
of (En, Cn). Finally, set (Fn, Dn) =

⋃n
i=0(Ei, Ci) and let (F∞, D∞) be the infinite layer

graph

(F∞, D∞) :=
∞⋃

n=0

(Fn, Dn) =
∞⋃

n=0

(En, Cn).

It is clear by construction that (F∞, D∞) is a separated Bratteli diagram in the sense of
[7, Definition 2.8], called the separated Bratteli diagram of the locally finite bipartite
graph (E, C). (Note that only the case of a finite bipartite separated graph (E, C) was
considered in [4, 7]. However the extension to locally finite bipartite separated graphs
is straightforward.)

By [4, Theorem 5.1], there is a canonical surjective ∗-homomorphism

φ0 : L(E, C)� L(E1, C1),
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which is defined by

φ0(u) =
∑

(x1,...,xku )∈∏ku
i=1 Xu

i

v(x1, . . . , xku ),

where Cu = {Xu
1 , . . . , Xu

ku
} for u ∈ E0,0, φ0(w) = w for all w ∈ E0,1 and

φ0(xi) =
∑

xj∈Xu
j ,j�i

(αxi (x1, . . . , x̂i, . . . , xku ))∗

for an arrow xi ∈ Xu
i .

To state our next proposition, we need to extend the definition of the generators of
LW(E, C) for a bipartite separated graph (E, C) to the case where e, f belong to the
same set of the partition C. Concretely, we set for e, f ∈ X ∈ C:

ρ(e, f ) = δe, f r(e), (e, f ∈ X, X ∈ C). (3-1)

PROPOSITION 3.4. The kernel of the ∗-homomorphism φ0| : LW(E, C)→ LV(E1, C1)
is the ∗-ideal I of LW(E, C) generated by the elements

ρ(e, f )ρ( f , g)ρ(g, h) − ρ(e, g)ρ(g, f )ρ( f , h)

for all e, f , g, h ∈ E1 such that s(e) = s( f ) = s(g) = s(h). Here, ρ(e, f ) are the canonical
generators of LW(E, C) as given in Definition 2.7 when Xe � X f , and the elements
given by (3-1) when Xe = X f .

PROOF. Let I be the ∗-ideal of LW(E, C) generated by all the elements of the form
ρ(e, f )ρ( f , g)ρ(g, h) − ρ(e, g)ρ(g, f )ρ( f , h), where s(e) = s( f ) = s(g) = s(h).

By [4, Theorem 5.1], the kernel of the map φ0 is the ∗-ideal J of L(E, C) generated
by all the commutators [ee∗, f f ∗], for e, f ∈ E1. Observe that

ρ(e, f )ρ( f , g)ρ(g, h) − ρ(e, g)ρ(g, f )ρ( f .h) = e∗[ f f ∗, gg∗]h ∈ J,

so we get I ⊆ WJW = Ker(φ0|). For the other inclusion, observe that the family
e∗[ f f ∗, gg∗]h, where s(e) = s( f ) = s(g) = s(h), is a family of generators for the ideal
WJW. Indeed, we have [ f f ∗, gg∗] = 0 except that s( f ) = s(g), so J is generated as an
ideal by the set of elements [ f f ∗, gg∗], where s( f ) = s(g). Hence, every element of
WJW is a linear combination of terms of the form

γ[ f f ∗, gg∗]λ,

where v := s( f ) = s(g), γ, λ are paths in Ê, with r(γ) = v = s(λ) and s(γ), r(λ) ∈ E0,1,
so γ = γ′e∗, λ = hλ′, with e, h ∈ E1, s(e) = s(h) = v, and γ′, λ′ ∈ LW(E, C), so that

γ[ f f ∗, gg∗]λ = γ′(e∗[ f f ∗, gg∗]h)λ′ ∈ I.

This concludes the proof. �

We deduce from the above that LW(E, C)/I � LV(E1, C1) through the
∗-homomorphism induced by φ0, where I is the ideal generated by elements
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ρ(e, f )ρ( f , g)ρ(g, h) − ρ(e, g)ρ(g, f )ρ( f , h), with s(e) = s( f ) = s(g) = s(h). With the
help of Theorem 2.12, we can thus identify a suitable quotient of L(E,ω) for a vertex
weighted graph (E,ω), that is an upper Leavitt path algebra of a separated graph. We
show next that this algebra is precisely the algebra L1(E,ω) from Definition 3.1.

Recall from Definition 3.1 that L1(E,ω) = L(E,ω)/I0, where I0 is the ∗-ideal of
L(E,ω) generated by the elements:

eie∗j for e ∈ E1 and 1 ≤ i, j ≤ ω(e) with i � j, (3-2)

e∗i fi for e, f ∈ s−1(v) with e � f , v ∈ E0 and 1 ≤ i ≤ min{ω(e),ω( f )}. (3-3)

THEOREM 3.5. Let (E,ω) be a locally finite vertex weighted graph and let
L1(E,ω) = L(E,ω)/I0 be the ∗-algebra from Definition 3.1. Then we have a canonical
∗-isomorphism

Φ1 : L1(E,ω) −→ LV(E(ω)1, C(ω)1)

such that Φ1(v) = v1 and Φ1(ei) = τ(αh(v,i)(ẽ),αẽ(h(v, i))) for e ∈ E1, 1 ≤ i ≤ ω(e) and
v = s(e). Hence, L1(E,ω) is ∗-isomorphic to the upper Leavitt path algebra of a
separated graph.

PROOF. By Theorem 2.12, we have a ∗-isomorphism

Φ : L(E,ω)→ LW(E(ω), C(ω)).

Composing with the surjective ∗-homomorphism φ0| : LW(E(ω), C(ω))→ LV(E(ω)1,
C(ω)1), we obtain a surjective ∗-homomorphism

Φ̃1 : L(E,ω)→ LV(E(ω)1, C(ω)1).

By Proposition 3.4, we only have to check that Φ(I0) = I, where I is the ∗-ideal of
LW(E(ω), C(ω)) generated by all the elements

γ(a, b, c, d) := ρ(a, b)ρ(b, c)ρ(c, d) − ρ(a, c)ρ(c, b)ρ(b, d),

for a, b, c, d ∈ s−1(v0), v ∈ E0. Given such an element, there are various possibilities to
consider depending on which elements a, b, c, d belong to Xv or to Yv. Observe that
γ(a, b, c, d) = 0 if b and c belong to the same set, so by symmetry, we only need to
consider the case where b ∈ Xv and c ∈ Yv. Assuming this, write b = f̃ and c = h(v, i)
for f ∈ s−1(v) and 1 ≤ i ≤ ω(v). We have four cases to consider.

(1) a = ẽ ∈ Xv and d = g̃ ∈ Xv. Then we have

Φ−1(γ(a, b, c, d)) = Φ−1(ẽ∗ f̃ f̃ ∗h(v, i)h(v, i)∗g̃ − ẽ∗h(v, i)h(v, i)∗ f̃ f̃ ∗g̃)

= δe, f f ∗i gi − δ f ,ge∗i fi.

This element in nonzero only if e = f and f � g, or e � f and f = g. In both of
these cases, we get an element of the form (3-3).
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(2) Similarly, if a, d ∈ Yv, then we get that Φ−1(γ(a, b, c, d)) is an element of the form
(3-2).

(3) a = h(v, j) ∈ Yv and d = ẽ ∈ Xv. In this case, we have

Φ−1(γ(a, b, c, d)) = fj f ∗i ei − δi,jδe, f fi.

For i = j and e = f , this gives the element eie∗i ei − ei, which belongs to I0 by
Remark 3.2(2). When i � j or e � f , this gives an element that also belongs to I0.

(4) If a ∈ Xv and d ∈ Yv, then γ(a, b, c, d) = −γ(d, b, c, a)∗, and we reduce to case (3).

We thus obtain that Φ−1(I) ⊆ I0, that is, I ⊆ Φ(I0). The reverse inclusion Φ(I) ⊆ I0
follows easily from the above computations.

Hence, we obtain a ∗-isomorphism Φ1 : L1(E,ω)→ LV(E(ω)1, C(ω)1), with
Φ1(v) = v1 and

Φ1(ei) = φ0(h(v, i))∗φ0(ẽ)

=

( ∑
f∈s−1(v)

αh(v,i)( f̃ )
)( ω(v)∑

j=1

αẽ(h(v, j))∗
)

= αh(v,i)(ẽ)αẽ(h(v, i))∗,

where the last equality follows from r(αh(v,i)( f̃ )) = v( f̃ , i) and r(αẽ(h(v, j))) = v(ẽ, j),
which imply that the only nonzero summand is the one corresponding to f = e and
j = i.

This concludes the proof of the theorem. �

It is time now to show that Theorem 3.5 generalizes to arbitrary weighted graphs.
The point is that in L(E,ωM)/I0, we can kill the projections eje∗j for i + 1 ≤ j ≤ ω(v),
and this is equivalent to killing the projections v(ẽ, h(v, j)) in L(E(ωM)1, C(ωM)1).

Before proceeding to the statement of the next theorem, we introduce a useful
simplified notation for the generators of L(E(ω)1, C(ω)1). This notation is used in the
rest of the paper, whenever there is no danger of confusion.
NOTATION 3.6. Let (E,ω) be a locally finite vertex weighted graph, and let R =
L(E(ω)1, C(ω)1) be the Leavitt path algebra of the separated graph (E(ω)1, C(ω)1). The
elements of E0,0

1 are simply denoted by v, where v ∈ E0. (These elements are denoted
v1 in the previous, general notation.) The elements of E0,1

1 are denoted by v(e, i), where
e ∈ E1 and 1 ≤ i ≤ ω(e). (These elements are denoted v(ẽ, h(v, i)) in the previous,
general notation.) The elements in X(e) for e ∈ E1 are denoted by αe(i), where e ∈ E1

and 1 ≤ i ≤ ω(e). (These elements are denoted αẽ(h(v, i)) in the previous, general
notation.) The elements in X(v, i) := X(h(v, i)) are denoted by αi(e), where e ∈ E1 and
1 ≤ i ≤ ω(e). (These elements are denoted αh(v,i)(ẽ) in the previous, general notation.)

With the new notation, we have, by Theorem 3.5,

Φ1(ei) = α
i(e)αe(i)∗ = τ(αi(e),αe(i))

for e ∈ E1 and 1 ≤ i ≤ ω(v).
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We can now extend the definition of the separated graph (E(ω)1, C(ω)1) to any
locally finite weighted graph.

DEFINITION 3.7. Let (E,ω) be a locally finite weighted graph. We define
(E(ω)1, C(ω)1) as the bipartite locally finite separated graph with

E(ω)0,0
1 = E0, E(ω)0,1

1 = {v(e, i) : e ∈ E1, 1 ≤ i ≤ ω(e)},

and for each v ∈ E0:

C(ω)1
v = {X(v, 1), . . . , X(v,ω(v))}

⋃
{X(e) | e ∈ E1, r(e) = v},

where, for 1 ≤ i ≤ ω(v),

X(v, i) = {αi(e) : e ∈ s−1(v),ω(e) ≥ i}, s(αi(e)) = s(e) = v, r(αi(e)) = v(e, i),

and, for e ∈ E1 with r(e) = v,

X(e) = {αe(i) : 1 ≤ i ≤ ω(e)}, s(αe(i)) = r(e) = v, r(αe(i)) = v(e, i).

We now recall the definition of the quotient graph (E/H, C/H), see [6, Construction
6.8]. We use the pre-order ≤ on E0 given by v ≤ w if and only if there is a path γ in E
such that s(γ) = w and r(γ) = v.

DEFINITION 3.8. Let (E, C) be a finitely separated graph. A subset H of E0 is
hereditary if v ≤ w and w ∈ H imply that v ∈ H, and H is C-saturated if whenever
we have v ∈ E0 such that r(x) ∈ H for all x ∈ X, for some X ∈ Cv, then necessarily
v ∈ H. Given a hereditary C-saturated subset H of E0, the quotient separated graph
(E/H, C/H) has (E/H)0 = E0 \ H, and (C/H)v = {X/C | X ∈ Cv}, where for v ∈ E0 \ H
and X ∈ Cv, X/C := {x ∈ X | r(x) � H} � ∅. We denote by H(E, C) the lattice of
hereditary C-saturated subsets of E0.

THEOREM 3.9. Let (E,ω) be a locally finite weighted graph, let L1(E,ω) be the
L1-algebra of (E,ω) (Definition 3.1) and let (E(ω)1, C(ω)1) be the bipartite separated
graph from Definition 3.7. Then there exists a canonical ∗-isomorphism

Φ1 : L1(E,ω)
�−→ LV(E(ω)1, C(ω)1)

such that Φ1(v) = v for v ∈ E0 and Φ1(ei) = τ(αi(e),αe(i)) for e ∈ E1 and 1 ≤ i ≤ ω(e).
In particular, L1(E,ω) is isomorphic to the upper Leavitt path algebra of a separated
graph.

PROOF. By Theorem 3.5, we have a ∗-isomorphism

Φ1 : L1(E,ωM) −→ LV(E(ωM)1, C(ωM)1),

where (E,ωM) is the unique vertex weighted graph such that ωM(v) = ω(v) for all
v ∈ E0.

We consider the following subset of E(ωM)0,1
1 :

H = {v(e, j) | e ∈ E1,ω(e) + 1 ≤ j ≤ ω(s(e))}.
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Then H ⊂ E(ωM)0,1
1 is a hereditary subset of E(ωM)0

1, because the vertices in E(ωM)0,1
1

are sinks in E(ωM)1. Let us check that H is also C(ωM)1-saturated. The sets in C(ωM)1

are of one of the forms X(v, i) for 1 ≤ i ≤ ω(v), or X(e) for e ∈ E1. It is enough to
show that r(X) � H for X of these forms. We consider first the case X = X(v, i) for
1 ≤ i ≤ ω(v). The elements of X(v, i) are of the form αi(e), where e ∈ s−1(v). Since
ω(v) = max{ω(e) | e ∈ s−1(v)}, there is some e ∈ s−1(v) such that ω(e) = ω(v), and then

r(αi(e)) = v(e, i) � H.

Now consider e ∈ E1 and set v = s(e). Since ω(e) ≥ 1, we have that r(αe(1)) =
v(e, 1) � H.

Hence, we obtain that H is a hereditary C(ωM)1-saturated subset of E(ωM)0
1. The

ideal I(H) of L(E(ωM)1, C(ωM)1) generated by H satisfies that

L(E(ωM)1, C(ωM)1)/I(H) � L(E(ωM)1/H, C(ωM)1/H)

(see the proof of [7, Theorem 5.5]).
We define (E(ω)1, C(ω)1) := (E(ωM)1/H, C(ωM)1/H).
Observe that the ∗-isomorphism L(E(ωM)1, C(ωM)1)/I(H)→ L(E(ω)1, C(ω)1)

induces a ∗-isomorphism

π : LV(E(ωM)1, C(ωM)1)/IV(H) −→ LV(E(ω)1, C(ω)1),

where IV(H) = I(H) ∩ LV(E(ωM)1, C(ωM)1). Next, we let I be the ∗-ideal of
LV(E(ωM)1, C(ωM)1) generated by the elements τ(α j(e),αe( j)), for which
ω(e) + 1 ≤ j ≤ ω(s(e)). We claim that I = IV(H). Clearly, I ⊆ IV(H). To show
equality, observe first that I contains the elements

τ(α j(e),α j(e)) = τ(α j(e),αe( j))τ(α j(e),αe( j))∗

and

τ(αe( j),αe( j)) = τ(α j(e),αe( j))∗τ(α j(e),αe( j))

for ω(v) + 1 ≤ j ≤ ω(s(e)). We define a ∗-homomorphism ϕ : LV(E(ω)1, C(ω)1)→
LV(E(ωM)1, C(ωM)1)/I by ϕ(pv) = pv for v ∈ E0, and ϕ(τ(x, y)) = τ(x, y), for x, y ∈
(E(ω)1)1 with r(x) = r(y). Here we indicate by z the class of an element z in the
quotient LV(E(ωM)1, C(ωM)1)/I. To see that ϕ is well defined, we have to check that
the relations in Definition 2.6 are preserved by ϕ. This is obvious for all relations except
for (SCK2’). Let us check relation (SCK2’) for Y = X(e), where e ∈ E1. Since we are
working in the graph (E(ω)1, C(ω)1), this relation reads

pv =
∑

1≤i≤ω(e)

τ(αe(i),αe(i)).
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Now, using that τ(αe( j),αe( j)) = 0 for ω(e) + 1 ≤ j ≤ ω(s(e)), we have

ϕ
( ω(e)∑

i=1

τ(αe(i),αe(i))
)
=

ω(s(e))∑
i=1

τ(αe(i),αe(i))) = pv = ϕ(pv).

Similarly, we can check that (SCK2’) is preserved for Y = X(v, i) for 1 ≤ i ≤ ω(v). Let

ζ : LV(E(ωM)1, C(ωM)1)/I −→ LV(E(ωM)1, C(ωM)1)/IV(H)

be the canonical quotient map. We clearly have the equality ϕ ◦ π ◦ ζ =
IdLV(E(ωM)1,C(ωM)1)/I, and hence ζ is injective, which implies that I = IV(H), as desired.

Now the generators τ(α j(e),αe( j)), for ω(e) + 1 ≤ j ≤ ω(s(e)), of the ∗-ideal
I = IV(H) correspond through the ∗-isomorphismΦ−1

1 to the elements ej in L1(E,ωM),
and it is clear that L1(E,ω) � L1(E,ωM)/K, where K is the ∗-ideal of L1(E,ωM)
generated by ej, with ω(e) + 1 ≤ j ≤ ω(s(e)). We thus obtain a ∗-isomorphism, also
denoted by Φ1, from L1(E,ω) onto LV(E(ω)1, C(ω)1), as desired. �

4. The algebra Lab(E,ω)

In this section, we introduce the ∗-algebra Lab(E,ω) for a locally finite weighted
graph (E,ω), and we show it can be written as a full corner of a direct limit of a
sequence of Leavitt path algebras of separated graphs.

We begin with some preliminary definitions, see [10, Definition 12.9].

DEFINITION 4.1. A set F of partial isometries of a ∗-algebra A is said to be tame
if for any two elements u, u′ ∈ U, where U is the multiplicative ∗-subsemigroup of
A generated by F, we have that e(u) and e(u′) are commuting elements of A, where
e(v) = vv∗ for v ∈ U. Note that if F is a tame set of partial isometries, then all elements
of U are indeed partial isometries, and therefore the elements e(u), with u ∈ U, are
mutually commuting projections in A.

A ∗-algebra A is said to be tame if it is generated as ∗-algebra by a tame
set of partial isometries. If A is a ∗-algebra generated by a subset F of partial
isometries, there is a universal tame ∗-algebra Aab associated to F. By definition,
there is a surjective ∗-homomorphism π : A→ Aab so that π(F) is a tame set of partial
isometries generating Aab, and such that for any ∗-homomorphism ψ : A→ B of A to
a ∗-algebra B such that ψ(F) is a tame set of partial isometries in B, there is a unique
∗-homomorphism ψ : Aab → B such that ψ = ψ ◦ π. Indeed, we have Aab = A/J, where
J is the ideal of A generated by all the commutators [e(u), e(u′)], where u, u′ ∈ U.

If (E, C) is a separated graph, then the universal tame ∗-algebra associated to the
generating set E0 � E1 of partial isometries of L(E, C) is denoted by Lab(E, C).

Similarly, if (E, C) is a row-finite bipartite separated graph, the universal tame
∗-algebra associated to the generating set E0,0 � {τ(x, y) : x, y ∈ E1, r(x) = r(y)} of
partial isometries of LV(E, C) is denoted by LVab(E, C).
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We can now define the abelianized Leavitt path algebra of a weighted graph.
Recall from Remark 3.2(2) that the elements ei, for e ∈ E1 and 1 ≤ i ≤ ω(e) are partial
isometries in L1(E,ω).

DEFINITION 4.2. Let (E,ω) be a weighted graph and K a field. The abelianized Leavitt
path algebra of (E,ω), denoted by Lab(E,ω) is the universal tame ∗-algebra associated
to the generating set E0 ∪ {ei : e ∈ E1, 1 ≤ i ≤ ω(e)} of partial isometries of L1(E,ω).
Let U be the ∗-subsemigroup of L1(E,ω) generated by {ei : e ∈ E1, 1 ≤ i ≤ ω(e)}, and
let J be the ideal of L1(E,ω) generated by all the commutators [e(u), e(u′)], where
u, u′ ∈ U. Then Lab(E,ω) = L1(E, C)/J. (Note that vertices commute with all elements
e(u).)

Recall from Definition 3.3 the canonical sequence {(En, Cn)}n≥0 of locally finite
bipartite separated graphs associated to a locally finite bipartite separated graph (E, C).
We denote by πn : L(E, C)→ L(En, Cn) and π∞ : L(E, C)→ Lab(E, C) the canoni-
cal surjective ∗-homomorphisms. Note that π2n(V) = V2n, where V2n =

∑
v∈E0,0

2n
v ∈

M(L(E2n, C2n)).
For a locally finite weighted graph (E,ω), we want to relate Lab(E,ω) with the

algebra Lab(E(ω)1, C(ω)1), where (E(ω)1, C(ω)1) is the bipartite separated graph
introduced in Section 3. For this, we need the following general lemma.

LEMMA 4.3. Let (E, C) be a locally finite bipartite separated graph and set
V =

∑
v∈E0,0 v ∈ M(L(E, C)). Let {(En, Cn)}n≥0 be the canonical sequence of bipartite

separated graphs associated to (E, C). Then we have

LVab(E, C) � π∞(V)Lab(E, C)π∞(V) � lim−−→ π2n(V)L(E2n, C2n)π2n(V).

PROOF. By [4, Theorem 5.7], we have

Lab(E, C) � lim−−→L(E2n, C2n)

naturally, and hence

π∞(V)Lab(E, C)π∞(V) � lim−−→ π2n(V)L(E2n, C2n)π2n(V).

By definition, LVab(E, C) is the universal tame ∗-algebra with respect to the set

E0,0 � {τ(x, y) : x, y ∈ E1, r(x) = r(y)}

of partial isometries of LV(E, C) = VL(E, C)V (see Proposition 2.8). Let U be the
∗-subsemigroup of LV(E, C) generated by F := {τ(x, y) : x, y ∈ E1, r(x) = r(y)}, and
let J be the ideal of LV(E, C) generated by all the commutators [e(u), e(u′)], with
u, u′ ∈ U. Let π : LV(E, C)→ LVab(E, C) = LV(E, C)/J be the projection map.

Since τ(x, y) = xy∗ in L(E, C), it is clear that π∞(F) becomes a tame set of
partial isometries in π∞(V)Lab(E, C)π∞(V). Hence, there is a unique surjective
∗-homomorphism

https://doi.org/10.1017/S1446788722000155 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000155


[17] Weighted graphs 17

μ : LVab(E, C) −→ π∞(V)Lab(E, C)π∞(V)

such that π∞| = μ ◦ π. It remains to show that μ is injective.
Let U′ be the ∗-subsemigroup of L(E, C) generated by E1 and let J′ be the ideal

generated by all the commutators [e(u), e(u′)] for u, u′ ∈ U′. Then the kernel of π∞ is
the ideal J′ and our task is to show that J′ ∩ VL(E, C)V = J. As we observe above,
J ⊆ J′ ∩ VL(E, C)V = VJ′V . For the reverse inclusion, note that VJ′V is generated by
the following types of elements.

(a) Elements of the form [e(u), e(u′)], where

u = x1x∗2x3x∗4 · · · x2n−1, u′ = y1y∗2y3y∗4 · · · y2m−1

with xi, yj ∈ E1 and s(x1) = s(y1).
(b) Elements of the form z[e(u), e(u′)]t∗, where

u = x∗1x2x∗3x4 · · · x∗2n−1x2n, u′ = y∗1y2y∗3y4 · · · y∗2m−1y2m

with z, t, xi, yj ∈ E1 and r(x1) = r(y1) = r(z) = r(t).

For elements u, u′ as in (a), observe that e(u) = e(ux∗2n−1) and e(u′) = e(u′y∗2m−1), so
that the corresponding element [e(u), e(u′)] belongs to J. For elements u, u′ as in (b),
note that x1[e(u), e(u′)]x∗1 = [e(u2), e(u3)], where

u2 = x1u = (x1x∗1)(x2x∗3) · · · (x2n−2x∗2n−1)x2n,

u3 = x1u′ = (x1y∗1)(y2y∗3) · · · (y2m−2y∗2m−1)y2m,

so that u2, u3 are as in (a), so we get that x1[e(u), e(u′)]x∗1 ∈ J. However, now

z[e(u), e(u′)]t∗ = (zx∗1)(x1[e(u2), e(u3)]x∗1)(x1t∗) ∈ J.

We conclude that VJ′V ⊆ J, as desired. This completes the proof. �

THEOREM 4.4. Let (E,ω) be a locally finite weighted graph and let (E(ω)1, C(ω)1) be
the corresponding bipartite separated graph (Definition 3.7). Then there are natural
∗-isomorphisms

Lab(E,ω) � LVab(E(ω)1, C(ω)1) � VLab(E(ω)1, C(ω)1)V , (4-1)

where V = π∞(V) ∈ M(Lab(E(ω)1, C(ω)1)).

PROOF. Let Φ1 : L1(E,ω)→ LV(E(ω)1, C(ω)1) be the ∗-isomorphism from
Theorem 3.9. It is clear that Φ1 sends the canonical set of generators of L1(E,ω)
to the canonical set of generators of LV(E(ω)1, C(ω)1). Hence, we get that Φ1 induces
a ∗-isomorphism Φab : Lab(E,ω)→ LVab(E(ω)1, C(ω)1). The second isomorphism in
(4-1) follows from Lemma 4.3. �

We finally point out that the representation of Lab(E, C) as a partial crossed product

Lab(E, C) � CK(Ω(E, C)) � F
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for a finite bipartite separated graph [4, Corollary 6.12(1)] can be easily adapted
to obtain a corresponding representation for the abelianized Leavitt path algebra
Lab(E,ω) of any finite weighted graph. Although we think that a suitable version holds
for any locally finite weighted graph, we restrict here to the finite case, because only
finite bipartite separated graphs are considered in [4].

We refer the reader to [4, 10] for the background definitions on crossed products of
partial actions of groups.

We first state the universal property of the dynamical system associated to a
weighted graph. This is basically an internal version of the corresponding property
for the associated bipartite separated graph (E(ω)1, C(ω)1).

DEFINITION 4.5. Let (E,ω) be a finite weighted graph. An (E,ω)-dynamical system
consists of a compact Hausdorff space Ω, with a family of clopen sets {Ωv}v∈E0 and,
for each v ∈ E0, a family of clopen subsets Hαi(e) for e ∈ s−1(v) and 1 ≤ i ≤ ω(e), and
Hαe(i) for each e ∈ r−1(v) and 1 ≤ i ≤ ω(e), such that

Ωv =
⊔

e∈s−1(v):ω(e)≥i

Hαi(e), (v ∈ E0, 1 ≤ i ≤ ω(v)),

Ωv =

ω(e)⊔
i=1

Hαe(i), (v ∈ E0, e ∈ r−1(v)),

together with a family of homeomorphisms θei : Hαe(i) → Hαi(e) for each e ∈ E1 and
1 ≤ i ≤ ω(e).

Given two (E,ω)-dynamical systems (Ω, θ) and (Ω′, θ′), an equivariant map is
a map f : Ω→ Ω′ such that f (Ωv) ⊆ Ω′v for each v ∈ E0 and f (Hαi(e)) ⊆ H′

αi(e)
,

f (Hαe(i)) ⊆ H′αe(i) for each e ∈ E1 and 1 ≤ i ≤ ω(e), and θ′ei
( f (x)) = f (θei (x)) for all

x ∈ Hαe(i).
An (E,ω)-dynamical system (Ω, θ) is said to be universal if for each other

(E,ω)-dynamical system (Ω′, θ′), there exists a unique equivariant continuous map
f : Ω′ → Ω. Of course, if such a universal space exists, it is unique up to a unique
equivariant homeomorphism.

THEOREM 4.6. Let (E,ω) be a finite weighted graph. Then there exists a universal
(E,ω)-dynamical system (Ω(E,ω), θ). Moreover, θ can be extended to a partial action
of the free group F on {ei : e ∈ E1, 1 ≤ i ≤ ω(e)}, and we have

Lab(E,ω) � CK(Ω(E,ω)) �θ F.

PROOF. Let (Ω(E(ω)1, C(ω)1), θ) be the universal (E(ω)1, C(ω)1)-dynamical sys-
tem from [4, Corollary 6.11]. (See [4, Definition 6.10] for the definition of an
(E, C)-universal dynamical system.)

Writing Ω := Ω(E(ω)1, C(ω)1), we have homeomorphisms

θαi(e) : Ωv(e,i) → Hαi(e), θαe(i) : Ωv(e,i) → Hαe(i)
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for each e ∈ E1 and 1 ≤ i ≤ ω(e). It is easy to check that θei := θαi(e) ◦ θ−1
αe(i) :

Hαe(i) → Hαi(e) provide the homeomorphisms making Ω(E,ω) :
⊔

v∈E0 Ωv the universal
(E,ω)-dynamical system.

The ∗-isomorphism Lab(E,ω) � CK(Ω(E,ω)) �θ F follows from the above observa-
tion, Theorem 4.4 and [4, Theorem 6.12(1)]. �

5. TheV-monoid and structure of ideals

In this section, we study the V-monoid and the structure of ideals of the algebras
L1(E,ω) and Lab(E,ω) introduced above. The results follow immediately from known
results in [4, 6, 7] and our previous work in the paper. We point out that theV-monoid
of L(E,ω), where (E,ω) is an arbitrary weighted graph, has been determined by
Preusser in [15].

We refer the reader to [1, Definition 3.2.1] for the definition of theV-monoidV(R)
of a ring R. We use the idempotent picture of V(R), in which an element of V(R) is
given by the Murray–von Neumann equivalence class [e] of an idempotent matrix e
over R.

For a commutative monoid M, we denote byL(M) its lattice of order-ideals, and for
a (nonnecessarily unital) ring R, we denote byL(R) its lattice of (two-sided) ideals, and
by Tr(R) its lattice of trace ideals. See [6, Section 10] for these notions. It is shown in
[6, Theorem 10.10] that for any ring R, there is a lattice isomorphismL(V(R)) � Tr(R).
(The unital case of this result is due to Facchini and Halter-Koch [11, Theorem 2.1(c)].)
We denote by Idem(R) the lattice of idempotent-generated ideals of a ring R.

Let R be a ring with local units [1, Definition 1.2.10], and let e be an idempotent
in the multiplier ring M(R) of R. We say that eRe is a (generalized) corner ring of R.
The ring eRe is a full corner of R if ReR = R, that is, for each element x ∈ R, there are
elements ri, si ∈ R, i = 1, . . . , n such that x =

∑n
i=1 riesi.

PROPOSITION 5.1. Let (E, C) be a row-finite bipartite separated graph such that
s(E1) = E0,0 and r(E1) = E0,1. Then both LV(E, C) and LW(E, C) are full corners of
L(E, C). In particular, the inclusion LV(E, C) ⊆ L(E, C) induces a monoid isomor-
phism

V(LV(E, C)) � V(L(E, C)),

and the usual restriction/extension process gives lattice isomorphisms

L(LV(E, C)) � L(L(E, C)), Tr(LV(E, C)) � Tr(L(E, C)).

Similar statements hold for LW(E, C) and L(E, C), and also for the corresponding
abelianized algebras LVab(E, C) and Lab(E, C).

PROOF. Recall from Proposition 2.8 that LV(E, C) = VL(E, C)V and LW(E, C) =
WL(E, C)W, where V =

∑
v∈E0,0 v ∈ M(L(E, C)) and W =

∑
w∈E0,1 w ∈ M(L(E, C)). The

fact that these are full corners follows immediately from the defining relations of
L(E, C), since E0,0 = s(E1) and E0,1 = r(E1).
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Since all the involved algebras have local units, the result for the lattices of ideals
follows from [12, Proposition 3.5]. The proof for theV-monoids follows from the first
paragraph of the proof of [5, Lemma 7.3]. �

We first define abstractly the monoid M1(E,ω) and then we prove below that
M1(E,ω) is isomorphic toV(L1(E,ω)).

DEFINITION 5.2. Let (E,ω) be a locally finite weighted graph. Then M1(E,ω) is the
commutative monoid with generators {av : v ∈ E0} ∪ {av(e,i) : e ∈ E1, 1 ≤ i ≤ ω(e)}with
the defining relations

av =
∑

e∈s−1(v),ω(e)≥i

av(e,i) (v ∈ E0
reg, 1 ≤ i ≤ ω(v)) (5-1)

ar(e) =

ω(e)∑
i=1

av(e,i) (e ∈ E1). (5-2)

Observe that relations (5-1) and (5-2) give a refinement of the relation ω(v)av =∑
e∈s−1(v) ar(e) for each v ∈ E0

reg. Observe also that there is a well-defined monoid
homomorphism

γ(E,ω) : M1(E,ω) −→ V(L1(E,ω))

given by γ(av) = [v] and γ(av(e,i)) = [eie∗i ] = [e∗i ei].

THEOREM 5.3. Let (E,ω) be a locally finite weighted graph. Then the natural
homomorphism γ(E,ω) : M1(E,ω)→V(L1(E,ω)) is an isomorphism.

PROOF. Note that since LV(E(ω)1, C(ω)1) is a full corner of L(E(ω)1, C(ω)1), we have
that the inclusion ι : LV(E(ω)1, C(ω)1) ⊆ L(E(ω)1, C(ω)1) induces an isomorphism
of the corresponding V-monoids. It is clear that M1(E,ω) = M(E(ω)1, C(ω)1) (see
[6, Definition 4.1] for the definition of the graph monoid M(E, C) of a separated graph).

The composition of the maps

M1(E,ω)
γ
→ V(L(E,ω))

V(Φ1)
→ V(LV(E(ω)1, C(ω)1))

V(ι)
→ V(L(E(ω)1, C(ω)1))

agrees with the canonical map M(E(w)1, C(w)1)→ V(L(E(ω)1, C(ω)1)), which is an
isomorphism by [6, Theorem 4.3]. Since both V(Φ1) and V(ι) are isomorphisms, we
obtain that γ is also an isomorphism. �

THEOREM 5.4. Let (E,ω) be a locally finite weighted graph. Then Idem(L1(E,ω)) =
Tr(L1(E,ω)) and we have lattice isomorphisms

Idem(L1(E,ω)) � L(M1(E,ω)) � H(E(w)1, C(w)1).

PROOF. Since γ : M1(E, C)→V(L1(E,ω)) is an isomorphism, the monoid
V(L1(E,ω)) is generated by equivalence classes of idempotents in L1(E,ω) and hence
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Tr(L1(E,ω)) = Idem(L1(E,ω)) (see the proof of [6, Proposition 6.2]). By Theorem 5.3
and [6, Theorem 10.10],

Idem(L1(E,ω)) = Tr(L1(E,ω)) � L(V(L1(E,ω))) � L(M1(E,ω)).

Since M1(E,ω) = M(E(ω)1, C(ω)1), it follows from [6, Corollary 6.10] that
L(M1(E,ω)) � H(E(ω)1, C(ω)1), completing the proof. �

A detailed study of the structure of ideals of the algebras Lab(E, C), for a finite
bipartite separated graph (E, C), has been performed in [7]. The main point is that
the lattice of trace ideals of Lab(E, C) is isomorphic to the lattice of hereditary
D∞-saturated subsets of F0

∞, where (F∞, D∞) is the separated Bratteli diagram of (E, C)
(Definition 3.3). Using these results and the fact that the lattices of ideals are preserved
under Morita equivalence of rings with local units, one can translate all these results
to the algebras Lab(E,ω) for any finite weighted graph (E,ω). Observe that the ideals
of Lab(E,ω) can be pulled back to the original algebra L(E,ω), because Lab(E,ω) is a
quotient algebra of L(E,ω).

THEOREM 5.5. Let (E,ω) be a finite weighted graph. Let (E(ω)1, C(ω)1) be the bipar-
tite separated graph from Definition 3.7 and let (E(ω)∞, C(ω)∞) be the corresponding
separated Bratteli diagram. Then there are lattice isomorphisms

Idem(Lab(E,ω)) � L(V(Lab(E,ω))) � H(E(ω)∞, C(ω)∞).

PROOF. Apply Theorem 4.4 and [7, Theorem 4.5]. �

REMARK 5.6

(a) Observe that all ideals of L(E,ω) obtained by pulling back the ideals described in
Theorem 5.5 are graded ideals. Hence, we obtain a large family of graded ideals
of L(E,ω), shedding some light on the second Open Problem in [16, Section 12].

(b) Nongraded ideals of Lab(E, C) are studied in [7, Section 7]. This gives
information on nongraded ideals of L(E,ω).

5.1. Remarks on the ideal structure of L(m, n). We close the paper with some
remarks on the ideal structure of the Leavitt algebra L(m, n). Since the algebra L(1, n)
is simple for all n ≥ 2, we concentrate here on the remaining cases, so we assume
throughout this subsection that 1 < m ≤ n. Recall that L(m, n) is the ∗-algebra with
generators xij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, subject to the relations given by the matricial
equations XX∗ = Im, X∗X = In, where X = (xij) and X∗ is the ∗-transpose of X.

It is an interesting and challenging problem to construct maximal ideals of L(m, n)
and study the corresponding simple factor rings. In particular, we do not know any
maximal ideal of L(m, n) such that the corresponding simple factor algebra retains the
Leavitt type (m, n − m) of L(m, n), although we suspect such maximal ideals exist.

We construct here two maximal ideals of L(m, n), and we relate one of them to the
Leavitt path algebra of the minimal weighted graph of shape (m, n), defined below.
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Recall that a partition of a positive integer l is a sequence of positive integers λ =
(λ1, λ2, . . . , λr) such that λi ≥ λi+1 for i = 1, . . . , r − 1 and l = λ1 + · · · + λr. We use the
concept of the shape of a partition [17, Definition 2.1.1].

DEFINITION 5.7. Let 1 < m < n be integers. We say that (E,ω) is an (m, n)-weighted
graph if it is a weighted graph with one vertex v, n edges and ω(v) = m.

An (m, n)-weighted graph (E,ω) is completely determined, up to permutation of
the edges, by its shape, which is constructed as follows. Choose an enumeration
of the edges e(1), . . . , e(n) of E such that m = ω(e(1)) ≥ ω(e(2)) ≥ · · · ≥ ω(e(n)) ≥ 1.
Then the shape of (E,ω) is the shape of the partition (λ1, λ2, . . . , λm) of λ1 +

λ2 + · · · + λm, where λi := |{e ∈ E1 : ω(e) ≥ i}| for i = 1, . . . , m. Observe that (up to
permutation of edges) any partition (λ1, λ2, . . . , λm) such that λ1 = n determines a
unique (m, n)-weighted graph, setting ω(e(i)) equal to the length of the i th column
of the shape of λ. We call such a partition an (m, n)-partition.

Say that λ = (λ1, λ2, . . . λm) ≤ μ = (μ1, μ2, . . . , μm) if λi ≤ μi for all i = 1, 2, . . . , m.
(Observe that this is not the dominance ordering introduced in [17, Definition 2.2.2].)
With this order, the set of (m, n)-partitions is a lattice, with maximum element
(n, n, . . . , n) (m times) and minimum element (n, 1, 1, . . . , 1) (with m − 1 one’s).

We may think of the shape of an (m, n)-partition λ as a {0, 1} m × n-matrix. For
instance, the shape of the (3, 4)-partition (4, 2, 2) is the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1
1 1 0 0
1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and we have ω(e(1)) = ω(e(2)) = 3 and ω(e(3)) = ω(e(4)) = 1. We can also associate to
λ the corresponding matrix of the generators (xij) of L(E,ω), where xij = e( j)

i , which is
the matrix obtained from the full matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · ·
xm1 xm2 · · · xmn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
by substituting by 0 the variables that are not in the positions allowed by the shape
of the partition. Looking at the algebra L1(E,ω) of the weighted graph associated to
the (m, n)-partition λ, we can interpret the shape of λ as the refinement matrix R that
defines the V-monoid M1(E,ω) of L1(E,ω) (see Theorem 5.3). For instance, for the
above partition λ = (4, 2, 2), we have the refinement matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
v(e(1), 1) v(e(2), 1) v(e(3), 1) v(e(4), 1)
v(e(1), 2) v(e(2), 2) 0 0
v(e(1), 3) v(e(2), 3) 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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The sum of each row and each column of the matrix R gives av in the monoid M1(E,ω)
(by relations (5-1) and (5-2)), so that R gives a refinement of the key identity mav = nav

in M1(E,ω).
Let ωM be the weight corresponding to the largest (m, n)-partition

λ = (n, n, . . . , n) =: (nm).

Of course L(E,ωM) = L(m, n). By Theorem 5.4, the poset P of proper order-ideals of
the monoid V(L1(E,ωM)), which is isomorphic to the lattice of proper trace ideals of
L1(E,ωM), is in bijective correspondence with the set of {0, 1}m × n matrices having
no zero rows and columns. The set of maximal trace ideals of L1(E,ωM) corresponds to
the set of minimal configurations, which means that for each position (i, j) with aij = 1,
either row i or column j of the matrix A contains only one 1 (the one corresponding
to the position (i, j)). The lattice of (m, n)-partitions embeds in an order-reversing way
into the poset P.

We finish the paper by giving the construction of two different simple factor
∗-algebras of L(m, n). The first already appears in [7] and it is ∗-isomorphic to
L(1, n − m + 1), so it is an ordinary Leavitt path algebra. The second is apparently
new and it is intimately related to the minimal (m, n)-partition. This new factor algebra
is not Morita equivalent to any (ordinary) Leavitt path algebra.

We start with the already known example.

EXAMPLE 5.8 (see [7, Example 6.6]). Let π : L(m, n)→ L(1, n − m + 1) be the surjec-
tive ∗-homomorphism given by the assignments

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · ·
xm1 xm2 · · · xmn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �→
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 0 · · · 0
0 x22 · · · 0
· · · · · ·

0 0 · · · xm−1,m−1

0(m−1)×(n−m+1)

01×(m−1) xm,m xm,m+1 · · · xm,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�→

(
Im−1 0(m−1)×(n−m+1)

01×(m−1) x1 x2 · · · xn−m+1

)
,

where x1, x2, . . . , xn−m+1 are the standard generators of L(1, n − m + 1). Obviously, the
homomorphism π factors through Lab(m, n).

We consider now the second example.

EXAMPLE 5.9. Let 3 ≤ m ≤ n. Then the algebra L(m, n) has a maximal ideal m such
that

L(m, n)/m � L(1, m − 1) ⊗ L(1, n − 1).

In particular, the quotient L(m, n)/m is not Morita equivalent to any Leavitt path
algebra.

PROOF. Let ω0 be the weight corresponding to the minimal (m, n)-partition (n, 1m−1).
It corresponds to the following generating matrix:
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X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 · · · x1n

x21 0 · · · 0
x31 0 · · · 0

· · · · · ·
xm1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with relations XX∗ = Im and X∗X = In. Observe that in this case, we have L(E,ω0) =
L1(E,ω0), so that we exactly recover the weighted Leavitt path algebra with our
construction. The monoid M1(E,ω0) � V(L(E,ω0)) is given by

M1(E,ω0) = 〈a, x | a = x + (m − 1)a = x + (n − 1)a〉.

(Here, a corresponds to av and x to av(e(1),1).) It is easy to see that the Leavitt type of
L(E,ω0) is (1, n − m). Indeed, observe that

(n − m + 1)a = a + (n − m)a = x + (m − 1)a + (n − m)a = x + (n − 1)a = a,

and the Grothendieck group of M1(E,ω0) is Z/(n − m) (with generator a), so that the
Leavitt type is (1, n − m) as claimed.

The algebra L(E,ω0) has a unique nontrivial trace ideal M, corresponding to setting
x11 = 0. We have L(E,ω0)/M � L(1, m − 1) ∗ L(1, n − 1), the coproduct of the two
simple Leavitt algebras L(1, m − 1) and L(1, n − 1). This is indeed the Leavitt path
algebra of the separated graph (E′, C′) with a unique vertex v and with C′ = {X, Y},
X = {x1, . . . , xn−1} and Y = {y1, . . . , ym−1}. The ∗-isomorphism is given by the
assignment ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x12 · · · x1n

x21 0 · · · 0
x31 0 · · · 0

· · · · · ·
xm1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x1 · · · xn−1
y∗1 0 · · · 0
y∗2 0 · · · 0

· · · · · ·
y∗m−1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We then have

V(L(E,ω0)/M) � 〈a | a = (n − 1)a = (m − 1)a〉

and we get another drop in the Leavitt type, because this algebra has Leavitt type (1, d)
where d := gcd(m − 2, n − 2).

We obtain a maximal ideal m′ ⊃ M such that L(E,ω0)/m′ � L(1, m − 1) ⊗
L(1, n − 1), and pulling back this ideal to L(m, n), we obtain the desired ideal m.
The last statement follows from [3, Theorem 5.1]. �
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