Geological Magazine

www.cambridge.org/geo

Original Article

Cite this article: Xing H, Xue C, Zhao X,
Symons DTA, and Niu P (2023) Petrogenesis
and tectonic implications of the Early
Carboniferous shoshonitic to calc-alkaline
magmatic rocks of the southern Yili terrane,
western Tianshan. Geological Magazine 160:
855-873. https://doi.org/10.1017/
S0016756822001303

Received: 4 September 2022
Revised: 9 December 2022
Accepted: 14 December 2022

First published online: 4 April 2023

Keywords:
shoshonitic volcanic rocks; slab rollback;
tectonic setting; Xinyuan; Yili terrane

Author for correspondence:
Chunji Xue,
Email: chunji.xue@cugb.edu.cn

© The Author(s), 2023. Published by Cambridge
University Press.

CAMBRIDGE

@P UNIVERSITY PRESS

Petrogenesis and tectonic implications of the
Early Carboniferous shoshonitic to calc-alkaline
magmatic rocks of the southern Yili terrane,
western Tianshan

Hao Xing!®, Chunji Xue?3, Xiaobo Zhao?, DTA Symons* and Penggiao Niu?

IState Key Laboratory of Nuclear Resources and Environment, School of Earth Sciences, East China University of
Technology, Nanchang, Jiangxi 330013, China; ?State Key Laboratory of Geological Processes and Mineral Resource,
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; 3The National 305
Project Office of Xinjiang, Urumgi 830000, China and “School of the Environment, University of Windsor, Windsor,
N9B 3P4, Canada

Abstract

In the Yili terrane at Awulale mountain, most shoshonitic lavas are related to post-collision
extension and were extruded during the Late Carboniferous to Early Permian (310-280
Ma). Herein, we evaluate a small-volume occurrence of shoshonitic magmas in the southern
Yili terrane formed c. 346 Ma ago. The high MgO (Mg#) and positive Hf isotope values of
the shoshonitic magmas indicate the input of juvenile mantle-derived material. Still, their high
Ba-Sr signatures were likely inherited from the partial melting of previously metasomatized
lithospheric mantle. We argue the shoshonitic magmatic activity recorded a syn-subduction
extensional history in the Yili terrane. This interpretation is consistent with the magmatic
records from Early Carboniferous A-type granite and magnesian andesite found in the
Zhaosu-Adentao-Dahalajunshan area of the southern Yili terrane. Combined with the geologi-
cal development in this area, we propose that the emergence of the shoshonitic rocks records
either the retreat of the trench or the rollback of the Junggar oceanic slab that occurred at or
before the 346.1 + 3.1 Ma age of the rocks.

1. Introduction

Petrogenetic studies of potassic rocks from several orogenic belts, including the Andes (Kay &
Kay, 1993), Tibet (Turner et al. 1993) and Sierra Nevada (Manley et al. 2000), show that small
volumes of K-enriched magmas with arc signatures are genetically related to a minor degree of
melting in the sub-continental lithospheric mantle (Turner et al. 1993, 1996; Manley et al. 2000).
Popular tectonic models for the melting of such a lithospheric mantle could include different
tectonic settings, such as: (a) asthenospheric upwelling induced by slab break-off during the
initial stage of post-subduction collision (Feng & Zhu, 2019); (b) partial convective removal
of the sub-continental lithospheric mantle triggered by the shortening and thickening of the
continental lithosphere during ongoing continental collisional processes (Turner et al. 1996);
and (c) rollback and/or foundering of a flat-subducted oceanic plateau in a syn-subduction set-
ting (Li et al. 2017). These studies show that the potassic igneous rocks may have huge potential
in reconstructing tectonic settings and unravelling mantle enrichment mechanisms.

In recent years, the potassic and shoshonitic rocks have drawn more and more research inter-
est and they are usually regarded as a crucial petrological tool for determining the details of
orogenic histories in ancient orogenic belts (Yang et al. 2012; Feng & Zhu, 2019). The develop-
ment of voluminous Phanerozoic magmatic rocks throughout the Central Asian Orogenic Belt
(CAOB) provides a rare opportunity to work on such an issue. One of the best-preserved mag-
matic units in the CAOB is the Devonian-Carboniferous Dahalajunshan Volcanic Formation
(DVF) in the Yili terrane (Zhu et al. 2005, 2009; Wang et al. 2007, 2009; Zhao et al. 2014; Huang
et al. 2020). Specifically, the DVF is an essential marker of subduction of the Palaeozoic oceanic
lithosphere beneath the Palaeo-Yili terrane margin (Zhu et al. 2009; Huang et al. 2020; Xing et al.
2021). Recently, however, some researchers have proposed a rift model for the origin of mag-
matism in the Yili terrane (Xia et al. 2012), whereas others have suggested the magmatism
resulted from the subduction of an oceanic basin beneath the Yili terrane (Zhao et al. 2014;
Huang et al. 2020). Following recent research, most scholars now accept an active continental
margin model, but disagreements remain about the polarity of subduction and the tectonomag-
matic origin of the igneous rocks in the Yili terrane. For example, some studies have linked the
DVFE to the northward subduction of the South Tianshan Ocean (Zhu et al. 2005, 2009; Feng &
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Zhu, 2020), and other studies to the southward subduction of the
Junggar — North Tianshan Ocean (Wang et al. 2007, 2009).

The DVF was extruded initially as normal tholeiitic/calc-alka-
line (CA) magmas along the northern margin of the Yili terrane
(An et al. 2013). In contrast, the high-K calc-alkaline (HK-CA)
and other alkaline products including the associated shoshonitic
basaltic trachyandesite (SHO) magmas of the interior and
southern Yili terrane appeared after the Early Carboniferous
(Zhu et al. 2009; Feng & Zhu, 2019, 2020). Although the Early
Carboniferous alkaline magmatic products have been previously
found in the southern Xinyuan district (Zhu et al. 2005, 2009),
the petrogenesis of a shoshonitic series (SiO,=52-54 wt %,
MgO > 3 wt %, K,O > 3 wt %) has not been previously reported
in this region. Such SHO rocks are important markers of highly
metasomatized supra-subduction magma sources. They occur as
extrusive bodies with shoshonitic mafic lithologies that show a
close relationship to previously erupted calc-alkaline products.
This paper reports new field observations, zircon U-Pb ages, major
and trace element data, and zircon Hf isotopic dataset for the CA
and SHO rocks in the southern Xinyuan region. These findings
provide new insights into the significance of the CA-SHO mag-
matic association in terms of its magmatic source evolution and
causative geodynamic processes.

2. Geological background

The Chinese Tianshan is generally divided into the Eastern and
Western Tianshan, roughly along longitude 88° E. The Western
Tianshan is subdivided into four tectonic units: the North
Tianshan, Yili terrane, Middle Tianshan and South Tianshan, from
north to south (Fig. 1). The North Tianshan is separated from the
Yili terrane and the Middle Tianshan by the North Tianshan
Suture formed by the closure of the North Tianshan - Junggar
Ocean. The Yili terrane and Middle Tianshan are separated from
the South Tianshan by the South Central Tianshan suture
(Atbashi-Inylchek Fault) that was formed by the closure of the
Turkestan Ocean (the South Tianshan Ocean) (Fig. 1; Windley
et al. 2007; Zu et al. 2019). The Yili terrane forms the eastern part
of the Kazakh-Yili microcontinent, beside the easternmost part of
North Tianshan (Fig. 1), where it is wedge-shaped toward the
western region of Xinjiang, China (Windley et al. 2007). The
Yili terrane has critical ophiolite-strewn zones along the bounding
North Tianshan Fault (or north Boluokenu Fault) on the northern
margin and the North Tianshan accretionary wedge on the
northern margin. The ophiolites exposed in the Gangou,
Mishigou, Luweigou and Bayingou areas represent fragments of
the North Tianshan - Junggar oceanic crust. Xu et al. (2006)
obtained sensitive high-resolution ion microprobe (SHRIMP)
U-Pb zircon ages of 324.8 + 7.1 Ma and 344.0 + 3.4 Ma from
the Bayingou ophiolites (plagiogranite and gabbro). These ages
indicate that the North Tianshan - Junggar Ocean existed from
the Late Devonian to the Early Carboniferous. Along the southern
margin of the Yili terrane is an accretionary wedge that most
researchers believe was formed by the northward subduction of
the South Tianshan Ocean beneath the Yili terrane. The ophiolites
exposed in the Changawuzi, Misibulak-Heiying Range, Kule Lake
and Yushugou areas represent fragments of the South Tianshan
Ocean, that have given ages of 450-330 Ma (Long et al. 2006).
To the north of this ophiolite belt is a high-pressure/low-temper-
ature metamorphic region exposed in the Kekesu-Akeyazi—
Atbashy area. The metamorphic activity began before c. 345 Ma
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and finished by ¢. 300 Ma at the end of the Late Carboniferous,
indicating that the Tarim Craton started to collide with the Yili ter-
rane at ¢. 345 Ma at the start of the Early Carboniferous (Gao
et al. 2006).

The Yili terrane mainly contains a Precambrian basement with
overlying Palaeozoic volcanic-sedimentary strata. The basement
rocks mainly consist of migmatite, gneiss, amphibolite, schist,
quartzite and marble (Wang et al. 2014). In the Wenquan area
of the NW Yili terrane, Wang et al. (2014) obtained a laser ablation
- inductively coupled plasma - mass spectrometry (LA-ICP-MS)
zircon U-Pb age of 926 Ma from Neoproterozoic migmatites of the
Wenquan Group, as well as older, inherited zircons of 980-2500
Ma. In the western part of the Awulale mountain region, JL Li
et al. (2009) reported a secondary ion mass spectroscopy (SIMS)
zircon U-Pb age of 1609 + 40 Ma from Mesoproterozoic granitic
gneisses. The Early Palaeozoic strata are composed of Cambrian to
Ordovician siltstone, chert, Silurian neritic clastic sedimentary
rocks, carbonate rocks and volcanic rocks (Han & Zhao, 2018).
An unconformity separates the Late Palaeozoic rocks from the
older strata (XBGMR, 1993). A succession of Late Devonian to
Late Carboniferous strata crops out along both sides of the Yili ter-
rane, going upward from the paralic volcanic lava of the
Dahalajunshan Formation (DVF) into the neritic clastic rocks
and carbonates of the Akeshake Formation, and then into the
bimodal volcanic rocks of the Yishijilike Formation (XBGMR,
1993). Permian terrestrial sedimentary and bimodal volcanic rocks
unconformably overlie these pre-Permian strata, consisting of the
Lower Permian Wulang Formation continental bimodal volcanic
rocks and the Upper Permian molasse successions. Granitoid
intrusions are also widely emplaced into Devonian to
Carboniferous strata that have yielded ages of 362-268 Ma and
have primarily arc-like geochemical signatures (Long et al. 2011).

The study region is located in the southern part of the Yili ter-
rane, and contains distributed Late Palaeozoic volcanic and sedi-
mentary rocks (Figs lc, 2 and 3). These rocks are typically in
fault contact with, or unconformably cover, Precambrian and
Silurian metamorphic rocks. The Late Devonian to Early
Carboniferous DVF consists mainly of basalt, andesite, trachyan-
desite, trachyte and rhyolite with interlayered pyroclastic rocks,
sandstone and limestone (Figs 1c, 2 and 3) and ages of 359-324
Ma (Zhu et al. 2005, 2009). The early volcanic activity began with
the basaltic lava and continued with trachyandesitic to trachytic to
rhyolitic lavas and pyroclastic successions. The pyroclastic deposits
are mainly tuff and volcanic breccia (Feng & Zhu, 2020). The upper
part of the lava—pyroclastic successions is intruded by several gran-
ites, mainly consisting of plagiogranite, quartz diorite and diorite
(Fig. 2; XBGMR, 1993). To the west of the study region, lava con-
tains primitive CA basalts, A-type granites (354-339 Ma; Li et al.
2010) and high-Mg andesite (346 Ma; Wang et al. 2020), sug-
gesting that paroxysmal extensional tectonics accompanied the
opening of the Wusun-Awulale back-arc basin. The appearance
of more potassic lavas in the southern study region validates the
extensional tectonic stages of orogenic magmatism, which was
confirmed by earlier reports of coeval HK-CA/SHO rocks in the
Xinyuan, Laerdundaban and Yuximolegai areas (Zhu et al. 2005,
2009; Feng & Zhu, 2019). Shoshonitic rocks, the objects of this
study, belong to the early DVF stage of volcanic activity. They
are underlain by CA andesitic lava and overlain by andesitic
lithic-crystal tuff and andesitic breccia (Fig. 4). Siltstone and sand-
stone of the Akeshake Formation overlie the DVF and are found in
the upper part of this section, where they are in fault contact with
the DVF strata. Late Palaeozoic granite plutons intrude the
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by XBGMR, 1993). Occurrences of HP/LT rocks according Tan et al. (2019) and Xia & Li (2020).

https://doi.org/10.1017/50016756822001303 Published online by Cambridge University Press


https://doi.org/10.1017/S0016756822001303

858

H Xing et al.

Legend

83°15%'
43¢

25

E Quaternary sequences
Conglomerate, sandstone and
siltstone of the Taxi River Fm.(N,)
@ conglomerate of the Akeshake
Fm.(C))

Andesite, dacite and rhyolite inter-
calated with volcaniclastic rocks
of the Dahalajunshan Fm.(C))

Marble, slate and limestone
m of the Polunganbulake Fm.(Pt,)

Limestone, sandstone and

Intrusions

- plagiogranite

R

- 1Km Q

10

- Kf-granite
quartz diorite
diorite

AN L

c.d
.......... Structures sssssssans
Faults or inferred faults
1‘0- Geologic boundary
83915

83°00°

Fig. 2. (Colour online) Simplified map of southern Xinyuan showing the regional geology (modified from XBGMR, 1993). The location of cross-section A-A’ in Figure 4 is also

shown.

Carboniferous rocks and give a U-Pb zircon date of 318.0 + 2.3 Ma
(XBGMR, 1993). Approximately 10 km east of our study region,
Feng & Zhu (2020) also found a granite pluton with a zircon
U-Pb age date of 319.4 Ma in the upper part of this lava-pyroclas-
tic succession.

3. Methods

Eight samples (four andesites, four andesitic tuff) were collected for
zircon dating and bulk-rock geochemical analysis from the
Xinyuan cross-section running between 42° 21’ 55” N, 83° 09’
33" E-and 43°23’ 17" N, 83° 09’ 51” E~ (Fig. 4). The zircons were
separated from a c¢. 5kg sample of basaltic trachyandesitic tuff
(X10-1) by crushing and sieving. The other samples were crushed
and powdered to a 200 mu size with an agate mortar for bulk-rock
geochemical analyses.

3.1 Zircon LA-ICP-MS U-Pb analytical methods

Zircon separation was done using conventional density and mag-
netic techniques, and the zircons were mounted in epoxy and pol-
ished. Photomicrographs were taken under cathodoluminescent
(CL), transmitted and reflected light to examine the inner structure
and select appropriate test points. Zircon U-Pb isotopic composi-
tions were obtained using a Neptune multiple-collector inductively
coupled plasma mass spectrometer (MC-ICP-MS) with a 193nm-
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FX ArF excimer laser-ablation system at the Isotopic Laboratory,
Tianjin Institute of Geology and Mineral Resources. The laser
beam had a spot diameter of 25 um, frequency of 10 Hz and energy
density of ¢. 2.5 ] cm™2. Helium was used as a carrier gas to enhance
the transport efficiency of the ablated materials. GJ-1 was used as
an external standard for the U-Pb dating analyses (Jackson et al.
2004). Common-Pb corrections were made following Andersen
(2002). Nist SRM 610 glass was used as an external standard to cal-
culate U, Th and Pb concentrations of the zircons. Every eight
analyses were followed by two analyses of standard zircon GJ-1.
Data were processed following Liu et al. (2010) and assessed using
Isoplot 3 (Ludwig, 2003). Age data and concordia plots are
reported with 1o errors, whereas the uncertainties for the weighted
mean ages are at the 95 % confidence level. Details of the analytical
techniques are described by HK Li et al. (2009).

3.2 Whole-rock major and trace element analyses

Major and trace element compositions were analysed by X-ray
fluorescence (XRF; Philips PW2404) and ICP-MS (Finnigan
MAT-6493, Element I), respectively, at the Analytical
Laboratory of the Beijing Research Institute of Uranium
Geology (BRIUG). For the major element analyses, 0.5 g sample
powders were mixed with 3.6 g Li,B,O, 0.4 g LiF, 03 g
NH,NO; and minor LiBr in a platinum pot, then melted to form
a glass disc in a high-frequency melting instrument before analysis.
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Major element analytical accuracy is better than 5 %. For the trace
element analyses (including rare earth), the analytical uncertainties
are within 7 %. The detailed analytical procedures are described by
Cullen et al. (2001).

3.3 In situ zircon Lu-Hf isotope analyses

Zircon Hf isotope analyses were carried out in situ using a Neptune
MC-ICP-MS and a NewWave UP213 ultraviolet laser ablation sys-
tem at the Institute of Mineral Resources, Chinese Academy of
Geological Sciences, Beijing, China. Lu-Hf isotopic compositions
were obtained from the same zircon grains previously analysed for
the U-Pb isotope analyses using an ablation spot size diameter of
40-80 pm. The analytical procedures and interference correction
method of 176Yb on 7®Hf are similar to those described by Hou
et al. (2007). To evaluate the reliability of the analytical data, stan-
dard zircon GJ1 was used as reference material. The weighted aver-
age 7SHIf/*Hf ratio for the GJ1 zircon standard was 0.282000 +
25(26, n=26). The measured °Hf/'”7Hf ratios and the 7°Lu
decay rate of 1.867 x 107! yr! (S6derlund et al. 2004) were used
to calculate the initial "7®Hf/'””Hf ratios. The chondritic values of
176Lu/""Hf = 0.282772 and '7°Hf/"”’Hf =0.0332 reported by
Blichert-Toft and Albaréde (1997) were used to calculate the ey
values.

4. Results

4.1 Petrography and mineral composition of the volcanic
rocks

Eight samples from the DVF were collected from southern Yili ter-
rane (Fig. 4; Supplementary Table S2). The samples mainly come
from volcanic and volcanoclastic rocks.

4.1.1 Trachyandesite (calc-alkaline series, CA)

Trachyandesites from the southern Yili are greyish green, massive
and contain 40-45 % phenocrysts of plagioclase, K-feldspar and
quartz (Fig. 5d). Hornblende is present in only a few samples.
The plagioclase phenocrysts are subhedral and occur as platy col-
umns typically 1.5-2mm in length and 1 mm in width. Their
groundmass is composed of plagioclase, K-feldspar and minor
magnetite with a hyalopilitic texture. Plagioclase and mafic miner-
als in the trachyandesite are commonly replaced by chlorite and
calcite.

4.1.2 Basaltic trachyandesitic tuff (shoshonitic series, SHO)
Basaltic trachyandesitic tuffs overlie the trachyandesite in the field,
and the tuffs are exposed only in small volumes (Fig. 5a). Fresh
basaltic trachyandesitic tuft is purplish-red (Fig. 5b, c¢) and has a
massive texture with 20-35 % K-feldspar phenocrysts and 60-70
% matrix (Fig. 5f). The K-feldspar phenocrysts are euhedral to sub-
hedral and often exhibit dusty zoning. The phenocrysts occur as
platy columns that are typically 1.5-2 mm long and 0.5 mm in
width. Their groundmass comprises aphanitic to microcrystalline
K-feldspar (0.01-0.05 mm) with minor plagioclase, magnetite and
glass (Fig. 5f, g). Opaque minerals (magnetite and ilmenite, up to 5
vol. %) are common in some samples.

4.2 Zircon U-Pb geochronology

Fourteen zircons from basaltic trachyandesitic tuff sample X10-1
were analysed to constrain the crystallization age. Representative
CL images of zircon are shown in Figure 6. The zircons from this
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sample are prismatic, transparent, stubby and subhedral, with
lengths ranging from 80 to 200 pm and widths ranging from 40
to 100 pm, giving length-to-width ratios from 1.5:1 to 2:1. In the
CL images, most of these zircon grains display well-preserved con-
centric oscillatory zoning and some show linear zonation (Fig. 6).
Several grains contain inherited cores with luminescence or zircons
with brighter CL images (Fig. 6). Most zircons show high Th/U
ratios of 0.4-0.9, indicative of a magmatic origin (Hoskin &
Schaltegger, 2003). The 14 zircon grains from 14 analytical spots
show concordant 2°6Pb/?*3U and 27Pb/?**U results within analyti-
cal errors, yielding concordia age of 348.7 + 0.76 Ma. This result is
consistent with a weighted mean 2°°Pb/**®U age of 346.1 + 3.1Ma
(MSWD =0.63). The U-Pb dating results are illustrated in
Figure 7 and presented in Supplementary Table S1.

4.3 Bulk-rock geochemistry

Major and trace element compositions of representative samples of
the volcanic rocks are given in Supplementary Table S2. The loss-
on-ignition is within 3.5 wt % (except for X-12-1 at 4.19 wt %) and
shows no apparent correlation with the major or trace elements
(Supplementary Table S2), indicating any minor alteration (if
present) does not affect the geochemical composition of the whole
rock.

4.3.1 Shoshonitic series
High-K to shoshonitic (SHO) rocks contain low SiO, contents
(52-54 wt %), high alkalis (K,0 + Na,O = 6.64-7.04 wt %) and
plot in the basaltic trachyandesite field on a SiO, vs (K,O +
Na,O) diagram (Fig. 8c). The SHO rocks are also high in MgO
(4.5-6.1 wt %) and tFe,O3 (8.9-9.6 wt %). They have Al,O; content
of 15.9-16.2 wt %, with A/NK and A/CNK ratios of 1.6-1.7 and
0.9-1.1, respectively, and they belong to the metaluminous to
weak-peraluminous series. The SHO rocks show higher K,O
(2.6-3.2 wt %) than other samples and plot in the ‘shoshonitic
series’ field on K,O vs SiO, and Na,O vs K,O diagrams (Fig. 8a, b).
The SHO rocks have high abundances of light rare earth elements
(LREE = 83-94 ppm) with (La/Yb)y values of 5.1-5.6 and weak
Eu negative anomalies (8Eu = 2Eun/(Smy + Gdy)) of 0.90-0.95.
The most striking feature of the SHO rocks is their high Sr and
Ba contents (Sr: up to 1537 ppm; Ba: 984 ppm) and relatively low
Rb contents (19.6-42.8 ppm) with high K/Rb ratios (320-504) and
low Rb/Sr ratios (0.02-0.04) (Supplementary Table S2), which
resemble both the high Ba-Sr granitoids as suggested by Tarney
and Jones (1994) and the high Ba-Sr rocks from Tibet (Fig. 9;
Wang et al. 2018). They are also characterized by enriched
large-ion incompatible elements and depleted high-field-strength
elements (HESE; Nb, Ta, Ti), thereby showing geochemical fea-
tures similar to basalts erupted c. 350 Ma in the study region
(Fig. 9; Feng & Zhu, 2020). In addition, the SHO rocks have mod-
erate heavy rare earth element (HREE) and Y contents (Yb: 2.4-2.6
ppm; Y: 21-24 ppm), high Sr contents (1194-1537 ppm) and rel-
atively high Sr/Y ratios (52-71) but low La/Yb values (7.2-7.8) that
are different from both typical adakites in Awulale and experimen-
tal results on partial melting of hydrous basalt in the garnet stability
field (Fig. 11d further below).

4.3.2 Medium-K calc-alkaline series

Trachyandesites from the Xinyuan section show high SiO, (57-58
wt %) and alkalis (K,O + Na,O =7.4-7.5 wt %), and plot in the
fields of trachyandesite or andesite on a SiO, vs (K,O + Na,0)
diagram (Fig. 8c). These rocks have low K,O (1.2-1.5 wt %),
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Basaltic trachy-
ar_\desitic tuff

caTIAméh) 200um

Fig. 5. (Colour online) Microscopic pictures of the Early Carboniferous volcanic rocks in the southern Xinyuan. (a) Field occurrences of the CA andesite and basaltic trachyan-
desitic tuff. (b, c) Field contact between the CA andesite and the basaltic trachyandesitic tuff. (d, ) Microscopic photos for the CA andesite. (f, g) Microscopic photos for the basaltic
trachyandesitic tuff. Abbreviations: Kfs = K-feldspar; Pl = plagioclase; Qtz = quartz; Cal = carbonate; Amph = amphibolite.
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Fig. 7. (Colour online) Weighted average age of the zircon grains in the studied volcanic rock (left panel); LA-ICP-MS U-Pb zircon concordia diagram (right panel).

MgO (2.4-2.9 wt %) and tFe,O3 (7.7-8.1 wt %) contents. They con-
tain AL,O; (16.9-17.2 wt %) with A/NK and A/CNK ratios of 1.5-
2.8 and 0.9-1.0, respectively, and they belong to the metaluminous
series. These trachyandesitic samples plot in the medium-K calc-
alkaline (CA) series field on SiO, vs K,O and K,O vs Na,O dia-
grams. The total REE and other trace elements of andesites from
the Xinyuan section are similar to the SHO rocks, but they show
either no Eu anomalies or weakly positive ones of 0.99-1.02. Also,
these CA rocks show relatively low contents of LREE (80-87
ppm) with (La/Yb)y ratios of 2.4-2.6 and low concentrations
of HFSE, and low P and Ti in their trace element patterns.
One sample (X12), also collected from the same rock section,
shows very different geochemical characteristics, with low SiO,
(51 wt %) and alkalis (K,O + Na,O=4.5 wt %). X12 plots in
the basaltic andesite field on a SiO, vs (K,O + Na,0) diagram
(Fig. 8c). This sample has high contents of K,O (1.65 wt %),
MgO (4.84 wt %) and tFe,O; (10.12 wt %), and a lower total
REE content than the other trachyandesites. However, its trace
elemental pattern is similar to the basalt from Xinyuan and to
the SHO rocks in this study (Fig. 9).

4.4 Zircon Hf isotope data

Zircon Hf isotopic analyses were conducted on the same samples
used for U-Pb dating. The zircon Hf isotopic data from the vol-
canic samples are illustrated in Figure 6 and (further below)
Figure 11c and listed in Supplementary Table S3. All the results
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of the analysis show a positive variation in initial Hf isotope com-
position, with mantle-like eyg(f) values (+7.6 to +13.1) and very
young one-stage model ages (Tpyr) of 457-678 Ma.

5. Discussion

5.1 Relationship between the medium-K calc-alkaline
andesite (CA) and the basaltic trachyandesitic tuff (SHO)

The CA and SHO have a close temporal-spatial relationship in the
field (Fig. 5). As the CA rocks are lower in the stratigraphic section,
we tentatively consider that the CA erupted slightly earlier than the
SHO rocks. However, higher SiO, contents and lower concentra-
tions of Al,O; and trace elements (such as the LREE) in the CA
relative to SHO rocks suggest that the two rock types were not
derived from the same magma. Further, the absence of a noticeable
Eu anomaly in the more evolved CA rocks cannot be explained by
fractional crystallization from the same parental magma. In addi-
tion, the evolutionary path of SHO follows a linear trend of similar
or higher K content (Beccaluva et al. 2013), but the CA rocks have
no such characterisitics (Fig. 8a). It is generally accepted that an
evolved CA magma should contain higher concentrations of
large-ion lithophile elements (LILEs; e.g. K, Ba and Sr) and lower
concentrations of compatible elements (e.g. Cr and Ni) relative to
an unevolved SHO magma if they originated from a common
parental magma. In the present case, however, the SHO rocks have
higher contents of K,O, LILEs (e.g. Sr, Ba; Fig. 9) and other
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incompatible elements (e.g. LREE) than do the CA rocks.
Therefore, it is implausible that the SHO and CA rocks in the study
region are the evolved products of a single magma. For these rea-
sons, we tentatively consider that the CA and SHO series rocks
evolved from different parental magma.

5.2 Petrogenesis of medium-K calc-alkaline andesite (CA) and
shoshonitic basaltic trachyandesitic tuff (SHO)

The CA rocks contain hornblende and plot in the metaluminous
field with A/CNK < 1.1 (Table S2), low K,0/Na,O ratios (mostly
<1) and low to moderate Mg# values (33-58) that range across the
lower-crust — mantle boundary of 40 (Rapp & Watson, 1995),
which indicates that they are I-type magmatic rocks (Chappell,
1999). The rocks have arc-affinity trace element compositions
characterized by enrichment in LILE and LREE relative to HFSE
(NDb, Ta) with strongly positive Pb and negative Ti anomalies.
Their geochemistry is similar to most calc-alkaline magmas found
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in the adjacent region, probably formed in a continental arc setting
(Fig. 9a, b; Zhu et al. 2005, 2009). Previous studies have suggested
that CA rocks are formed in a continental arc setting and derived
from: (1) an evolved melt derived from the differentiation of an
arc-like basaltic parental magma (Lee & Bachmann, 2014); (2)
the partial melting of subducted oceanic mafic crust or sediment
with subsequent melt-peridotite interaction (Saunders et al.
1987); (3) the partial melting of the lower crust during delamina-
tion, wherein the resultant melt interacts with mantle peridotite
(Kay & Kay, 1993); and (4) the partial melting of metabasalts
(amphibolites) in the lower crust from the intrusion of mantle-
derived magmas (Petford & Atherton, 1996). In general, the frac-
tional crystallization of an arc-like basaltic parental magma produ-
ces an evolved melt that possesses an Eu anomaly and a high
content of incompatible elements such as Ba and Rb. Most of
the CA rocks have relatively high SiO, and low MgO, Ni and Cr
contents with the exception of one sample (X-12), which had lower
SiO; and higher MgO, Nij, Cr, Rb and Ba contents and a minor Eu
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anomaly. Therefore, if the high-SiO, CA rocks evolved from a melt
similar to that of X-12, they should have a negative Eu anomaly and
a higher content of incompatible elements. However, the CA rocks
herein either showed a weak or no Eu anomaly and lower contents
of the incompatible elements than the more mafic X12 sample
(Fig.. 9a, b). This cannot be explained via the fractional crystalli-
zation and differentiation of a parent mafic magma. Instead, it
requires that the andesitic to dacitic adakitic magmas formed
via subducted oceanic slab melt interact with mantle wedge peri-
dotite to produce the high bulk Mg#, Ni and Cr for a given SiO,
content during ascent (Kelemen et al. 2003). However, the CA
rocks herein have high SiO, and low Mg# values (Fig. 10a, b), indi-
cating that they were not in equilibrium with mantle peridotite.
The delamination model of the lower crust could also be excluded
because of delaminated lower-crust melt inevitably interacting and
equilibrating with the mantle peridotite. The geochemical charac-
teristics of our samples suggest that models (2) and (3) are not suit-
able for generating these CA rocks. Moreover, the CA rocks have
low molar AlL,O5/(MgO + FeO") ratios, relatively high molar CaO/
(MgO + FeO7) ratios (Fig. 10d) and they plot in the field of meta-
basaltic and eclogite experimental melts on the Mg# and MgO vs
SiO, diagrams (Fig. 10a, b), whereas the more mafic X12 sample
plots near the mantle melts region. Furthermore, from thermal
modelling, Dufek and Bergantz (2005) found that the aluminium
saturation index for the CA rocks is distributed along the dehydra-
tion melting line of amphibolite under moderate to high pressure.
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Their experimental results indicate that the CA samples were prob-
ably derived from the partial melting of amphibolite by under-
plated juvenile mafic material. Regarding the trace elements,
three samples in this study show either no or only a tiny positive
Eu anomaly on the characteristic listric-shaped REE profile of the
chondrite-normalized diagrams, which implies that the melt prob-
ably coexisted with amphibole. In contrast, the more mafic X-12
sample shows high Sr/Y ratio, low SiO, content and high MgO
(Mg#) content, indicating that it was formed at a greater depth
and had a more juvenile source material. Moreover, all of the
CA samples exhibit a flat HREE (Ho to Lu) pattern, suggesting that
they were derived from a typical continental lower crust, rather
than under high-pressure conditions with garnet as the primary
residue (Castillo et al. 1999). Therefore, the underplating mafic
magma was likely metamorphosed at depth to meta-amphibolite.
The subsequent partial melting of the meta-amphibolite at the
crust-mantle interface and its subsequent evolution account for
the geochemical signature of the CA rocks in the southern
Xinyuan region.

The Early Carboniferous SHO rocks in Xinyuan are different
from the CA samples. They have higher Na,O and K,O and lower
CaO and TiO, contents, likely due to the presence of alkali-feld-
spar. In particular, the SHO samples have low SiO, (52-54 wt %),
high MgO (4.5-6.1 wt %; Mg# =48-57) and high K,O contents
(2.6-3.2 wt %), which means that they are low-SiO, shoshonitic
rocks (Fig. 8) as defined by Morrison (1980). Generally, the input
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of subducted material into a mantle wedge can produce vein net-
works of amphibole and phlogopite within the sub-continental
lithospheric mantle (Foley 1992). Interactions between these meta-
somatic veins and mantle magmas will subsequently result in the
formation of both SHO and CA rocks (Avanzinelli et al. 2009). The
popular petrogenesis model for the SHO magmas can be summa-
rized as follows: (1) partial melting of mafic lower crustal rocks (Pe-
Piper et al. 2009), and (2) partial melting of the metasomatized
sub-continental lithospheric mantle (SCLM) with minor fractional
crystallization (Campbell et al. 2014).

Previous experimental data demonstrate that the partial melt-
ing of basaltic igneous rocks can produce metaluminous to weakly
peraluminous rock signature. The resultant magmas are generally
calc-alkaline to high-potassium calc-alkaline (Rapp & Watson,
1995). With an increasing initial potassium composition in the
source rock, small amounts of partial melting of a mafic source
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in the lower crust can produce more potassium to make dacitic
to rhyolitic compositions (Sisson et al. 2005). For example, Pe-
Piper et al. (2009) proposed that some SHO rocks could be formed
by the partial melting of K-enriched basaltic rocks under high-
pressure (1.5-2.0 GPa) and high-temperature (950 °C) conditions.
However, SHO rocks formed by this mechanism are expected to
have geochemical features similar to those of adakitic rocks (Pe-
Piper et al. 2009). Adakitic rocks are characterized by high Sr/Y
(>20-40) and La/YDb (>20) ratios and low Y (<18 ppm) and Yb
(<1.9 ppm) contents as a result of the presence of garnet and/or
amphibole residues in the source (Defant & Kepezhinskas,
2001). In this study, however, the SHO samples have relatively high
contents of Y and Yb (21-24 ppm and 2.4-2.6 ppm, respectively),
La/YDb ratios of less than 10 (Supplementary Table S2), and high Sr/
Y ratios, which are probably due to the extremely high Sr content in
the rocks. In a diagram of Sr/Y vs Y, the SHO samples plot outside
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the region of adakite, and their distribution is different from that of
a typical adakite of the Awulale mountain region (Fig. 11).
Moreover, experimental studies have indicated that magmas gen-
erated by the partial melting of mafic crustal rocks generally have
Mg# value below 40 (Rapp & Watson, 1995). Meanwhile, the SHO
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rocks in this study are characterized by low SiO, and high MgO
contents, coupled with relatively high Mg# (48-57) and transition
element contents (e.g. V=170-210 ppm, Cr=133-169 ppm).
Note that the high Sr (1194-1537 ppm) and Ba (774-984 ppm)
contents of these SHO rocks cannot be produced by the melting
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of the juvenile mafic lower crust only. Therefore, it is unlikely
that these samples were formed by the partial melting of basaltic
igneous rocks in the lower crust.

An alternative model that could explain the formation of the
high-K magmatic rocks in the study area is the minor degree melt-
ing of the enriched SCLM. Except for fluid-mobile elements such as
Rb, Ba and Sr, the Xinyuan SHO rocks in the DVF have geochemi-
cal characteristics (i.e. major and trace elements, Hf isotopes) that
are similar to those of the basaltic and potassic rocks from the
SCLM in this region (Fig. 9 ¢, d; Zhu et al. 2009; Feng & Zhu,
2020). This similarity, as well as their high K,O, Ba, Sr contents
and mantle-like eyg(f) values (+7.6 to +13.1), suggests that both
mantle-derived and alkali-rich melts contributed to their high-K
magmatic parental melt. Moreover, these SHO rocks exhibit
arc-like signatures, including enriched LILEs and negative Ti,
Nb and Ta anomalies. However, they differ from typical arc mag-
matic rocks by having small to no Zr and Hf anomalies (Fig. 9d)
typical of magmatic rocks derived from extensional environments
because peralkaline melts increase the solubilities of Zr and Hf
(Collins et al. 1982). Further, the high Ti/Y and low Rb/Ba ratios
are not generally ascribed to the continental crust (Fig. 11a). The
compositions have suffered neither severe crustal contamination
nor equilibrium with a mantle-derived melt having residual garnet.
Instead, these features indicate a close relationship with a mid-
ocean ridge basalt (MORB)-like melt.

Previous experiments have shown that fluids in equilibrium
with eclogitized altered oceanic crust and sediments can carry
thousands of parts per million of Sr and Ba. Thus they can substan-
tially elevate the Sr and Ba contents in the overlying lithospheric
mantle (Hermann & Rubatto, 2009). This observation is supported
by studies from magmas in subduction zones (Vigouroux et al.
2008) and primitive melt inclusions in arc rocks (Portnyagin
et al. 2007). Therefore, we infer that the high MgO (Mg#), Sr
and Ba contents were derived from melting of the SCLM that
had been metasomatized by fluids released from an earlier subduc-
tion process. Although the SHO is closely related to the mantle,
their MgO, Mg# values are lower than those of the mantle melt
(Fig. 10a, b), meaning that they were not formed directly from
the partial melting of the mantle source. Instead, the decrease in
tFeO, CaO, MgO, Cr and Ni contents with increasing SiO, suggests
that the SHO rocks are derivatives from more mafic sources via
minor fractional crystallizations of olivine, clinopyroxene and/or
plagioclase.

Castro et al. (2013) suggested that K-enriched magmas may be
generated from a previously metasomatized mantle source when
triggered by change in temperature and pressure and/or by
increased infiltration of volatile-rich fluids released from the sub-
ducted slab. The Ba/Th and Ba/La ratios for the SHO rocks range
from 235 to 276 and 41 to 52, respectively, which exceed those of
most of the coeval CA series in the Yili terrane (Fig. 11e, f), sug-
gesting that an abundance of hydrous minerals, amphiboles or
phlogopites existed in the source region. Further, the ey(f) values
of the zircons in the SHO rocks show positive variable distributions
(ege(t) =+7.6 to +13.1) and very young Tpy =457-678 Ma,
which suggest that they were probably derived from a previously
short-lived metasomatized lithospheric mantle. Owing to the
strong affinity of HREE in garnet and the moderate affinity of
middle rare earth elements (MREE) in amphibole, garnet frac-
tionation from the melt should yield increasing LREE/MREE
(e.g. (La/Sm)y) and MREE/HREE (e.g. (Dy/Yb)y) ratios. In con-
trast, amphibole fractionation should yield an increasing LREE/
MREE ratio, and a nearly constant or decreasing MREE/HREE

https://doi.org/10.1017/S0016756822001303 Published online by Cambridge University Press

ratio (Richards & Kerrich, 2007). In a Sr/Y vs Y diagram, the
SHO rocks distribute sub-parallel to the mafic amphibole source
melting trendline and their K-enrichment (high K/Rb ratio) indi-
cates that amphibole is a primary residual mineral phase in the
source. These same tendencies are also seen in a Dy/Yb vs SiO,
diagram (Fig. 11b). On a La vs La/Sm diagram (Fig. 12b), the par-
tial melting trajectories that coincide with the SHO samples imply
c. 7-8% partial melting of an enriched spinel lherzolite source,
which is consistent with the melting degrees of the adjacent
Early Carboniferous basaltic (Feng & Zhu, 2020) and Late
Carboniferous basaltic andesite samples (Yang et al. 2012).
These features indicate that the SHO rocks in the southern Yili ter-
rane were most likely derived from partial melting of a previously
metasomatized lithospheric mantle source that underwent minor
fractional crystallization during ascent towards the surface.

5.3 Implications for the Late Palaeozoic tectonic evolution of
Yili terrane

Typical potassic magmatic rocks have been documented in oro-
genic belts worldwide. Still, they are also found in other tectonic
settings such as post-orogenic (Bonin, 2004), intraplate (Wang
et al. 2014) and active subduction margins (Morrison, 1980) where
their emergence suggests an extensional tectonic regime. In con-
trast, many examples of the SHO association show an intimate
relationship with a tholeiitic to CA association in an evolved oro-
genic tectonic setting where the SHO rocks tend to be younger and
to occur above a deeper part of the Benioff zone that is further away
from the oceanic trench (Morrison, 1980).

K-enriched magmas in the Yili terrane belong to two eras, i.e.
350-340 Ma (Early Carboniferous; Zhu et al. 2005, 2009; this
study) and 310-280 Ma (Late Carboniferous to Early Permian;
Yang et al. 2012; Feng & Zhu, 2019), as shown in Figure 13.
Many authors have interpreted the late-stage K-enriched magma-
tism to have originated from the break-off of the subducted slab
after the closure of the Junggar or South Tianshan ocean (Yang
et al. 2012; Feng & Zhu, 2019). However, the petrogenesis of the
Early Carboniferous K-enriched magmatism remains poorly
understood. Previous studies have implied the presence of an
extensional setting in the Yili terrane during the Early
Carboniferous. For example, in the Zhaosu and Adentao regions,
there are coeval Fe-Ti basalts, A-type granites (354-339 Ma; Li
et al. 2010) and high-Mg andesites (346 Ma; Wang et al. 2020),
which suggest the presence of a back-arc extensional environment
in an active continental margin. In this study, the SHO series in
Xinyuan was extruded at c. 346 Ma. Their detailed geochemical fea-
tures indicate that the SHO rocks are most likely the evolved prod-
uct of a parent magma derived from the melting of metasomatized
sub-continental mantle rocks. Nevertheless, it is still unclear
whether the SHO rocks were formed in a subduction-related envi-
ronment or a post-collisional period caused by the partial melting
of the sub-continental lithospheric mantle.

Based on the occurrence of Devonian-Carboniferous intru-
sions and coexisting A-type granites distributed along its southern
margin, some authors have proposed that the Yili terrane’s late
Palaeozoic magmatic activity was generated in a post-collisional
setting of the South Tianshan oceanic crust (Xu et al. 2013).
However, this model is inconsistent with published data and obser-
vations. For example, there are no known Early Carboniferous ada-
kitic rocks in the southern Yili terrane as would be expected to
result from the melting of a broken slab (Omrani et al. 2008).
Also, slab break-off would have induced a linear heat pulse parallel
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Fig. 12. (Colour online) Plot of (a) Zr/Yb vs Nb/Yb for the SHO and CA samples from
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to the subduction zone, which would have produced a relatively
narrow linear zone of magmatism that is not present (Keskin
et al. 2008). Only the Awulale magmatic belt exhibits a linear zone,
but the ages of its magmatic events are later than the 346 Ma extru-
sion of the SHO rocks in this study. Moreover, this model is incon-
sistent because a post-collisional event should have begun with a
developed crustal anatectic episode that yields peraluminous gran-
itoids and related volcanic rocks followed by a K-enriched mag-
matic event (Bonin, 2004). However, there is no geological
evidence to prove the existence of such Early Carboniferous per-
aluminous magmatic suites or related volcanic rocks in the
southern Yili terrane.

Geochemical studies of modern arc-related magmatism have
shown that Ba/La and Ba/Nb ratios can be used as indicators of
the total slab-derived input into a mantle wedge. Carr et al.
(1990) observed a correlation between the Ba/La ratios of arc lavas
and the subduction angle along the Central American arc. They
attributed the low Ba/La ratios to metasomatism of a larger volume
of the overlying mantle wedge during shallow subduction, thereby
giving a less pronounced subduction signature. The significantly
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higher Ba/La ratios of the K-rich SHO samples imply that their
generation is associated with a steepening angle of the subducting
slab. The Ba/Nb ratio also provides an indicator of the amount of
fluid in the mantle source region, which is a rough proxy for the
water content. In contrast to the geochemical data for the
Devonian to Carboniferous magmatic rocks, the Early
Carboniferous (350-340 Ma) rocks show a consistent variation
of their potassium index (K1) and their Ba/La and Ba/Nb ratios
that indicates the K-enriched magmatic event had a close relation-
ship to the input of material from the subducted slab (Fig. 13). In
terms of the Hf isotopes, the magmatic rocks of Yili terrane have
changing epdt) values with time, i.e. the evolutionary trend
changed from upward to downward (the shift occurred at c. 345
Ma). Further, the spatial-temporal distribution and geochemical
characteristics of the late-stage arc magmatism during the Early
to Late Carboniferous throughout the Yili terrane suggest that both
the northward movement of arc-related magmatism and the
increasingly depleted isotopic characteristics (Fig. 14) may be
related to the retreat of the Junggar oceanic plate (Cao et al.
2017). Moreover, the formation of the Early Carboniferous gran-
ites and Late Carboniferous gabbros found in the Baluntai district
are more likely related to the rollback of the subducted Palaeo-
Junggar Ocean rather than to post-collisional break-off (Yin
et al. 2016). In this study, the coeval SHO rocks probably formed
in an extensional setting that is related to slab rollback of the
Junggar oceanic crust. The angle of the subducted slab below
the Yili terrane may have changed, allowing for increased fluid
input to the mantle wedge or even further asthenospheric inter-
actions. The flow of hot mantle material led to the partial melting
of previously metasomatized lithospheric mantle that contained
amphibole-bearing veins, thereby forming the K-rich mafic
magma responsible for the SHO rocks. Therefore, we infer that
the geodynamic setting of the Yili terrane was transformed from
a compressional to an extensional regime induced by the rollback
of the oceanic slab that began in the Early Carboniferous.

Based on a previously proposed tectonic model and the findings
herein, the petrogenesis of the SHO rocks in the southern Yili ter-
rane is as follows. First, normal subduction probably began during
the Devonian to Early Carboniferous when the 417-350 Ma calc-
alkaline volcanic rocks and I-type granites were formed in the
northern Yili terrane. The arrival of a buoyant oceanic plateau
at ¢. 350 Ma began to flatten the slab. Next, at c. 346 Ma, the flat
slab underwent rollback toward the north, resulting in the north-
ward-younging of Late Carboniferous magmatism in the Awulale
mountain region (Figs 14 and 15). The slab rollback caused
increased fluid input into the mantle wedge as well as minor asthe-
nospheric mantle upwelling (Figs 14 and 15), which triggered par-
tial melting in the metasomatized lithospheric mantle above it and
produced the Early Carboniferous SHO magmatism in the
southern Yili terrane.

6. Conclusions

This work documents the existence of a 346 Ma shoshonite (SHO)
suite in the Early Carboniferous Dahalajunshan Volcanic
Formation of the southern Yili terrane. These SHO rocks are char-
acterized by low SiO, and high potassium contents. Their geo-
chemical features suggest that the parental mafic magma was
derived from partial melting of a previously metasomatized
sub-continental lithospheric mantle. A review of the geochemical
results from the region’s Devonian to Carboniferous magmatic
rocks reveals that the K-enriched SHO magmatic event had a close
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Fig. 13. (Colour online) (a) Potassic index (K1)
plotted against age, showing that the highly
potassic magmatic activity mainly belongs to
two eras, the Early Carboniferous (350-340
Ma) and the Late Carboniferous period (<310
Ma). K1 index is given by K1=K,0 — 0.145
(SiO,) 4 5.135, and the field of K1 >0 belongs
to the shoshonite series (Manley et al. 2000);
(b) Ba/Nb vs age (Ma). (c) Ba/La vs age (Ma);
(d) Sr/Y vs age (Ma). Data from the shoshonitic
samples from Tibet are from Campbell et al.
(2014), and from the Morocco shoshonitic rocks
are from Gill et al. (2004).
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Fig. 15. (Colour online) Sketch model showing the Early Carboniferous tectonic evolution of the Yili terrane and the formation of the shoshonitic rocks in the south of Xinyuan
district. The rollback of the Junggar oceanic slab caused the extensional strain in the upper plate and the partial melting of the previously metasomatized mantle wedge that

produced the shoshonitic rocks.

relationship to the tectonic attitude of the subduction system.
Further, these SHO rocks were likely formed during the rollback
of the subducting flat slab, which was responsible for the input
of the additional material content.
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Highlights. Early Carboniferous basaltic trachyandesitic tuffs at Xinyuan of the
southern Yili terrane have a shoshonitic geochemical affinity.

These basaltic trachyandesitic tuffs were formed by partial melting of meta-
somatized lithospheric mantle.

The southern Yili terrane have an extensional setting during Early
Carboniferous.
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