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Abstract

Eight major supply chains contribute to more than 50% of the global greenhouse gas emissions (GHG). These supply
chains range from raw materials to end-product manufacturing. Hence, it is critical to accurately estimate the carbon
footprint of these supply chains, identify GHG hotspots, explain the factors that create the hotspots, and carry out
what-if analysis to reduce the carbon footprint of supply chains. Towards this, we propose an enterprise decarbon-
ization accelerator framework with a modular structure that automates carbon footprint estimation, identification of
hotspots, explainability, and what-if analysis to recommendmeasures to reduce the carbon footprint of supply chains.
To illustrate the working of the framework, we apply it to the cradle-to-gate extent of the palm oil supply chain of a
leading palm oil producer. The framework identified that the farming stage is the hotspot in the considered supply
chain. As the next level of analysis, the framework identified the hotspots in the farming stage and provided
explainability on factors that created hotspots. We discuss the what-if scenarios and the recommendations generated
by the framework to reduce the carbon footprint of the hotspots and the resulting impact on palm oil tree yield.

Impact Statement

Enterprises are under significant pressure from investors, consumers, and policymakers to act on climate change
mitigation by disclosing their greenhouse gas emissions (GHG) emissions and committing to the reduction of
emissions from their industrial activities. Over 20% of the world’s largest companies have set long-term net-zero
targets. Enterprises need technology to assess the carbon performance of their supply chain and receive informed
recommendations for reducing their emission footprints. In this researchwork,we have proposed anAI framework to
enable the stakeholders (private enterprises, suppliers, consumers, and service providers) with informed recom-
mendations to decarbonize the supply chains.Wehave leveraged this framework to enable Palmproducers to identify
the factors responsible for higher GHG emissions and the actionable recommendation plans for reducing carbon
footprints. For one palm field, it is observed that there is a scope to reduce the carbon emission by20%by reducing the
fertilizer application by 10% and manure application by 30%, with negligible impact on the yield.

1. Introduction

In the last few decades, supply chains have become more global, multi-echelon, inter-connected, and
dynamic leading to benefits in terms of reducing costs, enhanced speed, diversifying operational sourcing,
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and quality. However, these shifts bring with them the massive contribution of supply chains to
greenhouse gas emissions (GHG) emissions. It is estimated that goods and services that are traded
internationally contribute to about 22% of the global GHG emissions (GEI, 2016). Eight major supply
chains are contributing tomore than 50% of the global GHG emissions. These eight supply chains include
food, construction, fashion, fast-moving consumer goods, electronics, auto, professional services, and
other freight. Of these, food contributes to more than one-third followed by construction which
contributes to 10% of the global GHG emissions (WNZ Challenge, 2021).

Enterprises in general particularly thosewho operate/are part of the above-mentioned supply chains are
under significant pressure from investors, consumers, and policymakers to disclose their GHG emissions
and commit to reducing emissions. Over 20 percent of the world’s largest companies have set long-term
net-zero targets (Black et al., 2021). To achieve net-zero targets, enterprises need technology to measure,
track, and decarbonize (reduce their emissions) while building operational resiliency to the effects of
climate change.

In this paper, we will discuss the novel framework/workflow called Enterprise Decarbonization
Accelerator (EDA). EDA performs emission computation, hotspot identification with explainability,
and what-if analysis to provide recommendations in an automated manner to accelerate the decarbon-
ization journey of enterprises. To demonstrate the efficacy of the EDA in accelerating the decarbonization
process, we will apply the EDA to the palm oil supply chain to measure carbon footprint, identify, and
explain the factors causing the hotspots, and use what-if analysis to provide recommendations to mitigate
carbon hotspots of the enterprise.

The rest of the paper is organized as follows. Section 2 summarizes the related work. Section 3
describes the EDA framework to estimate GHG emissions, identify hotspots, provide explainability,
and perform what-if analysis to provide recommendations for the reduction/removal of hotspots.
Section 4 describes palm cultivation, the plantation data obtained from a leading producer of palm
oil, and the application of EDA to the palm oil supply chain. Section 5 presents the results obtained by
applying the EDA to the palm oil supply chains. Finally, we summarize the novelty and relevance of the
proposed EDA in the space of decarbonization in Section 6 and present the concluding remarks in
Section 7.

2. Related work

Decarbonization of supply chains is an important area of study, which includes accounting of carbon
footprints, identifying an inefficient process, understanding the factors that attribute to low performance,
and recommending feasible intervenable actions for overall carbon reductions. This enables businesses to
identify sustainability impacts across a range of attributes such as economic, environmental, social, and
governance. It allows decision-makers to identify sustainability opportunities and prioritize reduction
actions. In the contemporary literature, most of the decarbonization works revolve around carbon
accounting and hotspot identification by using either qualitative (Kuhndt et al., 2002) or quantitative
approaches (Rudnicka et al., 2017).

Hot spot analysis (HSA) (Kuhndt et al., 2002) is a qualitative approach that uses relative relevance
numbers from existing studies to give a rough overview of relevant sustainability aspects. This approach
has been used to identify hotspots in supply chains by comparing the relevant numbers. (Bienge et al.,
2010) Utilized HSA to integrate social and environmental dimensions along the entire value chain and to
identify relevant aspects for product-specific sustainability management. Norris et al. (2014) used the
social hotspot database to study the social hotspots of numerous product categories, while Guo et al.
(2020) conducted a global hotspot analysis concerning food loss and waste with its associated GHG
emissions. HSA has also been used to analyze the environmental impacts of food supply chains, like
Liedtke et al. (2010) performedHSA to identify resource-intensive hotspots in the life cycles of coffee and
cream cheese. However, these qualitative approaches have limited applications as they do not provide any
actual values for the impact factors but rather use relative relevance numbers to give a rough overview of
relevant sustainability aspects.
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Life cycle assessment (LCA) is a quantitative systems approach aimed at assessing the environmental
impact of a product throughout its life cycle. Works like (Acquaye et al. (2011), Piringer et al. (2016), and
Singh et al. (2015) utilized LCA to evaluate carbon dioxide equivalent (CO2e) emissions and identify
carbon hotspots in bio-diesel, maize silage, and beef supply chains, respectively. However, both HSA and
LCA methodologies do not provide explainable insights into the identified hotspots. Also, they do not
provide the stakeholders with recommendations that can help them in reducing their environmental
impact. Attributional and consequential LCA (ALCA and CLCA) (Thomassen et al., 2008) address this
gap to some extent. ALCAprovides attribution of total emissions from the processes andmaterial flows in
a product life cycle, while CLCA provides information about the consequences of changes in the level of
output of a product on the total emissions associated with the product. However, these approaches are
limited to product life cycles and cannot be used for enterprise-level decarbonization.

As we will be evaluating the proposed framework for estimating the carbon footprint and hotspot
identification for palm oil supply chains, we next discuss the related work in the space of palm oil supply
chains. Several studies have focused on estimating the carbon footprint associated with the production of
palm oil. Rodrigues et al. (2014) evaluated crude palm oil’s GHG balance through an LCA approach,
using average data from the Brazil region, while Subramaniam et al. (2020) assessed thewater footprint of
the palm oil supply chain. Few works have focused on specific parts of the cradle-to-gate extent of the
supply chain, such as the LCA of oil palm seedlings (Muhamad et al., 2012) and transportation (Arshad
et al., 2017).Most of the prior works on palm oil supply chain estimate carbon footprints through the LCA
approach, using existing databases and process-specific emission data which are then used to identify
carbon-intensive phases.

However, these works do not include explainability, (Lundberg and Lee, 2017) or what-if analysis and
recommendations (Mothilal et al., 2020) that can be helpful for emission reduction. In this work, we seek
to address this gap by proposing enterprise decarbonization accelerator (EDA), a novel framework that
performs emission computation, hotspot identification with explainability insights, and what-if analysis
to recommend intervenable measures for reducing carbon footprint and help enterprises accelerate their
decarbonization journey.

3. Decarbonization accelerator framework

We have designed and developed an enterprise scale decarbonization accelerator (EDA) framework
(as shown in Figure 1) that would be able to perform the processes associated with emission computation,
hotspot identification with explainability, and what-if analysis to provide recommendations in an
automated manner to accelerate the decarbonization journey of enterprises. The proposed EDA frame-
work consists of an AI workflow with four modules that is carbon accounting, carbon hotspot

Figure 1. Enterprise decarbonization accelerator framework.
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identification, explainability, counterfactual queries, and recommendations engine. Next, we describe the
four modules.

3.1. Carbon accounting

GHG protocol, initiated by theWorld Resources Institute and theWorld Business Council for Sustainable
Development, serves as a prominent framework for corporate accounting and reporting emissions. The
GHG Protocol Corporate Accounting and Reporting Standard (Protocol and Initiative, 2004) categorizes
greenhouse gas emissions into three scopes: Scope 1, encompassing direct emissions from owned or
controlled sources; Scope 2, involving indirect emissions frompurchased energy; and Scope 3, addressing
indirect emissions along the entire value chain. We have implemented Application Programming
Interface (APIs) for the scalable computation of Scopes 1, 2, and 3 emissions as per the GHG protocol.

3.1.1. Scope1: stationary combustion
Combustion of fuels in stationary (non-transport) combustion sources results in the following GHG
emissions: CO2, methane (CH4), and nitrous oxide (N2O). Sources of emissions from stationary
combustion include boilers, heaters, furnaces, kilns, ovens, flares, thermal oxidizers, dryers, and any
other equipment or machinery that combusts carbon-bearing fuels or waste streammaterials. We compute
the GHG emissions for the above gases for a variety of fuels using our API.

3.1.2. Scope1: mobile combustion
Mobile combustion means emissions from the transportation of materials, products, waste, and employ-
ees resulting from the combustion of fuels in company-owned or controlled mobile combustion sources
(e.g., cars, trucks, buses, trains, airplanes, ships, etc.). The greenhouse gases CO2, CH4, and N2O are
emitted during the combustion of fuels in mobile sources. As per the GHG protocol, we have adopted a
fuel-based approach for accounting carbon footprint from mobile combustion. We consider location,
vehicle type, fuel type, and amount as input to mobile combustion API.

3.1.3. Scope1: fugitive emission
Fugitive emissions are leaks and other irregular releases of gases or vapors from a pressurized contain-
ment—such as appliances, storage tanks, pipelines, wells, or other pieces of equipment—mostly from
industrial activities. We have leveraged a sales-based approach for computing the carbon footprint for
fugitive emissions in our API.

While stationary, mobile, and fugitive emissions are common Scope 1 activities across enterprises,
Scope 1 also includes industry-specific activities such as applying fertilizer to agricultural fields or
production of Ozone-depleting gases. In such cases, our framework has the flexibility to include industry-
specific Scope 1 carbon accounting models.

3.1.4. Scope2: emission from electricity consumption
Scope 2 API accounts for GHG emissions from the generation of purchased electricity consumed by a
company. Purchased electricity is defined as electricity that is purchased or otherwise brought into the
organizational boundary of the company. Scope 2 emissions physically occur at the facility where
electricity is generated and attributed to the users based on their consumption. There are two approaches
for Scope 2 that is location-based approach and the market-based approach. For simplicity, in this paper,
we used the location-based approach.

3.1.5. Scope3
Scope 3 emissions are a consequence of the activities of the company but occur from sources not owned or
controlled by the company. Some examples of Scope 3 activities are extraction and production of
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purchased materials; transportation of purchased fuels; and use of products and services. In this paper, we
used Scope 3 API to compute the carbon footprint for logistics using the weight-distance method.

This module also extracts carbon performance-related features such as weather conditions (e.g.,
temperature, humidity), asset-specific parameters (e.g., age, size–capacity), and operational parameters
(e.g., load, fuel–electricity consumption) associated with the carbon performance of the asset/operation.
While weather data is pulled automatically based on location information, users need to define the asset-
specific parameters as well as operational parameters as domain-specific knowledge is required here.

3.2. Carbon hotspot detection

The carbon hotspot detection module ingests the carbon footprints of assets along with other relevant
associated derived features and selects the prediction and outlier detection algorithm from the library of
options, such as linear regressor, decision tree, random forest, Multilayer Perceptron (MLP) regressor,
gradient boosting,XGBoost, PyOD, isolation forest, etc., to identify the list of low carbonperforming assets/
operations. It mainly consists of two sub-modules, namely, (i) emission prediction model and (ii) outlier
(note that we use the terms, outlier, anomalous, and hotspot interchangeably) detection model as follows:

3.2.1. Emission prediction model
We learn the functional relationship between the carbon footprint of an asset and other independent
associated derived factors by selecting the prediction model configured by the user from the library. We
provide well-known ML models as part of our framework (such as Linear regression, Decision tree,
Random Forest, Gradient boosting, and MLP Regressor). These models are leveraged from the sklearn
python library (Pedregosa et al., 2011). Our framework performs emission modeling using the different
models configured by the user and selects the optimal model using hyperparameter tuning.

3.2.2. Outlier detection model
In this module, we support out-of-the-box outlier detection modules (e.g., PyOD, Isolation Forest, etc.) as
well as advanced methods such as multi-dimensional subset scan (MDSS). We used an extension of the
MDSS (Neill et al., 2013; Zhang and Neill, 2016) algorithm for subset scanning of the data. Figure 2

Figure 2. MDSS pseudocode.
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shows the algorithm provided in Zhang and Neill (2016). This methodology is able to identify the most
anomalous subgroup of feature space in linear time, amongst the exponentially many possible ones,
enabling tractable subgroup analysis. The general form of the method is

S∗ =MDSS D,E,scorebiasð ÞS∗ =MDSS D,E,scorebiasð Þ (3.1)

where S∗ is the most anomalous subgroup,DD is a dataset with outcomes Y and featuresX, E are a set of
expectations for Y , and scorebiasscorebias is an expectation-based scoring statistic that measures the
amount of anomalousness between subgroup observations and their expectations. The goal ofMDSS is to
identify a subset of the data d Sð Þ⊆D corresponding to subgroup S that maximizes scorebiasscorebias. For
scorebias, we use log-likelihood ratio defined as F Sð Þ= log Pr DjH1 Sð Þð Þ=Pr DjH0ð Þð Þ. The alternate
hypothesis H1 Sð Þ assumes that datapoints xi ∈ d Sð Þ are drawn with mean qμi and datapoints xi �∈ d Sð Þ
are drawn frommean μi, for constantmultiplicative factor q> 1 known as relative risk. The null hypothesis
H0 assumes that all datapoints, including xi ∈ d Sð Þ are drawn with mean μi. This definition satisfies the
additive linear-time subset scanning property, which is required for MDSS to be tractable (Speakman
et al., 2016). Equation (3.2) gives the general scorebiasscorebias used by MDSS.

scorebias Sð Þ= max
q> 1

X
xi ∈ d Sð Þ

logPr xijqμið Þ� logPr xijμið Þð Þ (3.2)

3.3. Explainability

The interpretation of machine learning models is crucial for understanding feature attribution, especially
as many models are inherently not transparent. In this module, we employ the widely recognized model-
agnostic methodology known as SHapely Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to
gain insights into both local and global interpretability for carbon hotspots. SHAP is a game theoretic
approach to explain the output of any machine learning model. It connects optimal credit allocation with
local explanations using the classic Shapley values from game theory and their related extensions. The
SHAP values calculated in our framework represent the marginal contribution of each associated feature
to the carbon footprint of an asset. To compute these SHAP values, we leverage the SHAP library
available at https://pypi.org/project/shap/. This approach ensures a robust and mathematically sound
representation of feature importance. Moreover, our module is designed with a pluggable framework,
allowing seamless integration of other explainable models into the workflow.

3.4. Counterfactual queries and recommendation engine

In this module, we provide a framework to leverage the state-of-the-art as well as custom counterfactual
queries and recommendation engines. This framework has an inbuilt recommendation module that
leverages the diverse counterfactual explanations (DiCE) methodology fromMothilal et al. (2020). DiCE
generates counterfactual explanations for any ML model through perturbations within a feasible range
that change the output of a machine learning model. It also supports simple constraints on features to
ensure the feasibility of the generated counterfactual examples. This framework takes input from the user
on the set of controllable features with their feasible range and the expected target emissions for
intervenable actions and generates the set of best recommendations.

4. Case study: palm cultivation

Sustainable sourcing of palm oil has gained significant interest over the past years. It is thus important for
palm producers to identify factors responsible for higher emissions, while also developing explainable
intervention plans to lower their carbon footprint.We use our EDA framework to estimateGHG emissions
of palm plantations, perform explainable hotspot identification, and develop recommendation plans for
reducing carbon emissions.
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4.1. Overview

Figure 3 gives an overview of palm cultivation. The first step is to produce seedlings from pre-germinated
seeds in nurseries, along with land preparation. Then the seedlings are planted manually and fertilizers
containing elements such as nitrogen (N), potassium (K), and phosphorus (P) are applied. Fertilizers used
are manufactured in factories from where they are taken to the port nearest to the plantations via shipping
tankers. Then they are delivered by heavy goods vehicles (HGV) such as trucks to the plantations. Along
with fertilizers, diesel is also transported to the plantations, where it is used in irrigation, transportation of
fertilizers and workers to the farms, land preparation, and maintenance. It takes about 3–4 years for oil
palms to produce fruits suitable for harvest. Palm trees continue to produce fruit for around 30 years and
they are harvested periodically. Palm is harvested manually wherein fronds are cut off to dislodge fresh
fruit bunches (FFB), which fall to the ground and are then collected. The fruit bunches are transported to
oil mills by light good vehicles, where they are subjected to industrial processing to obtain crude palm oil
(CPO) and crude palm kernel oil, as well as by-products such as empty fruit bunches (EFB), fibers, shells
and palm oil mill effluent (POME). These by-products are returned to the field as manure. Electricity is
used in the oil extraction phase to power machinery such as threshers and motors of conveyors.

GHG emissions from the palm supply chain can be divided into the following stages—manufacturing,
agriculture, and transportation and electricity usage. Manufacturing includes all the emissions resulting
from the production of fertilizers and electricity and the extraction of crude palm oil. Agriculture includes
all the emissions resulting from activities related to the planting and harvesting of palm produce.
Transportation includes emissions resulting from transporting fertilizers and diesel to palm plantations,
and FFB produce from plantations to mills. Lastly, emissions due to electricity usage include all the
indirect emissions resulting from the consumption of electricity in the supply chain.

4.2. Palm plantation data

Palm plantations are divided into smaller units called blocks. We use our framework to analyze the
performance of palm plantations at the block level, using data from 25 palm blocks for 14 years, from the
year of the plantation, up to the 14th year of cultivation of each block. We consider important factors
which impact palm cultivation and capture the carbon emission performance of blocks, such as nitrogen
content in the fertilizer application, carbon and nitrogen content in manure application (EFBh and pruned
fronds), age of the farm block, initial soil organic carbon content at the depth of 0–15 cm and 15–45 cm,
annual yield and the weather parameters (annual precipitation and temperature statistics). Data is obtained
from a leading producer of palm oil. For the sake of anonymity, we will not disclose the name of the palm
oil producer. Along with the farm plantation data, we also use relevant data from the cradle-to-gate extent
of the palm oil supply chain for other stages - manufacturing, transportation, and electricity.

Figure 4 shows the heatmap of the annual yield of the 25 blocks at different ages, where the yield of
each block has been normalized usingmin-max scaling. Since palm plantations produce their first harvest
in the third–fourth year after plantation, the yield is near zero for the first 3 years across all the blocks. We

Figure 3. Palm cultivation: overview.
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see that the farm blocks have more yield as their age increases, with maximum yield observed around the
12th year of plantation across most of the blocks.

5. Experimentation and results

In this section, we discuss the results that are obtained by following themethodology outlined in Section 3
for palm plantation blocks and draw useful insights.

5.1. Carbon footprint of palm blocks

We have used the physics-based denitrification decomposition (DNDC) model (Gilhespy et al., 2014) to
estimate the carbon footprint of palm plantations. The model bridges the chemical reactions in soil with
the ecological drivers (climate, soil, vegetation, and farming practices) and environmental factors
(temperature, moisture, pH, redox potential (Eh), and simulates carbon and nitrogen dynamics. The
DNDC model predicts crop growth, soil temperature and moisture, soil carbon sequestration, and
emission of CO2, CH4, and N2O along with other trace gases.

Figure 5 shows the inputs, outputs, and components of themodel. The inputs to themodel are the soil data
(type, clay fraction, amount of initial soil organic carbon), weather data (temperature, precipitation, wind
speed, solar irradiation), crop data, farming practices (fertilizer, manure, and irrigation schedules, tillage
information), planting and harvesting schedules. The two-component DNDC model has six submodules,
namely, soil climate, crop growth, denitrification and decomposition, nitrification, and fermentation.

The soil climate sub-model computes environmental factors within the soil, such as soil temperature,
moisture profiles (0–50 cm), pH, and redox potential. These calculations are based on soil texture
properties, air temperature, precipitation, and plant water uptake. In parallel, the plant growth sub-
model predicts daily water and nitrogen uptake by plants, as well as daily growth, root respiration, and
biomass partitioning into grain, stems, and roots. The decompositionmodel integrates inputs from the soil
climate and plant growth models to determine the quantities of substrates, including ammonium (NH+

4 ),
nitrates (NO�

3 ), and dissolved organic carbon.
Depending on the soil moisture profile and redox potential levels, one of the nitrification, denitrifi-

cation, or fermentation sub-models is activated. Based on the level of soil moisture profile and redox
potential, any one of the sub-models of nitrification, denitrification, or fermentation will be invoked.
Under aerobic conditions, the nitrification sub-model calculates the nitrification process, leading to the

Figure 4. Heatmap showing normalized annual yield from the farm blocks at different ages.
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production of N2O, nitric oxide, and (NH3). Conversely, during anaerobic conditions, the denitrification
and/or fermentation sub-models estimate the emission of N2O and CH4, respectively.

The residual crop material integrated into the soil will be categorized into three distinct soil litter pools
—namely, highly labile, labile, and resistant litter pools based on their carbon-to-nitrogen (C/N) ratio.
This incorporation of litter serves as vital input for the storage of soil organic matter (SOM), thereby
connecting the plant and soil components within a biogeochemical system.Within theDNDC framework,
SOM is distributed across four primary pools: plant residue (i.e., litter), microbial biomass, humads
(i.e., active humus), and passive humus. Each pool comprises two or three sub-pools characterized by
varying specific decomposition rates. The daily decomposition rate for each sub-pool is governed by
factors such as pool size, specific decomposition rate, soil clay content, nitrogen availability, soil
temperature, and soil moisture. As the soil organic carbon (SOC) within a pool undergoes decomposition,
a portion of the carbon is released as CO2, while the remainder is allocated to other SOC pools. It is
important to note that our study focuses solely on greenhouse gas (GHG) emissions from farming
activities, and we do not consider changes in soil organic matter.

This DNDCmodel has been widely accepted and analyzed by the researchers in last two decades, and
several validations with field measurements have been studied for 60+ crops in various countries
(Gilhespy et al., 2014). For example, a field validation experiment of DNDC model for CH4 and NOx
emissions from paddy fields is studied in India and it is reported that the DNDC model satisfactorily
simulated the seasonal variations in GHG emissions for different land management (Babu et al., 2006).

Our framework computes carbon footprint at each stage from cradle to gate, that is raw material
extraction to CPO production leveraging the APIs mentioned in Section 3.1 and the DNDC model.
Emissions related to activities within the organizational boundary were computed using Scope1, Scope2
APIs, and DNDC model. Upstream emissions (i.e., raw material extraction and manufacturing of
fertilizer) and emissions related to the transportation of upstream raw material and fertilizer were
computed using the Scope3 logistic API. At the farming stage, the DNDC tool has been used to precisely
compute the carbon footprint due to farming activities. The framework uses “CO2e” as the standard unit
formeasuring carbon footprint. For any quantity and type of greenhouse gas, CO2e signifies the amount of
CO2 which would have the equivalent global warming impact. A quantity of GHG can be expressed as
CO2e by multiplying the amount of the GHG by its global warming potential (GWP), where GWP is the
heat absorbed by any greenhouse gas in the atmosphere, as a multiple of the heat that would be absorbed
by the same mass of CO2. For example, the GWP value for N20 is provided as 265 in the IPCC Fifth
Assessment Report, 2014 (AR5) (Myhre et al., 2013; Myhre et al., 2014). Therefore, if 1 kg of N2O is
emitted, this can be expressed as 265 kg of CO2e (1 kg N2O * 265 = 265 kg CO2e).

Figure 5. Denitrification-decomposition (DNDC) model workflow (Gilhespy et al., 2014).
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The emissions were divided into four stages—farming, manufacturing, transportation, and electricity
as mentioned in Section 4.1. Figure 6 shows the stage-wise distribution of carbon emissions in the cradle-
to-gate palm oil supply chain, averaged across the 14 years of plantation data. The plot shows that the
farming stage is the major source of emissions in the supply chain. Therefore, in this paper, we will focus
on the farming stage, and use our framework for block-level analysis of palm plantation.

The DNDC model gives the emission of GHG gases such as CO2, CH4, and N2O from the farming
stage at daily intervals. For our analysis, we have aggregated the GHG emissions to annual temporal
resolution. Since all the palm plantation blocks are located in the upland mineral soil, the methane
emission from the farming stage is negligible. We have considered only the soil CO2 emission from the
decomposition process andN2O emission from the nitrification and denitrification process to compute the
total carbon footprints (CO2e).

Figure 7 shows the heatmap of annual CO2e emission of the 25 palm plantation blocks at different ages,
where the emission numbers are normalized across all the blocks using min–max scaling. All 25 blocks
receive an equal amount of fertilizers for the first 4 years and for subsequent years, the amount of fertilizers
and manures are determined based on the age and soil testing. We can see that the annual CO2e emissions
are low and almost in a similar range for the first 4 years and start to show higher value as the age increases
across all the blocks.

5.2. Block-level hotspot identification

The annual carbon footprint of the farm blocks along with the plantation data detailed in Section 4.2 is
used for hotspot identification. However, we do not use meteorological variables such as temperature and
solar irradiation in identifying the hotspot blocks, even though these variables were used in the DNDC-
based estimation of carbon footprint. This is because since the plantation blocks are in close proximity,
these variables have similar values across the blocks and, therefore, fail to provide significant discrim-
inatory insights.

To begin, we utilize the emission predictionmodule to assess the carbon footprint of palm blocks at the
block level. We apply a range of well-established machine learning models, such as linear regression,
decision tree, random forest, gradient boosting, and MLP regressor. Notably, the random forest regressor
exhibits superior performance compared to the other models. The process of determining the optimal
hyperparameters for the random forest models is conducted through thorough grid search experiments.

Figure 6. Stage-wise distribution of carbon emission.
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This involves methodically examining different hyperparameter values to identify the setup that maxi-
mizes performance, ensuring a well-informed and precise model selection.

The predicted carbon emissions serve as the expected emissions E, to be used by the MDSS-based
outlier detection module. We use the Gaussian scoring function (Speakman et al., 2016) as scorebias,
which uses Gaussian distribution to model the log-likelihood ratio statistic defined in Eqn. (3.2). This
serves as the statistical measure of divergence between subgroup observations and their expectations.
Gaussian scoring function for a subgroup S is given by (Speakman et al., 2016):

scorebias Sð Þ= max
q> 1

X
xi ∈ d Sð Þ

yibμ q�1ð Þbσ2 +
X

xi ∈ d Sð Þ
bμ2 1�q2

2bσ2
� �

(5.1)

where, yi are the observed values in the subset d Sð Þ belonging to subgroup S, bμ, and bσ2 are the expected
mean and variance of the subgroup. We perform MDSS-based outlier detection, as outlined in 3.2.2 to
obtain hotspot farm blocks, with scorebias as defined in Eqn. (5.1). B2 and B3 are identified as hotspot
blocks across multiple years. In Figure 8 the red region depicts the feature space of the anomalous
subgroup S∗ identified by MDSS. From this, we observe that blocks with very low or high fertilizer
application, high manure application, and moderate yield are identified as hotspots. However, this does
not provide explainable insights or help with identifying opportunities for reducing emissions. To address
this, we will next analyze the hotspot blocks using explainability and what-if scenarios.

5.3. Hotspot explainability analysis

To understand the factors that dictate the variation in carbon footprints from palm plantations, we have
used the SHAP value to identify the marginal contribution of all the relevant features. We begin with
learning the prediction model with farming practices, soil properties, and weather-related parameters as
input features for predicting the soil CO2 and N2O emissions independently. The individual emission
regressor model will give us more insights into the dominating features that influence the respective
emissions. Figures 9 and 10 show the holistic summary of feature importance for CO2 and N2O emission
regressor models, respectively, using the SHAP value.

From Figure 9, we observe that for soil CO2 emissions, the most dominating features are plantation
age, the amount of nitrogen content in the manure and fertilizers, annual yield, annual precipitation, and

Figure 7. Normalized annual equivalent carbon emission (CO2e) from farm blocks at different ages.
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the initial soil organic carbon (SOC) at the depth of 15 cm–45 cm and 0–15 cm. Since the CO2 emission is
the product of soil decomposition it is clear that the above factors are influencing the rate of the
decomposition process. The pruned palm fronds and the EFBs are the main sources of manure applica-
tions and have a high carbon-to-nitrogen ratio. Because of the high carbon content, the manure takes
precedence over fertilizer in the feature importance plot. The amount of manure and fertilizers tends to
increase with age and thus the increase in annual yield. For SOC at the depth of 0–15 cm and 15 cm–

45 cm, we see amodest impact with a higher value leading to an increase in CO2while the lower value has

Figure 8. Anomalous subgroup identified by MDSS.

Figure 9. Global explainability for CO2.

Figure 10. Global explainability for N2O.
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a neutral impact. This can be attributed to the capacity of soil to hold more carbon without getting
saturated. The higher SOC content in the soil tends to have low holding capacity and thusmore free carbon
to participate in the decomposition process.

Similarly from Figure 10, we see that for N2O emission, the dominating features are the same as those
of CO2 emission but the order of precedence and the impact are quite different. The nitrogen content in
fertilizer takes precedence followed by annual precipitation and then the manure application. The N2O
emission is the product of the nitrification and denitrification process as shown in Figure 5. It is evident
from the DNDCmodel workflow, that the presence of nitrate and ammonium ions with high precipitation
tends to be a conducive environment for N2O emission.

Since the dominating features of soil CO2 and N2O emissions are similar, it will be appropriate to
investigate the feature importance of total carbon footprint (CO2e). This will also capture the inter-
dependency among soil CO2 andN2O emissions and help the enterprise focus on onemetric for the overall
carbon footprint reduction. Figure 11 shows the global interpretation of feature importance for the CO2e
emission regressor model using the Shapley value. The order of feature importance is the same as that of
soil CO2 and it shows that the proportion of soil CO2 is larger than N2O. Based on the features SHAP
value, we infer that in general, the following factors lead to an increase in CO2e—(i) high fertilizer and
manure application results in higher emission. (ii) older blocks tend to have a higher carbon footprint
associated with them. (iii) Soil organic carbon at depths 0–15 cm (SOC_45) and 15–45 cm (SOC_15) has
amodest impact, with high soil organic carbon leading to an increase in carbon impact, while low SOChas
a neutral impact.

We also perform an explainability analysis of the identified hotspot blocks to identify factors behind
the low performance of the blocks. We use local explainability SHAP plots as mentioned in Section 3.3.
The plot shows which factors contribute to the increase or decrease in CO2e of the hotspot blocks when
compared to the baseline of average carbon footprint. Figures 12 and 13 provide the plots for two hotspot
blocks.

From Figure 12, we observe that high SOC_15 and SOC_45 content, highmanure application result in
an increase in emissions, while low fertilizer application lowers the carbon footprint. The block also has a

Figure 11. Global explainability for CO2e emission.

Figure 12. Palm plantation block B2 - local explainability.
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moderate yield which could be due to low fertilizer application. From Figure 13, we can infer that very
high fertilizer and manure applications are responsible for high emissions. The block has a good yield
performance; however, it has a low carbon performancewhen compared to other blocks. The observations
are in accordance with the insights drawn from Figure 11 earlier.

The two explainability plots share some common factors, we can observe that high fertilizer and high
manure application negatively impact the carbon performance of the farm blocks.

5.4. Counterfactual recommendation

The recommendation Engine introduced in Section 3.4 is used to generate counterfactual recommenda-
tion plans for the hotspot blocks to reduce their carbon footprint. We focused on finding the set of
intervenable features which can be perturbed to reduce the CO2e emission without compromising on the
yield produced by palm plantations. Figures 14 and 15 show the intervention plans generated by the
engine for the two hotspot blocks. We observe that for both blocks, the fertilizer and manure application
are identified as the intervenable areas. For B2, we generated the counterfactual query to produce a set of

Figure 13. Palm plantation block B3 - local explainability.

Figure 14. B2 counterfactual recommendations.

Figure 15. B3 counterfactual recommendations.
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three best diverse recommendations to restrict CO2e emission within the range of 10 to 25 tonnes of
CO2e. From Figure 14, we observe that reducing fertilizer application by around 10% and manure
application by around 30%can help in reducing carbon emissions by roughly 20%,with negligible impact
on the yield. Similarly, for B3, we generated the counterfactual query to produce the diverse set of four
best recommendations without impacting the yield. From Figure 15, we see that reducing manure
application by 25%–30% can reduce the carbon emission by around 10% with negligible impact on
the yield for the B3 palm plantation block.

6. Discussions

The escalating global GHG emissions from international trade demand enterprises to disclose and reduce
emissions. Our EDA integrates emission computation, hotspot identification, explainability, and what-if
analysis. Unlike qualitative methods or quantitative approaches lacking explainability, EDA combines
rigor with qualitative insights. Application to the palm oil supply chain demonstrates its efficacy,
positioning EDA as a strategic tool for enterprises committed to sustainable practices. The identification
of agriculture-related hotspots underscores the need for targeted interventions, like optimizing fertilizer
application, revealing EDA’s applicability beyond agriculture. Versatility across industries highlights its
potential for broader environmental challenges. Comparisons with previous research showcase EDA’s
uniqueness, offering industry-agnostic solutions for carbon footprint management. The proposed frame-
work is generic, industry agnostic, and can be used across enterprises, emphasizing its significance in
sustainable enterprise management.

7. Conclusion

In this paper, we presented a unified novel framework called EDA to accurately estimate the carbon
footprint at the enterprise or process level across all types of asset classes, identify GHG hotspots and
explain the factors that create the hotspots, and carry out what-if analysis to reduce the carbon footprint.
The efficacy of the framework is demonstrated with palm oil enterprise data. Results presented in this
paper indicate that the agriculture stage is the most carbon-intensive and blocks in which high fertilizer
amounts were applied and low yields were obtained are the hotspots. This enabled customization of
farming practices such as the right amount of fertilizer or manure for low-performing blocks which would
not only improve their yield but also reduce their carbon footprint and sustainably ensure profitability.

8. Future works

In our future work, we plan to extend the EDA framework to address additional challenges and explore
new opportunities for decarbonization. Specific areas of focus include:

• Environmentally extended input–output (EEIO) based Scope 3 emissions: Enhancing the frame-
work to integrate and analyze Scope 3 emissions using the EEIO (Castellani et al., 2019) approach,
providing a more scalable overview of an enterprise’s environmental impact, especially when faced
with a lack of physical activity data.

• Diversification into other sectors: Experimenting with the framework with data from other sectors
such as the manufacturing industry, aviation industry, and real estate.

• Stakeholder engagement and validation: Collaborating with enterprises and stakeholders across
various industries will be crucial for validating and refining the EDA framework. Real-world
feedback and engagement will enhance the reliability and practicality of the framework in diverse
business environments.

• Long-term strategic recommendations: While this framework provides short-term operational
recommendations, in the future, we plan to extend this framework for long-term strategic recom-
mendations to accelerate the net-zero decarbonization journey of enterprises.
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These ongoing endeavors seek to refine and expand the EDA framework, ensuring its relevance and
impact in diverse industries and contributing to the broader mission of sustainable decarbonization.
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