J. Austral. Math. Soc. 20 (Series A) (1975), 110-114.

CONGRUENCE-FREE INVERSE SEMIGROUPS WITH ZERO

G. R. BAIRD

(Received 27 September 1973)

Communicated by T. E. Hall

A semigroup is said to be congruence-free if it has only two congruences, the identity congruence and the universal congruence. It is almost immediate that a congruence-free semigroup of order greater than two must either be simple or 0-simple. In this paper we describe the semilattices of congruence-free inverse semigroups with zero. Further, congruence-free inverse semigroups with zero are characterized in terms of partial isomorphisms of their semilattices. A general discussion of congruence-free inverse semigroups, with and without zero, is given by Munn (to appear).

Let $S = S^0$ be a semigroup with zero. For $x \in S$ we define $A_s(x)$ as follows:

$$A_{S}(x) = \{(a, b) \in S^{1} \times S^{1} \mid axb = 0\}.$$

When there is no possibility of confusion we shall write $A(x) = A_s(x)$.

DEFINITION. A semigroup $S = S^0$ is said to be disjunctive if A(x) = A(y) implies that x = y.

Thus a semigroup $S = S^0$ is disjunctive if the principal congruence $\mathscr{P}_{\{0\}}$ (Clifford and Preston (1961, 1967), Chapter 10) determined by the subset $\{0\}$ of S is the identity congruence on S. The starting point of our discussion is the following result due to Schein.

THEOREM 1. (Schein (1966), Corollary 6.2.1) A 0-simple semigroup $S = S^0$ free (h-simple in Schein's terminology) if and only if S is a disjunctive semigroup.

THEOREM 2. Let $S = S^0$ be a regular semigroup and E the set of idempotents of S. Further, suppose that S is disjunctive. Then $\langle E \rangle$, the semigroup generated by the idempotents of S, is disjunctive.

PROOF. Let $x, y \in \langle E \rangle$ and suppose that $A_{\langle E \rangle}(x) = A_{\langle E \rangle}(y)$. We are required to prove x = y. Take $(a, b) \in A_{S}(x)$. Then axb = 0 and so $a^*axbb^* = 0$, where a^* is an inverse of a and b^* is an inverse of b. Hence $(a^*a, bb^*) \in A_{\langle E \rangle}(x)$ and so by

assumption $(a^*a, bb^*) \in A_{\langle E \rangle}(y)$. Thus $a^*aybb^* = 0$ and so $aa^*aybb^*b = 0$, that is, ayb = 0. Hence $(a, b) \in A_S(y)$ and $A_S(x) \subseteq A_S(y)$. Similarly, $A_S(y) \subseteq A_S(x)$ and so $A_S(x) = A_S(y)$. Since S is disjunctive x = y and our proof is complete.

A non-trivial group with zero ajoined provides a counterexample to the converse of Theorem 2.

Let us recall that an idempotent semigroup is a semilattice of rectangular bands (Clifford and Preston (1961), page 129 Ex. 1).

LEMMA 1. Let $E = E^0$ be a disjunctive idempotent semigroup. Then E is commutative i.e., E is a semilattice.

PROOF. Let $E = \bigcup_{j \in \Gamma} E_j$ be a decomposition of E into a semilattice Γ of rectangular bands $E_j, j \in \Gamma$. Then Γ has a least element ω and $E_{\omega} = \{0\}$. Since $E_{\alpha}E_{\mu}E_{\beta} \subseteq E_{\alpha\mu\beta}$ for $\alpha, \beta \in \Gamma$ and $E_{\omega} = \{0\}$ it follows that, for $a, b \in E$ and $x, y \in E_{\mu}$, axb = 0 if and only if ayb = 0. But E is disjunctive and so x = y. Hence $|E_{\mu}| = 1$ for all $\mu \in \Gamma$ and so E is commutative.

Evidently a semilattice $E = E^0$ is disjunctive if and only if for all $e, f \in E$, $e \neq f$, there exists $g \in E$ such that eg = 0 and $fg \neq 0$ OR $eg \neq 0$ and fg = 0. It is thus an easy matter to decide whether a semilattice is disjunctive or not.

Following Munn (1970) we say that a semigroup is fundamental if and only if the only congruence contained in Green's equivalence \mathcal{H} is the identity congruence. It follows from Lallement (1966) that a regular semigroup S is fundamental if and only if the maximal idempotent-separating congruence on S is the identity congruence.

THEOREM 3. Let $S = S^0$ be a 0-simple regular semigroup and E the set of idempotents of S. Further, suppose that S is fundamental and that $\langle E \rangle$, the semigroup generated by the idempotents of S, is disjunctive. Then S is a congruencefree semigroup.

PROOF. Let σ be a non-identical congruence on S. Then there exist idempotents $e, f \in S, e \neq f$, such that $(e, f) \in \sigma$. Otherwise, σ is idempotent-separating and so the identity congruence by hypothesis, a contradiction. Since $\langle E \rangle$ is disjunctive $A_{\langle E \rangle}(e) \neq A_{\langle E \rangle}(f)$ and so we may assume without loss of generality that there exists $(a, b) \in A_{\langle E \rangle}(e)$ such that $(a, b) \notin A_{\langle E \rangle}(f)$. By compatibility we have $(aeb, afb) \in \sigma$ i.e., $(0, afb) \in \sigma$ with $afb \neq 0$. However, the congruence class containing 0 is a two sided ideal. We conclude that $0\sigma = S$, since S is 0-simple. Thus $\sigma = S \times S$ and so S is congruence-free.

We now recall some results of Munn (1970). Let \mathscr{I}_X denote the symmetric inverse semigroup on a set X. We denote the domain, $X\alpha^{-1}$, and range, $X\alpha$, of an element α of \mathscr{I}_X by $\Delta(\alpha)$ and $\nabla(\alpha)$ respectively. Let E be a semilattice and let T_E be the subset of \mathscr{I}_E consisting of all α in \mathscr{I}_E such that $\Delta(\alpha)$ and $\nabla(\alpha)$ are principal ideals of E and α is an isomorphism of $\Delta(\alpha)$ upon $\nabla(\alpha)$. T_E is an inverse subsemigroup of \mathscr{I}_E . DEFINITION. A semilattice $E = E^0$ is 0-uniform if and only if $Ee \cong Ef$ for all $e, f \in E \setminus \{0\}$.

DEFINITION. A semilattice $E = E^0$ is 0-subuniform if and only if for all $e, f \in E \setminus \{0\}$ there exists $g \in E$ such that $g \leq f$ and $Ee \simeq Eg$.

DEFINITION. Let $E = E^0$ be a semilattice. An inverse subsemigroup S of T_E is called 0-subtransitive [0-transitive] if and only if the following two conditions are satisfied.

(i) S contains the zero of T_E , and

(ii) to each pair of non-zero elements $e, f \in E$ there corresponds $\gamma \in S$ such that $Ee = \Delta(\gamma)$ and $\nabla(\gamma) \subseteq Ef[\nabla(\gamma) = Ef]$.

THEOREM 4. (Munn (1970), Theorems 3.1 and 3.2) (i) Let S be an 0-simple [0-simple] inverse semigroup with semilattice E. Then E is 0-subuniform. [0-uniform]. Furthermore, if S is fundamental, then it is isomorphic to a 0-subtransitive [0-transitive] inverse subsemigroup of T_E .

(ii) Let $E = E^0$ be a 0-subuniform [0-uniform] semilattice and let S be a 0-subtransitive [0-transitive] inverse subsemigroup of T_E . Then S is a fundamental 0-simple [0-bisimple] inverse semigroup with semilattice isomorphic to E.

The next theorem characterizes all congruence-free inverse semigroups with zero.

THEOREM 5. (i) Let S be a congruence-free inverse semigroup [congruence free 0-bisimple inverse semigroup] with zero whose semilattice is E. Then E is disjunctive and 0-subuniform [0-uniform]. Furthermore, S is isomorphic to a 0-subtransitive [0-transitive] inverse subsemigroup of T_E .

(ii) Let $E = E^0$ be a disjunctive and 0-subuniform [0-uniform] semilattice and let S be a 0-subtransitive [0-transitive] inverse subsemigroup of T_E . Then S is a congruence-free inverse semigroup [congruence free 0-bisimple inverse semigroup] with semilattice isomorphic to E.

PROOF. (i) Suppose S is a congruence-free inverse semigroup with zero. Clearly S is 0-simple and fundamental and our result follows from theorems 1, 2 and 4 (i). The alternative reading follows similarly.

(ii) Let $E = E^0$ be a disjunctive 0-subuniform semilattice and let S be a 0-subtransitive inverse semigroup of T_E . It follows from theorems 3 and 4(ii) that S is a congruence free inverse semigroup. The alternative reading follows similarly.

To conclude we exhibit the two simplest types of disjunctive 0-uniform semilattices.

A semilattice $E = E^0$ is called an *M*-semilattice [*M* for matrix, see below] if ef = 0 for $e, f \in E$, $e \neq f$. An *M*-semilattice with *n* elements can be represented diagrammatically as follows:

It can be easily verified that a congruence-free inverse semigroup whose idempotents form an *M*-semilattice is isomorphic to a semigroup of matrix units (Clifford and Preston (1961), page 83, Ex. 7); conversely, every semigroup of matrix units is a congruence-free inverse semigroup whose idempotents form an *M*-semilattice.

A semilattice E with unit, 1, and zero, 0, is called a *hanging tree* if it satisfies the following conditions;

(i) E is uniform,

(ii) for each $e \in E \setminus \{0\}$ there exists a unique finite subset $\{e_1, e_2, \dots, e_k\}$ of E such that $1 = e_1 > e_2 > \dots > e_{k-1} > e_k = e$, where e_i covers e_{i+1} for $i = 1, 2, \dots, k-1$, and,

(iii) there exist $e, f \in E \setminus \{0\}$ such that ef = 0.

The cardinality of the set of elements covered by the identity of a hanging tree E is called the *degree* of E. Condition (iii) implies that the degree of a hanging tree E is always strictly greater than 1. It is easy to show that a hanging tree E is determined up to isomorphism by its degree. A hanging tree of degree 2 can be represented diagrammatically as follows:

We now provide examples of congruence-free inverse semigroups whose idempotents form hanging trees. Let X be a set of cardinality α . Let \mathscr{F}_X^1 be the free semigroup with identity on X and put $P_{\alpha} = \mathscr{F}_X^1 \times \mathscr{F}_X^1 \cup \{0\}$. Define multiplication on P_{α} as follows:

$$0 \cdot (f,g) = (f,g) \cdot 0 = 0$$

(f,g) \cdot (f',g') =
$$\begin{cases} (f,hg') & \text{if } g = hf' \\ (kf,g') & \text{if } g' = kg \\ 0 & \text{otherwise} \end{cases}$$

Then, if $\alpha > 1$, P_{α} is a congruence-free inverse semigroup whose idempotents form a hanging tree of degree α . The semigroups, P_{α} , are the polycyclic monoids of Nivat and Perrot (1970).

References

- A. H. Clifford, and G. B. Preston (1961, 1967), *The Algebraic Theory of Semigroups*, Vol. I, Vol. II, Math. Surveys No. 7, Amer. Math. Soc., (Providence, R. I. 1961 and 1967.)
- G. Lallement (1966), 'Congruences et équivalence de Green sur un demi-groupe régulier', C.
 R. Acad. Sc. Paris, Série A 252, 613-616.
- W. D. Munn (1970), 'Fundamental inverse semigroups', Quart. J. Math., Oxford 21, 157-170.
- W. D. Munn (to appear), 'Congruence-free inverse semigroups', Quart. J. Math., Oxford.
- M. Nivat and J. -F. Perrot (1970), 'Une généralisation du monoide bicyclique', C. R. Acad. Sci. Paris 271, 824-827.
- B. M. Schein (1966), 'Homomorphisms and subdirect decompositions of semigroups', *Pacific J. Math.* 17, 529-547.

University of Auckland Auckland, New Zealand