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The accurate simulation of complex dynamics in fluid flows demands a substantial
number of degrees of freedom, i.e. a high-dimensional state space. Nevertheless, the swift
attenuation of small-scale perturbations due to viscous diffusion permits in principle the
representation of these flows using a significantly reduced dimensionality. Over time, the
dynamics of such flows evolves towards a finite-dimensional invariant manifold. Using
only data from direct numerical simulations, in the present work we identify the manifold
and determine evolution equations for the dynamics on it. We use an advanced autoencoder
framework to automatically estimate the intrinsic dimension of the manifold and provide
an orthogonal coordinate system. Then, we learn the dynamics by determining an equation
on the manifold by using both a function-space approach (approximating the Koopman
operator) and a state-space approach (approximating the vector field on the manifold). We
apply this method to exact coherent states for Kolmogorov flow and minimal flow unit
pipe flow. Fully resolved simulations for these cases require O(103) and O(105) degrees
of freedom, respectively, and we build models with two or three degrees of freedom that
faithfully capture the dynamics of these flows. For these examples, both the state-space
and function-space time evaluations provide highly accurate predictions of the long-time
dynamics in manifold coordinates.

Key words: pipe flow, low-dimensional models

1. Introduction

The Navier–Stokes equations (NSE) are dissipative partial differential equations
(PDE) that describe the motion of fluid flows. When they have complex dynamics,
their description requires a large number of degrees of freedom – a high state-space
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dimension – to accurately resolve their dynamics. However, due to the fast damping of
small scales by viscous diffusion, the long-time dynamics relaxes to a finite-dimensional
surface in state space, an invariant manifold M of embedding dimension dM (Foias,
Manley & Temam 1988; Temam 1989; Zelik 2022). The long-time dynamics on M follows
a set of ordinary differential equations (ODE) in dM dimensions; since M is invariant
under the dynamics, the vector field defined on M remains tangential to M. Classical
data-driven methods for dimension reduction, such as proper orthogonal decomposition
(POD), approximate this manifold as a flat surface, but for complex flows, this linear
approximation is severely limited (Holmes et al. 2012). Deep neural networks have been
used to discover the global invariant manifold coordinates for complex chaotic systems
such as the Kuramoto–Sivashinsky equation, channel flow, Kolmogorov flow or turbulent
planar Couette flow (Milano & Koumoutsakos 2002; Linot & Graham 2020; Page, Brenner
& Kerswell 2021; Linot & Graham 2023; Pérez De Jesús & Graham 2023; Zeng & Graham
2023). Floryan & Graham (2022) recently introduced an approach in which the global
manifold is split into local charts to identify the intrinsic dimensionality of the manifold
(i.e. minimal-dimensional representation of a manifold often necessitates multiple local
charts). This approach is natural for dealing with discrete symmetries, as illustrated in
Pérez-De-Jesús, Linot & Graham (2023). In the present work, we only consider global
coordinates in the embedding dimension of the manifold.

Turbulent flows exhibit patterns that persist in space and time, often called coherent
structures (Waleffe 2001; Kawahara, Uhlmann & van Veen 2012; Graham & Floryan
2021). In some cases, non-turbulent exact solutions to the NSE exist that closely resemble
these structures; these have been referred to as exact coherent structures (ECS). There are
several ECS types: steady or equilibrium solutions, periodic orbits, travelling waves and
relative periodic orbits. The dynamical point of view of turbulence describes turbulence
as a state space populated with simple invariant solutions whose stable and unstable
manifolds form a framework that guides the trajectory of turbulent flow as it transitions
between the neighbourhoods of different solutions. Thus, these simple invariant solutions
can be used to reproduce statistical quantities of the spatio-temporally-chaotic systems.
This idea has driven great scientific interest in finding ECS for Couette, pipe and
Kolmogorov flows (Nagata 1990; Waleffe 2001; Wedin & Kerswell 2004; Li, Xi & Graham
2006; Page & Kerswell 2020).

Our aim in the present work is to apply data-driven modelling methods for time
evolution of exact coherent states on the invariant manifolds where they lie. Consider first
full-state data x that live in an N-dimensional ambient space R

N , where dx/dt = f (x)

governs the evolution of this state over time. When x is mapped into the coordinates
of an invariant manifold, denoted h ∈ R

dM , a corresponding evolution equation in these
coordinates can be formulated: dh/dt = g(h). To learn this equation of evolution either a
state-space or function-space approach can be applied; we introduce these here and provide
further details in § 2. The learning goal of the state-space modelling focuses on finding an
accurate representation of g. A popular method for low-dimensional systems when data
dh/dt is available is the sparse identification of nonlinear dynamics (SINDy) (Brunton,
Proctor & Kutz 2016); SINDy uses sparse regression on a dictionary of terms representing
the vector field, and has been widely applied to systems where these have simple structures.
A more general framework, known as neural ODE (NODE) (Chen et al. 2019), represents
the vector field g as a neural network and does not require data on time derivatives. It
has been applied to complex chaotic systems (Linot & Graham 2022, 2023) and will
be used here. Function-space modelling is based on the Koopman operator, a linear
infinite-dimensional operator that evolves observables of the state space forward in time
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h(t + δt)h(t)x̃z̃ÛÛT h

x ∈ RN
h ∈ RdM

x z

Ψ(h(t + δt)) = KΨ(h(t))

Learn dynamicsLearn manifold representation

ḣ = g(h)DWnE

(a) (b)

Figure 1. (a) Representation of the framework for identifying dM and M coordinates. (b) Forecasting on the
manifold coordinates using either NODE or Koopman.

(Koopman 1931; Lasota & Mackey 1994). To approximate the Koopman operator, a
leading method is the dynamic mode decomposition (DMD) which considers the state as
the only observable, making it essentially a linear state-space model (Rowley et al. 2009;
Schmid 2010). Other methods have been proposed to lift the state into a higher-dimensional
feature space, such as the extended DMD (EDMD) that uses a dictionary of observables
where the dictionary is chosen to be Hermite or Legendre polynomial functions of the state
(Williams, Kevrekidis & Rowley 2014). However, without knowledge of the underlying
dynamics, it is difficult to choose a good set of dictionary elements, and data-driven
approaches have emerged for learning Koopman embeddings (Lusch, Kutz & Brunton
2018; Kaiser, Kutz & Brunton 2021). One of these approaches is EDMD with dictionary
learning (EDMD-DL), in which neural networks are trained as dictionaries to map the
state to a set of observables, which are evolved forward with a linear operator (Li
et al. 2017; Constante-Amores, Linot & Graham 2024). In this work we are applying
the Koopman operator theory to the inertial manifold theory. Nakao & Mezic (2020)
and Mezic (2020) showed that inertial manifolds correspond to joint zero-level sets of
Koopman eigenfunctions. We also note that the Koopman theory has been applied to
systems with continuous spectrum, see Arbabi & Mezić (2017) and Colbrook, Ayton &
Szöke (2023).

In this work, we address data-driven modelling from a dynamical system perspective.
We show that both state-space and function-space approaches are highly effective when
coupled with dimension reduction for exact coherent states of the NSE for Kolmogorov
flow and pipe flow. The rest of this article is organised as follows: § 2 presents the
framework of our methodology. Section 3 provides a discussion of the results, and
concluding remarks are summarised in § 4.

2. Framework

Here we describe the framework to identify the intrinsic manifold dimension dM, the
mapping between M and the full state spaces, and learn the time-evolution model for
the dynamics in M. See figure 1 for a schematic representation. We assume that our
data comes in the form of snapshots, each representing the full state from a long time
series obtained through a fully resolved direct numerical simulation. With the full space,
we use a recently developed IRMAE-WD (implicit rank-minimising autoencoder-weight
decay) autoencoder architecture (Zeng & Graham 2023) to identify the mapping into the
manifold coordinates h = χ(x̃), along with a mapping back x̃ = χ̃(h), so these functions
can in principle reconstruct the state (i.e. x = x̃). The autoencoder is formed by standard
nonlinear encoder and decoder networks denoted E and D, respectively, with n additional
linear layers with weight matrices W1, W2, . . . , Wn (of size dz × dz) signified by Wn
in figure 1 between them (see table 1 for the architectures of the networks used in
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Case Function Shape Activation Learning rate

Kolmogorov flow χ 1024/5000/1000/dz sig/sig/lin [10−3, 10−4]
χ̌ dz/1000/5000/1024 sig/sig/lin [10−3, 10−4]
Ψ dM/100/100/Ψ + dM elu/elu/elu/elu [10−3, 10−4]
g dM/200/200/dM sig/sig/lin [10−3, 10−4]

Pipe flow χ 508/2000/1000/dz sig/sig/lin [10−3, 10−4]
χ̌ dz/1000/2000/508 sig/sig/lin [10−3, 10−4]
Ψ dM/100/100/100/Ψ + dM elu/elu/elu/elu [10−3, 10−4]
g dM/200/200/dM sig/sig/lin [10−3, 10−4]

Table 1. Neural networks architectures. Between the E and D, there are n sequential linear layers Wi of
shape dz × dz (i.e. n = 4 and dz = 10).

this work). The encoder finds a compact representation z ∈ R
dz , and the decoder performs

the inverse operation. The additional linear layers promote minimisation of the rank of the
data covariance in the latent representation, precisely aligning with the dimension of the
underlying manifold. Post-training, a singular value decomposition (SVD) is applied to
the covariance matrix of the latent data matrix z yielding matrices of singular vectors
U , and singular values S. Then, we can recast z in the orthogonal basis given by the
columns of U by defining h× = UTz ∈ R

dz , in which each coordinate of h× is ordered
by contribution. This framework reveals the manifold dimension dM as the number of
significant singular values, indicating that a coordinate representation exists in which the
data spans dM directions. Thus, the encoded data avoids spanning directions associated
with nearly zero singular values (i.e. UUTz ≈ ÛÛTz, where Û are the singular vectors
truncated corresponding to singular values that are not nearly zero). Leveraging this
insight, we extract a minimal, orthogonal coordinate system by projecting z onto the range
of Û , resulting in a minimal representation h = ÛTz ∈ R

dM . In summary, χ is defined by
χ(x) = ÛT(Wn(E(x))), while χ̃(h) = D(Ûh).

In the NODE framework for modelling state-space time evolution, we represent the
vector field g on the manifold as a neural network with weights θf (Linot & Graham
2022, 2023). For a given g, we can time-integrate the dynamical system between t and
t + δt to yield a prediction h̃(t + δt), i.e. h̃(t + δt) = h(t) + ∫ t+δt

t g(h(t′); θf ) dt′. Given
data for h(t) and h(t + δt) for a long time series, we can train g to minimise the
L2 difference between the prediction h̃(t + δt) and the known data h(t + δt). We use
automatic differentiation to determine the derivatives of g with respect to θf . In some
applications of NODE to complex dynamical systems, it has been found useful to add a
stabilisation term to prevent drift away from the attractor (Linot et al. 2023a). We did not
find this to be necessary here.

The function-space approach to time evolution is based on the infinite-dimensional
linear Koopman operator Kδt, which describes the evolution of an arbitrary observable
G(h) from time t to time t + δt: G(h(t + δt)) = KδtG(h(t)) (Koopman 1931; Lasota &
Mackey 1994; Mezic 2023). The tradeoff for gaining linearity is that Kδt is also
infinite-dimensional, requiring for implementation some finite-dimensional truncation
of the space of observables. Here we use a variant of the ‘extended dynamic mode
decomposition-dictionary learning’ approach which performs time integration of the
linear system governing the evolution in the space of observables (Li et al. 2017;
Constante-Amores et al. 2024). Given a vector of observables Ψ (h(t)), now there is a
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matrix-valued approximate Koopman operator K such that the evolution of observables
is approximated by Ψ (h(t + δt)) = KΨ (h(t)). Given a matrix of observables, whose
columns are the vector of observables at different times, ψ(t) = [Ψ (h(t1)),Ψ (h(t2)) . . .]
and its corresponding matrix at t + δt,ψ(t + δt) = [Ψ (h(t1 + δt)),Ψ (h(t2 + δt)) . . .], the
approximate matrix-valued Koopman operator is defined as the least-squares solution
K = ψ(t + δt)ψ(t)†, where † superscript denotes the Moore–Penrose pseudoinverse. We
aim to minimise L(h, θ) = ||ψ(h, t + δt; θ)(I − (ψ(h, t; θ)†ψ(h, t; θ))||F, where I and
θ stand for the identity matrix and the weights of the neural networks, respectively. Due
to advancements in automatic differentiation, we can now compute the gradient of ∂L/∂θ

directly, enabling us to find K and the set of observables Ψ (h) simultaneously using the
Adam optimiser (Kingma & Ba 2014). For more details, we refer to Constante-Amores
et al. (2024), in which this Koopman methodology is extensively explained.

3. Results

3.1. Kolmogorov flow
We consider monochromatically forced, two-dimensional turbulence in a doubly periodic
domain (‘Kolmogorov’ flow), for which the governing equations are solved in a domain of
size (x, y) = [0, 2π] × [0, 2π]. The governing equations are

∇ · u = 0,
∂u
∂t

+ u · ∇u + ∇p = 1
Re

∇2u + sin(nf y)ex, (3.1a,b)

where Re and nf are the Reynolds number Re = √
χf (Ly/2π)3/2/ν (here χf , Ly and ν stand

for the forcing amplitude, the height of the computational domain and kinematic viscosity,
respectively), and the forcing wavelength, respectively. We assume a forcing wavelength
nf = 2, as done previously by Pérez De Jesús & Graham (2023). The dissipation rate
and power input for this system are given, respectively, by (D = 〈|∇u2|〉V/Re), and (I =
〈u sin(nf y)〉V ), where the volume average is defined as 〈〉V = 1/(4π2)

∫ 2π

0

∫ 2π

0 dx dy.
We consider cases with Re = 10 and Re = 12, where a stable travelling wave (TW)

and a stable relative periodic orbit (RPO) exist, respectively. Data was generated using
the vorticity representation with �t = 0.005 on a grid of [Nx, Ny] = [32, 32] (e.g. ω ∈
R

1024) following the pseudospectral scheme described by Chandler & Kerswell (2013).
Simulations were initialised from random divergence-free initial conditions, and evolved
forward in time to 105 time units. We drop the early transient dynamics and select 104

snapshots of the flow field, separated by δt = 5 and δt = 0.5 time units for Re = 10 and
Re = 12, respectively. We do an 80 %/20 % split for training and testing, respectively. The
neural network training uses only the training data, and all comparisons use test data unless
otherwise specified. Finally, we note that Kolmogorov flow has a continuous translation
symmetry as well as several discrete symmetries. While we have not done so here, it is
possible to exploit these to further improve the effectiveness of data-driven models (Linot
& Graham 2020, 2023; Pérez-De-Jesús et al. 2023).

3.1.1. A TW at Re = 10
Figure 2(a) shows the singular values σi resulting from performing the SVD on the
covariance matrix of the latent data matrix z generated with IRMAE-WD for a TW with
period T = 161.45. The singular values for i > 2 drop to ≈10−6 indicating that dM = 2.
This is the right embedding dimension for a TW, as the embedding dimension for a limit
cycle is two.
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Figure 2. Kolmogorov flow with Re = 10: travelling wave regime. (a) Identification of M: normalised
singular values of the latent space data with a drop at dM = 2. (b) Eigenvalues of the approximate Koopman
operator (the right panel shows a magnified view of the eigenvalues). (c) Energy spectrum. (d) Snapshots of
the vorticity field for the ground truth and models after 5000 time units evolved with the same initial condition.

Once we have found the mapping to the manifold coordinates, we apply both the
function and state approaches, evolving the same initial condition forward in time out
to 5000 time units (e.g. 30.96 periods). Figure 2(b) shows the eigenvalues, λk, of the
approximated Koopman operator (with 50 dictionary elements), and some of them are
located on the unit circle, i.e. |λk| = 1, implying that the dynamics will not decay. Any
contributions from an eigenfunction with |λk| < 1 decay as t → ∞, and the fact that
the dynamics lives on an attractor prohibits any λk from having |λk| > 1. As shown
in the magnified view of figure 2(b), the eigenvalues of the Koopman operator yields
eigenvalues that are multiples of its fundamental frequency (in agreement with Mezić
2005). We also observe eigenvalues within the unit circle, a phenomenon that seems
counterintuitive given that the dynamics is on-attractor, after transients have decayed; thus,
all eigenvalues should inherently be on the unit circle. We attribute this characteristic to be
an artefact of EDMD-DL as it has also been observed by Constante-Amores et al. (2024).
Several approaches have been proposed to address this issue by explicitly constraining the
eigenvalues to unity, as explored by Baddoo et al. (2023) and Colbrook (2023).

Figure 2(c) displays the spatial energy spectrum of the dynamics from the data and
both data-driven time-evolution methods, demonstrating that both approaches capture
faithfully the largest scales (with a peak in y-wavenumber ky = 2 corresponding to the
forcing) up to a drop of three orders of magnitude that reaffirms the accuracy of both
the NODE and the Koopman predictions. However, the models cannot capture the highest
wavenumbers (smallest scales), k ≥ 11, of the system (e.g. the discrepancies observed in
the highest wavenumbers are a consequence of the dimension reduction performed through
IRMAE-WD). To further evaluate the accuracy of our method to capture the long-time
dynamics, we compare the average rate of dissipation and input between the true data
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Figure 3. Kolmogorov flow with Re = 12: RPO regime. (a) Identification of M: normalised singular values
of the latent space data with a drop at dM = 3. (b) Eigenvalues of the Koopman operator (the right panel
shows a magnified view of the eigenvalues). (c) Comparison of ||ω(t)||. (d) Energy spectrum. (e) Snapshots of
ω for the ground truth and models, after 500 time units evolved with the same initial condition.

and the models. For the true data, D = I = 0.267350, and both the NODE and Koopman
approaches reproduce these with relative errors of <10−4. Finally, figure 2(d) shows
vorticity field snapshots of the system data and predictions after 5000 time units. Both
the Koopman and NODE approaches are capable of capturing accurately the dynamics of
the system in M, enabling accurate predictions over extended time periods.

3.1.2. The RPO at Re = 12
Next, we consider Kolmogorov flow at Re = 12, where a stable RPO appears (with period
T = 21.29). Figure 3(a) shows the singular values σi resulting from the SVD of the
covariance latent data matrix. The singular values for i > 3 drop to ≈10−6, suggesting that
the intrinsic dimension of the invariant manifold is dM = 3. This is the correct embedding
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dimension for an RPO, as a dimension of two corresponds to the phase-aligned reference
frame for a periodic orbit, and one dimension corresponds to the phase.

Now we apply the function and state approaches for the dynamics on M, evolving the
same initial condition in time for 500 time units (e.g. 23.48 periods). Figure 3(b) shows
the eigenvalues of the Koopman operator (with 100 dictionary elements), and, identically
to the previous case, some of them have unit magnitude |λk| = 1; thus, the dynamics will
neither grow nor decay as time evolves. Figures 3(c) and 3(d) displays the norm of the
vorticity ||ω(t)|| and the energy spectrum, respectively. For the energy spectrum, both
models can capture faithfully the largest scales (with a peak in ky = 2 corresponding to
the forcing) up to a drop of three orders of magnitude that reaffirms the accuracy of both
NODE and Koopman predictions.

To further evaluate the accuracy of our method to capture the long-time dynamics, we
compare the average rate of dissipation and input between the true data and the models.
For the true data, the time averages D = I = 0.29921, while for the NODE and Koopman
approaches, the predictions again differ with relative errors under 10−4. Finally, figure 3(d)
shows a vorticity snapshot of the system after 500 time units. Our analysis reveals that both
the Koopman and NODE approaches are capable of capturing accurately the dynamics
of the system in M, enabling accurate predictions over extended time periods as their
snapshots closely matches the ground truth.

3.2. The RPO in minimal pipe flow
We turn our attention to an RPO with period T = 26.64 in pipe flow, whose
ECS have been found to closely resemble the near-wall quasistreamwise vortices
that characterise wall turbulence (Willis, Cvitanović & Avila 2013). Pipe flow
exhibits inherent periodicity in the azimuthal direction and maintains a consistent
mean streamwise velocity. Here, the fixed-flux Reynolds number is Re = DU/ν =
2500, where length and velocity scales are non-dimensionless by the diameter (D)
and velocity (U), respectively. We consider the minimal flow unit in the m = 4
rotational space (‘shift-and-reflect’ invariant space); thus, the computational domain Ω =
[1/2, 2π/m, π/α] ≡ (r, θ, z) ∈ [0, 1/2] × [0, 2π/m] × [0, π/α], where L = π/α stands
for the length of the pipe and α = 1.7 (as in previous work from Willis et al. 2013; Budanur
et al. 2017). In wall units, this domain is Ω+ ≈ [100, 160, 370], which compares well with
the minimal flow units for Couette flow and channel flow.

Data was generated with the pseudospectral code Openpipeflow with �t = 0.01 on
a grid (Nr, Mθ , K) = (64, 12, 18), then, following the 3/2 rule, variables are evaluated
on 64 × 36 × 54 grid points; thus, u ∈ R

124,416 (Willis 2017) (where Nr, Mθ and K
correspond to the non-uniform spaced points in the radius, and the total Fourier modes
in θ and z, respectively). We ran simulations forward on time, and stored 103 time units
at intervals of 0.1 time units. Pipe flow is characterised by the presence of continuous
symmetries, including translation in the streamwise direction and azimuthal rotation about
the pipe axis. We phase-align the data for both continuous symmetries using the first
Fourier mode method of slices to improve the effectiveness of the dimension reduction
process (Budanur, Borrero-Echeverry & Cvitanović 2015).

To find the manifold dimension and its coordinates, we first perform a linear dimension
reduction from O(105) to O(102) with POD. Figure 4(a) displays the eigenvalues, μi, of
POD modes sorted in descending order. We select the leading 256 modes that capture
the 99.99 % of the total energy of the system. Most of these modes are characterised
by being complex (i.e. two degrees of freedom), so projecting onto these modes results
in a 508-dimensional POD coefficient. Next, we perform nonlinear dimension reduction
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Figure 4. Pipe flow with Re = 2500: periodic orbit regime. (a) Eigenvalues of POD modes sorted in
descending order. (b) Identification of M: normalised singular values of the latent space data with a drop at
dM = 2. (c) Eigenvalues of the Koopman operator (the right panel shows a magnified view of the eigenvalues).
(d) Comparison of the norms of the velocity field between the models and the true data. (e) Reynolds stresses
varying with the radial position from the ground truth, Koopman and NODE predictions; the labels are on the
plot. ( f ) Two-dimensional representation of the dynamics in a z–θ plane (r = 0.496) with uz for the true and
predicted dynamics at t = 200.

in the POD coordinates using IRMAE-WD. Figure 4(b) shows the singular values σi
resulting from performing SVD on the covariance matrix of the latent data matrix from the
autoencoder. The singular values for i > 2 drop to ≈10−6, indicating that the dimension
of the manifold is dM = 2 which is the correct embedding dimension for an RPO, given
that we have factored out the continuous symmetries as noted above. We reiterate that we
have elucidated the precise embedding dimension of the manifold, commencing from an
initial state dimension of O(105).
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Having found the mapping to M, we apply both the function and state approaches
on M, and evolve the same initial condition forward on time out to 200 time units
(e.g. 7.5 periods). Figure 4(c) shows the eigenvalues of the Koopman operator (with
100 dictionary elements), and, identically to the previous cases, some of them have unit
magnitude |λk| = 1; thus, the long-time dynamics will not decay. Figure 4(d) displays
time evolution of the norm of the velocity field in which the NODE and Koopman
predictions can capture the true dynamics (here the norm is defined to be the L2 norm
‖u‖2

2 = (1/V)
∫

u · u dr), where V is the volume of the domain. To further demonstrate
that the evolution of the dynamics on dM is sufficient to represent the state in this case,
we examine the reconstruction of statistics. In figure 4(e), we show the reconstruction
of four components of the Reynolds stress 〈u2

z 〉, 〈u2
θ 〉, 〈uruz〉 and 〈u2

r 〉 (the remaining two
components are relatively small). The Reynolds stresses evolved on dM closely match
the ground truth. Lastly, figure 4( f ) displays field snapshots in the z–θ plane (r = 0.496)
at t = 200, respectively showing qualitatively that the models can capture perfectly the
dynamics of the true system.

4. Conclusion

In this study, we have presented a framework that leverages data-driven approximation
of the Koopman operator, and NODE to construct minimal-dimensional models
for exact coherent states to the NSE within manifold coordinates. Our approach
integrates an advanced autoencoder-based method to discern the manifold dimension
and coordinates describing the dynamics. Subsequently, we learn the dynamics using
both function-space-based and state-space-based approaches within the invariant manifold
coordinates. We have successfully applied this framework to construct models for exact
coherent states found in Kolmogorov flow and minimal flow unit pipe flow. In these
situations, performing fully resolved simulations would necessitate a vast number of
degrees of freedom. However, through our methodology, we have effectively reduced
the system’s complexity from approximately O(105) degrees of freedom to a concise
representation comprising fewer than three dimensions, which is capable of faithfully
capturing the dynamics of the flow such as the Reynolds stresses for pipe flow, and
the average rate of dissipation and power input for Kolmogorov flow. These results
illustrate the capability of nonlinear dimension reduction with autoencoders to identify
dimensions and coordinates for invariant manifolds from data in complex flows as well as
the capabilities of both state-space and function-space methods for accurately predicting
time evolution of the dynamics on these manifolds.

By accurately modelling coherent state dynamics with far fewer degrees of freedom than
required for direct numerical simulation, manifold dynamics models like those reported
here open the possibility for dynamical-systems-type analyses such as calculation of
Floquet multipliers or local Lyapunov exponents in a computationally highly efficient way.
These models also facilitate the application of control strategies with minimal degrees of
freedom. An illustrative example is the application of reinforcement learning techniques
in controlling planar minimal flow unit (MFU) Couette flow (see Linot, Zeng & Graham
2023b). The linear representation of the dynamics via the Koopman operator facilitates
control using well-established techniques, such as the linear quadratic regulator (LQR),
resulting in efficacious optimal control for nonlinear systems (Otto & Rowley 2021).

Finally, we have also successfully showcased the efficacy of both the function and
the state-space approaches in handling coherent state dynamics. When implementing
the function-space approach, we underscored the critical significance of dimension
reduction for the construction of the observable space. When applying EDMD-DL on
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the full-state data for pipe flow, the computational challenges escalate significantly when
attempting to handle an observable space dimensionality exceeding O(105). Therefore,
dimension reduction techniques are pivotal in making both the function and the state-space
approaches feasible and computationally efficient, ensuring practical applicability to
real-world scenarios.
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orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 833, 274–301.

CHANDLER, G.J. & KERSWELL, R.R. 2013 Invariant recurrent solutions embedded in a turbulent
two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554–595.

CHEN, R.T.Q., RUBANOVA, Y., BETTENCOURT, J. & DUVENAUD, D. 2019 Neural ordinary differential
equations. arXiv:1806.07366.

COLBROOK, M.J. 2023 The mpEDMD algorithm for data-driven computations of measure-preserving
dynamical systems. SIAM J. Numer. Anal. 61 (3), 1585–1608.

COLBROOK, M.J., AYTON, L.J. & SZÖKE, M. 2023 Residual dynamic mode decomposition: robust and
verified Koopmanism. J. Fluid Mech. 955, A21.

CONSTANTE-AMORES, C.R., LINOT, A.J. & GRAHAM, M.D. 2024 Enhancing predictive capabilities in
data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches.
Chaos (in press) arXiv:2310.06790.

FLORYAN, D. & GRAHAM, M. 2022 Data-driven discovery of intrinsic dynamics. Nat. Mach. Intell. 4 (12),
1113–1120.

FOIAS, C., MANLEY, O. & TEMAM, R. 1988 Modelling of the interaction of small and large eddies in two
dimensional turbulent flows. ESAIM: M2AN 22 (1), 93–118.

GRAHAM, M.D. & FLORYAN, D. 2021 Exact coherent states and the nonlinear dynamics of wall-bounded
turbulent flows. Annu. Rev. Fluid Mech. 53 (1), 227–253.

HOLMES, P., LUMLEY, J.L., BERKOOZ, G. & ROWLEY, C.W. 2012 Turbulence, Coherent Structures,
Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.

KAISER, R., KUTZ, J.N. & BRUNTON, S.L. 2021 Data-driven discovery of Koopman eigenfunctions for
control. Mach. Learn. Sci. Technol. 2 (3), 035023.

KAWAHARA, G., UHLMANN, M. & VAN VEEN, L. 2012 The significance of simple invariant solutions in
turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203–225.

KINGMA, D. & BA, J. 2014 Adam: a method for stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, pp. 1–15.

KOOPMAN, B.O. 1931 Hamiltonian systems and transformation in Hilbert space. Proc. Natl Acad. Sci. USA
17 (5), 315–318.

LASOTA, A. & MACKEY, M.C. 1994 Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, 2nd edn.
Springer.

984 R9-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-2476-5633
https://orcid.org/0000-0003-2476-5633
https://orcid.org/0000-0003-4983-4949
https://orcid.org/0000-0003-4983-4949
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2310.06790
https://doi.org/10.1017/jfm.2024.284


C.R. Constante-Amores and M.D. Graham

LI, Q., DIETRICH, F., BOLLT, E.M. & KEVREKIDIS, I.G. 2017 Extended dynamic mode decomposition
with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos
27 (10), 103111.

LI, W., XI, L. & GRAHAM, M. 2006 Nonlinear traveling waves as a framework for understanding turbulent
drag reduction. J. Fluid Mech. 565, 353–652.

LINOT, A.J., BURBY, J.W., TANG, Q., BALAPRAKASH, P., GRAHAM, M.D. & MAULIK, R. 2023a
Stabilized neural ordinary differential equations for long-time forecasting of dynamical systems. J. Comput.
Phys. 474, 111838.

LINOT, A.J. & GRAHAM, M.D. 2020 Deep learning to discover and predict dynamics on an inertial manifold.
Phys. Rev. E 101, 062209.

LINOT, A.J. & GRAHAM, M.D. 2022 Data-driven reduced-order modeling of spatiotemporal chaos with
neural ordinary differential equations. Chaos 32 (7), 073110.

LINOT, A.J. & GRAHAM, M.D. 2023 Dynamics of a data-driven low-dimensional model of turbulent minimal
Couette flow. J. Fluid Mech. 973, A42.

LINOT, A.J., ZENG, K. & GRAHAM, M.D. 2023b Turbulence control in plane Couette flow using
low-dimensional neural ODE-based models and deep reinforcement learning. Intl J. Heat Fluid Flow 101,
109139.

LUSCH, B., KUTZ, J.N. & BRUNTON, S.L. 2018 Deep learning for universal linear embeddings of nonlinear
dynamics. Nat. Commun. 9 (1), 4950.
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