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Friction drag model for axial turbulent flow
along the surface of a circular cylinder based on
the universal characteristics of wall turbulence
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The friction drag of the axial flow along the outer surface of a cylinder varies with the
cylinder radius and flow conditions. This study included direct numerical simulations of
the axial turbulent flow along a circular cylinder under different conditions for obtaining
the turbulence statistics and wall friction coefficient. Then the characteristics of velocity
streaks were observed from a geometrical perspective of turbulence structures around the
circular cylinder, and compared with the characteristics of the turbulence structures in a
boundary layer on a flat plate. The results showed that the velocity streak spacing and
the distance between the velocity streak and the cylinder surface in the viscous length
scale do not vary substantively with the radius of the cylinder, and are the same as those
of the turbulent flow along a flat plate. Therefore, they can be considered geometrical
characteristics of the turbulence structure independent of the cylinder radius. Moreover,
the friction coefficient per pair of high- and low-speed velocity streaks is the same as that
of flat-plate turbulent flow, independent of the cylinder radius, and can be regarded as a
dynamical characteristic for a pair of velocity streaks. Two equations were derived based
on the characteristics of wall turbulence. The characteristics of the turbulence predicted
by the two formulae were consistent with the simulation results. Consequently, we showed
that the wall friction coefficient and number of the velocity streak pairs, which are
statistical and structural characteristics of wall turbulence, can be predicted appropriately
by specifying the radius Reynolds number.

Key words: turbulence simulation

1. Introduction

Fluid flowing around a thin cylinder along its axial direction can become turbulent, even
when the cylinder’s radius of curvature is relatively low (Gould & Smith 1980). In such
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a turbulent flow along a cylinder, streaky structures of the streamwise velocity fluctuation
exist, which are similar to those of turbulent flow along a flat plate. However, in this
turbulent state, the friction drag acting on a thin cylinder is 10–100 times larger than that on
a flat plate, depending on the radius of the cylinder (Gould & Smith 1980). This is because
the turbulent flow along a wall with convex curvature transverse to the flow direction has a
smaller area of the wall surface relative to the volume of the turbulent flow field, resulting
in a larger drag per area. Notably, the turbulence is maintained in such cases, even though
the area in which turbulence is generated is limited in flow along a thin circular cylinder
because the surface area is small in relation to the volume of the flow field. In contrast
to the case of flat-plate turbulent flow, the proportion of uniform flow in the flow field is
large, and the area of shear flow is small. For example, the amount of friction drag acting
on the yarn depends on the state of air flow around the yarn when considering the transport
of fine yarns in a spinning machine. Therefore, the state of laminar or turbulent flow can
change the energy efficiency concerning the driving force in the transport of yarns. Axial
flow along a thin cylinder has been investigated with respect to the relationship between
the sonar array diameter and the noise in a towed sonar (Potter et al. 2000; Tutty 2008;
Jordan 2011b). Moreover, axial flow along a cylinder must be investigated from not only an
engineering perspective but also an academic perspective to gain fundamental insights into
turbulent phenomena. Nevertheless, few studies have investigated the turbulence present
in the axial flow along a cylinder, and this system has received less attention compared to
the flow along a flat plate.

Although many studies have focused on the flow in a direction perpendicular to the axis
or inside a pipe, research on axial flow along the wall surface outside a cylindrical object
in general is limited. For example, there are some studies that focused on the turbulent
annular Poiseuille flow (Satake & Kawamura 1995; Liu & Lu 2004; Ishida, Duguet &
Tsukahara 2016) to investigate the characteristics of the turbulence structures in flow with
constrained circumferential periodicity along the convex wall surface around the inner
cylinder. However, the results of these studies depend on a parameter related to the distance
to the inner wall of the outer cylinder, which is different from the flow field assuming a
yarn, which is the focus of our study. Glauert & Lighthill (1955) theoretically analysed
the laminar flow in a boundary layer along a circular cylinder. Their results showed
that the profile of the streamwise velocity of laminar flow around a circular cylinder in
the radial direction is similar to that of the flat-plate turbulent flow in the wall-normal
direction. Methods for measuring unsteady phenomena in the flow field are required to
characterise turbulent flow. Moreover, predictive models for the wall friction coefficient
in the range from laminar to turbulent flow along a circular cylinder have been proposed
through theoretical analyses and experimental measurements (White 1972; Gould & Smith
1980; Alam 2020). In addition to the prediction of the wall friction coefficient, the
characteristics of turbulent flow as a function of the curvature radius of the wall surface
were investigated to clarify the mechanism for sustaining turbulence (Willmarth et al.
1976; Luxton, Bull & Rajagopalan 1984; Lueptow, Leehey & Stellinger 1985; Snarski &
Lueptow 1995; Bokde, Lueptow & Abraham 1999; Jordan 2011a). A boundary layer at
some extent downstream along a circular cylinder is in dynamic equilibrium. Therefore,
in such a flow field, the variations in the friction drag and turbulence statistics in the
streamwise direction are not considered (Lueptow et al. 1985; Tutty 2008; Jordan 2011a,b).
Thus we can concentrate on the radius of curvature and flow conditions. Neves, Moin &
Moser (1994) and Neves & Moin (1994) showed through direct numerical simulations
(DNS) that turbulence structures such as streaky structures of the velocity fluctuation
and quasi-streamwise vortices, which are similar to those of flat-plate turbulent flow
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Friction drag model for axial turbulent flow

(Robinson 1991), also exist in turbulent flow along a circular cylinder, and the turbulence
intensities are smaller than those in the case of flat-plate turbulent flow. Ohta (2017)
performed DNS under conditions of the small radius of curvature to investigate one
or two pairs of high- and low-speed velocity streaks around a circular cylinder. The
results indicated that even under conditions of flow along a cylinder with a small radius,
small circumference and limited spanwise spacing, turbulence structures such as velocity
streaks and quasi-streamwise vortices, which are similar to those of flat-plate turbulent
flow, exist, and a certain universality exists in the characteristics of turbulence structures.
However, the relationship between turbulence structures around a circular cylinder and
the turbulence statistics, such as the mean velocity profile and wall friction coefficient,
varying depending on the cylinder radius, has not been clarified. Elucidating the tendency
of the characteristics of the turbulence structures around a circular cylinder depending on
the cylinder radius and the mechanism that determines the wall friction drag can facilitate
the prediction and control of friction drag.

In this study, we performed DNS of air flow in the axial direction along a circular
cylinder under different conditions. These situations may arise in systems such as a
monofilament yarn in a spinning machine. Assuming a sufficiently downstream flow
field, the friction drag can be considered as not changing. Moreover, the turbulence
is statistically quasi-steady in the streamwise direction (Lueptow et al. 1985; Tutty
2008; Jordan 2011a,b). First, we reviewed the results of the previous study in a broader
perspective, and extended them to the geometrical characteristic for turbulence structures.
Subsequently, the characteristics of the turbulence structures, particularly in the directions
normal to the streamwise direction – which can change depending on the radius-based
Reynolds number that is defined considering the cylinder radius and uniform flow
velocity – were observed and compared with those in the flat-plate turbulent flow. The
investigation of the simulation results revealed universal characteristics in the turbulent
flow along the surface of a circular cylinder from the geometrical and dynamical
perspectives. Then we derived equations that describe the characteristics of velocity
streaks as one of the turbulence structures, and the friction drag as one of the turbulence
dynamics. We proposed a predictive model for the wall friction coefficient that covers a
range from well-developed turbulent flow along the surface of a circular cylinder to that
on a flat plate, which includes the universal characteristics of the wall turbulence observed
in this study.

2. Simulation method and conditions

We performed DNS of the boundary-layer flow along a curved surface outside a circular
cylinder in air flow under various conditions of the radius Reynolds number. The
fundamental equations for compressible fluid flow of an ideal gas were solved numerically
using a compressible fluid flow solver (Ohta et al. 2012), which is computationally robust
even under subsonic conditions, which were the focus of this study.

2.1. Fundamental equations for fluid flow
The non-dimensionalised fundamental equations and parameters used in the present
simulations are described as follows.

Mass conservation equation for compressible fluid flow:

∂

∂t
ρ + ∂

∂xi
(ρui) = 0. (2.1)
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Navier–Stokes equation:

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) = − 1

γ M2
∂

∂xi
p

+ 1
Rea

∂

∂xj

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
. (2.2)

Equation of state for ideal gas:
p = ρT. (2.3)

Mach number:

M = u∞√
γ RT0

. (2.4)

Radius Reynolds number:

Rea = ρ0u∞a
μ0

. (2.5)

Here, t is the elapsed time, and xi denotes the spatial coordinates, which are the
dependent variables; ui denotes the velocity components, p is the pressure, and ρ is
the density, which are the independent variables. Also, γ is the specific heat ratio, T is
the temperature, R is the gas constant, and δij is the Kronecker delta. These equations are
expressed using the Einstein summation convention. The flow field was assumed to be
isothermal, and calculation of the temperature was omitted. In this study, the simulation
results were considered to be non-dimensionalised with representative scales for the flow
field. We used the cylinder radius a, uniform flow velocity u∞, temperature T0, viscosity
μ0, density ρ0, and gas constant R as representative scales for non-dimensionalisation.
Here, T0 and μ0 are the constant temperature and viscosity of the flow field, respectively,
and ρ0 is set to a value representing the property of the current fluid of interest.

The fundamental equations of compressible fluid flow were solved assuming air flow;
however, a practically apparent effect of density change was not observed under the
conditions of the present simulations. In the simulation program developed for this
study, we used a fractional step method based on the pressure equation to calculate
the time integral of the fundamental equations. The nonlinear convection and viscous
diffusion terms in the Navier–Stokes equations were calculated using the second-order
Adams–Bashforth method, and the pressure term and mass conservation equation for
compressible fluid flow were calculated using the backward Euler method. The pressure
equation was solved using the successive over-relaxation method. The iterative solution
method works efficiently because the pressure equation for compressible flow is of
the Helmholtz type and we solve the diagonal-dominant matrix equation. The spatial
derivatives were approximated by a second-order central difference method using values
at the boundaries of each grid so that the total flux passing through the boundaries is
conserved. The simulation and observation methods are the same as those used in a
previous study (Ohta 2017) that demonstrated that these methods can be used to predict
flow fields with high accuracy.

2.2. Computational domain and simulation conditions
In this study, we assumed air flow along a monofilament yarn in the transport of spinning
machines at the Mach number based on a uniform flow velocity M = 0.2. We used the
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Periodic condition

No-slip condition

Free-slip and non-reflecting conditions

Outer boundary of the computational domain

Wall surface of a circular cylinder

Lz

Lr

a

u∞ y = r – a

vz vr r

z

vθ

θ

Figure 1. Schematics of the computational domain and boundary conditions.

specific heat ratio of air, γ = 1.4, in the fundamental equations. We did not focus on
the density change because the effect of density change was negligible under the present
conditions. We analysed the flow fields under seven conditions of the radius Reynolds
numbers Rea = ρ0u∞a/μ = 1500, 1250, 1000, 750, 500, 300, 120. The flow along a flat
plate can be considered as that along a circular cylinder with an infinite radius. Hereinafter,
Rea → ∞ is used to denote a case of flow along a flat plate.

In this study, we set up a cylindrical coordinate system for the computational domain, as
shown in figure 1. The axes of the cylindrical coordinate system in the computational
domain are z, r and θ in the axial, radial and circumferential directions, respectively.
The velocity components in each direction are vz, vr and vθ , respectively. The distance
in the radial direction from the surface of the cylinder is y (= r − a). Using the coordinate
system, the fundamental equations for the fluid flows were solved using a numerical
method for a curvilinear coordinate system (Kajishima et al. 1998). The size of the
computational domain is given by Lz and Lr in the streamwise and radial directions,
respectively. Assuming an infinitely long cylinder, the periodic condition was applied to
the boundaries in the streamwise direction. The no-slip condition was applied to the wall
surface, and the free-slip and non-reflecting pressure conditions were applied to the outer
boundary.

Collocated grids were used for the simulations, with the number of grid points being
256 in the streamwise and circumferential directions, and 128 in the radial direction.
The grid points were placed close to the wall surface, with an exponential function in
the radial direction to focus on the vicinity of the wall, resulting in at least 20 points
located in y+ < 10, and four points in y+ < 1. The superscript + indicates normalisation
by the kinematic viscosity ν (= μ/ρ0) and the wall friction velocity uτ . The grid points
are uniformly distributed in the streamwise and circumferential directions. Table 1 lists
the sizes of the computational domain and grid resolution. Although the boundary layer
around a cylinder grows with time, the radial computational domain is large enough so
that the outer edge of the boundary layer never interacts with the outer boundary of the
computational domain during the time the flow field is observed in this study. Instead
of using the simulations in the past study (Ohta 2017), we performed new simulations
for Rea = 300 and 120 to compare the results using a common simulation grid system
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Rea L+
z L+

r 	z+ 	r+ r+	θ

1500 3588 1237 14.01 0.2264–52.07 1.984–32.35
1250 3691 1273 14.42 0.2329–53.56 1.701–32.93
1000 3774 1301 14.74 0.2381–54.77 1.392–33.33
750 3824 1318 14.94 0.2413–55.50 1.058–33.42
500 4163 1436 16.26 0.2627–60.42 0.7676–36.00
300 4496 1550 17.56 0.2837–65.25 0.4974–38.55
120 5701 1966 22.27 0.3597–82.74 0.2523–48.50

Ohta (2017)
300 4447 3829 17.37 0.7015–161.3 0.4919–94.47
120 4353 4878 17.00 0.8927–205.3 0.2504–120.0

Table 1. Computational domain and grid sizes at each radius Reynolds number Rea. The sizes are normalised
with the viscous length scale. Information on the different sizes used in a previous study (Ohta 2017) is shown
for comparison.

under a wide range of conditions (Rea = 120–1500). Notably, the axial grid size in the
viscous length scale, 	z+, at Rea = 120 in the present simulations is larger than that in
the previous study, owing to the difference in the wall friction velocity of each simulation
result. The various statistics were obtained from simulation results for time t/(Lz/u∞) =
1.5–5.0 in all cases. We confirmed that these results are sufficiently converged. In the
following sections, we also present the results of the previous study to prove that the
differences in the grid size and the size of the computational domain do not affect
the considerations of this study. The other conditions are the same as those described
in the previous study (Ohta 2017).

3. Observation of the turbulence statistics and turbulence structures

3.1. Comparison of the turbulence statistics
The turbulence statistics at each radius Reynolds number are compared to identify the
flow characteristics along a circular cylinder. Figure 2 shows the profiles of the mean
velocity in the wall-normal direction at each Rea. The vertical axis indicates the streamwise
component of the mean velocity, v̄+

z , and the horizontal axis indicates the viscous length of
the distance from the surface of the cylinder, y+. The overline represents the temporal and
spatial average in the streamwise and circumferential directions. The dotted and dashed
lines indicate the wall law v̄+

z = y+ and the logarithmic law v̄+
z = log( y+)/0.41 + 5 for

the flat-plate turbulent flow, respectively. The mean velocity profile for Rea = 1500 is
consistent with the wall law and a part of the logarithmic law, which is the same as the
velocity profile for flat-plate turbulent flow. As in a previous study (Neves et al. 1994), the
smaller Rea and the larger the curvature of the surface of the cylinder, the more different
the velocity profile is from that observed in the flat-plate turbulent flow. In particular, at
Rea < 750, the variation due to the difference in curvature is large, and the velocity profile
appears to be unique to flow along a circular cylinder. In addition, the characteristics are
different from those of the flat-plate turbulent flow.

The profiles of the streamwise, radial and circumferential velocity fluctuation intensities,
and those of the streamwise vorticity fluctuation intensity at each Rea, are shown in
figures 3 and 4, respectively. As in the previous study (Neves et al. 1994), the intensity of
the velocity fluctuations decreases as the radius Reynolds number decreases and the effect
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10

v̄z
+

0

20

Rea = 1500

Rea = 750

Rea = 300

Rea = 120

Logarithmic law

Wall law

Neves et al. (1994)

Rea = 311

Ohta (2017)

Rea = 120

y+
100 101 102 103

Figure 2. Comparison of the mean velocity profiles at radius Reynolds numbers Rea = 1500, 750, 300, 120.
The logarithmic law and wall law for flat-plate turbulent flow, and the results of past studies for turbulent flow
along a circular cylinder at Rea = 311 and 120, are also included to validate the reliability of the simulations.

y+

Neves et al. (1994)

Ohta (2017)

y+
s

0

1

2

3

20 40 60

Rea = 1500

Rea = 750

Rea = 300

Rea = 120

v
′+ z r

m
s,

 v
′+ θ 

rm
s,

 v
′+ r r

m
s v′+

r rms

v′+
θ rms

v′+
z rms

Figure 3. Comparison of the velocity fluctuation intensities. The results of previous studies for turbulent flow
along a circular cylinder at Rea = 311 and 120 are shown to validate the reliability of the simulations.

of the wall curvature increases. However, not all velocity fluctuation intensities disappear,
and the unsteadiness of the flow persists even under the condition of the smallest curvature
radius in this study. Furthermore, the smaller the radius Reynolds number, the smaller
the vorticity fluctuation intensity. Vortices are weaker than those in the case of flat-plate
turbulent flow. In particular, in the case Rea = 120, there are no quasi-streamwise vortices;
therefore, from a statistical perspective, the flow is not a well-developed turbulence along
a wall.

Figure 5 shows the ratio of the wall friction velocity of turbulent flow along a circular
cylinder, uτ , to that in the case of flat-plate turbulent flow, uτ flat. The wall friction velocity
is larger for smaller Rea. In particular, at Rea < 750, uτ becomes significantly larger than
that of the flat-plate turbulent flow.

In summary, from the viewpoint of turbulence statistics, the smaller the radius Reynolds
number, the more different is the velocity profile from flow along a flat plate, and the
larger the friction drag. In particular, the change is remarkable at Rea < 750, where the
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Neves et al. (1994)

Ohta (2017)

0.2

0.1

0

y+
20 40 60

Rea = 1500

Rea = 750

Rea = 300

Rea = 120

ω
′+ z r

m
s

Figure 4. Comparison of the streamwise vorticity fluctuation intensities. The results of previous studies for
turbulent flow along a circular cylinder at Rea = 311 and 120 are also shown to validate the reliability of the
simulations.

Rea

∞

Turbulent channel flow

by Kim et al. (1987)

1.5

1.0

0 500 1000 1500

u τ
/
u τ

fla
t

Figure 5. Variation in the wall friction velocity depending on the radius Reynolds number Rea. The wall
friction velocity is normalised with that of the flat-plate turbulent flow.

turbulence intensity is small. This suggests that the increase in the friction drag is because
of the shape of the flow field rather than turbulence.

3.2. Observation of the turbulence structures
We observed changes in turbulence structures in flows along a circular cylinder at
each Rea, where the mean velocity profile is different from that of flat-plate turbulent
flow. Figure 6 shows the instantaneous turbulence structures in the flow fields at
Rea = 1500, 750, 300, 120. At all Rea values, velocity streaks, which are turbulence
structures observed in the flat-plate turbulent flow, exist with high-speed regions (coloured
in red) and low-speed regions (coloured in blue) around the cylinders. At Rea = 1500
and 750, quasi-streamwise vortices (coloured in green) can be observed to coexist with
the velocity streaks. At Rea = 120, only a few vortices are visible at the threshold.
The distributions of the streamwise component of the velocity fluctuation, v′+

z , on one

1000 A35-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
45

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1045


Friction drag model for axial turbulent flow

Main flow

High-speed streak

(a) (b)

(c) (d )

Low-speed streak

Quasi-streamwise vortex

L+ = 200

Figure 6. Instantaneous structures of high- and low-speed velocity streaks and quasi-streamwise vortices
around each circular cylinder at radius Reynolds numbers (a) Rea = 1500, (b) Rea = 750, (c) Rea = 300,
and (d) Rea = 120. The velocity streaks are visualised with the isosurfaces of the streamwise velocity
fluctuation (blue for v′+

z = −2.4, red for v′+
z = +2.4), and the vortices are visualised with the isosurfaces

of the streamwise vorticity fluctuation (green for ω′+
z = ±0.2).

Main flow

+3
v′

z
+

−3

0

Low-speed region
(a) (b)

(c) (d )

High-speed region

Cylinder L+ = 100

Figure 7. Instantaneous distributions of the streamwise velocity fluctuation around a circular cylinder
on a plane normal to the axial direction at radius Reynolds numbers (a) Rea = 1500, (b) Rea = 750,
(c) Rea = 300, and (d) Rea = 120. The numbers of the velocity streak pairs observed on the planes at
Rea = 1500, 750, 300, 120 are 5, 3, 2, 1, respectively.

cross-section of each cylinder normal to the axial direction are shown in figure 7, viewed
from the streamwise direction. Furthermore, we confirmed that qualitatively similar
patterns were observed on the other cross-sections under each condition. Similar to the
velocity streaks found in the flat-plate turbulent flow, high- and low-speed regions alternate
on the wall surface around the circular cylinders. Thus the number of pairs of high- and
low-speed streaks varies with the radius Reynolds number.

The circumferential two-point correlations of the streamwise velocity fluctuation
component at each Rea are illustrated in figure 8 to quantitatively investigate the variation
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Rea = 1500
1

0

0 π/2

�θ

φ
φ

φ φ

π

Rea = 750

Rea = 300

Rea = 120

R(
v
′ z,

 v
′ z)

Figure 8. Circumferential angular two-point correlation of the streamwise velocity fluctuation at the radius
Reynolds numbers Rea = 1500, 750, 300, 120. The distance to the first minimum of the correlation is the mean
spacing between adjacent opposite-sign streaks.

in the number of pairs of velocity streaks with the radius Reynolds number. The vertical
axis indicates the two-point correlation coefficient of the streamwise velocity fluctuation
component v′

z spaced in the circumferential direction, R(v′
z, v

′
z), and the horizontal axis

indicates the angular separation in the circumferential direction, 	θ . The angle 	θ = φ at
which the two-point correlation coefficient R(v′

z, v
′
z) reaches a minimum is the spacing

between the neighbouring high- and low-speed streaks around the circular cylinder.
Subsequently, from the angle φ, the average number of pairs of velocity streaks, N, can be
estimated by

N = 2π

2φ
. (3.1)

Figure 9 shows a plot of N at each Rea. The number of pairs depends on the cylinder
radius, with approximately N = 1 at Rea = 120, and N = 2 at Rea = 300. Generally, as
stated in previous studies (Kim, Moin & Moser 1987; Robinson 1991), the length of the
velocity streaks is finite, and the edges of the velocity streaks are in the computational
domain, as shown in figure 6. The radius Reynolds number is real, and the number of the
velocity streak pairs varying with the condition is an integer. When the radius Reynolds
number varies continuously, the number of pairs varies discretely in each cross-section of
the cylinder; thus there are places where the number of pairs is high and low, depending
on the cross-section of the cylinder. We focused on the average number of pairs, showing
the trend along a long cylinder. Therefore, the average number of pairs of velocity streaks,
N, is not necessarily an integer, but it can be regarded as a real variable. Here, Rea and N
can be assumed to be related by a continuous function, as shown in figure 9.

4. Derivation of formulae for the characteristics of turbulent flow

4.1. Verification of the geometrical characteristic of the turbulence structure
Figure 10 shows schematic representations of the geometrical relationship of the
turbulence structures around a circular cylinder that is based on the distribution of the
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Friction drag model for axial turbulent flow

6

4

2

N

0 500 1000

Rea
1500

Figure 9. Variation of the average number of high- and low-speed velocity streak pairs depending on the radius
Reynolds number Rea. The number of velocity streak pairs was estimated from the mean spacing between the
same-sign streaks.

streamwise velocity fluctuation component v′
z described in § 3.2. Here, a is the radius of

the cylinder, ys is the mean distance between the centre of a velocity streak and the cylinder
surface, and Λ is the mean spacing between neighbouring high- or low-speed velocity
streaks around the circular cylinder. We defined the centre of a velocity streak as the
location where the intensity of the streamwise velocity fluctuation reaches its maximum.
In the flow fields where the velocity streaks exist along a circular cylinder even at a
small cylinder radius, the circumferential periodicity yields a geometrical constraint that
is similar to the spanwise periodicity in a simulation of the minimal flow unit along a flat
plate (Jiménez & Moin 1991).

According to a previous study (Ohta 2017), from the geometrical relationship of the
turbulence structure shown in figure 10, the velocity streak spacing around a circular
cylinder can be obtained as follows. In the case N = 1,

Λ =
{
(a + ys) × cos α + 2πa × α

2π

}
× 4, (4.1)

α = arcsin
(

a
a + ys

)
. (4.2)

In the case N ≥ 2,

Λ = 2π(a + ys)

N
. (4.3)

Here, α is the angle shown in figure 10(a). In turbulent flow along a flat plate, the
mean spacing between neighbouring high- or low-speed velocity streaks is approximately
Λ+ = 110 in the viscous length scale, which is a characteristic of the velocity streaks
(Smith & Metzler 1983; Kim et al. 1987; Moser, Kim & Mansour 1999). Figure 11 shows
the velocity streak spacing in the viscous length scale, Λ+, at each Rea that is estimated by
(4.1) and (4.3). The velocity streak spacing is approximately Λ+ = 110 and is independent
of the radius Reynolds number. This is the same as that for turbulent flow along a flat
plate.
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Centre region of

high-speed streak

(a)

(b)
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low-speed streak
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φ
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(c)

Figure 10. Schematic models of velocity streak distribution around a circular cylinder in the cases (a) N = 1,
(b) N = 2, and (c) N ≥ 3. The spacing between velocity streaks around a circular cylinder in the model is
defined depending on the number of velocity streak pairs.

Λ+
Turbulent f low

along a cylinder

∞

Λ+ = 110
Turbulent channel flow

by Kim et al. (1987)

Rea

500 1000 1500

150

100

50

0

Figure 11. Comparison of the mean streak spacing normalised with the viscous length scale depending on the
radius Reynolds number Rea. The mean streak spacing for turbulent channel flow is shown for comparison.

We considered the factors that are used to determine the spacing between the velocity
streaks. Equations (4.1) and (4.3) indicate that the velocity streak spacing Λ is determined
by the cylinder radius a, the distance between the velocity streak and cylinder surface ys,
and the number of the velocity streak pairs N. Notably, a is determined by the radius
Reynolds number Rea, which is set as a condition for fluid flow simulation. Also, N varies
as a function of Rea, as shown in figure 9. Therefore, instead of these parameters, we
focused on the distance between the velocity streak and cylinder surface, ys, which is
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∞

Neves et al. (1994)

Turbulent channel flow

by Kim et al. (1987)
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along a cylinder
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Figure 12. Comparison of the mean distance between the streaks and the wall surface normalised with the
viscous length scale depending on the radius Reynolds number Rea. Vertical bars indicate the standard errors
for the magnitude of the scatter in each case. The mean streak spacing for the turbulent channel flow is shown
for comparison.

estimated as the position y where the streamwise velocity fluctuation intensity v′
z rms shown

in figure 3 reaches its maximum. Figure 12 shows the distance between the velocity streak
and cylinder surface at each Rea. The positions of the velocity streaks are represented as
averages because they change over time, and error bars indicate the standard errors. Similar
to the velocity streak spacing, the distance in the viscous length scale at Rea ≥ 500 does
not vary significantly with Rea and is approximately y+

s = 14. Moreover, the distance for
turbulent flow along a circular cylinder is the same as that for the flat-plate turbulent flow
(Kim et al. 1987; Moser et al. 1999).

The DNS results of this study indicate that the velocity streak spacing around the circular
cylinder, and the distance between the velocity streak and the cylinder surface, which were
estimated in the viscous length scale, are both constant regardless of the condition of the
cylinder radius and are the same as those for the flat-plate turbulent flow. However, some
discrepancies were observed for Rea = 120 and 300 because of the geometrical constraints
with the small number of the velocity streak pairs shown in figures 10(a) and 10(b).
Therefore, at Rea ≥ 500, these lengths can be regarded as geometrical characteristics of
the turbulence structure independent of the curvature of the wall surface.

4.2. Derivation of a formula for the geometrical characteristic of the turbulence structure
As universal characteristics of the wall turbulence that are independent of the differences
in wall curvature, we can assume that the velocity streak spacing and distance between the
velocity streak and the cylinder surface in the viscous length scale are constant. Thus we
can derive a formula based on the geometrical characteristic of the turbulence structure
around a circular cylinder. Based on the geometry of the turbulence structure shown in
figure 10, the following equation is valid for the velocity streak spacing Λ and the number
of velocity streak pairs N:

2π
(
a+ + y+

s
) = Λ+N (N ≥ 2). (4.4)

According to the schematic in figure 10(a) and (4.1), this geometrical relationship is
not necessarily valid for the case N = 1 because the velocity streak spacing cannot
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be estimated on one circle. Thus we considered the cases N ≥ 2. The cylinder radius
normalised with the viscous length scale is expressed as

a+ = auτ

ν
= au∞

ν

uτ

u∞
= Rea

uτ

u∞
. (4.5)

By definition, the wall friction coefficient Cf can be expressed as

Cf = 2τw

ρu∞2 = 2uτ
2

u∞2 . (4.6)

This equation becomes

uτ

u∞
=
√

Cf

2
. (4.7)

Thus, with the help of (4.5) and (4.7), (4.4) is expressed as

2π

(
Rea

√
Cf

2
+ y+

s

)
= Λ+N. (4.8)

This equation can be rearranged to yield a formula for Cf that is based on the geometrical
characteristic of the turbulence structure around a circular cylinder:

Cf = 2

⎛
⎜⎜⎝

Λ+

2π
N − y+

s

Rea

⎞
⎟⎟⎠

2

(N ≥ 2). (4.9)

From the results of § 4.1, Λ+ and y+
s in the above equation can be regarded as constants

Λ+ = 110 and y+
s = 14, as universal properties of the wall turbulence. Therefore, (4.9)

can be considered as a formula for the three variables Cf , Rea and N.
First, figure 13 shows the wall friction coefficient Cf , estimated by (4.9) depending on

Rea and N, and the results of the DNS at each Rea, indicated by red filled circles. The
series of Cf in the DNS results are compatible with the models from previous studies
(White 1972; Gould & Smith 1980). The application range of the model of Gould & Smith
(1980) was supposed to be between the conditions of laminar flow (Glauert & Lighthill
1955) and developed turbulence (White 1972). The results from previous experimental
studies (Willmarth et al. 1976; Luxton et al. 1984) and a simulation study (Neves et al.
1994) are also plotted in the figure for comparison. Because the Cf values are larger and
located between the conditions z/a = 100 and 500 of White (1972), the boundary layers
in the previous studies may be less developed than assumed in this study. Although the
boundary of the conditions is not clear, for Rea = 120, there is no developed turbulence
along the wall surface because, from a statistical perspective, there are no quasi-streamwise
vortices present, as mentioned in § 3.1. The average number of velocity streak pairs, N,
in the DNS results corresponds to the results estimated by (4.9). The combinations of
the friction drag coefficient and radius Reynolds number correspond to the present DNS
results. As the plots of these results are close to the conditions N = 1, 2 and 3 in the figure,
the numbers of streak pairs in other studies are expected to correspond to the predictions of
the present study, although this information was not given. Subsequently, (4.9) is plotted
three-dimensionally in figure 14. The DNS results are located on the surface given by the
equation, indicating that the results estimated by (4.9) are consistent with the DNS results.
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Friction drag model for axial turbulent flow

N = 3
N = 2

N = 1.000

2.098

N = 4 N = 6
N = 5

Eq. (4.9)

DNS

2.477
3.282

3.850 4.655 5.447

Rea

500 1000 1500

0.02

0.01Cf

0

Figure 13. Friction coefficient for each streak pair number estimated from the radius Reynolds number Rea
with the proposed formula (4.9), and the DNS results with the mean streak pair number N. Predictions by the
models of White (1972) (z/a = 500), Gould & Smith (1980) and Alam (2020) are shown as blue solid, dashed
and dotted lines, respectively, for comparison. Also, a prediction of White (1972) (z/a = 100) is shown as a
red solid line. The results of Willmarth et al. (1976), Luxton et al. (1984) and Neves et al. (1994) are plotted as
blue circle, triangle and filled circle symbols, respectively.

Rea

DNS results

0.02

0.01Cf

0
500

1000
1500 1 2 3 4 5 6 7

Formula for geometry (4.9)

N

Figure 14. Relationship among the radius Reynolds number Rea, mean velocity streak pair number N, and
wall friction coefficient Cf estimated using the proposed formula. The DNS results are shown for comparison.

As mentioned previously, (4.9) shows one relationship among the three variables: the
radius Reynolds number Rea, the wall friction coefficient Cf , and the average number of
velocity streak pairs N. Therefore, two variables, the wall friction coefficient Cf and the
average number of velocity streak pairs N, cannot be uniquely determined if only the radius
Reynolds number Rea is used, as shown in figure 14. We need another equation involving
these three variables to determine these variables uniquely.

4.3. Verification of the dynamical characteristic for a pair of velocity streaks
For a given radius Reynolds number Rea, another formula involving the three variables
Rea, Cf and N is required in addition to (4.9) to uniquely determine the wall friction
coefficient Cf and the average number of high- and low-speed velocity streak pairs N.
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Turbulent boundary-layer flow

by Coles (1962, 1964)

∞
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Figure 15. Comparison of the friction coefficient per pair of high- and low-speed velocity streaks depending
on the radius Reynolds number Rea. The friction coefficient per velocity streak pair for turbulent boundary-layer
flow along a flat plate is shown for comparison.

For a formula with a different dimension in the same flow field, we focused on the
dynamical relationship among the three variables in the turbulent flow along a circular
cylinder, which is independent of the curvature of the wall surface. For this relationship,
we considered the friction coefficient per pair of high- and low-speed velocity streaks,
Cf ,sp, which is defined as

Cf ,sp = 2πa+

N
Cf . (4.10)

Figure 15 shows the friction coefficient per pair of the velocity streaks, Cf ,sp, at each
Rea; Cf ,sp for the flat-plate turbulent flow is given by an experiment (Coles 1962, 1964).
According to experience with flat-plate turbulent flow, the value is not necessarily constant
and can vary depending on the flow conditions. The most common value is quoted here.
In most cases Rea ≥ 300, the friction coefficient per velocity streak pair is approximately
Cf ,sp = 0.56, which is common for turbulent flows along both a circular cylinder and a
flat plate. Therefore, we considered the friction coefficient per velocity streak pair as a
dynamical characteristic for a pair of velocity streaks in wall turbulence, independent of
the curvature of the wall surface, which was derived from the results of the DNS under the
condition Rea ≥ 300.

In contrast, Cf ,sp at Rea = 120 is larger than that under the other conditions. Based on
figure 9, the average number of the velocity streak pairs in this case is N = 1, which does
not satisfy the geometrical characteristic of the turbulence structure, which is the focus
of this study. This is because Rea is relatively small, and as shown in figure 10(a), the
effect of the curvature of the cylinder surface makes the flow specific to the field around
the circular cylinder; and the characteristics of turbulence dynamics related to a pair of
the velocity streaks, which are common from the turbulent flow along a cylinder to that
along a flat plate, are no longer applicable in the case N = 1. Therefore, the universal
characteristics of wall turbulence independent of the wall curvature assumed in this study
are valid under the condition N ≥ 2.
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Rea

Formula for dynamics (4.12)

0.02

0.01Cf

0
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Formula for geometry (4.9)

N

Figure 16. Relationship among the radius Reynolds number Rea, mean velocity streak pair number N, and
wall friction coefficient Cf estimated by the combination of the two equations. The DNS results are shown for
comparison.

4.4. Derivation of a formula for the dynamical characteristic of a velocity streak pair
As a universal characteristic of turbulence dynamics, the friction coefficient per pair of
high- and low-speed velocity streaks, Cf ,sp, can be assumed to be constant. Subsequently,
within the range of conditions under which this characteristic is valid, we derived a formula
based on the dynamical characteristic for a pair of velocity streaks in wall turbulence.
Using (4.5) and (4.7), (4.10) can be transformed to

Cf ,sp = 2π

N
Rea

√
Cf

2
Cf =

√
2π Rea C3/2

f

N
. (4.11)

By further transforming this equation into an expression for the wall friction coefficient Cf ,
the formula for the relationship among the variables based on the dynamical characteristic
of a velocity streak pair is expressed as

Cf =
(

N Cf ,sp√
2π Rea

)2/3

(N ≥ 2) . (4.12)

Assuming a constant value Cf ,sp = 0.56 based on figure 15, (4.12) represents the
relationship among the three variables Cf , Rea and N. We continue our discussion by
noting the value of the dynamical characteristic parameter as Cf ,sp = 0.56. However, the
argument presented in this study is not limited to the value of this parameter.

In figure 16, (4.9) and (4.12) are displayed three-dimensionally with black and blue
surfaces, respectively. The DNS results are located at the intersection of the two surfaces.
This indicates that the results estimated by combining the two formulae are consistent with
the DNS results. Moreover, figure 17 shows the result for a wider range of Rea. We can
obtain Cf = Cf ,sp/Λ

+ = 0.56/110 = 0.00509 by combining the two equations and setting
Rea → ∞. The wall friction coefficient is close to Cf = 0.00503 of flat-plate turbulent
flow (Coles 1962, 1964). This indicates that we can estimate the wall friction coefficient
up to Rea → ∞ as the flow over a flat plate.

Table 2 lists the wall friction coefficients and average numbers of velocity streak
pairs obtained by the DNS and predicted by the proposed model. Because explicitly
solving the conjunction of the two equations is challenging, the solutions were obtained
numerically by iterative calculations. The relative errors of the model results to the DNS
results are also presented to objectively verify the prediction accuracy of the model.
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Rea → ∞

Formula for geometry (4.9)Formula for dynamics (4.12)
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Figure 17. Relationship among the radius Reynolds number Rea, mean velocity streak pair number N, and wall
friction coefficient Cf estimated by the combination of the two formulae over a wide range of Rea. The DNS
results are also shown for comparison. The friction coefficient for flat-plate turbulent flow can be predicted by
combining the formulae at Rea → ∞.

Comparisons with the results of the previous studies shown in figure 13 are also
presented in the table. The model can predict the number of velocity streak pairs under
those conditions. The trends of the changes depending on the radius Reynolds number
correspond, but the errors of the predictions are larger in the case when the development
of the boundary layer is not exactly the same as the present DNS seen in figure 13.
As mentioned during the derivation process of the model, the constant parameters used
in the model were only read from the figures of the DNS results and not specifically
comprehensively optimised. Nevertheless, at Rea ≥ 300, the relative errors are almost
equal to or less than 5 %. The results demonstrate that the model is valid for turbulent
flows where N ≥ 2, or equivalently, where Rea ≥ 300 (see figure 9). The correct prediction
of the changes in the average number of pairs as a function of the radius Reynolds
number confirms that the model appropriately predicts the turbulence statistics based on
the characteristics of the turbulence structure in the present DNS. The high prediction
accuracy of the wall friction coefficient suggests from an engineering perspective that the
model is a practical prediction tool.

In summary, the characteristics of the turbulent flow along a circular cylinder in the axial
direction can be estimated by combining the geometrical characteristic of the turbulence
structure and the dynamical characteristic for a pair of velocity streaks in wall turbulence.
Furthermore, we demonstrated that this approach can predict the wall friction coefficient
of the turbulent flow along a flat plate with Rea → ∞ as flow along a surface with infinite
radius.

5. Conclusions

In this study, we performed DNS of the axial turbulent flow along the surface of a circular
cylinder in air flow. We investigated the characteristics of the changes in the turbulence
structure with the radius Reynolds number, which is defined using the cylinder radius and
the uniform flow velocity, and compared them with those of the turbulence structure in a
boundary layer on a flat plate. The conclusions of this study are as follows.

(i) The geometry of the turbulence structure shows that the velocity streak spacing
around a circular cylinder and the distance between the velocity streak and the
cylinder surface in the viscous length scale do not vary substantively with the
radius Reynolds number, and are the same as those for the flat-plate turbulent flow.
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Rea Cf Model Error (%) N Model Error (%)

Present DNS
1500 0.005813 0.005961 2.550 5.447 5.477 0.558
1250 0.006155 0.006122 0.544 4.655 4.750 2.037
1000 0.006429 0.006355 1.147 3.850 4.020 4.404
750 0.006702 0.006729 0.406 3.282 3.285 0.080
500 0.007823 0.007430 5.028 2.477 2.540 2.559
300 0.009125 0.008694 4.721 2.098 1.929 8.032
120 0.01387 0.01258 9.302 1.000 1.343 34.33
White (1972)
1500 0.005817 0.005961 2.488 — 5.477 —
1000 0.006441 0.006355 1.333 — 4.020 —
500 0.007725 0.007430 3.829 — 2.540 —
300 0.008881 0.008694 2.104 — 1.929 —
Gould & Smith (1980)
120 0.01456 0.01258 13.58 — 1.343 —
Willmarth et al. (1976)
1439 0.00571 0.005996 5.000 — 5.300 —
736 0.00784 0.006757 13.81 — 3.243 —
482 0.00959 0.007505 21.74 — 2.486 —
Luxton et al. (1984)
785 0.0073 0.006664 8.715 — 3.388 —
455 0.01 0.007627 23.73 — 2.405 —
140 0.017 0.011737 30.96 — 1.412 —
Neves et al. (1994)
674 0.00807 0.006892 14.59 — 3.060 —
311 0.00987 0.008588 12.99 — 1.964 —

Table 2. Comparison of the average numbers of the wall friction coefficient and velocity streak pairs estimated
by the present DNS and the proposed model at each radius Reynolds number. The relative errors of the model
predictions to the DNS and results of the previous studies are shown to verify the prediction accuracy of the
model. The results of the previous studies (White 1972; Gould & Smith 1980; Willmarth et al. 1976; Luxton
et al. 1984; Neves et al. 1994) are also compared with the model estimates.

Therefore, they can be regarded as geometrical characteristics of the turbulence
structure independent of the radius Reynolds number.

(ii) The friction coefficient per pair of high- and low-speed velocity streaks in the
viscous length scale is also constant, independent of the radius Reynolds number,
and the same as that for the flat-plate turbulent flow. It can be regarded as the
dynamical characteristic for a pair of velocity streaks in wall turbulence.

(iii) We derived two formulae based on the geometrical and dynamical characteristics
of the well-developed turbulent flow in the axial direction along the surface of a
circular cylinder. The combination of the two formulae can be used as a model to
predict the magnitude of wall friction drag and the characteristics of the turbulence
structure around the circular cylinder.

The model, derived from the DNS findings, aligns with predictions from previous
studies under the same range of conditions. It is valid for radius Reynolds numbers
above 300, where the number of high- and low-speed streak pairs is at least 2,
reflecting the model’s assumption of an unconstrained presence of turbulence structures.
We demonstrated that the proposed approach can accurately estimate the wall friction
coefficient, which is one of the statistical characteristics of the turbulence structure, and
the average number of velocity streak pairs, which is one of the structural characteristics.
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The wall friction drag was predicted in relation to the instantaneous turbulence structure
in this study.
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