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Abstract

Data is the foundation of any scientific, industrial, or commercial process. Its journey flows from collection to transport,
storage, and processing. While best practices and regulations guide its management and protection, recent events have
underscored their vulnerabilities. Academic research and commercial data handling have been marred by scandals,
revealing the brittleness of data management. Data is susceptible to undue disclosures, leaks, losses, manipulation, or
fabrication. These incidents often occur without visibility or accountability, necessitating a systematic structure for safe,
honest, and auditable data management.We introduce the concept of Honest Computing as the practice and approach that
emphasizes transparency, integrity, and ethical behaviour within the realm of computing and technology. It ensures that
computer systems and software operate honestly and reliably without hidden agendas, biases, or unethical practices. It
enables privacy and confidentiality of data and code by design and default. We also introduce a reference framework to
achieve demonstrable data lineage and provenance, contrasting it with Secure Computing, a related but differently
orientated form of computing. At its core, Honest Computing leverages Trustless Computing, Confidential Computing,
Distributed Computing, Cryptography, and AAA security concepts. Honest Computing opens new ways of creating
technology-based processes andworkflowswhich permit themigration of regulatory frameworks for data protection from
principle-based approaches to rule-based ones. Addressing use cases inmany fields, fromAImodel protection and ethical
layering to digital currency formation for finance andbanking, trading, andhealthcare, this foundational layer approach can
help define new standards for appropriate data custody and processing.

Policy Significance Statement

Regulatory frameworks have the vocation to create auditable, validatable, and enforceable rules in any given process
with equal expectations to mandate privacy, security, and fairness. This has been a significant challenge in sensitive
data processing and automated decision-making systems. Large regulatory bodies are limited in their ability to
prescribe demonstrable and systematic protocols for handling andmanaging these data and processeswhile ensuring
transparency at scale. Indeed, they prefer to define high-level principles and shy away from defining ownership
structures. This is largely due to a lack of technical readiness and feasibility at the time ofwriting.HonestComputing,
rooted in trustless computing and confidential computing paradigms, promises to remedy complex regulatory gaps
by providing a technological basis for action, thereby empowering policymakers to establish more transparent and
effective guidelines to ensure compliance, transparency, accountability, and ethical conduct across all verticals.
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1. Introduction

In the digital era, policymakers grapple with an array of complex challenges when it comes to effectively
regulating data management. The exponential growth in data volume, coupled with the explosion of data
modalities, presents a formidable hurdle for crafting comprehensive and adaptable regulatory frame-
works. The primary goal of regulatory frameworks in any domain, particularly in data protection and
privacy, is to establish a structured and protective environment that safeguards individuals, organizations,
and societal interests. Nevertheless, these frameworks must equally foster innovation and economic
growth and strike the correct balance between responsible handling and scope of data utilization.

Naturally, policymakers must reckonwith the usual tensions surrounding the fear of new technologies,
particularly as the complexity threshold extends beyond general knowledge and understanding. This is
particularly true of use cases that call upon concerns ofmass surveillance, somethingwhichwas explicitly
evident during the COVID-19 pandemic (Eck and Hatz, 2020), which saw governments implement
contact-tracing apparatuses but also in the context of telecom data analysis (Oehmichen et al., 2019).

In this article, we motivate and present a specification of Honest Computing as a fully fledged off-the-
shelf solution for ethical data privacy. It leverages a modern, unique assembly of technologies which have
recently reached technological readiness in the industry and are available on the market today. We also
draw attention to the contrast between Honest Computing and Secure Computing, ephasizing the
difference in focus between these two adjacent concepts.

1.1. Motivation

While data protection regulations aim to fortify individuals’ privacy rights and enhance data security, they
often introduce complexities and tradeoffs impacting various facets of the digital landscape. Stricter
regulations may impose financial burdens, particularly on smaller businesses or startups, necessitating
investments in compliance measures and potentially hindering innovation. Moreover, stringent rules
impede data sharing and interoperability among organizations, limiting the potential for collaborative
research or inhibiting the development of new services. Conversely, lax regulations compromise
individuals’ privacy and expose them to data breaches or exploitation by entities seeking to profit from
personal information. Finding the equilibrium between protecting privacy and enabling innovation,
between stringent regulations and fostering growth, stands as a fundamental trade-off in crafting effective
data protection measures.

To make matters more complex, the continuous digitalization of everything represents a sweeping
transformation across industries, societies, and daily life, driven by integrating digital technologies into
every aspect of our world. This further commands the pervasive use of digital tools, data-driven systems,
and interconnected networks that redefine how we communicate, work, interact, learn, and discover.
From smart devices and Internet of Things (IoT) sensors to automated processes and AI-driven decision-
making, the digitalization of everything reshapes traditional norms, jumps across geographical bound-
aries, and adds a scalability dimension to policymakers’work. On the matter of AI, while it applies to any
model generated from data, model defence and intellectual property protection are also topics of great
concern for policymakers (Picht and Thouvenin, 2023).

It is also helpful to consider the different classes of regulations that policymakers leverage to crystallise
these strict requirements. Rule-based and principle-based regulations represent two distinct approaches to
establishing regulatory frameworks, each with its characteristics and applications. Rule-based regulations
are specific, prescriptive, and detailed, laying out explicit guidelines, procedures, and requirements for
compliance. These regulations leave little room for interpretation, offering clear-cut directives and leaving
minimal discretion to those governed by the rules. They are well-suited for addressing straightforward
situations, providing clarity and consistency in enforcement. On the other hand, principle-based regula-
tions are broader and more flexible, emphasizing overarching principles, values, and goals rather than
detailed instructions. These principles set general standards and objectives, offering a framework within
which stakeholders exercise judgment and discretion to tailor their actions to achieve compliance.
Principle-based regulations foster adaptability and innovation, allowing for more dynamic responses to
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evolving circumstances. While they offer greater flexibility, they might also introduce ambiguity and
require more interpretation, potentially leading to inconsistencies in enforcement. Balancing the strengths
and weaknesses of both approaches is crucial in crafting effective regulatory frameworks that achieve
compliance, promote fairness, and cater to the dynamic needs of diverse industries and societal contexts.
With this context at hand, we understand how regulations like the European Union’s General Data
Protection Regulation (GDPR), through lack of technological readiness, have preferred to approach the
issue of sensitive data handling with a more principle-driven approach, leading to its current gaps.

The complexity of validation and enforcement hinders ideal data handling features such as the
processes’ transparency and their exhaustiveness of description. This is a two-part problem again. On
the one hand, understanding the data and keeping it safe from unauthorized reads, potential alteration,
accidental deletion, or error is not enough. On the other hand, we understand that keeping track of what
has happened to the data and the exact processes it has gone through is an unanswered problem. Driving
the accountability of all actors in the data journey is a complicated task and today almost entirely relies on
manual processes prone to human error, black-box systems with unsatisfactory protections subject to
manipulation by administrative or otherwise privileged personnel, and altogether out of reach of
responsible authorities mandated to perform audits only after a breach has occurred. This is compounded
by valid constraints on audit by authorities due to other regulations on preserving industrial secrets and
adherence to other standards defining strict internal perimeters for private companies to perform
contractual obligations, particularly if these audits ought to be routine rather than compelled by a judiciary
act. Many cases exist in the records of companies willingly disposing of or concealing incriminating
information (The Associated Press, 2023; Townsend, 2022; Bitdefender, 2023).

The constantly evolving technological landscape outpaces the speed at which regulations can be
formulated and implemented with appropriate context, creating a persistent struggle to keep pace with
emerging data-related risks and privacy threats, as such data protection regulations feature a series of
tradeoffs that policymakers and stakeholders must carefully navigate. Paradoxically, until very recently,
there were no practical technological solutions to these problems amplified by the progress of digital-
ization. The door is ajar, and since 2015, an array of new technologies have been developed, which can be
assembled into systems fit to empower the most prescriptive regulatory frameworks.

1.2. Background

To provide appropriate solutions, however, it is fundamental to understand the key features of the
challenges policymakers face when drafting regulatory frameworks and the critical requirements that
new technological systems must exhibit to solve them. When approaching the drafting of regulation,
policymakers must understand the data pipeline, from collection to transport, storage, management,
processing, protection and disposal.

Data pipelines involve a complex chain of interconnected activities that starts with a data source and
ends in a data sink. Data pipelines are important for data-driven organizations since a data pipeline can
process data in multiple formats from distributed data sources with minimal human intervention,
accelerate data life cycle activities, and enhance productivity in data-driven applications. However, in
practice, raw data are rarely ready to be consumed and must be transformed by a succession of operations
usually referred to as data pipelines. There aremany reasonswhy a data source cannot be used directly. For
instance, if too many descriptive variables exist, some feature selection or dimensionality reduction
algorithms must be applied. All those operations introduce bias, and their presence or absence in a data
pipeline may be subject to discussion. The data pipeline depends both on the data source and the
algorithm, such that no universal pipeline can work for every data source and algorithm. As such, a
technological answer to the policymaking challenge must retain a high degree of flexibility. We can,
however, isolate two distinct primary principles to consider for any well-controlled data pipeline: data
provenance and data lineage. Data provenance and lineage serve as fundamental principles in ensuring
better data protection by offering critical insights into the origin, movement, and transformation of data
throughout its lifecycle.
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1.2.1. Data provenance: Origin and authenticity of the data
Data provenance—sometimes called “pedigree”—describes the origins of a piece of data and the process
bywhich it makes its way into a database system.With the proliferation of specialist databases and curated
catalogues, the issue of data provenance—where a piece of data came from and the process, sometimes the
whole ETL (Extract, Transform, Load) pipeline, by which it arrived in the database—is becoming
increasingly important, especially in scientific databases where understanding provenance is crucial to
the accuracy and currency of data (Buneman et al., 2001). Data provenance involves tracing the history of
data elements, detailing their origins and any changes they undergo. This information is vital for verifying
data authenticity, reliability, and integrity, thereby enhancing trustworthiness and reducing manipulation
or tampering risks. Understanding data provenance enables better decision-making regarding data quality
and credibility (Buneman and Tan, 2018).

1.2.2. Data lineage: The information journey
Similarly, data lineage encompasses the complete journey of data, depicting how it moves, changes, and
transforms as it travels through various systems, processes, and organizations. This lineage helps in
understanding dependencies, identifying potential vulnerabilities, and assessing the impact of changes or
modifications on the overall data integrity and security.

In its most general form, lineage describes where data came from, how it was derived, and how it was
updated over time. Information management systems today exploit lineage in tasks ranging from data
verification in curated databases to confidence computation in probabilistic databases. Lineage can be
helpful in a variety of settings. For example, molecular biology databasesmostly store copied data and can
use lineage to verify the copied data by tracking the original sources. Data warehouses can use the lineage
of anomalous view data to identify faulty base data, and probabilistic databases can exploit lineage for
confidence computation. In addition to challenges related to space and time efficiency, it can be difficult to
define lineage in domains that allow arbitrary transformations (Ikeda and Widom, 2009).

By implementing robust data provenance and lineage practices, organizations can effectively track data
movements, detect anomalies, and ensure adherence to regulatory requirements such as GDPR. These
principles facilitate accountability and transparency, empowering organizations to demonstrate compliance,
mitigate risks related to data breaches or unauthorized access, and promptly address privacy concerns. Data
provenance and lineage must work closely together to provide an “honest” origin of the data.

Furthermore, data provenance and lineage are pivotal in enabling effective incident response and
forensic analysis during security breaches or data incidents. They provide crucial information for
investigations, helping organizations identify the source of breaches and take appropriate remedial
actions. In recent history, the veracity of data in research has been put into question (Dunleavy and
Lacasse, 2023) due to the same lack of policymakers’ experience.

1.2.3. Technological readiness levels
Technology readiness levels (TRLs) are a classification used to assess the maturity and readiness of a
particular technology or innovation. There exist nine levels, each representing a stage in the development and
validation process of a technology. Developed by NASA in the 1970s to evaluate space technologies, TRLs
have been widely adopted by various industries, including aerospace, defence, healthcare, and more, as a
standardized method to gauge the readiness of technologies for implementation or commercialization
(Mankins, 1995). Assessing technologies using TRLs helps stakeholders, including researchers, investors,
policymakers, and industries, understand the current state of technology development, estimate risks, and
make informed decisions regarding investment, further development, or deployment. It also assists in
communicating the maturity of technologies across different stages of development, fostering collaboration
and innovation between researchers, industries, and regulators (Olechowski et al., 2015). In this article, we
postulate that to be an effective tool for policymakers, our specification for a reference architecture of Honest
Computingmust, at the very least, be based exclusively on technologies that have achieved aTRL5 or above,
meaning technologies which have already been successfully tested outside of a lab in real-world conditions.
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1.2.4. Digital evidences
Digital evidence refers to electronic data or information collected, preserved, and analyzed to support
investigations or legal proceedings. It is a particular element in the policy landscape, as understanding and
validating its validity has an intrinsic legal value. Digital evidence is crucial in guaranteeing chains of
custody, investigating security breaches or complying with legal proceedings. However, despite signifi-
cant advancements in cybersecurity in the age of AI, authenticating digital evidence remains a complex
and challenging task (Santamaría et al., 2023). Existing work on digital evidence provides another base of
knowledge and constraints on which to build the requirement for Honest Computing. In other words, an
Honest Computing system must be able to provide guaranteed, validated digital evidence.

1.3. Requirements

To provide an incentive for use, the design of a prescriptive Honest Computing system must possess
certain nonfunctional qualities aiding its adoption. We first postulate that such a system must be Turing-
complete. Turing completeness is a concept used in computer science to describe a system’s capability to
perform any computation that a Turing machine can, given enough time and memory. ATuring-complete
system or programming language can simulate a Turingmachine, meaning it can execute any algorithm or
compute any computable function. Such a systemmust also be fast; with the ever-growing size of datasets
and computation complexity, particularly with AI workloads, an ideal solution would be able to reach
reasonable performance indicators.

Finally, Honest Computing achieves accountability through three critical pillars: transparency, integ-
rity, and verifiability. It requires demonstrating transparency via verifiable lineage while providing
security and confidentiality.

1.3.1. Transparency
Transparency in software systems refers to the accessibility and visibility of information regarding the
functioning, processes, algorithms, and data handling practices within software applications. It encom-
passes the ability for stakeholders, including users, developers, and regulatory bodies, to understand how
the software operates, processes data, and impacts it has on users and society at large (Leite and Cappelli,
2010). Transparency in software systems holds significant implications for policy challenges, especially
in the realms of privacy and accountability (Ferraiuolo et al., 2022).

When software operates in opaque or proprietary ways, accountability becomes challenging. Trans-
parent systems enable accountability by allowing stakeholders to trace the decision-making processes,
identify potential biases, and understand the implications of software-driven actions. Establishing policies
that promote transparency in algorithmic decision-making and AI systems becomes imperative to hold
developers and organizations accountable for the outcomes of their software (Portugal et al., 2017).

Ethical considerations in technology also intersect with transparency in software systems. Policies
addressing the ethical use of software often focus on transparency to ensure fairness, prevent algorithmic
biases, and uphold societal values. Transparency allows for scrutiny and evaluation of software systems to
detect and address potential ethical issues, such as discrimination or manipulation, fostering ethical
accountability among technology providers (Maggiolino, 2019). In fact, recent work in the field of AI
model classification reinforces the need for a better understanding of fine-grained transparency through-
out, proposing a nomenclature for its evaluation (Bommasani et al., 2023).

However, achieving transparency in software systems presents its challenges. Proprietary software,
trade secrets, or complex algorithms might hinder full transparency. Balancing the need for transparency
while protecting intellectual property rights and commercial interests poses a significant policy dilemma.
Striking a balance between fostering innovation and ensuring transparency and accountability requires
nuanced policy frameworks that encourage transparency without stifling innovation or hindering com-
petitiveness.

In essence, transparency in software systems is essential for empowering users, fostering account-
ability, and addressing ethical concerns in technology. Policymakers must navigate the complexities of
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incentivizing transparency while preserving innovation to create frameworks that promote responsible
and transparent use of software systems.

1.3.2. Verifiability
Verifiability confirms and validates the correctness and reliability of computing processes and outcomes.
It involves providing mechanisms and tools to independently verify the accuracy and integrity of
computations, data, and results. This pillar is essential for building policies that can render computing
systems accountable.

Cryptographic attestations are cryptographic proofs or assertions particularly suited to provide
verifiable evidence or confirmation about the integrity, authenticity, or specific attributes of data,
software, or hardware components. They play a crucial role in ensuring trust, security, and verifiability
in various digital systems, especially in distributed environments such as blockchain networks, cloud
computing, or IoT ecosystems.

These attestations are created using cryptographic techniques that generate digital signatures or hashes
linked to specific pieces of information. They are used to verify the identity of entities, confirm the
integrity of data or software, or attest to the correctness of certain operations or configurations.
Cryptographic attestations in aspects relevant to designing data systems for policymaking can be
categorized into different types:

• Code Signing: Cryptographic signatures, used in software distribution, authenticate the origin
and integrity of software packages. Code signing certificates are used to sign software binaries,
ensuring they have not been tampered with and come from a trusted source (Carné de Carnavalet
and Mannan, 2014). This is a useful tool in the data supply chain to provide a sane base for data
provenance. Over the past few years, actors such as The Linux Foundation® and their Sigstore
project have provided developers with streamlined and free infrastructure to leverage such
techniques.

• Blockchain-based Attestations: In blockchain networks, attestations are used to verify the validity
of transactions or data. Cryptographic proofs are generated and stored on the blockchain, providing a
transparent and immutable record of actions or events (Aydar et al. 2020).

• Remote Attestation: This type of attestation is commonly used in trusted computing environments
to verify the integrity of a remote device or platform (Dushku et al., 2023). A remote entity can
generate cryptographic evidence attesting to the security and integrity of its software or hardware
components (Lie et al., 2003). A trusted party then verifies this evidence to ensure that the remote
device is operating securely and has not been compromised. Trusted platformmodules (TPMs) are a
type of device using a hardware-based security module to store cryptographic keys and generate a
unique attestation identity key (AIK) for a device. Using the AIK, a device can prove its identity and
integrity to a remote verifier. Trusted Execution Environments such as Intel® SGX have the capacity
to provide such features in an integrated fashion as well (Shepherd et al., 2016).

Cryptographic attestations bolster trust by allowing stakeholders to verify the legitimacy, integrity, and
authenticity of data, software, or hardware components without relying solely on trust in a centralized
authority. These attestations leverage cryptographic techniques to provide verifiable proof of various
properties, ensuring that digital interactions and systems can be trusted and validated in decentralized and
distributed environments.

1.3.3. Integrity
Also referred to as tamperproofness, there are two main definitions of integrity in the context of data
management, akin to two sister concepts of tamperproofing.

The first definition refers to data integrity, which is the accuracy and consistency of data over its
entire lifecycle. Ensuring data integrity requires implementing appropriate data validation processes,
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maintaining proper documentation, and implementing security controls to prevent unauthorized access,
modification, or deletion of data. This is particularly important for sensitive data, such as financial or
personal information, where the accuracy and completeness of the data are critical. Data integrity
mechanisms are tamper-evident in nature, and appropriate validation mechanisms will alert stake-
holders.

For instance, a stakeholder could choose to use a Merkle Patricia Trie (MPT) to provide data integrity.
MPTs are a type of data structure, an enhancement of the original Merkle Tree data structure, used in
blockchain technology to store and retrieve data efficiently in a cryptographically secure manner. They
are, for example, employed in the Ethereum blockchain, providing an efficient way to store and retrieve
the state of an Ethereum account and its associated data (Mardiansyah et al., 2023).

The second definition of integrity in data management refers to system integrity, which is the overall
reliability and consistency of a system. System integrity encompasses a range of factors, including
hardware and software reliability, network availability, and data backup and recovery measures. Ensuring
system integrity requires implementing robust security measures, such as firewalls, intrusion detection
systems, and access controls, to prevent unauthorized access and protect against system failures or data
loss. In the context of Honest Computing, we approach goals of system integrity as tamper-resistance.

As it pertains to computing and technology, tamper-proofing usually refers to the tamper-evident
nature of a process, data, or device. A typical example would be Hardware Security Modules (HSMs);
they are dedicated hardware devices designed to protect and manage cryptographic keys and operations
and built with physical security mechanisms, such as strong enclosures and sensors, to detect and respond
to tampering attempts.

Integrity and tamper evidentness are essential aspects of any effective data management to bring about
solid bases for regulatory framework development. By incorporating robust and secure technologies and
techniques, policymakers can ensure the accuracy, reliability, and trustworthiness of data while also
mandating the prevention of unauthorized or malicious alteration of data that could lead to potential harm
or misuse. Additionally, it is worth mentioning that a technological solution to data integrity must follow
standard best practices and ensure resistance to hardware failure other than security-related. An honest
Computing system must be reliable and ensure appropriate data replication.

1.3.4. Deterministic execution
Deterministic execution refers to a computing process or system’s ability to produce the same output or
result when given the same input and operating under the same conditions every time it runs. In other
words, a deterministic system will always yield identical outputs for a specific set of inputs and
environment, regardless of the number of times it executes. There is a consensus in the research
community that nondeterminismmakes the development of parallel and concurrent software substantially
more difficult (Bergan et al., 2011), and this difficulty carries over into the attestation of such software.
Studies in the computational reproducibility of research work also encourage loudly that such practice
must be the standard (Crüwell et al., 2023).

Key characteristics and significance of deterministic execution:

• Reproducibility: Deterministic systems ensure the reproducibility of results, which is crucial in
scientific research, simulations, and testing environments. It allows researchers to validate findings
and verify experimental results.

• Consistency: Deterministic execution guarantees consistency across different executions, even in
distributed systems. This consistency is vital in ensuring that all nodes in a distributed network reach
the same state given the same inputs.

• Debugging andTesting:Deterministic systems simplify debugging and testing processes. Identical
outcomes for a given input facilitate easier identification and resolution of issues.

• Predictability: Predictable behavior in software and systems aids in understanding and anticipating
their operation, which is essential in critical applications like finance, healthcare, and aerospace.
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• Cryptographic Operations: Deterministic execution is crucial in cryptographic operations.
Cryptographic algorithms must produce consistent outputs to ensure security and validate transac-
tions across distributed networks like blockchains.

In software development and system design, efforts must be made to achieve deterministic behavior
whenever possible, especially in critical systems where predictability, reliability, and consistency are
paramount. Techniques like using deterministic algorithms, avoiding randomness in critical paths and
ensuring synchronization mechanisms contribute to achieving deterministic execution in software and
systems. For applications that require a degree of randomness, for example, it is imperative to implement
distributed random generation algorithms (Lalev, 2018).

2. Threat Model for Honest Computing

In this section, we present a formal threat model for Honest Computing, outlining common attack
scenarios, identifying vulnerabilities, and proposing mitigation strategies to enhance computing systems’
honesty posture. Threat modelling is a common practice in software engineering development; however,
we see that up to 73.68% of the assumptions made in these modelling exercises are meant to exclude
threats from consideration (Van Landuyt and Joosen, 2022). The study also found that less than 10% of
assumptions referred to the attackers’ abilities, potentially leaving substential gaps in threatmitigation and
compromising the soundness of security architecture design. A correctly executed Honest Computing
implementation could be a validatable foundation for safe threat exclusion.

2.1. Framing

In this article, we are not concerned with attack vectors susceptible to exposing end-user data but rather
attack vectors susceptible to compromising a system’s privacy, honesty, or its ability to demonstrate
privacy and honesty. One of the intrinsic goals of Honest Computing is to offer a privacy-enabling and
trustless/zero-trust architecture.

2.1.1. Honesty vs security
It is important to understand the differences between “Honest Computing” and “Secure Computing” in
order to correctly assess a viable threat model for Honest Computing. Indeed, secure computing is not
necessarily intrinsically honest. While secure computing aims to protect computing systems from
unauthorized access and disruption, it does not inherently ensure honesty or transparency in how those
systems operate or how data is used.

On the one hand, secure computing primarily focuses on technical measures such as encryption, access
controls, and intrusion detection to prevent security breaches and maintain the integrity of computing
systems. However, it does not guarantee that the system’s behavior is always honest or that users have
complete visibility into how their data is processed, or decisions are made.

On the other hand, Honest Computing emphasizes transparency, accountability, traceability, and ethical
use of technology. It involves practices such as providing clear explanations of data processing methods,
disclosing potential biases in algorithms, and ensuring that users have a comprehensive understanding of
how their data is handled.While secure computing and Honest Computing share common goals of building
trust and confidence in computing systems, they address different aspects of trustworthiness. Secure
computing focuses on technical safeguards against security threats. In contrast, Honest Computing
addresses broader considerations of transparency, fairness, and ethical use of technology.

2.1.2. Responsability boundary
It is equally essential to distinguish between the effectiveness of an Honest Computing system in
guaranteeing the safety of the digital evidence it produces and the adequate safety of a user’s data. We
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assume that the applications running on top of our Honest Computing system are ideally programmed and
do not contain code that would otherwise handle data in an unsecured fashion (e.g., an API that would
simply send data to a remote user outside of its containment unit). As such, we consider the code of
software running on the Honest Computing system and accessed by the client to be out of scope. We can,
however, provide privacy guardrails to ensure the confidentiality of processing.

2.1.3. Root of trust
A root of trust is a foundational component in computer security that establishes a secure starting point for
a system. It is a trusted entity or mechanism that serves as the basis of trust for other components or
processes within a computing environment. The concept is crucial for ensuring data and processes’
integrity, confidentiality, and authenticity in various computing systems, including computers, servers,
mobile devices, and embedded systems. There exist multiple levels of root of trust: Hardware-based Root
of Trust, Firmware-based Root of Trust, Software-based Root of Trust, Network-based Root of Trust, and
Human-based Root of Trust. “Trust” and “Honesty” are closely related concepts but are not synonymous.
Trust is dynamic and belief-based rather than deterministic and evidence-based. There are numerous
examples of “Abuse of positions of trust” where people learnt a posteriori of breaches, cases such as the
Barclays Dark Pool scandal (Inman, 2014) or the NHS Deepmind scandal of 2021 (BBC, 2021). In the
context of Honest Computing, we defined that any Root of Trust at the level of the software or above is
unsuitable because it cannot be used to rigorously demonstrate digital evidence remotely.

2.1.4. Technological stack
In this article, we take the example of an Honest Computing service, hosted on a third-party cloud system,
being accessed from a client device via a standardHTTPweb call such as a RESTful API, but the reflection
is applicable more generally.

2.2. Methodology

While recent frameworks such as Yacraf (Ekstedt et al., 2023) for risk-based threat modelling have been
developed, these risk-based models require an in-depth understanding in the business problem. A
particular software is attempting to solve the associated cost. This approach is unsuitable for analyzing
Honest Computing as its features adopt those of cloud underlays. According to the systematic literature
review on threat modelling performed by Xiong et al. (Xiong and Lagerström, 2019), the field of threat
modelling in cyber security solutions lacks common ground and mainly comprises extensive manual
analysis methods to identify threats. Additionally, we find that describing complex distributed systems
providing effective data flow diagrams (DFDs) is challenging due to the complementary deployment
model nature of these processes (Van Landuyt and Joosen, 2022). The survey by Hong et al. (Hong et al.,
2019), which adopts a combinatorial approach between the STRIDE threat categories and the OWASP
attack families, provides an excellent example of modern threat modelling.

We have chosen to follow a top-down approach to threat discovery and definition based on STRIDE
definitions, starting from the client down to the metal. We assume that at every level, third parties are
malicious or untrustworthy.

2.3. Threat chain and mitigation strategies

• S1 – Compromised client processing: An attacker has compromised the client device and is
injecting false responses to the ingress.Mitigation: Implement a system based on remotely attestable
digital artefacts that can be independently checked against a discreet system.

• I1 – Man-in-the-middle: A proxy service or boundary server with legitimate domain ownership
terminates the TLS connection from an upstream server and re-encrypts in egress. As a consequence,
the proxy can eavesdrop or alter the content of the communication (Bhargavan et al., 2018).
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Mitigation: A double TLS encryption is initiated to protect the data flow from the TLS terminations.
The client no longer relies on HTTPhost validation.

• I3 – Software leak: The software developer manipulates your data in memory and extracts insight
without your knowledge. (Castes et al., 2022)Mitigation: Ensure that the code is remotely attestable
by being run in a TEE.

• I4 – Runtime inspection: The platform runtime executing within a TEE enclave implements a
backdoor which allows it to spy on the communication between the client and the software post-TLS
termination.Mitigation: Ensure that the runtime manager and the software run in separate enclaves
while implementing a two-layer encryption system within the double TLS connection with the client.

• E1 – Theft of the TEE key: An attacker performs a lab attack to extract the TEE key (e.g. through
using an electron microscope). Mitigation: The TEE key should not be used directly as the sole
means to secure data and code in memory. The runtime must rely on a distributed rotating key to
store data in memory or down to disk. Multiple TEEs could exploit distributed ledger technology to
achieve this.

• E2 – TEE vendor attack: The manufacturer of the TEE performs a remote update to the processor
microcode to be able to issue erroneous quotes. Mitigation: Adopting a multivendor approach
allows to perform horizontal validation that computation was not tamperedwith. This eliminates the
need for a singular Firmware-based Root of Trust by extending the responsibility to a distributed
Hardware-based root of Trust.

• T2 – Destruction of the TEE: An attacker attempts to physically damage the TEE in an attempt to
remove a trace of their actions. Mitigation: Adopt multicloud MaaS approach ensures that simul-
taneous destruction of all the TEEs of a cluster is difficult to achieve.

• T3 – Time shift attack on the TEE:An attacker attempts to artificially alter the execution speed of
the TEE through external factors (e.g. increase the temperature). This is done to artificially force a
system to execute a transaction ahead of time. Mitigation: Implement a time-sensitive consensus
protocol for deterministic execution able to detect drift in participants’ clock speed to exclude them
from the quorum.

• D1 – TEE side-channel attack: An attacker attempts to corrupt the communication between the
secure and normal worlds. This can affect cross-TEE communication and impact the ability of the
cluster to validate transactions. (Schaik et al., 2022) Mitigation: Implement an error-sensitive
consensus protocol for deterministic execution able to detect abnormal communication with
participants to exclude them from the quorum.

• S2 – TEE cluster intrusion: An attacker attempts to inject a compromised TEE in the consensus
cluster to steal the shared private key.Mitigation: Implement a mechanism of positive identification
of trusted parties, where the TEEs remote attest each other in an Indentificate Friend or Foe (IFF)
fashion (Chen and Zhang, 2022)

Our threat model lays a foundation for understanding the unique challenges inherent in ensuring
honesty and privacy within computing systems by delineating responsibility boundaries and elucidat-
ing the Root of Trust concepts. The identification of potential threats and corresponding mitigation
strategies provides a road to specification and practical implementation of requirements. Looking
ahead, continual refinement of the threat model, particularly with the ability to protect further edge and
client devices with their own TEEs, will be crucial in adapting to evolving technological landscapes and
emerging threats.

3. Honest computing reference specifications

We propose a first definition of Honest Computing as the practice and approach that emphasizes
transparency, integrity, and ethical behavior within the realm of computing and technology. It ensures
that computers and software operate honestly, transparently, and reliably; and that they enable privacy and
confidentiality of data and code by design and by default.
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The notion of honesty in computing has been thoroughly studied in Secure Multi-Party Computing
(SMPC) research. In his 1998 manuscript, Goldreich defines the outline of semihonest computing agents
and the challenge they represent in that they are assumed to behave according to a defined protocol yet
extract and store historical information as they go (Goldreich, 1999).

Honest Computing ought to solve policy challenges by employing technologies that concern themselves
with the safety of the data and the safety of the code and process applied to the data. This is whywe propose
that an Honest Computing system must be built on top of a distributed ledger capable of storing both code
and data as appropriate, itself built on top of a confidential computing network of agents. This unique
combination permits the provenance gathering of the entire chain of data and workflow, permitting the
demonstration of accountability fit for audit and policy enforcement. Of course, in some cases, a stakeholder
may choose to store data outside of the ledger to avoid the issue of inappropriate retention and integrate
nonhonest computing services via API, but theywould then forego the guarantees offered by such a system.

In consideration of the threat model detailed in the previous section, we detail the foundational bricks
of Honest Computing.

3.1. Confidential computing

Our reference specification proposes to build Honest Computing on top of trusted execution environ-
ments (TEEs), such as Intel SGX (Costan and Devadas, 2016), ARMv9 CAA (Fox et al., 2023), or RISC-
V Keystone (Lee et al., 2020). These are hardware-based security solutions that create Turing-complete-
capable secure enclaves in which applications can execute securely and protect their data from unauthor-
ized access or tampering. Confidential computing also provides remote and local attestations to provide
evidence of the loaded logic and the state of the platform.

TEEs are not all made equal and may exhibit different features. Ménétrey et al., 2022 propose a list of
state-of-the-art TEE features; crucial to implementing Honest Computing are Integrity, Freshness,
Encryption, and Remote Attestation. Naturally, while we assume an ideal TEE, it is necessary over time
to consider the security failures or existing architectures, as is the case for SGX, for example (Chen et al.,
2019), and to which extent these failures impact those crucial features. A sound Honest Computing
implementation understands these risks and provides additional overlay mechanisms to safeguard
processes and data.

For instance, to provide a sufficient level of robustness and redundancy, we envision an Honest
Computing system to be comprised of a cluster of these TEEs responsible for executing application
runtimewithin secure enclaves and a low-level software layer able to negotiate and share shards of private
keys in memory to act as a buffer should the underlying hardware layer be compromised. Hardware
sealing keys are platform-bound and different on every chip, and as such, they guarantee that the data
should be extracted from a physical machine A. It would never be decryptable on physical machine
B. This requires data synchronization and transfer to be operated online between the nodes of a cluster. To
realize this, Honest Computing implements multilevel consensus for its low-level primitives as well as
supported runtime. In an ideal solution, we leverage TEEs frommultiple manufacturers to support a broad
scope of capabilities, limit the impact of any security problem affecting a given vendor, and provide
flexibility to the users. We can also leverage the cryptographic abilities of tamperproof HSMs in tandem
with those of the TEEs (Dib et al., 2023).

3.2. Multilevel consensus

Honest Computing relies on Trustless systems characteristics, pivotal for ensuring integrity, security, and
transparency through:

• Decentralization: Transparency is fostered through decentralization, reducing the risk of a single
point of failure and nurturing trust among participants.

• Consensusmechanisms: Fault tolerance is achieved via consensus mechanisms, ensuring a unified
truth even amidst individual agent failures (Garg et al., 2019).
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• Distributed Ledger: Distributed Ledger databases maintain an immutable historical record,
preserving data integrity and a shared lineage among all involved entities.

In our Honest Computing approach, we distinguish between the data and process layers. The data layer
provides the foundation for Honest Computing. It is organized as a set of TEE nodes sharing a ledger,
featuring integrity validation throughout. We achieve this via the use of a distributed ledger, which
requires an appropriate consensus mechanism. The process layer is concerned with the workflow
implementation made by a stakeholder; to achieve honesty and fairness, an agreement between parties
and users of the system will have to be reached. A minimum built-in consensus mechanism must be
available to this process layer for Honest Computing to be effective.

Consensus mechanisms play a crucial role in ensuring the integrity and security of distributed ledger
technologies (DLTs). They ensure that all participants in a decentralized network agree on the ledger’s
state, even in the absence of a trusted central authority. However, consensus mechanisms are also
important in decision-making processes more broadly. We define them as being built into an Honest
Computing systems software platform.

One attractive solution to the problem of process-level consensus is Shamir’s secret sharing, also
known as Shamir’s key sharding. Shamir’s secret sharing is a cryptographic technique that involves
splitting a secret into multiple parts and distributing them among different participants in a network. To
reconstruct the original secret, aminimumnumber of participantsmust combine their parts. This approach
helps ensure that no single participant has complete control over the secret and reduces the risk of
compromised cryptographic keys or passwords (Shamir, 1979). Furthermore, it reduces the risk of
compromised cryptographic keypairs, as an attacker would need to obtain multiple pieces from multiple
participants to reconstruct the key. Third, it can help to ensure that the network remains operational even if
some participants drop out or become unresponsive. As an extra consideration, we expect that a Shamir
key shardingmechanism fit for Honest Computingwould be constructed on top of key rotationmechanics
to provide extra layers of safety. Shamir’s secret sharing is used in various applications, such as securing
cryptographic keys, protecting sensitive data, and ensuring distributed consensus in blockchain networks.
In recent years, it has also been supplemented with integrity and validation (Benzekki et al., 2017).

3.3. Distributed ledger technologies

DLTs represent a class of digital systems designed to facilitate, record, and validate transactions across
multiple locations or entities without the need for central oversight. These technologies offer decentral-
ized, transparent, and secure methods of recording and managing data across a network of nodes. The
most prominent form of DLT is blockchain. However, other variations and types of DLTs exist, each with
its own unique features and applications. DLTs are prescribed as the storage heart of anHonest Computing
system and ought to be used to preserve data and process code.

At the core of DLTs is the distributed ledger, a database that maintains a continuously growing list of
records (blocks) linked together and secured through cryptography, where each node retains an identical
copy of the ledger. To store, manage, and retrieve this data efficiently in a cryptographically secure
manner, ledgers can leverage specific data structures such as MPTs. These data structures are usually
structured as a tree, specifically a modified radix tree or trie, where each node represents a partial hash of
its child nodes. The name “Patricia” stands for “Practical Algorithm to Retrieve Information Coded in
Alphanumeric,” and this data structure is space-efficient and allows for quick data integrity verification by
storing hashes of node values.WhileMPTs offermany advantages in terms of efficiency and security, they
also pose challenges related to initial construction costs and complexities in handling large-scale data
updates. Ongoing research aims to optimize these data structures further, making themmore scalable and
adaptable for various blockchain use cases beyond Ethereum (Mardiansyah et al., 2023).

DLTs traditionally use game theory to designmechanisms that incentivize participants to act in the best
interest of the network as a whole. Game theory can help address some key challenges, such as the
“tragedy of the commons” problem. By designing mechanisms (e.g., proof-of-work) that align
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participants’ incentives with the network’s goals, game theory can help DLTs achieve greater decentral-
ization, security, and efficiency. In another branch, in a proof-of-stake (PoS) blockchain network, game
theory can be used to design a consensus mechanism that incentivises participants to validate transactions
honestly and penalize them for behavingmaliciously. Our goal of providing a high throughput and ethical
Honest Computing framework demands that we forgo these game theory-based mechanisms for the
“proof-of-authenticity” or “proof-of-processor” that a TEE-based architecture offers. By leveraging TEE
local attestation capabilities, widely adopted consensusmechanisms, such as Raft, can bemadeByzantine
Fault Tolerant (BFT). It is crucial in the conception of DLT to ensure the utilization of a BFTmechanism to
safeguard systems from Byzantine failures.

Raft’s ability to maintain consensus, elect leaders, and ensure log replication among nodes is
advantageous in DLT environments where multiple nodes collaborate to maintain a shared and tamper-
resistant ledger.While Raft is not commonly associated with blockchain networks that use Proof-of-Work
or POS mechanisms, its application can be found in permissioned or private blockchains, distributed
databases, or other forms of DLTs where maintaining a decentralized yet more controlled environment is
desirable.

4. Discussion

4.1. Intrinsict benefits: An answer to data access revocation

Data access revocation in computing refers to the complex challenge of effectively and promptly revoking
access to sensitive or personal data that has been shared or provided to entities or systems, particularly in
distributed and interconnected environments. The difficulty lies in ensuring that once access permissions
are revoked, the data is no longer accessible or usable by unauthorized parties. This challenge is
multifaceted and arises due to various reasons (Politou et al., 2018):

• Distributed Nature of Data: Data are often stored and replicated across multiple systems, servers,
or devices. Revoking access to data becomes challenging when it exists in diverse locations or has
been shared across numerous platforms (Tiwari and Gangadharan, 2018).

• Delayed Revocation: Even if access rights are revoked centrally, propagating these changes across
all systems and devices where the data resides might be time-consuming. During this propagation
period, the data might still be accessible.

• Data Copies and Backups: Data might exist in backups or copies that are not immediately
accessible or within the control of the data owner or administrator. Revoking access from all
instances, including backups, adds complexity to the revocation process.

• Compliance and Legal Constraints:Regulatory compliance or legal obligations might necessitate
retaining specific data even after access revocation, leading to complexities in ensuring complete
data removal (Vargas et al., 2018).

Addressing the challenge of data access revocation requires comprehensive strategies and technological
solutions. Implementing robust access control mechanisms, encryption, and identity management sys-
tems helps manage and revoke access more effectively. Furthermore, establishing protocols for data
deletion and ensuring comprehensive audits and access rights monitoring can enhance the revocation
process. However, overcoming these challenges in a fast-evolving digital landscape remains an ongoing
endeavor, requiring continual innovation and policy considerations to mitigate risks associated with
lingering data access after revocation.

4.2. Remaining challenges and limitations

4.2.1. Right to be forgotten vs DLT
Challenges arise when choosing DLT as a core technology to provide tamperproofness in that data are
committed to a ledger that must persist forever to be effective. This means, in effect, that even while
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accounted for by the verifiable TEE system and even appropriately encrypted, the data remains available
forever in the ledger. Depending on the perimeter and allowance of a given use case, stakeholders could
address this problem by storing the data in external systems and only relying on the Honest Computing
environment to maintain the key and access control functionality. It is worth noting that this could
compromise deterministic behavior relying on that data.

4.2.2. Large data volume
While permitting unprecedented speed of confidential computation, modern TEEs often have resource
limitations such as restricted memory, computational power, or storage. This can impact the types and
complexity of applications that can be securely run within the enclave, including in distributed systems.
While our reference design for Honest Computing relies on Intel SGX TEE, other technologies, such as
Intel Trusted Domain eXtensions (TDX), offering lower safety guarantees, could be leveraged to delegate
large data processing workloads to task-specific hardware (Sardar et al., 2023). This is the choice made by
NVIDIA with their confidential computing-enabled H100 GPUs (Nertney, 2023), helping to raise the
challenge of large-scale AI computation. In these cases,more research needs to be done on the relationship
between drivers and hosts and the ability to port drivers into a TEE directly.

4.2.3. Complexity of implementation
Developing secure applications for TEEs can be complex. Ensuring that applications properly utilize and
interact with the TEE’s security features without introducing vulnerabilities requires expertise and careful
consideration. Data models utilized in confidential applications are still in their infancy and, to the best of
our knowledge, do not feature native complex relational database systems but are limited to key-value
store design. Intel TDX’s ability to operate lift-and-shift could bring more existing software technologies
to confidential computing environments, in some instances severely limiting the guarantees an integrated
system offers due to the lack of deterministic execution guarantees.

4.2.4. Use-case-dependent data loss threshold at the point of collection
It remains essential to consider that areas of the pipeline described within the scope of Honest Computing
exhibit limitations and provide appropriate assumptions. For example, under normal circumstances, we
assume that there will inevitably exist scenarios where data gets lost due to transport failure followed by
the collection agent’s failure. There exist approaches based on meshed edge agents to deal with sensor
networks thatmay never reach connectivity end-to-end (Jenkins et al., 2007). Indeed, there are timeswhen
the collection is not possible at all (Hayashi and Ohsawa, 2021).

Also, Honest Computing does not cover the origination of sensor-based data itself due to the inability
to estimate external factors. Some use cases may benefit from sensor trustworthiness evaluation research
(Lim et al., 2010), and other use cases are covered in ongoing research onmetamaterials potentially able to
generate cryptographic signatures while sensing (F. Zhang et al., 2023).

4.2.5. Lack of Open Hardware initiatives in the TEE space
A notable challenge in trust execution environments (TEEs), particularly concerning hardware-based
security solutions, is the absence of standardized open hardware specifications. However, the lack of open
hardware standards in this domain poses several significant issues:

• Closed Architecture and Vendor Lock-in:Many existing TEEs come from specific vendors and
operate within closed architectures. This proprietary nature restricts interoperability and limits
developers’ options, potentially leading to vendor lock-in scenarios.

• Transparency and Security Assurance: Without open hardware standards, there is limited trans-
parency into the hardware design and security mechanisms employed within TEEs. This lack of
transparency hampers the ability of security researchers and experts to thoroughly review and audit the
hardware for vulnerabilities or backdoors, raising concerns about trust and security assurance.
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• Innovation and Collaborative Development: Open hardware standards encourage collaboration
and innovation within the developer community. The absence of open standards stifles such
collaborative efforts, hindering innovation in the TEE space.

• Interoperability and Compatibility: Open hardware standards promote interoperability among
different hardware systems, thus fostering a more diverse ecosystem of secure hardware options.

• Trust andAdoption:Without standardized specifications and transparent designs, users may hesitate
to fully trust the security claims of proprietary TEEs. It also creates circumstances where the root of
trust becomes a point of failure contingent on the inability of a vendor to succumb to pressures.

Efforts are underway by various industry groups, open-source communities, and standards organizations
to address this gap by advocating for more open and standardized hardware specifications in the TEE
domain (Lee et al., 2020).

4.2.6. Cross-confidential computing environment communication
Confidential computing presents a paradigm shift in ensuring data privacy and security by enabling data
processing while it remains encrypted, even while in use. However, achieving cross-system communi-
cation in a confidential computing environment poses significant challenges due to the sensitive nature of
encrypted data. Here are some of the key challenges:

• Interoperability: Confidential computing often involves heterogeneous systems using diverse
encryption schemes and protocols. Ensuring seamless communication while maintaining confiden-
tiality requires standardized protocols and encryption methods, which can be challenging.

• Key Management:Coordinating key management in a way that allows cross-system communica-
tion without compromising confidentiality is a complex task.

• Performance Overhead: Encrypted cross-system communication and data processing can result in
performance overheads due to increased complexity and additional encryption/decryption operations.

• Data Integrity and Authenticity: Ensuring the integrity and authenticity of data transmitted
between systems without compromising confidentiality is vital but challenging requires additional
cryptographic mechanisms.

• Trust Establishment: Ensuring that each system involved in the communication is trustworthy and
adheres to security protocols presents a challenge, especially in distributed or decentralized systems.

• Regulatory Compliance: Maintaining compliance while enabling secure communication across
systems adds complexity, especially when data crosses legal jurisdictions.

• Lifecycle Management: Handling data expiration, revocation of access, and proper disposal while
ensuring confidentiality poses significant challenges in cross-system communication.

Addressing these challenges in confidential computing requires innovative solutions, including stand-
ardized encryption formats, robust key management practices, efficient cryptographic protocols, and
secure communication channels. Moreover, collaborations between industry stakeholders and standard-
ization bodies are essential to develop interoperable frameworks and best practices for cross-system
communication in a confidential computing environment while maintaining data confidentiality and
integrity. While feature parity is not necessarily always available, research into the possibility of creating
cross-technology protocols is underway (Antonino et al., 2023).

4.3. Additional considerations

4.3.1. Homomorphic encryption
Homomorphic encryption is a cryptographic technique that allows computations to be performed on
encrypted data with the results remaining in encrypted form. It represents a significant advancement in
preserving data privacy and security, especially when sensitive information needs to be processed or
analyzed without exposing the raw data.
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However, homomorphic encryption faces challenges such as performance overhead due to computa-
tional complexity, slower processing speed compared to plaintext operations, and limitations on the types
and complexity of computations that can be performed efficiently (Brenna et al., 2022).

Our reference specification acknowledges these potentials but discounts the use of homomorphic
encryption systems at this point due to their generally poor performance and implementation complexity.
It is also worth noting that the computational integrity of homomorphic encryption algorithms is still
lacking (Viand et al., 2023).

4.3.2. Postquantum resistance
Postquantum resistance is becoming increasingly important in cryptography due to the potential threat
posed by quantum computers to traditional cryptographic algorithms.

In 2022, The National Institute of Standards and Technology (NIST) announced its selection of four
finalist algorithms for postquantum cryptography, including Falcon, Saber, Dilithium, and Rainbow
(NIST, 2022). They are still undergoing extensive analysis and evaluation before they can be approved for
use. As such, staying up-to-date on the latest developments in postquantum cryptography is crucial in
ensuring that any cryptographic systems are updated to use NIST-approved postquantum cryptographic
algorithms once they become available. Current widely spread symmetric systems such as AES-256 are
still safe against known quantum attacks and algorithms (Sharma et al., 2023).

4.3.3. Poor software practices
While an Honest Computing system can achieve a very high level of privacy and confidentiality, it cannot
be a substitute for correct software review practices. Recent studies in the US have shown that poor
software development practices are costly and impactful when data safety is compromised (Krasner,
2020). Software designed with features permitting data extraction must be carefully considered, and
regulatory guidelines may need to be put in place to ensure proper communication around software
behavior, management, and updates. It is worth noting that should software running in Honest Computing
environments be compromised, the integrity, tamper-evidentness and attestability features of Honest
Computing systems would, at the very least, allow the detection of these failures. More recent research
proposes a newway for policymakers to evaluate software security quality when built on top of an Honest
Computing system (Larios-Vargas et al., 2023).

4.3.4. Requirements for differential privacy
Differential privacy is a set of techniques in the field of data privacy that aims to enable the analysis of
datasets while protecting the privacy of individual data points (Aziz et al., 2023). The central idea behind
differential privacy is to add a controlled amount of noise to the data or query results in a way that ensures
that the contribution of any single individual’s data is indistinguishable from the noise. Differential
privacy is particularly relevant in data analysis, machine learning, and statistical databases, where the goal
is to derive meaningful insights from sensitive datasets without compromising the privacy of individuals
contributing to those datasets. While it is effective on a case-by-case basis, it has some weaknesses. One
weakness is that it can reduce the accuracy of the data, making it difficult to drawmeaningful conclusions
(Jain et al., 2023). Honest Computing can support Differential privacy implementations. However, it is
left at the discretion of stakeholders if and when it is relevant.

4.4. Domains of application

Honest Computing is specified as a low-level technology on top of which applications get built. In
consideration of what it enables, it is immediately suited to use cases in a variety of fields, examples of
which are healthcare (Shae and Tsai, 2017), finance and banking (D’Aligny et al., 2022), trading (Xue et al.,
2023), supply chain management (Herbe et al., 2023), notarization or regulation (AML/CFT Pocher and
Veneris, 2022).
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5. Conclusion

In this article, we introduced the concept of Honest Computing, rooted in trustless computing and
confidential computing paradigms, as a promising solution to address the intricate challenges within
existing regulatory frameworks, particularly in the realm of sensitive data processing, lineage, and
provenance in automated decision-making systems. The limitations of current regulations, often stem-
ming from a lack of technical readiness and detailed protocols, hinder their ability to provide compre-
hensive guidelines for compliance, transparency, and accountability.

Honest Computing offers a technological foundation that has the potential to bridge regulatory gaps by
enabling the creation of auditable, validatable, and enforceable rules. By leveraging trustless computing
principles and confidential computing techniques, it promises to enhance transparency and effectiveness
and provides a scalable solution for policymakers. Honest Computing holds the potential to usher in a new
era of regulatory frameworks by empowering regulators with the tools to establish guidelines that are not
only principle-based but underpinned by robust technical protocols. In this way, policymakers stand to
benefit significantly, gaining the means to navigate the complexities of data life cycles while ensuring
compliance, fairness, and ethical conduct across various sectors.
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