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On some multiplicative properties of large
difference sets
Ilya D. Shkredov
Abstract. In our paper, we study multiplicative properties of difference sets A− A for large sets
A ⊆ Z/qZ in the case of composite q. We obtain a quantitative version of a result of A. Fish about
the structure of the product sets (A− A)(A− A). Also, we show that the multiplicative covering
number of any difference set is always small.

1 Introduction

The landmark question about solvability of equations of the form f (x1 , . . . , xn) = 0,
where f ∈ Z[x1 , . . . , xn] and the variables x j ∈ X j belong to some “large” but unspec-
ified sets X j of the prime field Fq was firstly posed, probably, in [12]. Interesting in its
own right, the problem has a clear connection with the sum–product phenomenon
[21] due to the fact that as a rule the polynomial f includes both the addition and the
multiplication. This theme becomes rather popular last years (see, e.g., [7–10, 12, 16,
19] and many other papers).

The question about a partial resolution of some specific equations f (x1 , . . . , xn) = 0
in large subrings of rings Zq ∶= Z/(qZ) for composite q was firstly considered by
Fish in [5] (nevertheless, let us remark that a similar problem was formulated in
[8, Problem 5]). In particular, in [5, Corollary 1.2], Fish considered the polynomial
f (x1 , x2 , x3 , x4) = (x1 − x2)(x3 − x4) and proved the following result.

Theorem 1.1 [Fish] Let q be a positive integer, let A, B ⊂ Zq be sets, ∣A∣ = αq, ∣B∣ = βq,
and suppose that α ⩾ β. Then there is d∣q with

d ⩽ F(β) ∶= exp exp exp(Cβ−4),(1.1)

where C > 0 is an absolute constant and such that

d ⋅Zq ⊆ (A− A)(B − B).(1.2)

Here, we use the following standard notation [21], namely, given two sets A, B ⊂ Zq ,
define the sumset of A and B as

A+ B ∶= {a + b ∶ a ∈ A, b ∈ B}.
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In a similar way, we define the difference sets A− A, the higher sumsets, e.g., 2A− A is
A+ A− A and, further, the products sets

AB ∶= {ab ∶ a ∈ A, b ∈ B}

the higher product sets and so on. Finally, if A ⊆ Zq and λ ∈ Zq , then we write

λ ⋅ A = {λa ∶ a ∈ A}.

It is easy to see that in this generality one cannot have Zq = (A− A)(B − B) in
inclusion (1.2) for all sets A, B, and thus, we indeed need this additional (but small)
divisor d. In contrary, for prime q, the divisor d can be omitted and the questions of
this type were studied in [9] and [19]. As we have seen the dependence in F(β) was
triple exponential on β−1. Using a series of other methods, we improve and generalize
the last result in several directions. The signs≪ and≫ below are the usual Vinogradov
symbols.

Theorem 1.2 Let q be a positive integer, let A, B ⊂ Zq be sets, ∣A∣ = αq, ∣B∣ = βq, and
suppose that α ⩾ β. Then there is d∣q with

d ≪ exp(Cβ−4),(1.3)

where C > 0 is an absolute constant and such that

d ⋅Zq ⊆ (A− A)(B − B).(1.4)

In [5], the author posed a series of questions in much more general form, as well as
for other polynomials f (x1 , . . . , xn). Using different approaches, we partially resolve
some of them (see Sections 3 and 4). In particular, we have deal with the equation

(a1 − b1)(a2 − b2) ≡ λ (mod q) , (a1 , a2) ∈ A, (b1 , b2) ∈ B,

and

(a1 − b1)2 − (a2 − b2)2 ≡ λ (mod q) , (a1 , a2) ∈ A, (b1 , b2) ∈ B,

for rather general two-dimensional sets A,B ⊆ Zq ×Zq and composite numbers q
with some restrictions on its prime divisors (see Theorems 3.2, 3.5, and 4.1). As an
example, we formulate a part of Theorem 3.2. Giving a positive integer q, we denote
by ω(q) the total number of prime divisors of q.

Theorem 1.3 Let q be a squarefree number, let A,B ⊆ Z
2
q be sets, ∣A∣ = αq2, ∣B∣ = βq2,

and suppose that α ⩾ β. Then

d ⋅Z∗q ⊆ {(a1 − b1)(a2 − b2) ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B}(1.5)

with

d ≪ exp(O(ω(q) log ω(q) − log β)).

In particular, for A = B, one has with the same d that

d ⋅Zq ⊆ {(a1 − b1)(a2 − b2) ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B}.(1.6)
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1540 I. D. Shkredov

Our another result may be interesting in itself (even in the case of prime q) due
to it gives a new necessary condition for a set to be a difference set, but moreover, in
addition, it yields another proof of Theorem 1.1 (see Theorems 5.4 and 5.9).

Theorem 1.4 Let q be a positive integer, and let A ⊆ Zq be a set, ∣A∣ = αq. Suppose that
the least prime factor of q greater than 2α−1 + 3. Then, there is X ⊆ Zq such that

∣X∣ ⩽ 1
α
+ 1,

and

X(A− A) = Zq .

The equation X(A− A) = Zq for a set X ⊆ Zq induces a coloring of Zq via suitable
subsets of our difference set A− A. Hence, Theorem 1.4 gives us a new connection
between coloring problems and difference sets. Finally, our result and the Ruzsa
covering lemma [11] (see inclusion (5.2)) show that for any set A ⊆ Zq , ∣A∣ ≫ q, where
q is a prime number, say, the set A− A is a syndetic set (i.e., having bounded gaps
between its consecutive elements, e.g., see [6]) in both multiplicative and additive
ways.

Let us say a few words about the notation. Having a positive integer q, we denote by
ω(q) the total number of prime divisors of q and by τ(q) the number of all divisors.
Let φ(q) be the Euler function. We use the same capital letter to denote a set A ⊆ Zq
and its characteristic function A ∶ Zq → {0, 1}. If R is a ring, then we write R∗ for the
group of all inverse elements of R. Let eq(x) = e2πix/q , and let us denote by [n] the
set {1, 2, . . . , n}. All logarithms are to base 2.

2 An effective version of Fish’s theorem

Having a positive integer n and a set A ⊆ Zq × ⋅ ⋅ ⋅ ×Zq = Z
n
q (or just A ⊂ Z

n), as well
as a divisor q∗∣q, we write

πq∗(A) = {(a1 (mod q∗), . . . , an (mod q∗)) ∶ (a1 , . . . , an) ∈ A} ⊆ Z
n
q∗ .

We need a regularization result similar to [2, Lemma 2.1].

Lemma 2.1 Let δ, ε ∈ (0, 1), M ⩾ 2 be real numbers, let n be a positive integer, and let
A ⊂ Z

n
q be a set, ∣A∣ = δqn . Then, there is q∗∣q, and a set A∗ ⊆ A, ∣πq/q∗(A∗)∣ = 1 such

that q∗ = q
q1 . . .qs

, M ⩽ q j ⩽ δ−ε−1
, s is the least number with δMεs > 1 and for all q̃∣q∗,

q̃ ⩾ M one has

max
ξ∈Zn

q̃

∣A∗ ∩ π−1
q̃ (ξ)∣ ⩽ ∣A∗∣

q̃1−ε .(2.1)

Proof Suppose not. Then for a certain ξ ∈ Zn
q and q1∣q, q1 ⩾ M, we find

A′ ∶= A∩ π−1
q1
(ξ) with ∣A′∣ ⩾ ∣A∣

q1−ε
1

. Clearly, ∣πq1(A′)∣ = 1 and the density of A′ in the
appropriate shift of Zn

q/q1
is at least δqε

1 ⩾ δMε . Hence, applying the same procedure
to the set A′ and to the new module q/q1, we see that our algorithm must stop after
at most s steps. Notice that condition (2.1) holds automatically if q̃ ⩾ δ−ε−1

, and hence,
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at the final step of our procedure, we find a set A∗ ⊂ A, ∣πq/q∗(A∗)∣ = 1, having all
required properties. This completes the proof. ∎

Example 2.2 Let n = 1 and q = p1 . . . ps , where p j be some prime numbers. Given
a set A ⊂ Zq , we are interested in distribution of A among arithmetic progressions
of the form αq̃ + β, where q̃ ⩾ M is any divisor of q, β is a fixed number from
the segment [q̃] and α runs over the segment [q/q̃]. Of course, not all sets A are
uniformly distributed among such progressions, e.g., take A = A0 = {0, q̃, 2q̃ . . . , Lq̃},
L = q/q̃ − 1 but nevertheless one can always find a subset A∗ of our set such that
this new set A∗ does not correlate with these arithmetic progressions in the sense
of inequality (2.1). In our particular case, just take A∗ = A0 and q∗ = q/q̃.

Now, we are ready to obtain the main result of this section, which implies Theo-
rem 1.2 from the introduction. Our proof uses the Fourier analysis (its standard facts
can be found in [21], say) and classical estimates for the Kloosterman sums. Having a
group G, we define for any function f ∶ G → C and a representation ρ ∈ Ĝ the Fourier
transform of f at ρ by the formula

f̂ (ρ) = ∑
g∈G

f (g)ρ(g).(2.2)

Theorem 2.3 Let q be a positive integer, let A, B ⊂ Zq be sets, ∣A∣ = αq, ∣B∣ = βq, and
suppose that α ⩾ β. Then, there is d∣q with

d ≪ exp(Cβ−4),(2.3)

where C > 0 is an absolute constant and such that

d ⋅Zq ⊆ (A− A)(B − B).(2.4)

In addition,

d ≪ β−O(ω(q)) .(2.5)

Proof Let q = pρ1
1 . . . pρ t

t , where p j are different primes, p1 < ⋅ ⋅ ⋅ < pt . Also, let M ⩾ 2,
ε ∈ (0, 1) be parameters, which we will choose later. First of all, we remove all divisors
less than M from q. More precisely, for any p j , j ∈ [t] let γ j ⩽ ρ j be the maximal
nonnegative integer such that pγ j

j ⩽ M. Clearly, γ1 ⩾ γ2 ⩾ . . . γt ⩾ 0 and let t0 ⩽ t be
the maximal j with γ j ≠ 0. Thus t0 ⩽ π(M). Now, we define

Q1 ∶=
t0

∏
j=1

pγ j
j ⩽ M t0 ⩽ min{Mπ(M) , Mω(q)},(2.6)

and take A1 ⊆ A such that a shift of A1 belongs to Zq/Q1 and has density at least α.
In particular, ∣πQ1(A1)∣ = 1 and of course such a shift exists by the Dirichlet principle.
Similarly, we can do the same with the set B so as not to lose the density. Secondly, we
apply Lemma 2 with n = 1, A = A1 to regularize the set A1 and find a set A∗ ⊆ A1 and
a module q∗ that satisfies (2.1) and all other restrictions. Again, using the Dirichlet
principle, we take B∗ ⊆ B such that the density of B does not decrease. Let λ ∈ Zq∗ be
an arbitrary number and we first suppose that λ ∈ Z∗q∗ . To prove λ ∈ (A− A)(B − B),
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it is enough to show that λ ∈ (A∗ − A∗)(B∗ − B∗) or, equivalently, in terms of the
Fourier transform, it suffices obtain the inequality

∣A∗∣2∣B∗∣2
q∗

> 1
q∗

∑
r≠0

∣B̂∗(r)∣2 ⋅ ∑
a1 ,a2∈A∗

eq∗ (
λr

a1 − a2
) ∶= σ .(2.7)

Now clearly,

σ ⩽ 1
q∗

∑
q2 ∣q∗ , q2>1

∑
z∈Z∗q2

∣B̂∗(zq∗q−1
2 )∣2

�����������
∑

a1 ,a2∈A∗
eq2 (

λz
a1 − a2

)
�����������

.(2.8)

In terms of the Kloosterman sums

Kq(λ, r) ∶= ∑
x∈Z∗q

eq (
λ
x
+ rx)

and the density function

ηq2(ξ) ∶= ∣{a ∈ A∗ ∶ a ≡ ξ (mod q2)}∣,(2.9)

one has (recall that λ ∈ Z∗q∗ and z ∈ Z∗q2
)

∑
a1 ,a2∈A∗

eq2 (
λz

a1 − a2
) =(2.10)

∑
ξ1 ,ξ2∈Zq2

ηq2(ξ1)ηq2(ξ2)eq2 (
λz

ξ1 − ξ2
) = q−1

2 ∑
ξ∈Zq2

∣η̂q2(ξ)∣2Kq2(λz, ξ)

⩽ 2√q2τ(q2)∥ηq2∥2
2 .

In the last line, we have applied the well-known bound for the Kloosterman sum and
the Parseval identity. Now, to estimate ∥ηq2∥2

2, we use the regularity property of A∗
and derive

∥ηq2∥2
2 ⩽ ∥ηq2∥∞∥ηq2∥1 ⩽

∣A∗∣2
q1−ε

2
.(2.11)

Further, let us obtain a lower bound for divisors q2. Since ∣πQ1(A1)∣ = 1, it follows that
for all q1∣Q1, we have

1
q1

∑
ξ∈Zq1

∣η̂q1(ξ)∣2Kq1(λz, ξ) = ∣A∗∣2
q1

∑
ξ∈Zq1

Kq1(λz, ξ) = 0.

Thus, one can see that summations in (2.8) is taken over q2 ⩾ M. Choosing ε = 1/4,
say, and using the last fact, we get in view of the Parseval identity that

σ ≪ M−1/4 ∣A∗∣2
q∗

∑
q2 ∣q∗ , q2>1

∑
z∈Z∗q2

∣B̂∗(zq∗q−1
2 )∣2 ⩽ M−1/4∣A∗∣2∣B∗∣.

Returning to (2.7), we obtain a contradiction provided ∣B∗∣ ≫ q∗M−1/4. In other
words, we have for a certain s ⩾ 0, αM s/4 > 1 that

∣B∣M s/4 ≪ qM−1/4 ,
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and this implies M ≪ β−4. Thus, in view of our restriction to the divisors of q∗, the
condition α ⩾ β, the first bound for Q1 from (2.6), and the bound for s, which follows
from Lemma 2, we get

d ≪ Mπ(M) exp(O(log2(1/α)/ log(1/β)) ≪ exp(O(β−4))

as required.
Now, let λ ∈ Zq∗ be an arbitrary element. Write λ = q′λ′, where q′∣q and λ′ ∈ Z∗q∗/q′ .

Using the Dirichlet principle, choose a subset of B′ ⊆ B∗ of density at least β such that
all elements of a shift of B′ are divisible by q′. Then our inclusion can be rewritten
as λ′ ∈ (A∗ − A∗)(B′ − B′) modulo q∗/q′ and we can apply the arguments above
replacing module q∗ to q∗/q′.

To obtain (2.5), we use the second bound for Q1 from (2.6) and derive as above

d ≪ Mω(q) exp(O(log(1/β))) ≪ exp(O(ω(q) log(1/β))).

This completes the proof. ∎

As one can see from the proof of Theorem 2.3 that the constant four in (2.3) can be
decreased to 2 + o(1) but we leave such calculations to the interested reader.

3 On the general case

In [5, Problem 2], Fish considered a more general two-dimensional case (actually, in
his paper, he had to deal with even more general dynamical setting) and formulated
the following problem.

Problem 3.1 [Fish]. Let q be a positive number and A,B ⊆ Z
2
q be sets, ∣A∣ = αq2,

∣B∣ = βq2, and suppose that α ⩾ β. Prove that in the case A = B for a certain function F
there is d∣q such that d ⩽ F(β) and

d ⋅Zq ⊆ {(a1 − b1)(a2 − b2) ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B},(3.1)

provided β is sufficiently large.

In this section, we study the number NA,B(λ) of the solutions to the equation

(a1 − b1)(a2 − b2) ≡ λ(mod q) , (a1 , a2) ∈ A, (b1 , b2) ∈ B,(3.2)

and give a partial answer to the problem above. We consider the squarefree case for
simplicity and emphasis one more time that our sets A, B are arbitrary (in the case of
Cartesian products and squarefree q, one can apply other methods, see [10]). Also, in
the case of prime q, we obtain a result of Vinh-type [22], see asymptotic formula (3.5).

Theorem 3.2 Let q be a squarefree number, letA,B ⊆ Z
2
q be sets, ∣A∣ = αq2, ∣B∣ = βq2,

and suppose that α ⩾ β. Then

d ⋅Z∗q ⊆ {(a1 − b1)(a2 − b2) ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B}(3.3)

with

d ≪ exp(O(ω(q) log ω(q) − log β)).
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In particular, for A = B, one has with the same d that

d ⋅Zq ⊆ {(a1 − b1)(a2 − b2) ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B}.(3.4)

In the case when q is a prime number, we have

∣NA,B(λ) − ∣A∣∣B∣
q

∣ < 4q7/8
√
∣A∣∣B∣.(3.5)

In particular, equality (3.1) holds for ∣A∣∣B∣ ⩾ 16q15/4 and d = 1.

Proof We start with (3.3). The proof follows the arguments of the proof of Theorem
2.3, and thus, we use the notation from this result. In particular, writing q = pρ1

1 . . . pρ t
t ,

t = ω(q) with ρ j = 1, j ∈ [t] we define Q1 = ∏s
j=1 p j such that (2.6) holds and further

we take λ ∈ Z∗q . The only difference is that one should use Lemma 2 with n = 2 to
regularize the two-dimensional set A and let ε = 1/4. For a moment, we assume that
M ⩾ 100t2, say, and we will choose the parameter M later. Finally, with some abuse of
the notation, we do not use new letters A∗ ,B∗, q∗ below but the old ones A,B, and q
(in other words, one can think that A is a regularized set already). Also, we utilize
the fact that Zq = Zpρ1

1
× ⋅ ⋅ ⋅ ×Zpρt

t
= Zp1

× ⋅ ⋅ ⋅ ×Zp t
thanks the Chinese remainder

theorem.
Now, for a = (a1 , a2) and b = (b1 , b2), let us write I(a, b) = 1 if the pair a, b satisfies

(3.2) and I(a, b) = 0, otherwise. Then clearly,

NA,B(λ) = ∑
a∈A,b∈B

I(a, b).(3.6)

Without loosing of the generality, we assume that λ = 1. Obviously, I(a, b) = I(b, a)
and we can rewrite the matrix I(a, b) as I(a, b) = ∑q2

j=1 μ ju j(a)u j(b), where μ j
are eigenvalues and u j(x) are correspondent normalized eigenfunctions of I. One
can easily check that u1(x) = q−1(1, . . . , 1), ∥u1∥2 = 1 and μ1 = ∣Z∗q ∣ = φ(q). Writing
I′(a, b) = I(a, b) − μ1u1(a)u1(b), we obtain

NA,B(λ) − ∣A∣∣B∣φ(q)
q2 = ∑

a∈A,b∈B
I′(a, b) ∶= N ′A,B(λ).(3.7)

By the Cauchy–Schwarz inequality, we get the following.
Here, (I′)2 is the second power of the matrix I′. Similarly, I2(a, a′) =

∑b I(a, b)I(a′ , b) and the last quantity coincides with the number of the solutions
to the equation

a2 − a′2 =
a′1 − a1

(a1 + x)(a′1 + x) ,(3.8)

where b = (x , y), a = (a1 , a2) and a′ = (a′1 , a′2). Assume that a ≠ a′ and rewrite our
equation (3.8) as

x2 + (a1 + a′1)x + a1a′1 +
a1 − a′1
a2 − a′2

= 0,(3.9)

and its discriminant is D′(a, a′) ∶= (a1 − a′1)(a2 − a′2)−1[(a1 − a′1)(a2 − a′2) − 4].
Notice that if a = a′, then we have φ(q) solutions to equation (3.8). By χp denote
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the Legendre symbol modulo a prime p and let χ0 be the main character (mod-
ulo p). We have the identity χp(x−1) = χp(x), x ∈ Z∗p and hence χp(D′(a, a′)) =
χp((a1 − a′1)(a2 − a′2)[(a1 − a′1)(a2 − a′2) − 4] ∶= χp(D(a, a′)). In view of the Chi-
nese remainder theorem, and our choice of the regularized set A, one has

I2(a, a′) =
t
∏

j=s+1
(χp j(D(a, a′)) + χ0(D(a, a′)) + (p j − 1)δp j(a1 − a′1 , a2 − a′2))

(3.10)

= E(a, a′) +
t
∏

j=s+1
(χ0(D(a, a′)) + (p j − 1)δp j(a1 − a′1 , a2 − a′2)) = E(a, a′) + E′(a, a′),

(3.11)

where for a positive integer m, we have put δm(z, w) = 1 if z ≡ w ≡ 0(mod m), and 0
otherwise. Equivalently, writing T for the segment [s + 1, t], one has

E(a, a′) = ∑
∅≠S⊆T

∏
j∉S
(χ0(D(a, a′)) + (p j − 1)δp j(a1 − a′1 , a2 − a′2)) ⋅∏

j∈S
χp j(D(a, a′))

= ∑
∅≠S⊆T

∏
j∉S

wp j(a, a′) ⋅∏
j∈S

χp j(D(a, a′)).

Notice thatE(a, a) = 0. From (3.10) and (3.11), it follows thatEu1 = 0. Indeed, we know
that I2u1 = μ2

1 u1 = φ2(q)u1 and

∑
a

t
∏

j=s+1
(χ0(D(a, a′)) + (p j − 1)δp j(a1 − a′1 , a2 − a′2))(3.12)

=
t
∏

j=s+1

⎛
⎜
⎝

∑
z ,w∈Zp j

χ0((zw)2 − 4zw) + p j − 1
⎞
⎟
⎠

(3.13)

=
t
∏

j=s+1

⎛
⎜
⎝
(p j − 1) ∑

z∈Zp j

χ0(z2 − 4z) + p j − 1
⎞
⎟
⎠
=

t
∏

j=s+1
(p j − 1)2 = φ2(q).(3.14)

Hence, in very deed Eu1 = 0, and thus

σ = ⟨(I′)2A,A⟩ = ⟨(I′)2 fA , fA⟩ = ⟨I2 fA , fA⟩ = ⟨EA,A⟩ + ⟨E′ fA , fA⟩,(3.15)

where fA(a) = A(a) − ⟨A, u1⟩u1(a), ∑a fA(a) = 0. Let us estimate the term
r ∶= ⟨E′ fA , fA⟩ rather roughly. Since the function fA is orthogonal to u1 and ∥ fA∥∞ ⩽
1, it follows that:

∣r∣ =
�����������
∑
a ,a′

fA(a) fA(a′)
t
∏

j=s+1
(1 − δp j(D(a, a′)) + (p j − 1)δp j(a1 − a′1 , a2 − a′2))

�����������

⩽ ∑
∅≠S⊆T

�����������
∑
a ,a′

fA(a) fA(a′)∏
j∈S
(−δp j(D(a, a′)) + (p j − 1)δp j(a1 − a′1 , a2 − a′2))

�����������

⩽ 2∣A∣q2
t−s
∑
n=1

∑
S⊆T , ∣S∣=n

∏
j∈S

⎛
⎝

3
p j
+

p j − 1
p2

j

⎞
⎠
⩽ 2∣A∣q2

t−s
∑
n=1

(t − s
n
)( 4

M
)

n

⩽ 10∣A∣q2 tM−1 .(3.16)
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Now, returning to the definition of the operator E(a, a′), recalling estimate (3.8)
and using the Cauchy–Schwarz inequality, we obtain

σ 2 ⩽ ∣A∣ ∑
a ,a′∈A

∑
x , y

∑
∅≠S1 ,S2⊆T

∏
i∈S1 , j∈S2

χp i (D((x , y), (a1 , a2))χp j(D((x , y), (a′1 , a′2))

∏
i∉S1 , j∉S2

wp i ((x , y), (a1 , a2))wp j((x , y), (a′1 , a′2)).(3.17)

The term with a ≡ a′(mod q) gives us a contribution at most 4t ∣A∣q2 into the last sum
(see (3.12)—(3.14) to estimate ∥wp j∥1 for j ∉ S and use the trivial fact that ∥χp∥∞ ⩽ 1
to bound the rest). Now, let a ≠ a′(mod q) but a ≡ a′(mod q∗) with maximal q∗∣q.
Thus q∗ ≠ q and Q1∣q∗. We can write q∗ = q∗(W) = Q1 ∏ j∈W p j for a certain (possibly
empty) set W ⊆ T . Let us say that all primes p such that p∣(q/q∗) (that is, p∣q and
p ∉ W) are good. In particular, for all good primes p, one has p > M. Now for a good
prime p, the sum above ∑x , ymod Zp

χp(D(x , y), (a1 , a2)) (or, analogously, the sum
∑x , ymod Zp

χp(D(x , y), (a′1 , a′2))) is either at most 3p3/2 by Weil, or the sum over y is
p if 2

x−a1
+ a2 = 2

x−a′1
+ a′2 modulo p. The last equation is nontrivial one by our choice of

p, hence it has at most two solutions, and thus, in any case, the sum over x , ymod Zp is
at most 3p3/2 < 3p2/

√
M. Further, we split the sets S1 , S2 as S1 = S∗1 ⊔G1, S2 = S∗2 ⊔G2,

where (possibly empty) sets G1 , G2 correspond to good primes and the sets S∗1 ⊆ W ,
S∗2 ⊆ W correspond to the divisors of q∗(W). Since S1 , S2 ≠ ∅, it follows that either
G1 ⋃G2 ≠ ∅ or S∗1 , S∗2 ≠ ∅. Using the notation as in (2.9), namely,

ηq̃(ξ) ∶= ∣{a ∈ A ∶ a ≡ ξ (mod q̃)}∣ , q̃∣q, ξ ∈ Z2
q̃ ,(3.18)

we see that the number of pairs a ≡ a′(mod q̃) is exactly ∥ηq̃∥2
2 for any q̃∣q and one

can use bound (2.11) to estimate the last quantity. Now, recalling inequality (2.1) and
splitting sum (3.17) according the case W ≠ ∅ or not, we get

σ 2∣A∣−1 ⩽

4t ∣A∣q2 + q2 ∑
∅≠W⊆T

∑
a ,a′∈A, a≡a′(mod q(W))

4∣W∣ + q2 ∑
a ,a′∈A

∑
n+m⩾1

(t − s
n
)(t − s

m
)( 3√

M
)

n+m
(3.19)

⩽ 4t ∣A∣q2 + q2∣A∣2 ∑
∅≠W⊆T

4∣W ∣M−3∣W ∣/4 + 4q2∣A∣2 t M−1/2 ≪ q2∣A∣2 t M−1/2 .

Using (3.6), (3.7), (3.8), (3.16), and the Cauchy–Schwarz inequality, we get

NA,B(λ) − ∣A∣∣B∣φ(q)
q2 ≪ (t M−1/2)1/4 ⋅ ∣A∣3/4

√
∣B∣q + (tM−1)1/2 ⋅

√
∣A∣∣B∣q.

(3.20)

We have φ(q) ≫ q/ log t, and hence after some calculations, we see that NA,B(λ) > 0
provided M ≫ t2β−6 log8 t. As in Theorem 2.3, one has Q1 ⩽ M t , and thus

d ≪ exp(t log M) = exp(O(t log t − log β)).
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In the case of prime q, the argument is even simpler because one do not need the
regularization, the second term in (3.19) plus the quantity r is negligible, see estimate
(3.16). Finally, let A = B and if λ ∉ Z∗q , then write λ = q′λ′, where q′∣q and λ′ ∈ Z∗q∗/q′ .
Using the Dirichlet principle, choose a subset of A′ ⊆ A of density at least α such that
∣πq′(A′)∣ = 1. Then the required inclusion (3.4) can be rewritten as

λ′ ∈ {(a1 − b1)(a2 − b2) ∶ (a1 , a2), (b1 , b2) ∈ A},

and we can apply the arguments above replacing q∗ to q∗/q′. This completes the
proof. ∎

Remark 3.3 Of course, inclusion (3.4) does not hold for A ≠ B, just take
A = (d ⋅Zq) × (d ⋅Zq) and B = (d ⋅Zq + 1) × (d ⋅Zq + 1) for an arbitrary d∣q, 1 <
d ≪ 1. Also, the author thinks that the error term in (3.5) can be improved but this
weaker bound is enough for us to resolve our equation for sets of positive densities.

Remark 3.4 The attentive reader may be alerted that we have two different main
terms in (2.7) and in (3.20). Nevertheless, they are asymptotically the same due to the
fact that in (3.20), our parameter M depends on growing quantity ω(q).

Similarly, we obtain an affirmative answer to [5, Problem 1] in the case of squarefree
q. By MA,B(λ), denote the number of the solutions to the equation

(a1 − b1)2 − (a2 − b2)2 ≡ λ (mod q) , (a1 , a2) ∈ A, (b1 , b2) ∈ B.(3.21)

Theorem 3.5 Let q be a squarefree number, let A,B ⊆ F
2
q be sets, ∣A∣ = αq2, ∣B∣ = βq2,

and suppose that α ⩾ β. Then

dZ∗q ⊆ {(a1 − b1)2 − (a2 − b2)2 ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B}(3.22)

with

d ≪ exp(O(ω(q) log ω(q) − log β)).

In particular, for A = B, one has with the same d that

dZq ⊆ {(a1 − b1)2 − (a2 − b2)2 ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B}.(3.23)

In the case when q is a prime number, one has

MA,B(λ) − ∣A∣∣B∣
q

< 4q7/8
√
∣A∣∣B∣.(3.24)

Proof The argument differs from the proof of Theorem 3.2 in some unimportant
details only, so we use the notation from the former result. Indeed, for a = (a1 , a2)
and b = (b1 , b2), we write Ĩ(a, b) = 1 if the pair a, b satisfies (3.21) and Ĩ(a, b) = 0,
otherwise. Calculating Ĩ2(a, a′), we arrive to the equation

a2
1 − (a′1)2 + 2(a′1 − a1)x − a2

2 + (a′2)2 + 2(a2 − a′2)y = 0,(3.25)

and hence, we can find x via y or y via x, provided a ≠ a′(mod q). Assuming that
a′2 ≠ a2, say, we derive
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y = (a′1)2 − a2
1 + a2

2 − (a′2)2

2(a2 − a′2)
+ a1 − a′1

a2 − a′2
⋅ x = s + tx ,

and hence substituting the last expression into (3.21) and computing the discriminant
D̃(a, a′) (without loss of the generality, we put λ = 1), one obtains

D̃(a, a′) = (t(a2 − s) − a1)2 + (1 − t)2(1 + (a2 − s)2 − a2
1 )

= 2t(t − 1)(a2 − s)2 − 2a1 t(a2 − s) + (1 − t)2(1 − a2
1 ) + (a2 − s)2 + a2

1 .(3.26)

As in the proof of Theorem 3.2, we consider E(a, a′), take good primes and so on.
The first eigenvalue μ1 equals the number of the solutions to the equation x2 − y2 ≡ 1
(mod q), that is, φ(q) again. Also, Ĩ2(a, a) = μ1 and for a ≠ a′ the quantity Ĩ2(a, a′)
expressed exactly as in (3.10) (with another discriminant D̃, of course), and thus, one
can check that Eu1 vanishes making calculations as in (3.12)—(3.14). Further, as in
Theorem 3.2, we apply the standard Weil bound to estimate the sum of characters. For
any good prime p, it gives us a nontrivial bound of the form O(p3/2) = O(p2/

√
M),

and hence, we obtain (3.22) and thus (3.23) by the same argument as at the end
of Theorem 3.2 (one can check or see below that all obtained varieties are non–
degenerated). Finally, to get (3.24), we need to estimate

∑
a ,a′∈A

∑
x , y

χq(D̃((x , y), (a1 , a2)))χq(D̃((x , y), (a′1 , a′2))),

and by the Weil estimate, it is at most 20q3/2, say, excluding the case
D̃((x , y), (a1 , a2)) is proportional to D̃((x , y), (a′1 , a′2)). In particular, it means that
the coefficients of these polynomials are proportional ones and using (3.26)
and comparing the coefficients before the highest degrees in x, say, we get
a2−2a1−y
(y−a2)4 = a′2−2a′1−y

(y−a′2)4 . Again, thanks to a ≠ a′ , we see that this equation is nontrivial
one, and hence, it has at most four solutions. It follows that our sum is at most 4q in
this case. Thus, as in (3.19) and (3.20), we have

MA,B(λ) − ∣A∣∣B∣φ(q)
q2 ⩽ 3(q3/2∣A∣)1/4

√
∣A∣∣B∣ ⩽ 3q7/8

√
∣A∣∣B∣.

This completes the proof. ∎

Remark 3.6 We have used a direct way of the proof of Theorem 3.5, another approach
is to notice that Ĩ(a, b) = I(ga, gb), where the linear transformation g is given by the
formula g(x , y) = (x + y, x − y). After that one can apply Theorem 3.2 with the sets
g−1(A), g−1(B).

Also, let us remark that one can consider the equation (a1 − b1)2 + (a2 − b2)2 =
λ ≠0, instead of (3.21), that is the question about the distance between points (a1 , a2) ∈
A and (b1 , b2) ∈ B. We leave it to the interested reader to check that all parts of
the proof have remained almost the same (formula (3.25), the identity μ1 = φ(q) are
exactly the same).

https://doi.org/10.4153/S0008414X23000500 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000500


On some multiplicative properties of large difference sets 1549

4 On an application of group actions

In this section, we discuss another approach to results of Fish-type, namely, we
consider an intermediate situation between Theorems 2.3 and 3.2, our set A ⊆ Z

2
q

is an arbitrary but the set B ⊆ Z
2
q is a Cartesian product. In this case, one can deal

with rather general q (and not just squarefree). For simplicity, we do not do any
regularization as in the previous section immediately assuming that all prime factors
of q are large.

In the proof, we follow the methods from [3] and [17].

Theorem 4.1 Let q be a positive odd integer, and let A,B ⊆ Z
2
q be sets, ∣A∣ = δq2,

B = A× B, ∣A∣ = αq, ∣B∣ = βq. Suppose that all prime divisors of q are at least M, where

M ⩾ C1τ(q)δ−2(αβ)−C2 ,

and C1 , C2 > 0 are absolute constants. Then

Z
∗
q ⊆ {(a1 − b1)(a2 − b2) ∶ (a1 , a2) ∈ A, (b1 , b2) ∈ B}.(4.1)

Proof Let q = pρ1
1 . . . pρ t

t , where p j are different odd primes and ρ j are positive
integers. By our assumption p j ⩾ M for all j ∈ [t]. Without loosing of the generality,
one can take λ = −1 in formula (3.2). Recall that SL2(Zq) acts on Zq via Möbius trans-

formations: x → gx = ax+b
cx+d , where g = ( a b

c d ) (for composite q, the equivalence is

taken over Z∗q , of course). Since B = A× B, we can rewrite our equation (3.2) as

a = gb , a ∈ A , b ∈ B , g ∈ G ,(4.2)

where G ⊂ SL2(Zq) is the set of matrices of the form

g = ( −α αβ + 1
−1 β ) , (α, β) ∈ A,

see [17, Section 5] or just make a direct calculation. Clearly, ∣G∣ = ∣A∣. Further by [17,
Lemma 15], the multiplicative energy E(G) of the set G, that is,

E(G) = ∣{(g1 , g2 , g3 , g4) ∈ G ×G ×G ×G ∶ g1 g−1
2 = g3 g−1

4 }∣
coincides with the number of the solutions to the system

β1 − β2 = β3 − β4 ∶= s , s(α1 − α3) = s(α2 − α4) = 0 ,
α1 − α2 − α1α2s = α3 − α4 − α3α4s,

where (α i , β i) ∈ A, i ∈ [4]. Let s = ds′, where d is a divisor of q and s′ is coprime
to q. Taking (α1 , β1), (α4 , β4) ∈ A, we find β2, β3 from the first equation and α2 , α3
modulo q/d from the second one. Also, using α3 we can reconstruct α2 from the third
equation, provided d > 1. In other words, for fixed d , there are q/d possibilities for s′
and d possibilities for α3. Finally, if d = 1, then we have at most q∣G∣2 solutions. Thus,
we obtain the bound

E(G) ⩽ ∣G∣2 ∑
d ∣q

q
d
⋅ d ⩽ τ(q)q∣G∣2 .(4.3)
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Now, let us say a few words about representations of the group SL2(Zq) (see [3,
Sections 7 and 8]). First of all, for any irreducible representation ρq of SL2(Zq), we
have ρ = ρq = ρpρ1

1
⊗ ⋅ ⋅ ⋅ ⊗ ρpρt

t
, and hence, it is sufficient to understand the represen-

tation theory for SL2(Zpn), where p is a prime number and n is a positive integer.
Now, by [3, Lemma 7.1], we know that for any odd prime, the dimension of any
faithful irreducible representation of SL2(Zpn) is at least 2−1 pn−2(p − 1)(p + 1). For
an arbitrary r ⩽ n, we can consider the natural projection πr ∶ SL2(Zpn) → SL2(Zpr),
and let Hr = Ker πr . One can show that the set {Hr}r⩽n gives all normal subgroups
of SL2(Zpn), and hence, any nonfaithful irreducible representation arises as a faithful
irreducible representation of SL2(Zpr) for a certain r < n. Anyway, we see that the
multiplicity (dimension) dρ of any nontrivial irreducible representation ρ of SL2(Zpn)
is at least p/3 ⩾ M/3.

Applying estimate (4.3), using the formula for E(G) via the representations and
taking into account, the obtained lower bound for the multiplicities of the represen-
tations, we get

M∥Ĝ∥4
op

3∣SL2(Zq)∣
⩽ 1
∣SL2(Zq)∣

∑
ρ

dρ∥Ĝ(ρ)Ĝ∗(ρ)∥2 = E(G) ⩽ τ(q)q∣G∣2 ,

and hence

∥Ĝ∥op ⩽ ∣G∣ ⋅ (
3τ(q)
Mδ2 )

1/4

∶= ∣G∣
K

,(4.4)

where by ∥Ĝ∥op , we have denoted the maximum of the operator norm of matrices
Ĝ(ρ) for all nontrivial representations ρ and ∥ ⋅ ∥ is the usual Hilbert–Schmidt norm.
Thanks to our choice of M , one can see that bound (4.4) is nontrivial, that is, K > 1.
Returning to (4.2) and using the standard scheme (see, e.g., [17, Lemma 13 and Sections
5 and 6]), we obtain

NA,B(λ) − ∣A∣∣B∣∣G∣q
J2(q) ⩽

√
∣A∣∣B∣∣G∣q−1/k ,

where k ∼ log q/ log K and ∣SL2(Zq)∣ = qJ2(q) = q3 ∏p∣q(1 − p−2). Hence
NA,B(λ) > 0, provided K ≫ (

√
αβ)−O(1). The last condition is equivalent to

M ≫ τ(q)δ−2(
√

αβ)−O(1). This completes the proof. ∎

5 On the covering numbers of difference sets

Let us recall the definition of the covering number of a set (see, e.g., [1] or [11]).

Definition 5.1 Let G be a finite abelian group with the group operation +, and let
A ⊆ G be a set. We write

cov+(A) = cov(A) = min{∣X∣ ∶ X ⊆ G, A+ X = G}
and the quantity cov+(A) is called the (additive) covering number of A.

Having a finite ring R with two operations +,×, we underline which covering
number we use, writing cov+ or cov×. It is known [1, Corollary 3.2] that for any set
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A ⊆ G, one has cov+(A) = O ( ∣G∣
∣A∣ log ∣A∣) and the last bound is tight. In this section,

we study difference sets A− A, A ⊆ Zq and show that cov×(A− A) is always small. First
of all, let us make a remark about a connection between cov+ and cov× in a ring R.

Proposition 5.2 Let R be a finite ring, and let S ⊆ R be a set. Then

cov×(S − S) ⩽ cov+(S),(5.1)

provided all numbers 1, . . . , cov+(S) belong to R∗.

Proof Let S + X = Zq and ∣X∣ = cov+(S) ∶= k. For any g ∈ Zq , consider jg, where j =
0, 1, . . . , k. By the pigeonhole principle, there are different j1 ≠ j2 such that j1 g ∈ S + x
and j2 g ∈ S + x with the same x ∈ X. It implies that ( j1 − j2)g ∈ S − S , and hence g ∈
( j1 − j2)−1(S − S), provided ( j1 − j2)−1 ∈ R∗. It remains to notice that [−k, k]−1 ⋅ (S −
S) = [k]−1 ⋅ (S − S). This completes the proof. ∎

By the well-known consequence of the Ruzsa covering lemma [21, Section 2.4], we
have for any finite group G and a set A ⊆ G that for a certain set Z ⊆ G, one has

G ⊆ A− A+ Z , ∣Z∣ ⩽ ∣G∣/∣A∣.(5.2)

In particular, it means that cov+(A− A) ⩽ ∣G∣/∣A∣. Thus, Proposition 5.2 gives us the
following result.

Corollary 5.3 Let R be a finite ring, and let A ⊆ R be a set, ∣A∣ = α∣R∣. Then

cov×(2A− 2A) ⩽ α−1 ,

provided all numbers 1, . . . , [α−1] belong to R∗.

Using the same method, one can estimate the multiplicative covering number of a
Bohr set in Zp (p is a prime number):

B(Γ, ε) = {x ∈ Zp ∶ ∥xγ/p∥ ⩽ ε, ∀γ ∈ Γ} ε ∈ (0, 1], Γ ⊆ Zp ,

namely, we have

cov×(B(Γ, ε)) ⩽ ε−∣Γ∣ .

It is interesting to decrease the number of summands in Corollary 5.3. To this end,
let us obtain the main result of this section.

Theorem 5.4 Let q be a positive integer, letA ⊆ Zq be a set, ∣A∣ = αq. Suppose that the
least prime factor of q greater than 2α−1 + 3. Then

cov×(A− A) ⩽ 1
α
+ 1.(5.3)

More concretely, [k∗]−1 ⋅ (A− A) = Zq for a certain k∗ ⩽ α−1 + 1.

Proof Let p1 be the least prime factor of q. By our assumption, we know that
p1 ⩾ 2α−1 + 3. Write p1 = 2k + 1 and take Λ = {0, 1, . . . , k∗}, where ⌈α−1 − 1⌉ + 1 = k∗ ⩽
k. Then one has Y ∶= (Λ − Λ)/{0} ⊆ Z

∗
q . First of all, consider n ∈ Z∗q and form the set
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n ⋅ Λ + A. Since ∣Λ∣∣A∣ = (k∗ + 1)αq > q, it follows that there are different λ1 , λ2 ∈ Λ
such that

nλ1 + a1 ≡ nλ2 + a2 (mod q),

where a1 , a2 ∈ A and a1 ≠ a2. Hence n ∈ Y−1(A− A) and thus Z∗q ⊆ Y−1(A− A). Also,
notice that as in Proposition 5.2, one has Y−1(A− A) = [k∗]−1 ⋅ (A− A).

Now, let n = n′q1, where q1∣q and n′ is coprime to q. By the pigeonhole principle,
there is B ⊆ Zq/q1 and s ∈ Zq such that q1B + s ⊆ A and the density of B in Zq/q1 is
at least α. In particular, we have q1(B − B) ⊆ A− A. By the same argument as above,
one has n′ ≡ y−1(b1 − b2)(mod q/q1), where y ∈ Y and b1 , b2 ∈ B. It follows that
n ≡ y−1(a1 − a2)(mod q) as required. Thus, we have proved that [k∗]−1(A− A) = Zq ,
and hence cov×(A− A) ⩽ k∗ ⩽ α−1 + 1. This completes the proof. ∎

Remark 5.5 After the paper was written, the author was informed by Fish that
Theorem 5.4 holds in greater generality, namely, for any measure preserving system
the same is true for the set of return times of a set of positive measure.

Theorem 5.4 implies a consequence about the multiplicative covering numbers of
the intersections of difference sets in the spirit of paper [20] (see [20, Theorems 1
and 3]).

Corollary 5.6 Let q be a positive integer, and let A1 , . . . , Ak ⊆ Zq be sets, ∣A i ∣ = α i q,
i ∈ [k]. Suppose that the least prime factor of q greater than 2(α1 , . . . , αk)−1 + 3. Then

cov× (
k
⋂
i=1
(A i − A i)) ⩽

1
α1 , . . . , αk

+ 1.(5.4)

Proof Put A s⃗ = A1 ∩ (A2 − s1) ∩ . . . (Ak − sk−1), where s⃗ = (s1 , . . . , sk−1) ∈ Zk−1
q . We

have∑s⃗ ∣A s⃗ ∣ = ∣A1∣ . . . ∣Ak ∣, and hence, there is s⃗∗ such that ∣A s⃗∗ ∣ ⩾ α1 , . . . , αk q. Clearly,
for any s⃗, one has

A s⃗ − A s⃗ ⊆
k
⋂
i=1
(A i − A i).

Applying Theorem 5.4 with A = A s⃗∗ , we obtain bound (5.4). This completes the
proof. ∎

As we have seen before, Corollary 5.3 and Theorem 5.4 give us some bounds for
the multiplicative covering numbers of difference sets. On the other hand, one can see
that Theorem 5.4 does not hold for, say, nonzero shifts of Bohr sets, for the sumsets
A+ A, for the higher sumsets nA, n > 2 and so on. Indeed, consider the following.

Example 5.7 Let p be a prime number and S = [p/3, 2p/3) or S = ±[p/6, p/3)
to make S symmetric. Then the equation a + b ≡ c (mod p) has no solutions in
a, b, c ∈ S. Further, we have ∣S∣ ≫ p but it is easy to see that cov×(S) is unbounded.
Indeed, if SX = Zp for a set X with ∣X∣ = O(1), then we obtain a coloring of Zp
with a finite number of colors and every color has no solutions to our equation
a + b ≡ c (mod p). It gives us a contradiction with the famous Schur theorem, (see
[14]) (actually, it implies cov×(S) ≫ log p/ log log p).
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In particular, we see that cov×(X + s) can be much larger than cov×(X) for a set X
and a nonzero s.

Proposition 5.2 implies that any syndetic set S ⊆ Fp , ∣S∣ ≫ p has
cov×(S − S) = O(1). On the other hand, thanks to inclusion (5.2) any set of the
form A− A, where A ⊆ Fp , ∣A∣ ≫ p is syndetic (with the gap depending on A but not
just on p/∣A∣, of course). Thus, it is natural to ask about a generalization of Theorem 5.4
to the family of syndetic sets. Nevertheless, taking S = {1 + kM}k∈[(p−1)/M], M ⩾ 5
and p ≡ 2(mod M), say, we see that S is a syndetic set and S has no solutions to the
equation a + b ≡ c(mod p). Thus, as in the example above, we see that cov×(S) is
unbounded.

Remark 5.8 A dual form of Theorem 5.4 has no place, namely, there is a set A ⊆ Zp ,
∣A∣ ≫ p such that cov+(A/A) ≫ log p. In other words, cov+(A/A) is close to the
maximal possible value. To see this, just take A to be the set of all quadratic residues
(see, e.g., [13, Proposition 14]).

Finally, let us give another proof of a variant of Theorem 1.1 via our covering
Theorem 5.4. Notice that the number d below can be a non-divisor of q.

Theorem 5.9 Let q be a positive integer, let A, B ⊂ Zq be sets, ∣A∣ = αq, ∣B∣ = βq, and
let us assume that α ⩾ β. Suppose that the least prime factor of q greater than 2β−1 + 3.
Then, there is d ≠ 0 with

d ⩽ α−β−1−1 ,(5.5)

and such that

d ⋅Zq ⊆ (A− A)(B − B).(5.6)

Proof Applying Theorem 5.4 with A = B, we find a set X ⊆ Zq , n ∶= ∣X∣ ⩽ β−1 + 1
such that X(B − B) = Zq . Let X = {x1 , . . . , xn} and x⃗ = (x1 , . . . , xn) ∈ Zn

q . Consider-
ing the collection of the sets An + j ⋅ x⃗ ⊆ Z

n
q , j ⩾ 1, we see that there is 0 < d ⩽ α−n with

d ⋅ X ⊆ A− A. Hence

(A− A)(B − B) ⊇ d ⋅ X(B − B) ⊇ d ⋅Zq

as required. It remains to notice that

d ⩽ α−n ⩽ α−β−1−1 .

This completes the proof. ∎

6 Concluding remarks

Let us discuss other approaches to Theorem 1.1. First of all, recall the well-known
Furstenberg’s result [6].

Theorem 6.1 [Furstenberg]. Let n be a positive integer, let δ ∈ (0, 1] be a real number,
and let S be a set of size n. Then for all sufficiently large N ⩾ N(δ, n) an arbitrary set
A ⊆ [N] × [N], ∣A∣ ⩾ δN2 contains the set α + β ⋅ S for some α and β ≠ 0.

Quantitative bounds for N(δ, n) from Theorem 6.1 can be found in [15].
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Corollary 6.2 Let q be a prime number, A ⊆ F
2
q , ∣A∣ = δq2 and A, B ⊆ Fq , ∣A∣ = α∗q,

∣B∣ = β∗q. Then, there is a decreasing positive function φ such that if min{α∗ , β∗ , δ} ⩾
φ(q), then formula (3.1) takes place for B = A× B, any λ ∈ Z∗q and d = 1.

Proof Take S = S1 = [k] × [k] or S = S2 = {(2 j, 2 j) ∶ j ∈ [k]} for a certain positive
integer k. Applying Theorem 6.1 with n = ∣S∣ and A = A, we see that for some α, β ≠ 0
the following holds α + β ⋅ S ⊆ A and hence to solve (3.1) with d = 1 it is sufficiently
to find for any λ ∈ Z∗q some elements a ∈ β−1(A− α), b ∈ β−1(B − α) and (t1 , t2) ∈ S
such that

(t1 − a)(t2 − b) ≡ λ(mod q).

If for a certain absolute constant C > 0, one has k ≫ min−C{α∗ , β∗ , δ}, then for
S = S2, the last equation has a solution thanks to the famous Bourgain–Gamburd
machine [4] (see details in [18], say) and for S = S1 (actually, for any dense subset of
S1), the latter fact was obtained in [18, Theorem 3]. This completes the proof. ∎

The author does not know how to obtain Corollary 6.2 for composite q because
there is no control over divisors of β in Theorem 6.1. It would be interesting to say
something about prime factors of the dilation β.

We finish this section with a problem (it is interesting in its own right from a
combinatorial point of view), which potentially gives another proof of Corollary 6.2
thanks to [18, Theorem 3].

Problem 6.3 Let n be a positive integer, and let δ,κ ∈ (0, 1] be real numbers. Then for
all sufficiently large N ⩾ N(δ,κ, n) an arbitrary set A ⊆ [N] × [N], ∣A∣ ⩾ δN2 contains
the set α + β ⋅ S for some α and β, where S ⊆ [n] × [n] is any set of size n1+κ.

Of course, some estimates on N(δ,κ, n) follow from Theorem 6.1 but maybe it is
possible to obtain a better bound.
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