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Abstract The automorphism group Aut(F,) of the free group F, acts on a space A4(n) of Jacobi
diagrams of degree d on n oriented arcs. We study the Aut(F,)-module structure of Agz(n) by using two
actions on the associated graded vector space of Agz(n): an action of the general linear group GL(n,Z)
and an action of the graded Lie algebra gr(IA(n)) of the IA-automorphism group IA(n) of F, associated
with its lower central series. We extend the action of gr(IA(n)) to an action of the associated graded
Lie algebra of the Andreadakis filtration of the endomorphism monoid of F,. By using this action, we
study the Aut(Fyp)-module structure of A4(n). We obtain an indecomposable decomposition of A4(n) as
Aut(Fy)-modules for n > 2d. Moreover, we obtain the radical filtration of A4(n) for n > 2d and the socle

of Az(n).
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2 M. Katada

1. Introduction

Jacobi diagrams are uni-trivalent graphs, which graphically encode the algebraic struc-
tures of Lie algebras and their representations. Jacobi diagrams were introduced for the
Kontsevich integral, which is a universal finite type link invariant and unifies all quantum
link invariants [2, 18, 15, 19]. The associated graded vector space of finite type link
invariants is isomorphic to the space of weight systems, which is the dual to the space of
Jacobi diagrams.

Let k be a field of characteristic 0. We study the k-vector space A(n) of Jacobi diagrams
on n-component oriented arcs, which is the target space of the Kontsevich integral for
string links [8, 3] or bottom tangles [9]. We consider the degree d part Aq(n) of A(n),
where the degree of a Jacobi diagram is determined by half the number of its vertices.
The space A4(n) encodes the universal enveloping algebra U(g) of any finite-dimensional
semisimple Lie algebra g. More precisely, the weight system maps A4(n) to the g-invariant
part of U(g)®™.

We consider a filtration for Ag(n) defined by the number of trivalent vertices.
The associated graded vector space of Ag(n) is identified via the PBW (Poincaré—
Birkhoff-Witt) map [2, 3] with a graded vector space Bg(n) of open Jacobi diagrams
of degree d that are colored by elements of an n-dimensional k-vector space. For
a finite-dimensional semisimple Lie algebra g, the weight system maps Bg(n) to
the g-invariant part of the tensor product &(g)®" of the symmetric algebra S(g)
of g.

In a previous paper [16], we proved that the vector spaces Ag(n) define a functor
A,y F°P — fVect from the opposite category F°P of the category F of finitely generated
free groups to the category fVect of filtered vector spaces. By functoriality on F°P, A;(n)
inherits an action of the automorphism group Aut(F,) and of the endomorphism monoid
End(F,,) of the free group F,, of rank n. We proved in [16] that the action of Aut(F},) on
Ag(n) induces an action of the outer automorphism group Out(F,,) of F,, on Agz(n) and
we observed that the Aut(F,,)-action on A4(n) induces two actions on By(n): an action
of the general linear group GL(n;Z) and an action of the graded Lie algebra gr(IA(n))
of the IA-automorphism group IA(n) of F,, associated with the lower central series. We
used these two actions on Bg(n) to study the Aut(F,)-module structure of A,(n) for
d = 2. However, it is rather difficult to compute the gr(IA(n))-action on By(n) directly
for general d.

The aim of the present paper is to study the Aut(F,)-module structure of A4(n) for
general d and especially d =3 in detail. We consider the Andreadakis filtration E.(n) of
the endomorphism monoid End(F},) of F,,. We extend the action of the graded Lie algebra
gr(IA(n)) to an action of the associated graded Lie algebra gr(€.(n)) of the Andreadakis
filtration. On the other hand, we construct a graphical version of the gr(€.(n))-action
on By(n). By using this graphical action, we study the Aut(F,,)-module structure of
Ag(n). We obtain an indecomposable decomposition of Ag(n) as Aut(F,)-modules for
n > 2d. Moreover, we obtain the radical filtration of Ay4(n) for n > 2d and the socle
of Az(n).
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1.1. Andreadakis filtration of End(F},)

Let T, :=T,.(F,) denote the r-th term of the lower central series of the free group F,.
Let L.(n):=T, /T4 for r > 1, and set H := L;(n). Note that L£,.(n) is the degree r part
of the free Lie algebra L,(n) on H.

Let TA(n) denote the IA-automorphism group of F,, which is the kernel of the canonical
homomorphism Aut(F,) — GL(n;Z).

The Andreadakis filtration A.(n) of Aut(F,) [1, 22]

Aut(F,) = Ao(n) D A1(n) =TIA(n) D Az(n) D ---
is defined by
Ay (n) =ker(Aut(F,) — Aut(F,/Tr11)).
For r > 1, we have an injective homomorphism
7p 1 gt (Au(n)) = Hom(H, L, 11 (n)),

which is called the Johnson homomorphism. By Andreadakis [1] and Kawazumi [17], we
have gr!(IA(n)) = gr! (A.(n)) = Hom(H,La(n)).
We construct the Andreadakis filtration &,(n) of End(F},) in a similar way by

Er(n) =ker(End(F,,) — End(F,,/T41)).

We define an equivalence relation on the monoid &,(n) and consider the quotient group
gr”(€.(n)), which includes gr"(A.(n)) (see Section 3.3). We also construct the Johnson
homomorphism

o gr” (Ea(n)) = Hom(H £y41(n))

of End(F,,), which turns out to be an abelian group isomorphism (see Proposition 3.8).

The target group Hom(H,L,1(n)) = H* ® L,41(n) of the Johnson homomorphism is
identified with the degree r part Der,(L.(n)) of the derivation Lie algebra Der(L.(n))
of the free Lie algebra £, (n) and with the tree module 7}.(n), which we define in Section
3.2. From the above, we have abelian group isomorphisms

ot (E.(n)) & H © L1 (n) = Der, (£ (n)) = Ty (n).
Thus, we have
grt(TA(n)) 2 gr!(Ex(n)) = H* ® La(n) = Dery (L4 (n)) = Ti(n).
Moreover, we have isomorphisms of graded Lie algebras

gr(€.(n)) = P e’ (€.(n)) =Der(L.(n)) = P T (n) (L.1)

r>1 r>1

(see Section 3.5). In what follows, we identify these three graded Lie algebras.
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1.2. Actions of the derivation Lie algebra on By(n)
Let Ag(n) be the k-vector space spanned by Jacobi diagrams of degree d on n oriented
arcs. We consider a filtration for A4(n)

Ad(n) = Advo(n) D Ad’l(n) D) Adﬁg(n) Doy,

where Ay (n) is the subspace of A4(n) spanned by Jacobi diagrams with at least k
trivalent vertices. By restricting the functor A, : F°P — fVect that we defined in [16]
to the endomorphisms, we obtain an action of End(F,) on Ag4(n). (See Section 2.3 and
Section 4.)

Let V,, be an n-dimensional k-vector space, which will be identified with the first
cohomology of a handlebody of genus n. The associated graded vector space of A4(n)
is isomorphic via the PBW map [3] to a graded vector space By(n) = @y~qBa,r(n) of
V,,-colored open Jacobi diagrams of degree d, where By x(n) is the subspace of By(n)
spanned by open Jacobi diagrams with exactly k& trivalent vertices.

We defined in [16] a gr(IA(n))-action on B4(n) by using the bracket map

[-, ] : Bd,k(n) X7 gr’(IA(n)) — Bd,k+r(n).

We extend the gr(IA(n))-action to an action of gr(£.(n)) on Ba(n).
We define a k-linear map

[]: Bak(n) @zgr" (Ex(n)) = By k+r(n)
by using the following theorem.

Theorem 1.1 (see Theorem 4.1). For any r > 1, we have
[Aa.k(n),€r(n)] C Adkir(n).

To prove this theorem, we introduce a category AL, which includes as full subcategories
the category A of Jacobi diagrams in handlebodies and the category isomorphic to the
PROP for Casimir Lie algebras [13]. (See Section 4 and Appendix A).

By using the bracket maps, we obtain k-linear maps

Bi i+ 81" (Ex(n)) — Hom(Ba,k(n), Ba,kr (1)),

which form an action of the graded Lie algebra gr(€.(n)) on the graded vector space
Bd(n)
We also define a k-linear map

C: Bd7k(n) ®z T (Tl) — Bd7k+r(n),

which is an analogue of the contraction map for a vector space and its dual vector space
(see Section 5). By using the map ¢, we obtain k-linear maps

Y, : Tr(n) = Hom(Bg,k(n), Ba,k+r(n)),

which form an action of the graded Lie algebra €, ., T;-(n) on the graded vector space
Bd(n) B
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Via the isomorphisms (1.1), these two actions of the derivation Lie algebra Der(L.(n))
on By(n) coincide up to sign. (See Theorem 6.1.)

By using the linear map ¢ for computation, we obtain the surjectivity of the bracket
map.

Proposition 1.2 (see Proposition 7.8). For n > 2d—k, the bracket map
[,]: Bak(n) ®z.gr' (1A (1)) = Ba,41(n)

18 surjective.

1.3. The GL(n;Z)-module structure of By(n)
The GL(n;Z)-action on Bg(n) that is induced by the Aut(F,)-action on A4(n) naturally
extends to a polynomial GL(V,,)-action on Bgy(n) [16]. Therefore, the GL(V},)-module
Bg(n) can be decomposed into the direct sum of images of the Schur functors. In general,
however, it remains open to obtain an irreducible decomposition of By(n) as GL(V;,)-
modules. We can reduce this problem to the connected parts B, (n) C Bgr(n) (see
Theorem 7.2). 7

For a partition A+ N, let V) denote the image of V,, under the Schur functor S,. By
using the results by Bar-Natan [4], we have isomorphisms of GL(V},)-modules

B3(n) = B3’0(n) b---D 33’4(77,),

where

n 6) ® V(4,2) ® V{23),

S5

(n)
(n) = V(s 12) ® V2,19),
Bsa(n) = V4 O Vis 1) ®(Vie2)®?,
(n) = B3 3= Vi,

(n)

B3 4(n) = B3 4 = V(y)

(see Proposition 7.6 for the cases d = 3,4,5).
In general degrees, we obtain irreducible decompositions of By x(n) as GL(V,,)-modules
for £ =0,1.

Proposition 1.3 (see Proposition 7.7). For any d > 1, we have

Bao(n) = @ Van,

Ad

where 2\ = (2A1, -+ ,2A.) F 2d for A= (A1, -+, \.) Fd. For any d > 2, we have

Bd,l (n) = @ V)\.

AF2d—1 with exactly 3 odd parts
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1.4. The Aut(F,)-module structure of A;(n)

We consider the Aut(F,)-module structure of Ag(n) and give an indecomposable
decomposition of A4(n). We have

Ao(n) =k (n=0), A4(0)=0 (d=1)

and we studied the cases where d = 1,2 in [16]. Thus, we mainly consider the cases where
d>3,n>1.
For X € A4(2d), let

AyX :F°P — fVect

denote the subfunctor of A; generated by X. That is, for any n € N, A;X(n) is the
Aut(F,)-submodule of A4(n) defined by

AqX (n) := Span {Aq(f)(X) | f € FP(2d,n)}.
Set

Ce=[LI)] . edden

Then, we have the following direct decomposition of A4(n) as Aut(F),)-modules, which
is indecomposable for n > 2d.

Theorem 1.4 (see Theorems 8.2, 8.9). We have Aq(n) = AgP(n) ® AqQ(n) for any
d,n > 1. This direct decomposition is indecomposable for n > 2d.

In degree 1, we have A;Q(n) = 0 and A;(n) = Sym?(V;,) is simple for n > 1. In [16],
we obtained that the direct decomposition of Az(n) is indecomposable for n > 3 (see
Theorem 6.9 of [16]). We improve Theorem 1.4 for d = 3,4 (see Theorems 8.12 and 8.17).

In general degree d, we obtain the radical of A4 x(n) for any k>0 if n > 2d.

Theorem 1.5 (see Theorem 8.6). Let n > 2d. The filtration of Ag(n) by the number of
trivalent vertices coincides with the radical filtration of Aq(n).

In degree 3, we obtain the socle of As(n) as well (see Proposition 8.15).

1.5. Direct decomposition of the functor A,

Lastly, we give an indecomposable decomposition of the functor A,.
By Theorem 1.4, we obtain an indecomposable decomposition of the functor Ag.

Theorem 1.6 (see Theorem 10.1). We have an indecomposable decomposition
Ag=A4P®AQ (1.2)
in the functor category fVect™ .

In degree 1, we have A;Q =0 and A; = A;P. In [16], we obtained the direct
decomposition (1.2) of the functor As and proved that equation (1.2) is indecomposable
(see Proposition 6.5 and Theorem 6.14 of [16]).
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1.6. Organization of the paper

In Section 2, we recall the category A of Jacobi diagrams in handlebodies, N-series and
graded Lie algebras, contents of the previous paper [16], Hopf algebras and Lie algebras in
a linear symmetric strict monoidal category. In Section 3, we construct the Andreadakis
filtration and the Johnson homomorphism of End(F),). In Section 4, we construct an
action of the derivation Lie algebra Der(L.(n)) on Bg(n), which is defined by the bracket
map. In preparation for the definition of the bracket map, we construct an extended
category AL of the category A, which includes a Lie algebra structure. In Section 5,
we define a contraction map, which forms another action of Der(L.(n)) on By(n). In
Section 6, we prove that two actions of Der(L.(n)) on Bg(n) defined in Sections 4 and 5
coincide up to sign. In Section 7, we compute the GL(n;Z)-module structure of Bg(n).
In Section 8, we study the Aut(F),)-module structure of Ay(n) by using the GL(n;Z)-
module structure of By(n) and the action of Der(L.(n)) on Bg(n). In Section 10, we
give an indecomposable decomposition of the functor Ay. In Appendix A, we study an
expected presentation of the category AL.

2. Preliminaries

In this section, we recall the contents of the previous paper [16] and definitions of the
category A of Jacobi diagrams in handlebodies, Hopf algebras and Lie algebras in a
symmetric strict monoidal category and an action of an N-series on a filtered vector
space and that of a graded Lie algebra on a graded vector space.

In what follows, we work over a fixed field k of characteristic 0. For a vector space V
and an abelian group G, we just write V ® G instead of V ®y, G. For vector spaces V and
W, we also write V@ W instead of V @, W.

For n >0, let [n] :={1,---,n}.

2.1. The category A of Jacobi diagrams in handlebodies

Here, we briefly review the category A of Jacobi diagrams in handlebodies defined in [11].
We use the same notations as in [16].

For n >0, let X,, = /1\/2\ /\ be the oriented 1-manifold consisting of n arc
n

components.

Let I =[—1,1]. For n >0, let U,, C R? denote the handlebody of genus n that is obtained
from the cube I® by attaching n handles on the top square I% x {1} as depicted in Figure 1.
We call [:=1x {0} x {—1} the bottom line of U, and I’ := I x {0} x {1} the upper line of
Un. We call S :=I? x {—1} the bottom square of U,,.

For i € [n], let x; be a loop which goes through only the 4-th handle of the handlebody
U, just once, and let x; denote its homotopy class as well. In what follows, for loops 71
and o with base points on [, let 75y, denote the loop that goes through ~; first and
then goes through v,. That is, we write a product of elements of the fundamental group
of U, in the opposite order to the usual one. Let H = Hy(U,;Z), and let Z; € H be the
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Figure 1. The handlebody U,.

homology class of x;. We have H = @Ll Zz; and w1 (U,,) = (21, - ,@y). Let
V,, = H'(U,;k) = Hom(H k),

and let {vq,---,v,} be the dual basis of {Zy,---,Z,}.

The objects in A are nonnegative integers.

For m,n > 0, the hom-set A(m,n) is the k-vector space spanned by (m,n)-Jacobi
diagrams modulo the STU relation. An (m,n)-Jacobi diagram is a Jacobi diagram on
X, mapped into U, in such a way that the endpoints of X, are uniformly distributed on
the bottom line [ of U,, (see [11, 16] for further details). We usually depict (m,n)-Jacobi
diagrams by drawing their images under the orthogonal projection of R? onto R x {0} x R.

The degree of an (m,n)-Jacobi diagram is the degree of its Jacobi diagram. Let
A (m,n) C A(m,n) be the subspace spanned by (m,n)-Jacobi diagrams of degree d. We
have A(m,n) =@ 50 Ada(m,n).

The category A has a structure of a linear symmetric strict monoidal category. The
tensor product on objects is addition. The monoidal unit is 0. The tensor product on
morphisms is juxtaposition followed by horizontal rescaling and relabelling of indices.
The symmetry is determined by

i -

/XN

2.2. N-series and graded Lie algebras

Here, we briefly review the definition of an action of an N-series on a filtered vector space
and the induced action of the graded Lie algebra on the graded vector space (see [16] for
details).

An N-series K, = (K, )n>1 of a group K is a descending series

K=K DKy;D--

such that [K,,,K,,] C K4+ for all n,m > 1.
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A morphism f: G, — K, between N-series is a group homomorphism f: Gy — K; such
that we have f(G,) C K, for all n > 1.
For a filtered vector space Wi, set

Aut,(W,) :={¢ € Autsvect (W) | [, w] € Wiy, for all w € Wi,k >0} (n>1),

where [p,w] := ¢(w) —w for w € Wy,. We can easily check that Aut.(W.) := (Aut,(W.))n>1
is an N-series.

Definition 2.1. (Action of N-series on filtered vector spaces) Let K, be an N-series and
W, be a filtered vector space. An action of K, on W, is a morphism f: K, — Aut.(W,)
between N-series.

For an N-series K, we have a graded Lie algebra gr(K,) =@, ~, K,/ Kp+1, where the
Lie bracket is defined by the commutator.
For a graded vector space W = @~ Wi, set

End,, (W) := {¢ € End(W) | $(Wi) C Wisn for k >0} (n>1).

We can check that End; (W) =, End, (W) is a graded Lie algebra, where the Lie
bracket is defined by B

[f.g] :==fog—gof for feEndy(W),g€ End) (W) (k,l>1).

Definition 2.2. (Action of graded Lie algebras on graded vector spaces) Let L, =
@nZlL” be a graded Lie algebra and W = @, ., Wi be a graded vector space. An

action of Ly on W is a morphism f: Ly — End; (W) between graded Lie algebras.

Proposition 2.3. An action of an N-series K, on a filtered vector space W, induces an
action of the graded Lie algebra gr(K.) on the graded vector space gr(W.), which is a
morphism

P @grn(K*) — @Endn(gr(W*))

n>1 n>1
deﬁned by p+(gKn+1)([v]Wk+1) = [[g7v]]Wk+n+l fOT gKn+1 € grn(K*)f [v]ch+1 € grk(W*)

The proof can be seen in Proposition 5.14 of [16].

2.3. Contents of the previous paper

Here, we briefly review the notations and contents of the previous paper [16]. Let Aut(F,)
denote the automorphism group of the free group F,, of rank n and GL(n;Z) the general
linear group of degree n. Let TA(n) denote the IA-automorphism group of F,,, that is the
kernel of the canonical surjection

Aut(F,) — Aut(H(F,;Z)) = GL(n; Z).

(IA(n)) = (I'+(IA(n)))r>1 denote the lower central series of IA(n), and
gr(IA(n)) = @, >, 81" (IA(n)) the associated graded Lie algebra, where gr'(IA(n)) =
(1A (1)) /T 1 (1A(n).
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Let Ag(n) = Aq(0,n) denote the k-vector space of Jacobi diagrams of degree d on X,,.
We consider a filtration for A4(n)

Ad(n) = Ad70(n) D) Ad,l(n) IDREEND] Ad72d_2(n) D) Ad,gd_l(n) =0

such that Agx(n) C Ag(n) is the subspace spanned by Jacobi diagrams with at least k
trivalent vertices. Hence, A4(n) is a filtered vector space.

Let F denote the category of finitely generated free groups and fVect the category of
filtered vector spaces over k.

We have a k-vector space isomorphism

Z :kF°P(m,n) =N Ag(m,n)

from the hom-set kF°P(m,n) of the k-linearization of the opposite category of F to the
degree 0 part of the hom-set A(m,n) [11]. We define a functor

Ay : FP — fVect

by Aq(n) =A4(0,n) for an object n € N and A4(f) = Z(f). for a morphism f € F°P(m,n),
where Z(f). denotes the post-composition with Z(f). The functor A, is a polynomial
functor of degree 2d in the sense of [12, 20] (see Remark 3.1 of [16]). By restricting
this functor to the automorphism group, we obtain an action of the opposite group
Aut(F,)°P of Aut(F,,) on Ag(n) for each n > 0. We consider this action as a right action
of Aut(F,,) on Ag(n). The Aut(F,)-action on Ay(n) induces an action on Ag(n) of the
outer automorphism group Out(F;,) of F,, (see Theorem 5.1 in [16]).

On the other hand, the associated graded vector space gr(Aq(n)) of Aq(n) is identified
via the PBW map [2, 3]

O4.n : gr(Aa(n)) = Ba(n) (2.1)

with the graded k-vector space By(n) = @y Bak(n) = ii_OQ By 1(n) of Vj-colored
open Jacobi diagrams of degree d, where the grading is determined by the number of
trivalent vertices. Note that we have 0,4, = @, 04 n,x, where

O e - g (Aa(n)) = By ().

Let FADb denote the category of finitely generated free abelian groups and gVect the
category of graded vector spaces over k.
We define a functor

By : FAb°Y — gVect

by sending an object n € N to the graded vector space Bgi(n) and a morphism f €
FADb°P(m,n) = Mat(m,n;Z) to Bs(f), which is a right action on each coloring, where
we consider an element of V,, as a (1 X n)-matrix. By restricting this functor to the
automorphism group, we obtain an action of the opposite group GL(n;Z)°P of GL(n;Z)
on Bg(n) for each n > 0. We consider this action as a right action of GL(n;Z) on B4(n).
Note that the GL(n;Z)-action on Bg(n) naturally extends to a GL(V},)-action on Bg(n).
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Proposition 2.4 (see Proposition 3.2 of [16]). For d >0, the PBW maps equation (2.1)
give a natural isomorphism

Oq:groAy = Bgjoab®P,

where ab®® denotes the opposite functor of the abelianization functor and gr denote the
functor that sends a filtered vector space to its associated graded vector space.

By this proposition, it turns out that the Aut(F},)-action on A4(n), which is an action of
an extended N-series on a filtered vector space, induces two actions on Bg(n), which form
an action of an extended graded Lie algebra on a graded vector space (see Theorem 5.15 of
[16] and [10] for extended N-series and extended graded Lie algebras). One of them is the
GL(n;Z)-action, and the other of them is an action of the graded Lie algebra gr(TA(n))
on the graded vector space Bg(n), which consists of GL(n;Z)-module homomorphisms

(] Bak(n) @ gr" (IA(n)) = By ktr(n) (2.2)

for k> 0,r > 1 (see Proposition 5.10 and Theorem 5.15 of [16]). By using these two actions
on Bg(n), we obtained an indecomposable decomposition of Ay(n) as Aut(F,)-modules
(see Theorem 6.9 of [16]).

2.4. Hopf algebra in a symmetric strict monoidal category

We review the definition of a Hopf algebra in a symmetric strict monoidal category. Let
C=(C,®,I,P) be a symmetric strict monoidal category. A Hopf algebra in C is an object
H in C equipped with morphisms

wH®H—-H, n:I1—-H A:H—-H®H, e:H—I S:H—H,

called the multiplication, unit, comultiplication, counit and antipode, respectively, satis-
fying

(1) p(peidy) = plidg @p), pn®@idyg) =idy = pidy @n),
(2) (A®idy)A = (dy ®A)A, (e®idy)A =idg = (idg ®¢)A,
(3) en=id;, en=€e®Re An=ncmn,

(4) A= (& p)(idy © Py g @idi)(A® A),

(5) p(idy ®S)A = u(S®idg)A = ne.

A Hopf algebra H is said to be cocommutative if Py gA = A.
Define p,, : H®" @ H®™ — H®" and A,, : H®™ — H®™ @ H®™ inductively by

po=1idr, pny1 = (ttn @ p)(idgen @ Py gen @idpy)
for n > 0 and by
Ao =idr, Apmy1 = (dgem @Pgem g @idg) (A, @A)

for m > 0.
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For morphisms f, f': H®™ — H®" m,n >0, the convolution f* f’ of f and f’ is defined
by

o= (fOf) A

The category A has a cocommutative Hopf algebra with the object 1, where

W= ,n= /‘\ , A= e‘ , €= , S =

2.5. Lie algebra in a linear symmetric strict monoidal category

We review the definition of a Lie algebra in a linear symmetric strict monoidal category.
Let C = (C,®,I,P) be a linear symmetric strict monoidal category. A Lie algebra in C is
an object L in C equipped with a morphism

[,]: L®&L—L
satisfying
(1) [](deer +Pr,L) =0,
(2) [,-](GdL ®[,-])(idpes +0 +0?) =0, where o = (1,2,3) : L®3 — L®3.
3. Andreadakis filtration &,(n) of End(F),)

We briefly review the Andreadakis filtration and the Johnson homomorphism of Aut(F},).
See [22] for further details. Then we consider its extension to the endomorphism monoid
End(F,) of F,.

3.1. Andreadakis filtration A,(n) of Aut(F,)

In what follows, we consider the left action of Aut(F;,) on F,,. Let T',. :=T',.(F,) denote the
r-th term of the lower central series of the free group F,, of rank n. Let £,.(n) =T, /T, 41
for r > 1. Note that H = £1(n) and that £,.(n) is the degree r part of the free Lie algebra
L,(n) on H.

For r > 0, the left action of Aut(F),) on each nilpotent quotient F,,/T',11 induces a
group homomorphism

Aut(F,) — Aut(F,/Trq1).
Set
A, (n) :=ker(Aut(F,) = Aut(F,/Tr11)) < Aut(F,).
Then we have a filtration, which is called the Andreadakis filtration of Aut(F,):

Aut(F,) =Aog(n) D A1(n) =TA(n) D Az(n) D---.
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For r > 1, the Johnson homomorphism
72 gr' (Au(n)) <= Hom(H, L1 (n))
is the injective homomorphism induced by the group homomorphism
7.0 Ar(n) = Hom(H, L, 11(n))
defined by
TL(f)(al2) = f(z)2 'Tryo for f € Ar(n),x € F,.

3.2. The target group of the Johnson homomorphism

The target group Hom(H,L,11(n)) 2 H*® L,11(n) of the Johnson homomorphism is
identified with the degree r part Der,.(L«(n)) of the derivation Lie algebra Der(L4(n)) of
the free Lie algebra L, (n) and with the tree module T,.(n) via abelian group isomorphisms

H*®L11(n) 2 Der,(Ls(n)) 2 T,(n). (3.1)

Here, we briefly review the derivation Lie algebra and the tree module. (See [22] for
details.)

A derivation f of L.(n) is a Z-linear map f: L.(n) — L.(n) such that f([a,b]) =
[f(a),b] + [a, f(D)] for any a,b € L.(n). The derivation Lie algebra Der(L.(n)) of the Lie
algebra L.(n) is the set of all derivations of L. (n). The degree r part Der,(L.(n)) of the
derivation Lie algebra is defined to be

Der,(L.(n)) ={f € Der(L«(n)) | f(a) € Lr4+1(n) for any a € H}.
Then we have Der(L.(n)) = D,>,Der.(L.(n)) and abelian group isomorphisms
Der,(L+(n)) 2 Hom(H,L,41(n)) 2 H* @ L,41(n).

We call a connected Jacobi diagram with no cycle a trivalent tree. For r > 0, a trivalent
tree is called a rooted trivalent tree of degree r if it has one univalent vertex (called the
root) that is colored by an element of H* and r+ 1 univalent vertices (called leaves) that
are colored by elements of H. Let T).(n) denote the Z-module spanned by rooted trivalent
trees of degree r modulo the AS, THX and multilinearity relations. We have an abelian
group isomorphism

®:H*®Lyi1(n) = Th(n)
defined by

for v; € H*, [.’Z’il, ...7[i‘i'r'7'fi1'+1} ] S Er+1(n).
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3.3. Andreadakis filtration &,.(n) of End(F},)

We extend the above construction to the endomorphism monoid End(F},) of F,,. For r > 0,
consider the canonical map

pr: End(F,) = End(F, /T41)
and set &-(n) := ker(p,). Then we have a filtration of monoids
End(F,)=¢&(n) D& (Mn)D---,

and we call E.(n) = (&-(n)),>o0 the Andreadakis filtration of End(F},).
For f € End(F,,) and x,y € F,, set

[f,a] = fla)a™!, Yo=yay™,
and for a subset T'C F,,, set
[T =A{lf,xl € Fu |z €T},
We can easily check the following lemma.
Lemma 3.1.
fe&mn) < [fiF))Clr < [f,xi] €0rga (for any i € [n]).

For subsets S C End(F,) and T C F,, let [S,T] denote the subgroup of F,, generated
by the elements [f,x] for f € S,z €T.

Lemma 3.2. We have

[Er(n),Tk] CThgr
forr >0,k >1.
Proof. It is well known that [A,(n),['y] C I'xs,r by Andreadakis [1]. The same proof
can be applied to &.(n). We use induction on k. When k =1, we have [£.(n),F,] C
I'41 by the definition of &.(n). Suppose that [€:(n),['k_1] C Tx_14+r. We will show that

[E-(n),Tk] CTgyr. Let f € E.(n). Recall that Ty, is generated by the commutator [z,y]
with x € T'x_1,y € F,,. We can check that for z € I'y_1,y € F,, we have

[fv [1‘,y]] = [f,y]([[fvy]iaf(z)] ’ [[fvl']?zy] ’ [[l‘,y],[f,y]il}) € Fk+r~

For z,w € 'y, we have

[fvzw] = [f,Z] 'Z[fvw] = [f,Z] [f»w] (mOd Fk+r+1)7

and by letting w = 27!, we have
[fvz_l]E[ﬁZ]_l (mOd Fk+r+1)-
Therefore, we have [f,z] € Ty, for any z € T'y. O

Define a map

o :End(F,) — End(F,)
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by o(f) = f for f € End(F},), where
flw) = [foaa) s = wof () s
for i € [n].
Lemma 3.3. We have
o? =idgna(r,)

fe&mn) = o(f)eé&(n)

fe&n) = fo(f),o(f)f € &xr(n).
Proof. We have equation (3.2) since for any f € End(F,) and i € [n], we have
() (i) = wof (w0) " s = i, f (i) s = fas).
We have equation (3.3) since, for any f € &(n) and i € [n], we have
(i) = [fow:] 7 €T
We prove equation (3.4). Let f € &.(n). We have
[ffwi] = f(faD)lfomi] = F(Ufw] ™) fow] = [ [fw] 7] € Tara
for any i € [n]. Thus, we have
ff € Ear(n).
By equation (3.3), we have f € &.(n), and by equations (3.2) and (3.5),

Ff=Ff€&unn).

For N >r >0, we define an equivalence relation ~x on the monoid &.(n) by

frong & [f,z] =[g,2] (mod T'nyq) for any x € F,

for f,g € £.(n). Thus, we have

f~yidp, < [fiz]€TlNny1 foranyxeF, < feén(n).

15

Lemma 3.4. Letr > 1. For f € £.(n), define f& and f& for N >r+1 inductively by

fR:{f (N=r+1)
MUV AR L (N> r42),

fL_{f (N =r+1)
ML, Vzr2).
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Then we have

fll\?egr(n)a ff]}\?egN(nL f]l\?NNfl f]l\:%flv
f]%] egr(n)v fI{“]fGEN(TL), f]%/' ~N-1 f]{lffl'

Proof. We use induction on N >r+1. When N =r+1, by Lemma 3.3, we have fe
E-(n) and ff € Eay(n) C Ery1(n). Suppose that f& | € &.(n) satisfies ff& | € En_1(n).

—_~ —_—~

By Lemma 3.3, we have ff& | € En_1(n) and ffE_ | ffR | € Ean_a(n) CEn(n). Then

we have f{ = f8_,ff& €& (n) and ffE € En(n). Since ffE | € En_1(n), we have
fR~N_1fB |. The case for f& is similar. O

Proposition 3.5. For N > 1, we have a filtration of groups
51(71)/ ~N D 82(’@)/ ~NNDer D gN_l(TL)/ ~N D gN(TL)/ ~y =1.

Moreover, this is an N-series.

Proof. Firstly, we show that &.(n)/ ~n is a group for each r > 1. For f, f',g € £.(n) such
that f ~x f’, we can easily check that fg~x f'g and gf ~n gf’. Thus, the composition
makes the set &.(n)/ ~n a monoid. For [f] € £.(n)/ ~n, by Lemma 3.4, it follows that
A8 =1fEfl=1€&-(n)/ ~n. Since E.(n)/ ~n is a monoid, we have [f{] = [f&], and
this is the inverse of [f]. Therefore, £.(n)/ ~x is a group for each r > 1.

Since &.(n) D &r41(n), we have &.(n)/ ~n D Er41(n)/ ~n. Secondly, we show that the
descending series is an N-series. It suffices to show that, for f € &£.(n),g € Es(n), we have

[f1, 190 = [F1lg)Lf1 9] = [f9fNgR] € Erps(n)/ ~n -

Note that, by Lemma 3.4, we can take f& g% € £.(n) such that ff& g9kt € Ex(n)n
Er4s(n). By commutator calculus, for « € F,,, we have

[fg,x] = [fa [g,x]] [g,x] [f,l‘] = [g,x] [f,l‘] (mOd FT+S+1)7
(9,198 2] [F&.2]) = [9.[o%.2)) % [g, [ £8.2)) = [9.[9%.2]]  (mod Tyyosn).
Similarly, we have
[f]]\i;g]}\%hx] = [gll\zfvx] [f]l\?’x] (mOd FT+S+1)>

[fa [911\37,33} [f]l\?ax]] = [f7[f11\?’x” (mOd F7‘+s+1)'

Thus, we have

(9. [FN g2 [f:[FRgR-=]]
[9,l98, @) [f 8] [f, [gN-2] [F§ ]
(9 [91%7'73]] [fs [f]l\?vm]] (mod Ty s41)-

[fg.[fRgN ]
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Therefore, we have

[fafian.@) = [fa.lfRan. 2]l [fNgN.2] [fg,7]
= [g,[gn =] [f, [FN-2]] [9n-2] [FN-] [9,2] [f, =]
= [9,[gN- 1] [9n-] [g,2] [f, [ 2]) [FA 2] [f 2]
= [991\1795] [ffN@]

1 mod Fr+s+1)7
and the proof is complete. O

For N >r > 1, we have a canonical projection
1 En(n)/ ~Ngp1—> Er(n)/ ~N
Let £.(n) denote the projective limit I&n(&,(n)/ ~pn) and
N

™ ::‘:’T(n) —&.(n)/ ~n
denote the projection. By Proposition 3.5, we have a descending series of groups
E1(n) D> &(n) D
satisfying

M &) = {id).

r>1
Proposition 3.6. The descending series E,(n) == (£,(n)),>1 is an N-series.

Proof. By Proposition 3.5, we have [£.(n)/ ~n ,Es(n)/ ~n]| C &45(n)/ ~n for each
N >r,s. By taking the projective limits, we have [£.(n),E5(n)] C & s(n). O

We have a graded Lie algebra gr(€.(n)) associated to the N-series &,(n). Let
gr"(Ex(n)) :=Er(n)/ ~rp1 for 1 > 1 and gr(€«(n)) == B, >, gr" (€« (n)).

Proposition 3.7. We have a group isomorphism

Tri1 g1 (Ea(n) = g (Ex(n))
induced by the projection 41 : E-(n) — g™ (E.(n)). Therefore, gr(€.(n)) is a graded Lie
algebra.

Proof. The projection .41 induces 7,41 since, for f € f:'rﬂ(n), we have m,.41(f) €
Er1(n)/ ~rpa=1. R

We will check that 7,y; is surjective. For any f € &.(n), let ®(f) € &.(n) satisfy
N (®(f)) = [f] € &(n)/ ~n for each N > 7. We have 7,41 ([2(f)]) = mr41(2(f)) = [f] €
E-(n)/ ~ri1. Therefore, 7,1 is surjective.

Finally, we show that 7,1 is injective. Let f € &.(n) satisfy T41([f]) =1 € & (n)/ ~pri1
and w1y (f) =[fn] €Er(n)/ ~n for fy € E-(n). Then, we have fr11 €E,41(n) and fy ~ry1
fry1 for any N > r. Therefore, we have mn(f) = [fn] € Er41(n)/ ~n for each N > r and
thus [f] =1 € gr"(€.(n)). The proof is complete. O
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3.4. Johnson homomorphism of End(F},)

For r > 1, by using Lemma 3.2, we can define a monoid homomorphism
7+ E(n) — Hom(H, L, 41(n))

by 7.(f)(xl2) := [f,z]Try2 for f € E.(n),x € F,. It is easily checked that the monoid
homomorphism 7. induces an injective group homomorphism

Tr gt (Ex(n)) — Hom(H,L,41(n)).
We call it the r-th Johnson homomorphism of End(F,).

Proposition 3.8. The map 7, : gr"(E«(n)) — Hom(H,L,1+1(n)) is an abelian group
isomorphism.

Proof. It suffices to show that 7, is surjective. For any ¢ € Hom(H,L,y1(n)), we fix
a representative of ¢(z;I'2) € L,4+1(n) and write it ¢(z;) € T'y41, for i € [n]. Define ¢ €
End(F,) by

() = p(x)x; for i € [n].

It turns out that [, 2]l 42 = @(2l'2) € L,41(n) for any x € F,, by induction on the word
length of x € F,. Therefore, we have 7,.(¢) = ¢, and thus the map 7, is surjective. O

Then we obtain the following commutative diagram:
gr’(Ax(n))

inclusion

R /

1" (£, (n)) ————— Hom(H, L, 41 (n)).

r

l

Remark 3.9. It is well known that the Andreadakis filtration A, (n) of Aut(F},) includes
the lower central series of IA(n):

I (IA(n)) C Ar(n).
We have A;(n) =IA(n) by definition. Andreadakis [1] conjectured that
A.(n) =T,.(TA(n)) (3.6)

for all » > 2,n > 2. Andreadakis [1] (n = 3) and Kawazumi [17] (for any n) showed
that equation (3.6) holds for r = 2. Moreover, Andreadakis [1] showed that the first
Johnson homomorphism 7 of Aut(F,,) is an isomorphism. Therefore, we have abelian
group isomorphisms

gr' (IA(n)) = Hom(H,Ly(n)) = gr' (E.(n)). (3.7

Recently, Satoh [23] showed that equation (3.6) holds for r = 3. On the other hand,
Bartholdi [5] showed that

(A5(3)/T5(IA(3))) ®Q = Q¥
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which is a counterexample of the Andreadakis conjecture. Now, the Andreadakis
conjecture remains open for n > r.

3.5. The derivation Lie algebra

By equation (3.1) and Proposition 3.8, we have abelian group isomorphisms
gr'(&x(n)) = H* @ Lr41(n) = Der,(Ly(n)) = Ty (n).

We write 7, : gr™ (Ex(n)) =N Der,(L.(n)) as well.

Proposition 3.10. The abelian group isomorphism

=% 1 gr(&.(n)) = Der(L.(n))

r>1

is an isomorphism of graded Lie algebras.

Proof. We only need to check that the Lie bracket of gr(&,(n)) is sent to the Lie bracket
of Der(L.(n)). For f € E.(n),g € Es(n) and = € F,,, we have

(7 (/1) s ([9D] (2T 2) = 7 ([FD7s([9]) (2T 2) — 75 ([g]) 7 ([f]) (2T'2)
= [f’ [g,x]] [g’ [fva_l = [[fngx] € £T+S+1(n)'
On the other hand, we have
Trts([Lf59])) (aL2) = [[f,g].2] € Lrgsq1(n).

Therefore, 7 is an isomorphism of graded Lie algebras. O

Remark 3.11. The tree module €, T (n) also has a graded Lie algebra structure
which is induced by the Lie algebra structure of Der(L.(n)). The Lie bracket

[.’.] . Tr<n) X T5<n) — Tr+s(n)

is defined by the difference between two linear sums obtained by contracting the root of
one of the trees and the leaves of the other tree

Ty Li, T,y Ty Lj. Tj, 1y
A s+1
: = (viaj)
Vi Vj =1

4. Action of gr(€.(n)) on Bi(n)
We defined the bracket maps (2.2) in [16]. In this section, we extend them to linear maps
[ : Ba,k(n) @ gr" (€«(n)) = Ba,p4r(n).

In Section 4.1, we state Theorem 4.1, which we use to obtain the extended bracket
map. In Section 4.2, we extend the category A to a category A, which includes a Lie
algebra structure besides the Hopf algebra structure in A. In Section 4.3, we observe
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some relations for morphisms of AL. By using these relations, we prove Theorem 4.1 in
Section 4.4.

4.1. Bracket map [-,-]: Bgx(n) ®gr"(€«(n)) = Bq k+r(n)
We have a right End(F,)-action on Ag(n) by letting

u-g:=Aa(g)(u)
for u € Ag(n),g € End(F,,). We define
[]: Aa(n) x End(F},) — Aa(n) (4.1)
by [u,g] :=u-g—u for u € Ayg(n),g € End(F,,), which we call the bracket map.

Theorem 4.1. The N-series £,(n) acts on the right on the filtered vector space Ag(n).
That is, we have

[Adk(n),€r(n)] C Ad g4 (n)
for any r > 1.

Note that we have [Agr(n),['(IA(n))] C Aggrtr(n) (see Lemma 5.7 in [16]). We will
prove Theorem 4.1 in Section 4.4.
By using Theorem 4.1, we can extend the bracket map

[] : Bak(n) @ gr"(IA(n)) = Ba,k+r(n)
to gr'(€(n)).
Corollary 4.2. Let r > 1. The bracket map (4.1) induces a k-linear map
[ Bak(n) @ gr’(Ex(n)) = Bakr(n).
We can also extend the GL(n;Z)-module map
Ba,r. - gr" (1A(n)) = Hom(Ba,k(n), Bak+r(n))
defined by S (9)(u) = [u,g] for g € gr"(IA(n)),u € Bq,x(n) to a group homomorphism
Ba k1 81" (Ex(n)) = Hom(By 1 (n), By, k4r (n)),

which 7 ;. factors through. That is, we have 3} , = Bg,kl} where the map i : gr"(IA(n)) —
gr’ (€,(n)) is induced by the inclusion map I';(IA(n)) < &.(n).

Remark 4.3. The right action of the N-series &,(n) on Ag4(n) induces an action of the
graded Lie algebra gr(€.(n)) on the graded vector space Bg(n):

gr(&.(n)) = gr(€.(n)) — @) End, (Ba(n)),

r>1

which is given by the group homomorphisms Bg .- This induced action can be regarded
as an action of the derivation Lie algebra Der(L.(n)) on the graded vector space Bg(n)
by the identification in Section 3.5.
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Figure 2. Source of a morphism

4.2. The category A’ of extended Jacobi diagrams in handlebodies

The category A has a cocommutative Hopf algebra with the underlying object 1, which we
recalled in Section 2.4. Moreover, the morphisms of the category A have Jacobi diagrams,
and the STU relations correspond to relations of Lie algebras. In a proof of Theorem 4.1,
we use graphical computations which deal with the Hopf algebra structure and the Lie
algebra structure. For this purpose, we extend the category A to another category A%
which includes the Hopf algebra structure and the Lie algebra structure. In Appendix A,
we give an expected presentation of the category AL,

Construct the category A’ as follows. The set of objects of A% is the free monoid
generated by two objects H and L, where multiplication is denoted by ®. The category
AT includes the category A as a full subcategory with the free monoid generated by
H as the set of objects. (On the other hand, the full subcategory with the free monoid
generated by L is isomorphic to a category in [13]. See Remark A.4.) In the category
AL we consider diagrams that are obtained from Jacobi diagrams in handlebodies by
attaching univalent vertices of the Jacobi diagrams to the bottom line [ and the upper
line 1.

Example 4.4. Here is a morphism in AY(HRL®HR LR H,H® L®?>® H):

H L L H

As depicted in Figure 2, the objects H and L in the source of a morphism of A%
correspond to a handle of the handlebody and a univalent vertex attached to the upper
line I, respectively.

As depicted in Figure 3, the objects H and L in the target of a morphism of A”
correspond to an arc component mapped into the handlebody and a univalent vertex
attached to the bottom line [, respectively.

In the category A”, the object H is considered as a Hopf algebra and L is considered
as a Lie algebra. See Section 4.3 and Appendix A.

To define morphisms of the category AL precisely, we give the following definition.
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-

H L

)

Figure 8. Target of a morphism

Definition 4.5. For a finite set T, an (X,,,T)-diagram is a quadruple (D,V,f,q),
where

e [ is a vertex-oriented uni-trivalent graph such that each connected component
has at least one univalent vertex,

e V is a subset of 9D = {univalent vertices of D},

e f is an embedding of V into the interior of X,,,

e ¢ is a bijection from T to dD\V.

Note that an (X,,,0)-diagram is a Jacobi diagram on X,,.

For an object w = H®™ @ L®™ @ ---®@ H®™ @ L®" € AL, let m:=Y,_,m; and
n:=>y"_,n;.Forp>0,let [p|*:={17,---,p*} and [p|” :={17,---.p~} be two copies of
[p].

Definition 4.6. For objects w = H®™ @ L™ @ ... ® H®™r @ L®" ¢ AL and w' =
H® 1@ Lol g...@ HO™'s @ [9n's ¢ AL a (w,w')-diagram consists of

e an (X,,,[n]TU[n|7)-diagram (D,V, f,g) such that each connected component of
D has at least one univalent vertex in V- Ug([n']7)
e amap ¢: X, UD — U,, such that
(1) the pair (the empty set @, the restriction ¢ |x, ,) is an (m,m’)-Jacobi
diagram; that is, ¢ maps X/, into U, in such a way that endpoints of
X,, are arranged in the bottom line [ from left to right,

(2) g([n]*) is mapped into I’ so that the corresponding object in A with respect
to Figure 2 will be w when we look at the top line I’ from left to right,

(3) g([n']7) is mapped into I so that the corresponding object in A’ with respect
to Figure 3 will be w’ when we look at the bottom line [ from left to right.

We identify two (w,w’)-diagrams if they are homotopic in U,, relative to the endpoints
of X! UD. In what follows, we simply write D for a (w,w’)-diagram. For objects w and
w’, the hom-set AL (w,w’) is the k-vector space spanned by (w,w’)-diagrams modulo the
STU, AS and IHX relations.

The composition of A is defined in a similar way to that of the category A. We can
define a square diagram for an (w,w’)-diagram similarly. Let D be a diagram in A*(w,w’)
and D’ a diagram in AX(w’,w"). Deform D’ to have only the parallel copies of the handle
cores in each handle. Then the composition D’ o D is a diagram obtained by stacking the
cabling of D on top of the square presentation of D’.
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Example 4.7. For D =

and D' = E , the composition

D'oD is , where the box notation represents a linear sum of

L

Jacobi diagrams. (See [11] and [16] for the definition of the box notation.)

The identity morphism idgem greni g...9gemrgren. is the following diagram:

We can naturally extend the linear symmetric strict monoidal structure of A to
the category AL, where the tensor product is defined to be the juxtaposition of the
handlebodies.

Note that the symmetries in A* are determined by

PH,H: :H@H—)H@H, PH,L: :H®L—>L®H,

PL,H: :L®H—>H®L, PL,L: N/ L®L—LQL.

The degree of a (w,w’)-diagram is defined by
1
5#{Vertices} — #{univalent vertices attached to the upper line I'}.

Let A% (w,w") C A¥(w,w’) be the subspace spanned by (w,w’)-diagrams of degree d. We
have AL (w,w') = Do AL (w,uw'). Since we have

AL (w' W) o AL (waw') C AL 4 (ww')
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and
AL(ww)@AL(z2) C AL (w2 ®2)

for any w,w’,w”, 22" € AL, this grading is an N-grading on A’. Note that we have
A (myn) = AL(H®™ H®™) for m,n > 0.

4.3. Relations for morphisms in A%
Here, we observe some relations for morphisms of A%, which we use in the proof of
Theorem 4.1.

The cocommutative Hopf algebra (H,u,n,A€,5) in A naturally induces a cocommuta-
tive Hopf algebra in A” such that

Additionally, the triple (L,[-,-],cr) is a Lie algebra with a symmetric invariant 2-tensor in
AL (see Appendix A.2), where

[]= T := f L2 S Loep= /N = - T — L%2,

:L— H,ad, = adL? = H®L — L.

S N

The degree of the morphism ¢y, is 1 and that of the others of the above morphisms is 0.

The iterated multiplications
u['ﬂ = Y cH®1 5 H
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and the iterated comultiplications

Al = //\ cH — H®1

for ¢ > 0 are inductively defined by
ploh=n, W =idg, plt=plleidy) (¢>1),

AV =¢ Al =idy, AltU=(Aldgidy)A (¢>1).

which denotes the adjoint action, and

_— , "

which denotes the commutator.

Let

Lemma 4.8. We have

(1) Soi=—i

(2) Aoi=i®n+n®i
(3) €0i=0

(4) adg(i®1) = —io[,].

Proof. They can be checked by diagrammatic computation. O

Let g be a Lie algebra and U = U(g) be the universal enveloping algebra. We have a
filtration F,(U) of U induced by the usual filtration of the tensor algebra T'(g) of g. Since
U has a cocommutative Hopf algebra structure, we can define the commutator operator

comm :U®? 5 U
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in a similar way as equation (4.2). For x1, -+, Zm,y1, " ,Yn € g, we have
comm(x1 -+ Tm, Y1 Yn) € Frnin(m,n) (U).

The following lemma is a diagrammatic version of this fact.

Lemma 4.9.

(1) Let myn>1. We have

where cq,c5 € Z, and where D, (resp. Dg) is a union of trees with m (resp. n)
trivalent vertices. Moreover, for m =n =1, we have

(2) Let m>1. We have

(3) We have

https://doi.org/10.1017/51474748022000275 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000275

Actions of automorphism groups of free groups on spaces of Jacobi diagrams. 11 27

For example, we have

1 1 1
1 1 1
\\f’l’ N )
— v, = =Y
- ?Z ) - Z? )
] ] ] ]
1 1 1 1
- 1 ! ! S [ | 1 [N 1 1 1
7 ? K>z~ e e
I'@ [ -
= ZK(QZ - zefz - Z({FOZ

Proof of Lemma 4.9. By using Lemma 4.8 (2) and AXA?L] — AN . we

-LLl_

have

o:(p,q)—shuffle,p+q=n

By Lemma 4.8 (1), it suffices to consider D = . By Lemma 4.8
1 i i i zi iz
(3), we have A 'Lfg = % l# = 67)| € =0. Thus, when p =0, we have D = 0.
w
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When p > 1, by Lemma 4.8 (4), we have

Note that the last term is a Z-linear sum of unions of tree diagrams with m trivalent
vertices. Therefore, the first equality of (1) follows. If m =n =1, then the equality follows
from the case where m =p =1,¢ =0. The second equality of (1) follows similarly.

Y .

X
The first equality of (2) follows from plmd o= A lfg = 0. The second

(I

equality follows similarly,

n n
n
We have (3) because = V = l . O

4.4. Proof of Theorem 4.1

In this subsection, we prove Theorem 4.1.
For any y1, -,y € F,,, we call [y1, -, [yr—1,¥-]] € T an r-fold commutator.
For i € [n], define d; € End(F),) = F°P(n,n) by

di(zs) = [y1, - [Wryra]]S, dilzy) =1 (5 #1)

for y1, -+ ,yr41 € Fp,e € {x1}, which we call an (r+ 1)-fold commutator at i. Via the
isomorphism kF°P(n,n) = Ag(n,n), we identify d; € F°P(n,n) with a morphism of the
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following form

A[q?\ /\A[qn]

| permutation|
H[pl] H[p7‘+1]
€ Ay(n,n),
r
1
1 ) n

which we also call an (r+1)-fold commutator at i, where each * depicts S or idy, and

Qe,pr > 0 satisfy > qr = Zyj DI

Claim 1. An element g € £:(n) can be written as a convolution product
g=di1 k- xdy g, kexdy 1k xdy g, *idgen,

where d; j is an (r+1)-fold commutator at i fori e [n] (1; >0,1<j<I;).

Proof. Let g € &.(n). Since I',1; is generated by (r+ 1)-fold commutators, g(z;)z; "

is a product of (r+ 1)-fold commutators or their inverses for any i € [n]. Thus, we can
decompose ¢ into a convolution product of (r+ 1)-fold commutators and id gen. O

Proof of Theorem 4.1. We show that [Ag x(n),E(n)] C Ag ktr(n). We can write an
element of A, x(n) C AL(I,H®™) as a linear sum of the following diagrams:

o o]

n

where D is a Jacobi diagram with at least k trivalent vertices. Let g € £.(n). By Claim
1, we can write g as a convolution product

g=dy 1k kdy gy koxdy g koxdy, *idgen,

where d; ; € Ag(n,n) is an (r +1)-fold commutator at 4. Let =1+ ;.
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m m
— —A
‘--/‘L[m] —JAlm]
By using XAU] = N p, we have
~—— ~
[ l

Here, each Tl is once connected to all of the diagrams dy 1, ,dy , and idgen. Since
I im n i n
we have ;ﬁ = 22:1 [ I by Lemma 4.8 (2), the element - g is a linear
1 1 ;

, where T denotes TZ or

sum of diagrams of shape

I CIf all T that are connected to idyen~ are TZ , then it is easily checked that the

corresponding summand is just u by using Lemma 4.9 (3). Otherwise, at least one of T

that are connected to diagrams dy, 1, -,dn,, are TZ . By using Lemma 4.9, it follows

that each summand is a linear sum of diagrams with at least k4 r trivalent vertices.
Therefore, we have [u,g] =u-g—u € Ag p+r(n). O
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5. Contraction map

Recall that H = £y(n) = @, Zz; and H* = @, Zv;. In what follows, we identify
H*® L,41(n) with T,.(n) as we remarked in Section 3.2.

5.1. Preliminaries to computation

Let N > 1. We briefly review the construction of the irreducible representations of the
symmetric group & y. See Fulton—Harris [6] and Sagan [21] for basic facts of representation
theory of G . Let A= (Ay,---,A;) be a partition of N, and write A\F N. A Young diagram
of X\ consists of \; boxes in the i-th row for 7 € [I] such that the rows of boxes are lined
up on the left. A A-tableau is a numbering of the boxes by the integers in [N]. We call
a A-tableau standard if the numbering increases in each row and in each column. The
canonical A\-tableau is a standard tableau whose numbering starts from the first row from
left to right and then the second row from left to right and so on.

Let to be the canonical A-tableau. Define Ry, (resp. Cy,) to be the subgroup of &y that
preserves each row (resp. column) of tg. We define

ay = Z o, by:= Z sgn(o)o € kGy.
O'GRto O'GCtO
For each A\ N, the Young symmetrizer c is defined by
cy =bray €kGy. (5.1)

The Specht module S*, which is an irreducible representation of &y corresponding to A,
can be constructed as

SA = kGN *C).
Lemma 5.1. We have the following decomposition of kG n-bimodules
kSy = PkSy-cr-kSy.
AEN
Proof. This follows from basic facts of representation theory. The reader is referred to
[6] and [21]. O

For N’ N"” >0,let N=N'+N". For ut N' v+ N" let S*¢S" denote the represen-
tation of G induced from the tensor product representation S*X.S" of Sy x Sy by
the inclusion of Gy X Gy~ in G y. By the Littlewood—Richardson rule, we have

S0 8" = @ (SH)
AEN

where LRf;’V denotes the Littlewood—Richardson coefficient. We have the following lemma
by using basic facts of representation theory of Gy .

Lemma 5.2. Let N=N'+N" for N ,N">0. Let \tb N,ut N'.v = N", respectively.
We have

dimy((c,0cy) - kSn-cx) =LR), .
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In particular, if the Littlewood—Richardson coefficient LRf;J, =0, then we have

(cuocy) kGn-cx=0.

5.2. Contraction map

We have an isomorphism of GL(V},)-modules
Bar(n) =V @ue,,  Daks (5.2)

where Dy, is the k-vector space spanned by [2d — k]-colored open Jacobi diagrams of
degree d such that the map {univalent vertices of D} — [2d — k] that gives the coloring
of D is a bijection. Thus, any element of By x(n) can be written in the form

uw(wy, - wag—) = (W1 ® - @Wag—k) Ou
for u € Dd7k and w1, -+ ,Woq_k € Vj,.
For A 2d —k, let Bg i(n)x be the isotypic component of By (n) corresponding to A;

that is,
Bar(n)y 2V F @, kGag kcaDay.

We have B, k(n) = @ o9q_r Ba, k(1)
We define a contraction map

¢: By x(n)®T,.(n) = By ktr(n),

which is an analogue of the contraction map defined in Appendix B of [6].
Let p > gq. For I = (i1,---,iq) such that 4,---,i, are distinct elements of [p], define a
contraction map

L.y®r g (V)& — yer—a

by
q
(01 ® - @wy)® (Y1 @+ ®Yy)) H wi;,Y5) | w1 @y, ey, @ wp,

where 1, ---0;, denotes the omission of w;,,---,w;, and where (—,—) : V, @V} =k
denotes the dual pairing. (See [6] for details.)

We next consider a diagrammatic version of the above contraction map ¢!. Let 2d — &k >
r+1. For I = (i1, ,iy41) € [2d—k]"T! such that iy,---,i,.; are distinct, we define a
linear map

¢ By r(n) @ Ty (n) — Bagsr(n)
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by contracting colorings of a Jacobi diagram and leaves of a rooted trivalent tree; that is,

Y1 Yr Yr+1

c ®
w1 W2d—k
w
| u |
r+1 | | 0'_ |
= <wlj7yj> B}
Jj=1
woowy Wy Wiy, Wad—k
1 - 1 /2 2d—k
where o071 = |( . T,+ rt A A . We define a con-
Zl oo Z"’+1 1 .o Zl . e Z/r’+1 Y 2d7k

traction map
¢:Bgr(n)®T,(n) = Ba,k4r(n)

by c= Zl:(il,--- Viri1)E[2d—K]7+ 1 distinet c!. By using the contraction map ¢, we define a map

Yo i+ Tr(n) — Hom(Bg k(n), Ba,k-+-(1))
by VQ,k(g)(u/) =c(u' ®g) for g € T, (n),u' =u(wi, - ,waq—r) € Ba,i(n).

5.3. Vanishing conditions for the contraction map

Here, we observe that the contraction map vanishes under certain specific conditions.

For r > 0, a trivalent tree is called a based trivalent tree of degree r if it has one
distinguished univalent vertex with no coloring (called a base) and r -+ 1 univalent vertices
(called leaves) that are colored by distinct elements of [r+1]. (Note that a based trivalent
tree is different from a rooted trivalent tree.) Let L, denote the Z-module spanned by
based trivalent trees of degree » modulo the AS and IHX relations. The symmetric group
G,4+1 acts on the Z-module L, by the action on colorings of based trivalent trees. Then
we have

Lrpa(n) 2 HO ) @ L

41 T

On the other hand, £,11(n) has a GL(n;Z)-module structure by the standard action
on each factor. (See [7] for representation theory of GL(n;Z).) For ptr+1, let L,41(n),
denote the isotypic component of £,11(n) corresponding to p; that is,

Lrp1(n), 2 HE T @ue | 26,1 1¢, L.

We have L,41(n) =B, 1 Lr1(n) -
For partitions A and p1, we write A 2 1 if the Young diagram of A does not contain that
of p.
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Proposition 5.3. For2d—k>r+1, let \F2d—k and ptr+1. We have

e(Bap(n)s @ (H* @ Ly (0),)) © D Bagrr ()
p:LRﬁYULRfj,(l);éO for some v

In particular, if X 2 p, then we have

c(Bar(n)ax®@(H*®Lyry1(n)u)) =0.

Proof. Any element of Bgx(n)y is a linear sum of (cy -w)(wy,---,weq—%), where
u(wy, -+ ,Wad—k) € Ba,x(n). Any element of L, is a linear sum of
1 rortl
L=x"".

for 7 € &,41. Thus, any element of H* ® L, 1(n), is a linear sum of w® ((y1 ®--- ®
yr-i—l) ®Cu L) for w € H*aylv e Urg1 € H.
For any I = (i1, - ,ir4+1) € [2d — k]"T1 such that iy, -+ ,i,1;1 are distinct, we have

r+1
M ((ex-u)(wr, -, waa—k) @ (WR (Y1 @+ @Yry1) @y - L)) = H(wi_jayﬁDv
j=1
where
U
- I
c ]
: I
a ]
D= ,
w wi wil '”mirﬁ»l Woqd—k
1 1 r+l r42 2d—k
o = " A
11 ir—i—l 1 21 ir+1 2d—k

Let l=2d—k—r—1. By Lemma 5.1, we have

id; = E Ti,1CvTi,2,

V1, 1<i<dim S¥
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where 7; 1,7; 2 € kG;. Thus, we have

| u |

[ - [

[ C\ |

[ - [

p= Y =
B a';b'“

vh1,1<i<dim S¥ e
\"

w1 Wiy Wiy W2d—k

If LR) , =0 for any v F [, then we have D =0 by Lemma 5.2. Otherwise, since we have

",V

idy@c, € @ (87) ),
pHI+1

by the Littlewood—Richardson rule, it follows that

De P (Baktr(n)),-

p:LRﬁYVLRZ’(l)?fO for some v
If A 2 p, then LRﬁ_’V =0 for any v I [. Thus, we have

c(Bar(n)x@(H* @ Lyy1(n),)) =0.

Remark 5.4. Note that we have L3(n) = L2(n)(12). Thus, the restriction
C: Bd,k(n))\ ® (H* ®£2(n)(12)) — Bd7k+1(n)p

of the contraction map vanishes unless p can be obtained from A by taking away one box
from each of two different rows of A\ and then by adding one box.

6. Correspondence between the map ng and the map ~;

In this section, we prove that the map Bg i defined in Section 4 can be identified with
the map v, ;, defined in Section 5 via the Johnson homomorphism of End(£,) defined in
Section 3.

Theorem 6.1. We have Bg’k = (=1)" -4 o7 That is, we have the following commu-
tative diagram (up to sign):

Bak

gr’(Ex(n)) ’ Hom(Bq,x (1), Ba,k++(n))
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Proof. The Z-module H* ® L,;1(n) is spanned by v; ® [Z;,,---,[T4,,T4,,,] -] for
iy41, - ,ir+1 € [n]. Define ¢ € End(F),) by

(b(xl) = [xiw e 7[xi7\7xir+1] ' ] * Ty ¢($]) =Ty (.7 7& Z)

It is easily checked that ¢ € £.(n) and that 7,.([¢],) = v; ® [T4,, -, [%i,, @i, |- -], where
[¢]- € gr"(E«(n)) denotes the image of ¢ under the projection.

Any element of By ;(n) can be written as a linear sum of u = s , where

Vs Vjga—w
1<j1 <+ <joag_r <n, by arranging the univalent vertices according to the order of
indices of the colorings from left to right. We have

Vg,k o%r([(b}r)(u)
=c(u® (v @ [Tiy, s [Zirs Tiyr ) +]))

r+1
_ ¥ (mul,m

() €[2d—Kk]m+1: distinct \1=1

Vi1 Yjay " Yja,yy Viza—k

where 771 € Gg4_, is the (r+1,2d — k —r — 1)-shuffle that maps [r+1] C [2d — k] to {a},
and o € &,.41 satisfies 071(l) = 7(ay) for any [ € [r+1].

Let 4= ¢t Y Yl € Agr(n), which can be obtained from u by replacing

1 n

univalent vertices with T and combining solid lines whose corresponding colorings

of u are the same. Then @ is a lift of w; that is, we have 04, (@) = u. By the definition
of B y» we have

Bau([8]r) () = [, [8],] = O, ([ 0))-
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‘We have

1

el
1
n

where p~1 € G, is the (r+1,n —r — 1)-shuffle that maps [r +1] C [n] to {iy, -

€ Ag rir(n),

-, ip11} and

7 € &,41 satisfies 771(j) = p(i;) for any j € [r +1]. By using Lemma 4.9, we have for

617 75T+1 > 07

a linear sum of diagrams

with at least r+ 1 trivalent vertices

(Bj =0for all j €[r+1))

(Bj=1for all j € [r+1])

(otherwise).

(6.1)

In the last case, the corresponding term of [u,¢] is included in Ag j4rt1(n).
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Thus, by equation (6.1) and Lemma 4.8 (2), we have

Bk ([9]) (w)

(ar)€[2d—k]r+1 j=1 \/

[

- Z (_1>T <vjal7jiz> 9d,n,k+r ‘\-"‘y

<
e ]
b bbbl bbbty

-
- £

r4+1

=(-1)" Z <H<Ujal’xiz>
(en)€[2d—k]"H1

=1

Vi1 Vjoy " Vja, ) Vizan

= (_1)T72,k ' 7’:7"([(%7“)(11)

7. The GL(V,)-module structure of B;(n)

In this section, we consider the GL(V,,)-module structure of By(n) and give a decompo-
sition of By(n) with respect to connected parts. Moreover, we compute the irreducible
decomposition of Bg(n) for d = 3,4,5 and that of By o(n),Bq1(n) for any d. Lastly, we
show the surjectivity of the bracket map which we defined in Section 4.

Let Bg(n) C Ba,k(n) denote the connected part of Bgk(n), which is spanned by
connected V,-colored open Jacobi diagrams. Let Dy, C Dg,) denote the connected part
of Dy, which is spanned by connected [2d — k]-colored open Jacobi diagrams. We have
an isomorphism of GL(V;,)-modules

c ~ ®2d—k c
B p(n) =V, Ok&2a_k Da, o>

which is the connected version of equation (5.2).
The direct sum @ ,-, Ba(n) has the following coalgebra structure. This is an analogue
of the coalgebra structure of the space of open Jacobi diagrams colored by one element

[2]. Let C'=J;¢; Ci be a presentation of a diagram C' € B Ba(n) as the disjoint union
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of its connected components. The comultiplication A is defined by

(O)Z<Ua>® U a

JcI \ieJ iel\J
Note that the connected part €, -, Bg . (n) coincides with the primitive part of the
coalgebra €~ Ba(n).

7.1. Decomposition of B;(n) with respect to connected parts

Note that D, # 0 if and only if d —1 <k < 2d — 2 because each element of Dy, has at
least two univalent vertices and is connected. For d > 1,k > 0, the pair (d,k) is called a
good pair if d—1 <k <2d—2. We consider the following decomposition of a pair (d,k) to
consider the decomposition of an element of Dy into the connected parts.

Definition 7.1. Let d, k> 0. A decomposition of (d,k) into good pairs is a sequence of
triples of integers

™= ((a17d17k1)7 e 7(al7dl)kl))

such that (d;,k;) are good pairs, a; > 1,

l l
Zaidi = d, Zaiki = k‘,
=1 i=1
and

(dlykl) > (dg,kz) > > (dl7kl)

in the lexicographical order.
Let TI(d,k) be the set of all decompositions of (d,k) into good pairs.

For example, we have

I1(4,2) = {((1,3,2),(1,1,0)),((1,2,2),(2,1,0)),((2,2,1)) }. (7.1)

For any diagram K € D4}, we can assign a decomposition of (d,k) into good pairs
such that d; and k; correspond to the degree and the number of trivalent vertices of each
connected component of K, respectively, and a; corresponds to the multiplicity of (d;,k;).
We call a coloring of K = Lllgigl,lgjgai KZ-(J) € Dy 1, standard if the set of colorings of

K eDs . is

i—1 i—1
{Z(2dp —kplap+(j—1)(2d; —k;) + 1, -+, Z(de —kp)ap+j(2d; — kl)}

for each i € [I],5 € [a4].
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Theorem 7.2. For d,k,n >0, we have an isomorphism of GL(V,,)-modules
Busin) = P (@) a2
m=((a1,d1,k1),-+, (ar,di,ki)) €N(d, k)
To prove this, we need the following proposition.
Proposition 7.3. Let d,k > 0. We have an isomorphism of Goq4_j-modules
~ Sodq—k c KRa;
Dg = @ In dl‘[i 1(S2d; 1,184, )(®(Ddi,ki) )s (7.3)
m=((a1,d1,k1),,(ar,di, k1)) €I(d, k) i=1

where Gaog, 1, 184, = Gag, 1, X S,, C S (2d;—ki)a; 1S the wreath product.

For example, we have an isomorphism of &g-modules for (d,k) = (4,2), which corre-
sponds to equation (7.1),

Dy,2 _IndG X Go (D32®D1 ())@Inde x (62162 )(D§,2®(Dio)®2)GBIndgig@Q(DE,l)@Q

For example,

! 3; 23 ) ©1—2 eldg, e, (D5, D5 ),
1-0—2 1 —2 @ 1—2 EIndggx(62162)(D§,2®(Dio)®2)

and

/]\ /]\ c IndbG

c \®
123 ~ 123 s (D2.1)

Via the above isomorphism, the element
(23)45)-(1-0=2 © 1 —2 ® 1 —2 )eldd’, q,e,(D52@ (D)%)
corresponds to the element

1—(0O0—3 2—5 4—6 :(2,3)(475).(1—0—2 3—4 5 —6 ) € Dyo.

Proof of Proposition 7.3. Let Dy, denote the right-hand side of equation (7.3).

For any coset o € GQd—k’/Hé:l(szi—ki 18,,), we fix a representative & € Saq_y, of 0.
Any element of Dlli, . can be written uniquely as a linear sum of

E=¢ & K,

1<i<l,1<5<a;

where Ki(j) € Dg, 1, We assign ||<;c;1<j<a, Ki(j) a standard coloring in [2d — k]
according to the order of the colorings in |_]§:1[2di — k)" of @1<icii<j<as Ki(j). For
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example, if

X 2 3
0% Ki(j):/oio\@\@/@/;;\@l—()—?,
) 3 1" 34 2
1

1<i<l1<j<a;

i

1 5 6
H, A o,
2 3 7 9 10 8

4

then the corresponding coloring of | |, ;<) 1<j<q, K9 i

Define a map ¥ : D}, — Da by

where & € G94_1, acts on the colorings in [2d — k]. We can check that the map ¥ is an

S24_k-module map.

We need to check that ¥ is bijective. If we have U(K) = U(L) for K =5 -
®1§i§l,1§j§ai KZ-(J), L= %'®1§i§l,1§j§ai LEJ), then we have o = 7 by looking at the
set of colorings of each connected component. Since we fix the representatives of cosets of
GQd_k/Hézl(GQdi_ki 16,,), we have ¢ = 7. Thus, we have K = L and ¥ is injective.
For any element K € Dg, we can take o € GQd,k/Hizl(ngi,ki 1 S,,) such that
K= 5'|_|1§i§l,1§j§a7¢ Ki(J), where Ki(J) € ngi,ki) and Ulgigl,lgjsai Ki(J) has a standard
coloring. Therefore, ¥ is surjective. O

Proof of Theorem 7.2. By Proposition 7.3, we have

~ Tr@2d—k
Bar(n) =V OxSoq_r, Dd,k

l
_ Saog_ c a;
@ (Vn®2d k ®k62d*k Ind Eillg62d7‘,*ki16“i) (@(Ddi7ki)® >> .

well(d, k)

R
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Moreover, we can check equation (7.2) as follows.

!
k Saq_ ;
Vn®2d k OkGoq_r Indl‘éij%drw%i) <®(D¢C1i,ki)®a >

i=1

l
_ Soa_r [Tim: Say2a; 1) c ®a;
o~ V®2d k Ind 2 Ind i(2d5—k; ® D i
n ®k62d7k 2:16%‘(2%‘—’%) Hé:l(GQdi*kizGai) ( di’ki)

i=1

l

~ 1/ R2d—k Sogq_k ® Sa;(2d;—ky) c ®a;

- Vn OkG g1 Ind 5:1Gai(2di—ki) < Indszi_kiZGai ((Ddi7ki) )
i=1

l
~ 1/®2d—k Sa,(2d;—k;) c ®a;
- V” ®k(l‘[£:1 Sa,(2d;—k;)) <®Ind62di—ki26ai ((Ddi,ki) ))
i=1

®ai(2di7ki) G‘li(2di_ki) c ®a;
(Vn ®k6ai(2’ii*ki) (Ind(’)gdi_kileai ((Ddi7ki) )

.

=1

(V’i@ai(%ﬁki) ®k(62di—ki26ai) ((Dgi,m)(@ai))

.

=1

Symai (Vn®(2di*ki) ®]k62di7k',y Dgukz)

s

1=1

Sym® (Bdci,ki (n)) .

.

=1

7.2. Irreducible decomposition of Bi(n) as GL(V,,)-modules
In this subsection, for simplicity, we write V =1V,,, By = Bq x(n) and Bi = Bfl’k(n).
Let N be a nonnegative integer and A N. Recall from Section 5.1 that S* denotes
the Specht module, which is an irreducible representation of &y corresponding to A. Let
V) =S,V denote the image of V under the Schur functor Sy. Note that V) is a simple
GL(V)-module if n > r(A\) and that V) =0 if n < r(X), where r()) is the number of rows
of A.
We use the Littlewood—Richardson rule, plethysms and results by Bar-Natan [4] to
compute the irreducible decompositions of the GL(V')-modules By.

Proposition 7.4 (Bar-Natan [4]). As Gaq_-modules, we have isomorphisms

c o~ q(2)
1,0 — ’

C ~Y 3 C ~Y
1)271:*9(1 )7 DQ,QZS(Z)v
C ~Y 2 C ~Y 3 C ~Y
D5, =8®)  Dps, =51 D§, =853

Q12 2 3
Dy 5= S(3:15) Dy, = S@® a5 DS s ~ g(1%) D§ ¢ = 5@,
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DE, = 5D 552" g gB31Y) - pe o (931792
Dgo = SWe (502, D= (SU)S, Dg g (57)F,

Lemma 7.5. We have the following isomorphisms of the GL(V')-modules:

BiO = ‘/(2)3
By = Vis),  Bya =V,
B§,2 %‘/(22)’ B§,3 g‘/(13)7 B§74%‘/(2)7

Bi,3g‘/(3,12)7 Bz,4g‘/(4)®‘/(22)7 82752‘/(13% BEGg‘/(Q)a

BS 4 =2 Vg0 ©Vies)y® V(3 13y, Bjz= (Viz12)) 2,
B = Vi ® (Vi22)) %%, BS 7= (Vias)) ™2, BSs = (V)%
Proof. These follow from Proposition 7.4. O

Proposition 7.6. For d=3,4,5, we have the following irreducible decompositions of the
GL(V)-modules By.

(1) We have B3 = B3 o®---® B3 4, where

B30 = Vig)y ® Via,2) ® V23,
B3 1 = V(3,12) ®V(2,13),

B3 2 2 Vigy ®Viz,1) ® (Vi22)) ¥,
Bs s = B5 3= Vs,
Bya=BS, = V.

(2) We have By = Bs,o®---® By, where

B0 = Vig) © Vie,2) D Viaz) © Vig,22) © Vo),

By & Vi5,12) ® Vig13) ® Viz2, 1) B V(3,2,12) © V(22,13),

Bu2 = Vigy® V5,1 ® (Vig,2) 22 (Vi3,2,1)) 2 @ (Vi) #2 @ Vig 14,
By3 = (Vi3,12)) % @ (Vig,19)) ¥,

By = (Vi) # @ Vig1) @ (Via2))®?,

By 5 = Viisy,

By = V().
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(3) We have Bs = By,0®---® Bs s, where

Bs,0 = Vo) @ V(g,2) @ Vie,4) © Vie,22) ® V{a2,2) D V(4,23) B V(25),
Bs,1 = Viz,12) ® Vie,13) ® V(5,3,1) ® V(5,2,12) D V(4,3,12) D V(4,2,12)
@ V(33) ® V(32,2,1) © V(3,22,12) ® V(23,13),
Bs,2 2 Vi) ® Viz,1y @ (Vis,2))®> © Vis,3) @ (Vis,2,1)*? © (Viaz))*?
& (Vi4,3,1)) % @ (V{4,22))®° & Vig 14) ® Viz2,12) B (V3,22,1)) P
D Viz,212) B Via15) @ (V2)) ¥ @ Vigz 1),
Bs3 = (Vi5,12)) % @ (Vig,2,1)) P2 @ (Vi 12) ®* © (Via2,1)) ¥ @ (V5,2,12)) #°
©V3,14) D (V(22,12))®°,
Bs 4= (‘/(6))@3 & (‘/(5,1))693 D (‘/(4,2))698 D (‘/(3,2,1))694 & V(3,13 @ (‘/(23))@6
O Vi22,12) © Vig10) © Vo),
Bs5 = (Vi3,12))®° @ (Vig,19)) 7,
Bs6 2 (Vi) ®* ® (Vs 1) ®* @ (Vi22)) ®4,
Bs,7 2= (Vas))®?,
(

Proof. By using Theorem 7.2, Lemma 7.5 and plethysm, we have
B0 2 Sym® (B o) = S5 (S2) V) 2 Vi) & Via,2) & Vo).
By using Theorem 7.2, Lemma 7.5 and the Littlewood—Richardson rule, we have
B3 1= B3 @By o = Vi13) @ Vig) £ V(3,12) ® V(2,13),
and
B3 2= B; 5@ (B3 5 ® BY o) = Vioz) @ (Vig) © V3,1) @ V(22))-

The other isomorphisms of (1) follow from Lemma 7.5.
The irreducible decompositions (2) and (3) follow in a similar way. O

We need the irreducible decompositions of Bg ¢ and Bg 1 to study the Aut(F},)-module
structure of Ag(n). For A = (A1, --,\+) F N, let 2\ denote the partition (2Aq,---,2);) of
2N.

Proposition 7.7. For any d >0, we have
Bao = P Vax.
A-d
For any d > 2, we have

By, = b Vi.

AF2d—1 with exactly 3 odd parts
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Proof. By Theorem 5.4.23 in [14], we have
S(a)(S2)V) = P Vaa.
A-d

Therefore, by Theorem 7.2 and Lemma 7.5, we have

0 = Sym?(Bf ;) = S(4)(S2)V) = EP V.
A-d

By Theorem 7.2, Lemma 7.5, plethysm and the Littlewood—Richardson rule, we have

d—2
Ba1 = Bs 1 ®@Sym® “(Bf ) = Vi1s) ® @ Vau = @ V.
pEd—2 AF2d—1 with exactly 3 odd parts

7.3. Surjectivity of the bracket map [-,] : By (n) ® gr' (IA(n)) — By g+1(n)

Here, we show that the bracket map [-,-] : By r(n) ® gr*(IA(n)) — Bg r+1(n) is surjective
for n > 2d. Since we have abelian group isomorphisms (3.7), the bracket map of gr!(IA(n))
coincides with that of gr!(€.(n)). Thus, we can compute the bracket map by using the
contraction map c defined in Section 5

Define K; ;,K; j 1 € IA(n) by

Kij(w:) =xjmix; !, Kijm)=z (#1),

Ki,j7k(xi) = J;i[xj,xk], Ki,j,k(xl) = (l 75 Z) (7.4)
Proposition 7.8. Forn > 2d—k, the bracket map
[,]: Bar(n) @gr! (IA(n)) = Ba 41 (n)

18 surjective.

Proof. Any element of Byjit1(n) is a linear sum of uw = é , where

Viy Vipg Vigg_p_1

i1, ,92d—k—1 € [n]. Since n > 2d — k, we can take 4 = € By i(n), where
ViVjViy  Vigg 1

i,5 € [n)\ {42, -+ ,i2qa—k—1} are distinct. We have [4, K;, ; ;] = u, and therefore, the bracket

map is surjective. O

As in Section 5.3, for A 2d —k, let By (n)» denote the isotypic component of GL(n;Z)-
module By x(n) corresponding to A.

In Proposition 7.7, we computed a decomposition of By ¢(n). Since the Young diagram
of (2d) does not contain that of (12), by Remark 5.4, we have the following corollary.
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Corollary 7.9. The restriction of the bracket map

[.’~] : @ Bd,O(n)Q)\ ®g1‘1(IA(Tl)) — Bd,l(n)
AFd, A£(d)

s surjective for n > 2d.

Lastly, we consider the condition for A 2d — k that the isotypic component By x(n)x
of By x(n) does not vanish. Let o(A) be the number of odd parts of A\. We have

oA)=2d—k=k (mod?2).
In Proposition 7.7, we observed that o(A) =0 (k =0) and o(\) =3 (k =1). Moreover, by
Proposition 7.8 and Remark 5.4, we have o(\) < 3k if By p(n)x # 0.
8. The Aut(F),)-module structure of A,(n)

In this section, we study the Aut(F,)-module structure of A4(n). We have Ag(n) =k for
any n > 0, and we studied the cases where d = 1,2 in [16]. Note that we have A44(0) =0 for
d > 1. Thus, we have only to consider n > 1. Here, we construct a direct decomposition
of A4(n) as Aut(F,)-modules for any d > 3,n > 1, which is indecomposable for n > 2d.
Moreover, we study the degree 3 case in detail.

8.1. A direct decomposition of A,(n)
Here, we give a direct decomposition of the Aut(F,,)-module Ay4(n).
Let ¢ = ‘[1\ JQ\ € A1(2) = A1(0,2), and depict it as /9\ . Here, we use the same

graphical notation of morphisms p,7,A,€,S in the category A as in the category AL.
As in Section 4.3, we can define the iterated multiplications pl4 e A(q,1) for ¢ > 0. For
m > 0, there is a group homomorphism

Sm—A(m,m), o P,

where P, is the symmetry in A corresponding to o. Set

Y] = N Py, [allm ] = Y sgn(o) P, € A(m,m).
Tt ccS,, T c€S,,

By Habiro-Massuyeau [11, Lemma 5.16], every element of A4(n) is a linear combination
of morphisms of the form

for o0 € G494 and q1,---,q, > 0 such that ¢ +---+ g, = 2d. The following lemma easily
follows.
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Lemma 8.1. For n >0, we have
Aa(n) = Span, {Aa(f)(c®?) | f € FP(2d,n)}.
For X € Ag(m), let
Ay X :F°P — fVect

denote the subfunctor of A, generated by X. That is, for any n € N, A;X(n) is the
Aut(F,)-submodule of A,4(n) defined by

AqX (n) := Spany {Aq(f)(X) | f € FP(m,n)}.
Set

A °
p— oy ], o= /\ € Aa(2a)

Note that we have A;Q =0.
Theorem 8.2. We have
Ag(n) = AgP(n)® AsQ(n). (8.1)

Proof. By Lemma 8.1, any element of A4(n) is a linear sum of Ay(f)(c®?) for f €
F°P(2d,n). Define an Aut(F),)-module map
en : Ag(n) = Aq(n)

by e, (Aq(f)(c®d)) = ﬁAd(f)(P) for f € F°P(2d,n). This is well defined because the 4T
relation is sent to 0. Since A4P is generated by P, we have im(e,,) = A¢P(n).

Since we have e,(Aq(f)(P)) = Aa(f)(P) for any f € F°P(2d,n), the Aut(F,)-
endomorphism e,, is an idempotent in End(A4(n)), where we consider A4(n) as a right
Aut(F,)-module. Therefore, we have

Aq(n) =im(e,) ®ker(e,), ker(e,)=1im(l—e,).

=0, we have A;Q(n) C ker(e,). Finally, we need to check that

im(1—e,) C AgQ(n). Since we have for f € F°P(2d,n),

1

(1= en)(Aa(f)(®h) = Aa(F)(c*) - mAd(f)(P)

— L Z Ad(f)(c®d—ac®d),

|
(2d)! =y
we need to show that, for any o € Gg4, there exists 7 € k&oy4 such that

@l —oc®l = 1Q € A4Q(2d). (8.2)
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It suffices to show the existence of 7 satisfying equation (8.2) when o is an adjacent
transposition because any permutation is generated by adjacent transpositions, and we
have such 7 by inductively using

c®—gpc®t = 1 — 5Pl 4 o (B — pc®?).

If o is an adjacent transposition (24,2i+1) for i € [n— 1], then we set

(1 2 3 45 2d
TT\2i-1 2i42 2041 2 1 2i—1--2it2.- 2d)

If o is an adjacent transposition (2 — 1,2i) for ¢ € [n], then we set 7 = 0. The proof is
complete. O

Lemma 8.3. The Aut(F,)-module AqP(n) is irreducible and thus indecomposable.

Proof. Since =0, we have 0;.,(AqP(n)) = Ba,0(n)2q) by the PBW map.

Therefore, AgP(n) is an irreducible Aut(F;,)-module. O

A A
For A d, set Q) = Cax , where co) € kGoy is the Young symmetrizer. Note

that we have Q) = P.

Lemma 8.4. For AFd,\# (d), we have Q) € AzQ(2d).

Proof. For A= (A1, ,\) # (d), we have r > 2. By expanding ay and by except for the
first column, we can write Q) as a linear sum of

altg Q

alt ” . . .

where 0 € G54_,. The latter diagram is obtained from ¢ by composing a morphism of
kF°P(2d,2d), so is included in A;Q(2d). O

By Lemma 8.4, we have AqQ(n) D Yy 4 z(q) Ad@x(n). Moreover, we have the
following corollary.

Corollary 8.5. The Aut(F,)-module AqQ(n) is generated by {Qx | A\ F d A\ # (d)} for
n > 2d. That is, we have AqQ(n) =3 5 j \2(a) Aa@r(n).
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Proof. For simplicity, let A denote Z)\Fd)\#d) AqQx(n). By Lemma 8.3, we have
04.n(AaP(n)) = Bg,0(n)(2q). Thus, by Theorem 8.2, we have

04,n(AqQ(n)) = @ Ba,o( @Bd k

A-d, A (d) E>1

On the other hand, by the PBW theorem, we have

Oa.n(A) D B Bao(n)ax

A-d, A£(d)

By Corollary 7.9 and Proposition 7.8, we have

04n(A) D @ Bd o @Bd k

Aed, A£(d E>1

Therefore, we have A;Q(n) C A. Hence, we have A;Q(n) = A. O

8.2. Radical filtration of A,(n)
For an Aut(F,)-module M, let Rad(M) denote the radical of M; that is,

Rad(M ﬂ{K C M | K is maximal in M}.

We have a radical filtration of A4(n)
Ag(n) D Rad(A4(n)) D Rad®(A4(n)) = Rad(Rad(A4(n))) D

Theorem 8.6. Let n > 2d. Then, the filtration of Aq(n) by the number of trivalent
vertices coincides with the radical filtration. That is, we have Rad(Agx(n)) = Agk+1(n)
for any k> 0.

Proof. For A+ 2d —k, we have Bgr(n)x = @.2,(Va); as GL(n;Z)-modules. Let
Bik(n)ai C Bar(n)x be a GL(n;Z)-submodule corresponding to (V);. Let Agx(n)x: C
Aq k(n) be the Aut(F),)-submodule generated by 6, L (Bar(n)xq). For each AF-2d—k,i €
[ra], we have a maximal submodule

Rai=| >, Awr(uy | +Aakii(n).
(1,1 (1)

Since we have ﬂ(M) Ry ;= Agr+1(n), it follows that Rad(Ag k(n)) C Ag k+1(n).

For any maximal submodule K of Ay (n), the quotient Ay ,(n)/K is an irreducible
Aut(F,)-module, which factors through an irreducible polynomial GL(n;Z)-module. Tt
follows that 04, ,(Aq,x(n))/04n(K) is isomorphic to one of the irreducible components of
the GL(n;Z)-module @, Ba,i(n). If By 1(n) C 04, (kK ), then by Proposition 7.8, we have
K = Ag (n), which contradicts to the maximality of K. Therefore, 04, (Ad,x(n))/0a,n(K)
is isomorphic to one of the irreducible components of By 1,(n), and we have K D Ag x41(n).
This implies that Rad(Agx(n)) D Ag r+1(n), and the proof is complete. O
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It is possible that Theorem 8.6 holds for some n < 2d. However, it does not hold for all
n. (See Remark 8.13.)

8.3. Indecomposability of the decomposition of A;(n)

Here, we consider the indecomposability of the decomposition (8.1) of Ag(n).
In Proposition 7.7, we observed that

Bgo(n) = @Bd,o(n)zm Bgi(n) = @ Bgi(n),.

AHd pH2d—1 with exactly 3 odd parts

In order to study the indecomposability of equation (8.1), we observe certain connectivity
at the level of partitions.

Let Xg={2A | AFd A # (d)} and Yy = {uF 2d —1 | o has exactly 3 odd parts}. We
consider the bipartite graph G4 with vertex sets Xy and Yy and with an edge between
each pair of vertices 2\ and p if p is obtained from 2\ by taking away one box from each
of two different rows of 2\ and then by adding one box to another row. For example, G,
is

(2%) (1%),

Gg is
(4,2) (3,12)
()= (217
and G4 is
(672) - ( 712)

(4%)
(4,2%)
(2%)

5
(4,1°)
(3%1)
(3,2,12)
(22,13).

1\

/

/

Proposition 8.7. The graph G4 is path-connected.

Proof. For A\ F d A # (d), let r(\) be the number of rows of A\. We write A =
(SN2 A where Ap > Ao > - > A, YL a4 =7(\), a; > 1.

We show that for A+ d such that 7(\) < d, there is a path between 2\ and some 2\ € Xy
such that r(\') =r(A\)+ 1. Then, since (2¢) is the only partition that has d rows, it follows
by induction on k =r(\) that all vertices in X, are path-connected.

If a; = k, then we have 2\ = ((2A\1)*) and 2)\; > 4 because we assume that k < d. Thus,
we have

2\ ',
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where 1/ = ((2A1)#72,(2\; —1)%,1) is obtained from 2\ by taking away a box from each
of the (k—1)-st and k-th row and adding one box to the (k4 1)-st row, and

' 2X,
where 2\ = ((2A1)*~1,2\; —2,2) is obtained from y’ by taking away a box from the k-th
row and adding a box to each of the (k—1)-st and (k+ 1)-st row. Therefore, we have a
path between 2A and 2\’ such that r(\) =k+1.

If a1 < k, then we have

2)\ MH7

where 11" is obtained from 2\ by taking away a box from each of the a;-th and (a; +ag)-th
row, and adding a box to the (k4 1)-st row, and

ll/// 2A//,

where 2)\” is obtained from p” by taking away a box from the a;-th row and adding a
box to each of the (a; +az)-th and (k+1)-st row. Therefore, we have a path between 2\
and 2\ such that r(\') =k +1.

Lastly, we will show that each vertex of Yy is connected to a vertex of X;. Any element
1 €Yy is a partition of 2d —1 and has three odd parts. Therefore, by taking away a
box from the last odd row and then adding one box to each of the other two odd rows,
we obtain a partition of 2d with only even parts, which is a vertex of Xy4. The proof is
complete. O

If n > d, then for any 2\ € X4, Bgo(n)2x is a nonzero GL(n;Z)-submodule of Bg(n).
If n>d, then for any p € Yy (except p= (2972,1%) if n =d), Bg1(n), is a nonzero
GL(n;Z)-submodule of B4(n).

Let 7, : Bq,1(n) — Bq,1(n), be the projection.

Proposition 8.8. Let n > 2d. Let 2\ € Xy, p € Yy be two endpoints of an edge of the
bipartite graph Gq. Then the composition of the bracket map and the projection m,

Bao(n)ax @gr(IA(n)) 15 By 1(n) = Bai(n), (8.3)

does not vanish.

Note that this proposition holds for d = 1,2 because we have X; =Y = (, X, =
{(22)},Y2 = {(1%)} and by Lemma 6.7 in [16].
Recall that we have

Spany { w/l\w ' .,.U%Q,wzd | wy, -+, waa € Vi }
B =
ao(n) multilinearity
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and

w2d—1

Spany { N o N | wi, -+, wag—1 € Vi }

w1 w2 w2d—5 W2d—4 W2d—-3 W24-—2

Baa(n) = AS relation and multilinearity

What the bracket map does is to contract two of the univalent vertices of a diagram of
an element of By o(n) with two leaves of a trivalent tree in gr!(IA(n)), which corresponds
to the operation on partitions of taking away two boxes from different rows and then
adding a box. Here, we introduce an intermediate vector space B)(n) between By o(n)
and By 1(n), whose elements correspond to partitions which are obtained by the operation
of taking away two boxes from different rows. Define B/;(n) by

*1
Span { N - N A | wi, -+, wag—2 € Vy, }
w1 w2 wod—5 W2d—4 W24—-3 W24-—2

AS relation and multilinearity
*1

where A is a based trivalent tree of degree 1. Then, B/j(n) is a GL(n;Z)-module,

W2d—3 W2d-—2
and we have an irreducible decomposition

By(n) = S(4-2)(S@2) Vi) ®S12)Vy = P v

vH2d—2 with exactly 2 odd parts

in a way similar to Proposition 7.7. Let B/(n), be the isotypic component of B/(n)
corresponding to v.

Recall that ay,by and ¢ are defined in Section 5.1. In the proof of Proposition 8.8, we
use the following notation

A1 Ai

Aj

A AN D A
(e oy ey )
rrrr 17117 1717171 TTTT1

Ap

r 1

which represents the linear sum of permutations asy.

Proof of Proposition 8.8. Let 2\ = (2\y,---,2\,.) F 2d € X4. Any vertex p € Yy that
is connected to 2\ by an edge of G4 is obtained from 2\ by taking away a box from
each of the i-th and j-th row of 2\ and adding a box to the k-th row of 2\ for some
i,j € [r],i <j,k€[r+1],k#1,j. We write p= (pt1, -+, ft5). Then we have p; =2\, — 1,41, =
20 — L =2 +1 and py = 2); for 1 € [s],l #14,5,k.

Since we have gr'(IA(n)) & H* ® L2(n), we can write equation (8.3) by

Bapu: Bao(n)ox® H* @ Lo(n) = By1(n) = Ba1(n),.

We will show that hy , does not vanish.
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Let v F 2d — 2 be the partition that is obtained from 2\ by taking away a box from each
of the i-th and j-th row of 2A. We decompose h) , into the composition

h)\,,u, = hu,,uh)\,m

where h,, , and hy , are GL(n;Z)-module maps defined as follows.
Let

hl)\ : Bd70(n)2>\ ®E2(n) — B&(n)

be a GL(n;Z)-module map defined in a way similar to the contraction map in Section
5.2. Define

hx:Bgo(n)ax @ H* @ Lo(n) — By(n) @ H*

by ha(z@y®2) =h\(z®2)®y for & € By o(n)ary € H*,z € Lo(n). We also define a
GL(n;Z)-module map

h:Bj(n)® H* — Bg,1(n)

by connecting two bases *1,%o, that is, for wy, -+, weq_o € V,,v € H*,
*q1 *9 v

h(/\‘../\ A ® ):/\.../\ A

w1 wy W2d—5 W2d—4 W2d—3 W24—2 v wy w2 W2d—5 W2d—4 W2d—3 W42

Let 7, : Bj(n) @ H* — B}(n), ® H* be the tensor product of the projection and idg-.
Then we have two GL(n;Z)-module maps

haw  Bao(n)ax® H* ® Lo(n) 22 B)(n) @ H* =% Bly(n), @ H*

and
hy.: Bi(n), @ H* 25 Byy(n) 2 By (n),.

Since hy,, and h,, , are GL(n;Z)-module maps and since Bg(n)2x and Bjj(n), are
irreducible, it suffices to prove that hy , #0 and h, , # 0.
We will prove that hy , does not vanish. Let

A b by Ap
/\”.[\“./\.”[\.../\”.[\“./\.”[\
I‘sym2>\1 ‘ ‘Sme)\, ‘...‘symzAi ‘...‘sym2>\r ‘ I
u= T[] [[] t—— € By,o(n),
by I I ba2)
I'TTT TTT T T T I
vy v . vy P u; . vod—2 V2d—1vY2d

where 7= 571_, 2\, — 1,7 = 37_, 2\, — 2. Since we have

Cy0C(12) € S”OS(lz) = @(SP)LRZ»(lz)
pk2d

and

{P F2d | LRLP/.,(12) # 0} NXg= {2>‘}a
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we have u € By o(n)2x. Moreover, we have

A1 A Aj Ar
% o A A A N %
o we ®A S s e == = =N
_ > I by | [ a2 |
U1 T2d—1%2d I'TTI1 I'TT [T I'TTTI Y U1
vive e v e v S e
*1
(8.4)
By the relation b(;2) =1id —(1,2) and the AS relation, the right-hand side of equation (8.4)
is
A X A e
[™M2x; ] .. ["Vmax, |- [¥™@2a; | .. [Woa, ||
w=(-2) [TTT TT] ®
by I V1
I'TTT TTT I'TT I'TTTI *1
vive e v e v S uags

Since we have locally, by pulling %; to the top, we

have
*1
2 A A g
u'=(=2)20)(2)) [T B B (R | @ | e By(n), @ H .
I I I [ 11 [ 1 1 vy
| 2 |
et Tl I T T
vivy e wp e w3 Ce eag_s
*1
We will look at the coefficient in v’ of wy = N - N A to show
Y1 vz - ¥2d-3%Y2d-2 Y Y]

that «’ does not vanish. Note that the upper box corresponds to a, and that b,a, =
ZTEC{,O,pERtO sgn(7)Tp, where to is the canonical v-tableau. If A; # A;, then there is no
T € C, such that 7(i) = 7,7(j) = 4. Thus, the diagram wuy appears only when 7 is an
even permutation which fixes 7 and j. Then, the coefficient of u¢ in u' is negative. If
A; = A;, then the diagram ug appears when 7 preserves the subset {i,7} and the parity
of 7 coincides with that of the restriction of 7 to {7,j}. Hence, by the AS relation, the
coefficient of ug in «’ is negative. Therefore, hy , does not vanish.

We will prove that h, , does not vanish. Let NV € N. Set c:) =ayb, €k&y for p- N.
From basic facts of representation theory, we have an isomorphism of k& y-modules

k@Ncp = ]kGNCi).
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In what follows, we use c’p instead of ¢, as the Young symmetrizer. Let

*2
Z#: C;LO" /\ A

1 2 . 2d—-3 2d—2 2d—1

(0P @ @uPHe)

11 1]111

where o € Go4_1 is defined by

7 i k
1 -+ 2d—3 2d—2 2d—1 . L, <
UZ( ~/ 5 L’ >f0rl/:§ Mlaj/:§ :U'lakIZE K-
=1 =1 =1

1 ... i

We will show that h(7,(Z,)) € Ba,1(n), and that h(m,(Z,)) # 0.

If the diagram that is obtained from p by taking away a box from the i-th (resp. j-th)
row of p is a partition of 2d — 2, then write it v; (resp. v;). Since any partition pF2d—2
with exactly two odd parts other than v,v;,v; is not included in p, it follows that

Z, € (By(n), ® H*) & (By(n),, © H') & (Bj(n),, ® H").
By using an argument similar to Proposition 5.3, we have

h(B)(n) c @ Bai(n)a, h(Bin),@H)C € Bailn

a=rud a=vr;U0
h(B(n) c P Baal
a=v;u0
Since {vuUO}N{r;UO}N{v; U0} = {p} and since h(Z,) € Bq,1(n),, we have h(m,(Z,)) €
Bd’l(n)u.
In order to prove that h(m,(Z,)) # 0, we will look at the coefficient in h(m,(Z,)) of
*1 *2

1 . 2d—3 2d—2 2d—1

Aﬂ

II Illl

v1

Note that ¢j, =3 cp, rec,, 580(7)p7, where s is the canonical p-tableau.

Firstly, we consider the case where p;, 145,11 are distinct. Then z appears only when 7
is an even permutation which fixes ¢/, j' and k’. Therefore, the coefficient of z in h(Z,)
is positive. Moreover, the linear sum of terms in Z,, such that x5 is connected to vy lies
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in 7,(Z,), so the coefficient of z in h(m,(Z,)) is equal to that of z in h(Z,), which is
nonzero.

The other cases, where at least two of u;,u; and py are equal, follow in a similar
argument. The only thing that differs from the above case is that z appears when 7
preserves the subset {4’,j’,k'} C [2d — 1], and the parity of 7 coincides with that of the
restriction of 7 to {#’,j,k’}. Since we have the AS relation, the sign due to the permutation
of {t',j',k'} is cancelled. Therefore, the coefficient of z in h(Z,) is positive in any case.
The proof is complete. O

Theorem 8.9. Let d > 2. The direct decomposition
Ag(n) = AgP(n) ® AaQ(n)
of Aut(F,,)-modules is indecomposable for n > 2d.

Proof. By Lemma 8.3, it suffices to show that A;Q(n) is indecomposable. Since the
radical preserves the direct sum, we have only to show that A;Q(n)/Rad®(44Q(n)) is
indecomposable. Suppose that we have a nontrivial decomposition of Aut(F),)-modules
AqQ(n)/Rad?(A4Q(n)) = 44Q(n)/Aq.2(n)
= (M1 + Ag2(n))/Ag2(n) & (M2 + Ag2(n))/Aaz2(n),

where M; is an Aut(F},)-submodule of 44Q(n) for i =1,2. Let

Ni =040 (M;+ Ag2(n))/0a,n(Ad2(n))
for i = 1,2. We have

N1 BNy =04,(A40Q(n))/04rn(Ag2(n)) = @ Bgo(n)ax | ® Ba1(n).
AFd,N£(d)

For any 2\ € X, there uniquely exists ¢ € {1,2} such that N; includes a GL(n;Z)-

submodule (N;)ax 22 Vay. Let € (IN;)2 be a generator of the irreducible GL(n;Z)-module
(Ni)2x. Then, the image ' of x under the composition of GL(n;Z)-module maps

(Ni)ax = Ny = Bgo(n) @ Bg,1(n) — Bg,o(n)

is an element of By o(n)2x. For any p € Yy that is connected to 2\ by an edge of G4, by
Proposition 8.8, there exists g € gr'(IA(n)) such that [2/,g] # 0 € Bg,1(n),,. Therefore, we
have

[a?,g] = [mlhg] + [LL' - x/,g] = [xlhg] 7& 0e Bd,l(n)ﬂ'

It follows that IV; includes a GL(n;Z)-submodule (N;),, that is isomorphic to V), for any
€ Yy that is connected to 2\ by an edge of G4. Hence, by Proposition 8.7, we have
N; N Ny # {0}, a contradiction. Therefore, A;Q(n) is indecomposable. O

Note that the assumption n > 2d is needed for the surjectivity of the bracket map
and the nontriviality of the bracket map for each pair of nonzero irreducible GL(n;Z)-
submodules. Thus, if we have the surjectivity and the nontriviality of the bracket map
for some n < 2d, we can loose the assumption.
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8.4. The Aut(F,)-module structure of A3(n)

Here, we consider the Aut(F,,)-module structure of As(n) in detail.
In degree 3, the restrictions of the bracket map to each isotypic component induce
GL(n;Z)-module homomorphisms

p1: Bz o(n)(4,2) — Hom(gr! (IA(n)), B 1(n)(3,12)),
P2 Bg’o(n)(ga) — Hom(grl (IA(n))7Bg,1(n)(3,12)),
p3 : B o(n)(23) — Hom(gr! (IA(n)), Bs,1(n)(2,13))-

Proposition 8.10. The GL(n;Z)-module homomorphisms p1 and ps are injective for
n >3 and p3 forn > 4.

Proof. Recall that ¢y denotes the Young symmetrizer defined in equation (5.1) and that
K; j 1 € IA(n) is defined by equation (7.4). For n > 3, we have

p1(u)(K32,1) = [u,K321] = —10w # 0 € B3 1(n)(3,12),

where
1 A0 N NN N N N
_
(+2) = U010V VoV V101 V1V V1V € Bs,0(n)(4,2)
V10V1V10V1V20V2
and

Pear o /N N

_ 2

w_20 e ’l)1’l)2’l)3’l)1’1}17é06331( )312)'
V1V1V1 U2 V3

Thus, we have p; # 0 for n > 3. Since B3 o(n)4,2) is irreducible, p; is injective.
Let

AN N (7S
P _ € By o(n) ).

V1102020303 V1 V2 U3 U1 U2 U3

‘We have
p2(2)(K1,32) = [2,K1,32] = —6w # 0 € B3 1(n)3,12).

Thus, we have ps # 0 for n > 3. Since BS’O(TL)(QB) is irreducible, po is injective.

For n > 4, we have
6 24
[2,Ky32] = “EYT A

and thus,

24
p3(7)(Ky3,2) = —57 #0€ B3 1(n)2,13),
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+4 /[\ N EBg,l(n)

where
AN
S N AN A
4 V2 U3 U4 V101 VU1 U3 V4 V102
V1014 V2 V3
V1 V2 V3 V104
and

ANDZAAN

/N N

V1 V2 V4 V1V3

(3,1%)

zzéz/l\/\_/l\/u/l\/\

V2 U3 V4 V101 V1 U3 V4 V102

V1V1V2 U3 V4

/NN #0€ By y(n)

V1 V2 V3 U1V4

V1 V2 V4 V1V3

(2,13)-

Therefore, we have p3 # 0 for n > 4. Since Bs o(n)(2s) is irreducible, p3 is injective. [

Remark 8.11. We consider a restriction of the bracket map

[]: Va@gr' (IA(n)) — Vi

(8.5)

for each irreducible GL(n;Z)-submodule V) (resp. V,,) of By r(n) (resp. By rt1(n)). We

write a wavy arrow

VAW‘/;L

if the restriction map (8.5) does not vanish. Then, we have the following diagram for

n > 4:

Bs(n) =Bso(n) @© Bsi(n) & Bsa(n) ® Bssz(n) &  Bsa(n),

2l 2l Al

Bs 0(n)(6)
D

2l dl

B3,0(n)(4,2) ~> B3,1(n)(3,12) ~> ng)(n)(zz) ~> B3 3(n) sy ~> Bz a(n)2)

@Jffﬂ \\

Bg)o(n)(QB) 57 BS,Q

S

B3 1(n)2,13) ~ Bs,2(n) (3,1

\\_\ D

2
Bg,z)(n)(zz)

n)()

© = @
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where Béf)Q(n)(22) is the irreducible component of Bz 2(n)(22) generated by

A N 7

C . .
2 Ggbyty (=1
V1V1V2V2

O

WA

V1V20V1V2

V1V1V2V2

respectively. Note that, for n = 3, B3(3) includes all of the above irreducible subrepre-
sentations but Bz 1(3)(2,13) =0, and there are all of the wavy arrows but the three wavy
arrows that are directed to or coming from Bz 1(3)(2,13). For n =2, we have

B3(2) = (B3,0(2)6) ® B3,0(2)(4,2)) © B3,2(2) ® B3 4(2).
For n =1, we have
B3(1) = B3,0(1)(6) © Bs,2(1)4) © B3,4(1)(2)-
For n =1,2, there are no wavy arrows because B3 1(n) = Bs 3(n) =0.

By Proposition 8.10 and Remark 8.11, we have the surjectivity and the nontriviality of
the bracket map for n > 3. Thus, by Theorem 8.9, one can obtain the following theorem,
which improves Theorem 8.9 for d = 3.

Theorem 8.12. We have an indecomposable decomposition
Az(n) = A3P(n)® A3Q(n)
of Aut(F,,)-modules for n > 3.

I()\ I
For A4, let Ry = € As(4), where ¢y is the Young symmetrizer. Let S =
AAAA
AT ’ \’:)— -\,:)‘
Ri22)+16 L AN AN €As(4) and T = [ J‘\ € As(2).

For n =2, we can check that As2(2) is semisimple as Aut(F»)-modules, that is,
A3 2(2) = A3R(1)(2) ® A3R(3,1)(2) © A35(2) & AsU(2) @ A3T'(2),

N AT Xy AT

where U = /%)\ AN —é ‘\f\(/‘f\ —% fl\ {‘\ —% /‘\ ‘\l/\(l €A3(2). We do

not know whether or not the Aut(Fy)-module A3(2) is semisimple.

Remark 8.13. Since Aj 2(2) is semisimple, we have Rad(A3 2(2)) =0. On the other hand,
we have As 3(2) = A3 4(2) = B3 4(2) # 0. Therefore, we have Rad(A43 2(2)) # As 3(2).
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For n =1, we have Aut(F}) =7Z/27Z. We can easily check the following proposition.

Proposition 8.14. The Aut(Fy)-action on As(1) is trivial. Therefore, we have Az(1) =
AsP(1)® AsR4)(1) ® AsT'(1).

8.5. The socle of A4(n) for small d
For an Aut(F,)-module M, let Soc(M) denote the socle of M; that is,
Soc(M) = {K C M|K is simple}.
Let us consider the cases for small d. Since 4;(n) 2 Sym?(V,,) is simple, we have
Soc(Ai1(n))=Ai(n) (n>1).
By Theorem 6.9 of [16], we have

Soc(Aa(n)) = Ay P(n) ® AyT(n) (n>3,n=1),

Soc(As(n)) = Ay(n) = AgP(n) & AW (n) @ AyT(n)  (n=2),
where
/‘:x\"\ 1 ,«'_\)\ 1 ,«’_\)\

\

T= AAV=2R"N =R~ KA 3NA 3N €40

Note that A;T(n) = Ag2(n)
By Proposition 8.14, we have Soc(As(1)) = As(1).

Proposition 8.15. For n > 3, we have
Soc(Az(n)) = AsP(n) ® AzR(1)(n) ® Az R(3,1)(n) ® A3S(n) ® AsT(n).

Proof. A simple Aut(F,,)-submodule K C A3(n) corresponds to an irreducible component
of B3(n) via the PBW map. Therefore, by Remark 8.11, we have

Soc(A4s3 (n)) CAsP(n)® A3R(4) (n) ©® ASR(gyl) (n) @ A3S(n)® AT (n).
Moreover, we can check that

A3P(n) = Vi), AszRuy(n) =V, AszRsi1)(n) =V,
A3S(n) =2 Viga), As3T(n)=V(y.

Hence, we have
SOC(Ag (n)) D A3P(n) &, A3R(4) (TL) D A3R(3, 1) (n) D A3S(TL) (&5 AST(TL),

and the proof is complete. O
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8.6. The indecomposable decomposition of A4(n)

Here, we consider the indecomposable decomposition of A4(n).
Similarly, in degree 4, we have GL(n;Z)-module homomorphisms

By, 0(n)(6,2) — Hom(gr (IA(n)), B4 1(n)(s,12)),
P2 : Bao(n)(42) — Hom(gr' (TA(n)), By, 1 (1) (32,1)),
3 Bao(n) (20 — Hom(grl(IA(n)) 1,1(n)(5,12));
pa i Bao(n)(4,22) — Hom(gr' (TA(n)), By, 1 (1) (4,13)),
By,0(n)(4,22) — Hom(gr' (IA(n)), By,1(n)(32,1));
p6 : Byo(n)4,22) = Hom(gr! (IA(n)),B 4,1(n)(3,2,12))s
pr: Bao(n) 21y — Hom(gr' (IA(n)), Ba,1 (1) 3,2,12));
ps : Ba,o(n) 21y — Hom(gr' (TA(n)), By,1(n)(22,13))-

Proposition 8.16. The GL(n;Z)-module homomorphisms pi,pa,ps and ps are injective
form >3, p4,pe and p7 forn >4 and pg for n > 5.

Proof. As in the proof of Proposition 8.10 in degree 3, we will check that p; is injective
for n > 3, py for n >4 and pg for n > 5. The others can be obtained in a similar way.
For n > 3, we have

[U,K37172] = 14w # 0e B471(Tl)(5,12),

where
AN N N
e 1 C(6,2) |- N N N N
T1728 TTTTITTT — V1U10101 01010202
V1V10V10V1V1V1 V2V
N N N
T V1 U1 V1 V1 V1 U2 V1 Vg € B470(n)(672)
and
N N /l\
:i| C(5,12) /[\ N N #0¢€ By1(n)s,12)-
336 TTTTT T1 V1 V2 V3 V1V10101

V101010101 V2 U3

Thus, we have p; # 0 for n > 3. Since By o(n),2) is irreducible, p; is injective.
For n > 4, we have

[2,K1,4,3] = =48y # 0 € By 1(n)(3,2,12),
where

N NNN

— | () |
= b € Baome
V1V1V20V2V3V3V4V4

https://doi.org/10.1017/51474748022000275 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000275

62 M. Katada

and

n /AN

Y= |l l 10(13?121) l | € By,1(n)(3,2,12)-
V1UV1V1V2V2 V3 V4

Thus, p7 is injective for n > 4.
For n > 5, we have

[, K5 4,3] = —48y" — 322,

where
NN
y = |l l 10(137%121) | € By1(n)(3,2,12)
V1V1V5V20V2 U3 Vg
and

N N AN

z = || l l0(122113? ] | #0634,1(71)(22’13).
V1V1V2V2V3 V4 Vs

Therefore, we have
ps(7)(K5,43) = =322 # 0 € Ba,1(n) (22 19),
and thus, pg is injective for n > 5. O

By using Theorem 8.9 and Proposition 8.16 carefully, one can obtain the following
theorem, which improves Theorem 8.9 for d = 4.

Theorem 8.17. We have an indecomposable decomposition
Ay(n) = A4P(n) & AsQ(n)
of Aut(F,)-modules for n>17.

We expect that Theorem 8.17 holds for n > 3.

9. The Out(F),)-module structure of A;(n)

In [16], we observed that the Aut(F),)-action on Ag(n) induces an action of Out(F,,) on
Ag(n). In this section, we obtain some results for Ag(n) as Out(F),)-modules, which is
induced by the results in Section 8.

Since the Aut(F,)-action on A4(n) factors through Out(F,), any submodule of A;(n)
as Aut(F,)-modules is a submodule of A;(n) as Out(F,)-modules, and vice versa. By
Theorem 8.6, we obtain the radical filtration of A4(n) as Out(F;,)-modules.

Theorem 9.1. Let n > 2d. Then, the filtration of Agq(n) by the number of trivalent
vertices coincides with the radical filtration of Aq(n) as Out(F,)-modules.
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By Theorem 8.9, we obtain an indecomposable decomposition of A4(n) as Out(F,)-
modules.

Theorem 9.2. Let d > 2. We have a direct decomposition
Ad(n) = AdP(n) EBAdQ(TL)
of Out(F,,)-modules, which is indecomposable for n > 2d.

Theorems 8.12, 8.17 also hold as Out(F},)-modules. Other results for A4(n) as Aut(F,)-
modules such as Proposition 8.15 also hold.

10. Indecomposable decomposition of the functor A,

In this section, we obtain an indecomposable decomposition of the functor Ay by using
results in Section 8.
By Theorem 8.2, we obtain the following direct decomposition of the functor A,.

Theorem 10.1. We have a direct decomposition
Ag=AqP© A4Q
in the functor category fVect® " .

For d =1, we have A;Q =0 and the functor A; = A1 P is simple. For d = 2, we obtained
this direct decomposition in Theorem 6.5 of [16]. Moreover, we proved that this direct
decomposition of the functor A, is indecomposable (see Theorem 6.14 of [16]).

By Theorem 8.9, we obtain the indecomposability of the direct decomposition of the
functor Ay.

Proposition 10.2. Let d > 2. The decomposition
Ad = AdP D AdQ
of the functor Aq is indecomposable in the functor category fVect® " .

Proof. Suppose that we have a decomposition
A4Q =G G e fVect™ .

Then we have A;Q(2d) = G(2d) & G'(2d) as Aut(Fpq)-modules. By Theorem 8.9, the
Aut(Foq)-module A4Q(2d) is indecomposable. Therefore, we can assume that G'(2d) =0
and A;Q(2d) = G(2d). Since the subfunctor A4Q is generated by Q € A;Q(2d), we have
AqQ = G. Hence, the subfunctor A4Q is also indecomposable. By Lemma 8.3, A;P(2d)
is also indecomposable. Therefore, by the similar argument, the subfunctor A4P is also
indecomposable. O

Appendix A. Presentation of the category AL

In this section, we construct a category AL and a full functor F: AL — AL to study a
presentation of the category A, which we construct in Section 4.2.
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A.1. The category AL

In this section, we construct a category AL, which has a generating set and some relations
of the category AL.

In a linear symmetric strict monoidal category C, let H be a Hopf algebra and L a Lie
algebra. Define the adjoint action ady : H® H — H by

ady = P (id ge» ®9)(idg @ Py g)(A®idy).
We call a morphism c: I — L®? a symmetric invariant 2-tensor if ¢ satisfies
Prrc=c
and

([-]®idp)(idr ®c) = (idp ®[,]) (e®idy).

Define AL to be the category which is as a linear symmetric strict monoidal category,
generated by

e a cocommutative Hopf algebra (H,u,n,A,€,S)
e a Lie algebra with a symmetric invariant 2-tensor (L,[-,-],¢)
e morphismsi: L — H and ad, : HRL — L

with the following nine relations:

(adL®adL)(1dH®PH,L®idL)(A®c):ce,
ad (ldH®[ ]) [ -](adL®adL)(idH®PH,L®idL)(A®idL®z),

tady, = ady 1,

AL

fb
h

AL

(AL1) i [] = =i ©1) + P, (i ©1),
(AL 2) Az—z®n+n®z

(AL 3) €i =

(AL 4) adL(,u®1dL) = ady(idg ®ady),
(AL5) ady(n®idy) =idp,

(AL.6)

(AL.T)

(AL.8)

(AF.9)

adyp,(i®idr) = —[,].

Lemma A.1. In the category :A:Z, the following relations hold.
(1) Si=—
(2) adu(i®i) = —i[, .

Proof. By (KZ2) and (KZB) of the category AL and relations of Hopf algebras, we
have

i+Si=p(t®Sn)+pu(n®Si) = u(idyg ®S)Ai =nei = 0.
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Thus, we have equation (1). By (E.8),(KZ.9), we have equation (2) as follows:
adH(i®i):iadL(i idL)Z—i [,] O

We review the definition of a Casimir Hopf algebra. Let C be a linear symmetric strict
monoidal category and H be a cocommutative Hopf algebra in C. A Casimir 2-tensor for
H is a morphism c: I — H®? which is primitive, symmetric and invariant:

(A®idH)C:C13+023, (A 1)
Py ne=c, (A.2)
(ady ®adH)(idH®PH,H ®idy)(A®c) = ce, (A.3)

where ¢35 := (id®n ®id)c and co3 :=n®c. By a Casimir Hopf algebra, we mean a
cocommutative Hopf algebra H equipped with a Casimir 2-tensor.

Lemma A.2. (H,u,n,AeS,¢:=(i®i)c) is a Casimir Hopf algebra in AL,

Proof. Since H is a cocommutative Hopf algebra in AL, it suffices to check that ¢ is a
Casimir 2-tensor. By (AL. 2), we have equation (A.1) because

(A@ldH)éz ((’L®’17+77®Z)®Z)C: €13+ Ca3.
By the symmetricity of ¢, we have equation (A.2) because
Py pyé=Pyp(i®i)c=(i®i)Pyc=(i®i)c=¢c.

By (/A\Z 6) and (KZ 8), we have equation (A.3) because

(ady @ adpy)(idy QP H® idg)(A®¢)

= (adH ®adH)(idH ®PH7H®idH)(A® (i@i))(id]{ ®C)
(1®1i)(adr ®@adr,)(idy @Py, 1, ®idL)(A®c)
(i®1)ce

Ce.

O
The category A has a Casimir Hopf algebra (H,c) = (1,u,17,4,¢S,c), where
c= A ‘22\ . Moreover, Theorem 5.11 in [11] implies that as a linear symmetric strict

monoidal category, the category A is free on the Casimir Hopf algebra (H,c). Therefore,
we have a unique linear symmetric monoidal functor F(y s : A — AL.

A.2. Structure of the category A"

In Section 4.3, we observed that the category A’ has a cocommutative Hopf algebra
(H,p,n,A€,S) and morphisms

[ ]:L®L—L, ¢, :I—-L®L i:L—H, ad,:H®L— L.
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Lemma A.3. In the category A%, (L,[-,],cr) is a Lie algebra with a symmetric invariant
2-tensor.

Proof. By the AS and THX relations, it follows that (L,[-,:]) is a Lie algebra. Since we

have
Prrep= | \/|=1| - =cL
¥ I, \\
and
. . A I’\"l . .
([]@id)(de@e) = | ¥\ | = | /| =0 @[, ])(cr ®@idp),
HE HE

it follows that ¢y, is a symmetric invariant 2-tensor. O

Remark A.4. The full subcategory of A" with the free monoid generated by L as the
set of objects is isomorphic to the PROP LIE® for Casimir Lie algebras (see [13] for
details).

For each m > 1,n € N, the degree 0 part AL (L®™ H®") of the hom-set AL(L®™ H®™)
has an Aut(F},)-module structure which is defined in a way similar to that of A4(n). For
general m,n, the Aut(F,)-action on AF(L®™ H®™) does not factors through the outer
automorphism group Out(F,).

Proposition A.5. There exists a unique linear symmetric monoidal functor F : AL
AL which maps (L,[-,"),cr,i,adr) in AL to (L,[-,-],c,i,adr) in AL and which makes the
following diagram commutative
AT AT
inclu.
Al .

N A

Proof. We can check that morphisms of A% satisfy the relations (Xf.l), ,(/A\ZQ) by
diagrammatic computation. Since AL is the linear symmetric strict monoidal category
generated by H, L and morphisms 4,ad; with relations (AZL.1),---,(AL.9), we can

construct a unique linear symmetric monoidal functor F : AL — A’ which maps
(H,L,c,i,adr) in AL to (H,L,cr,i,adr) in AL, O

A.3. The full functor F': AL — AL
We prove that the functor F' in Proposition A.5 is full.
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Lemma A.6. A morphism in AL can be written as a linear sum of the following
diagrams:

I a diagram generated by Py 1. PL, b1 |

T
[}
[}
[}
1
[}
a diagram generated by PH. H | [
[}
[}
1
[}
[}
[}

ISR —

“ o
oo 7\ /\
1 \
L A e
r I
< I a diagram generated by CLVC*=PL.L’[" -] [ (A'4)
lpmmm e T P et sl 4
- I -
’LT « o e TZ

a diagram generated by Py pr |

I a diagram generated by Py 1, Pr o

|

where * denotes S or idyg and c* =

Note that ¢* is not a morphism in A* but just a diagram.

Proof. By using symmetries Py ,Pr g, we can deform any diagram f € Al into a
morphism in AF(H®™ @ L& H®™ @ L®"), so it suffices to consider a diagram f in
AL(H®™ @ Lo HO™ @ [O7),

We can decompose f as follows: f = f’o((PoAlet¢ml)®id en), where P is a tensor
product of copies of Py m and idy, c1,---,¢m > 0, and f’ is a diagram such that each
handle has only one solid or dashed line. We can assume that handles of U,,, which include
a dashed line are arranged right-hand side of U,,.

By pulling univalent vertices that are attached to the solid lines toward the upper

: uni-trivalent graph 1
bl phaiat delabeh Elubebel Bl

right-hand side of U,,, we can decompose f’ as ISARY i (see Lemma 5.16

[11]).
Furthermore, any uni-trivalent graph can be obtained from morphisms cr,, Pr 1, [-,],
id;, € AL and ¢* by the tensor product and the composition, so the proof is complete. [J

Proposition A.7. The linear symmetric monoidal functor F : AL 5 AL ip Proposition
A.5 is full.
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Proof. It suffices to show that morphisms of A’ are generated by u,n,4,¢,9, [-,-],cr, i,
ady, and symmetries. By Lemma A.6, we need to prove that we can eliminate ¢* from the
diagram (A.4) by using the above morphisms in AZ.

By the definition of the category AL, for any c* in the diagram (A.4), if exists, either
of the endpoints of ¢* is finally attached to one of the lower dashed lines. Therefore, there
is ¢, between ¢* and the lower dashed line. If there are more than one such ¢y, then we
choose one such that there are the least trivalent vertices between ¢* and itself. By the
AS relation, we have only to consider the case where the neighborhood of the ¢z, and the
c* is either

Vo L’ - AT s
\ L 7N N 'S -~ ‘7 1 NN L

VNN ,“dL\\ ~= / N ;o ,\>)‘

\‘ \\ /) \\ ., ) \\ Nl NS ar v II . e

f— . g \ =
NS N T Ly A4 or VO N NN jady,
= X/ [ \ N
‘{/ \<<: A\ \)‘/»
N
Hence, we can eliminate ¢* from the diagram (A.4) and the proof is complete. O
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