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HIGH ORDER RESONANCES IN THE EVOLUTION OF THE LUNAR ORBIT 

J. KOVALEVSKY 
CERGA, Grasse, France 

ABSTRACT 

This paper deals with the long term evolution of the motion of the 
Moon or any other natural satellite under the combined influence of gra­
vitational forces (lunar theory) and the tidal effects. We study the 
equations that are left when all the periodic non-resonant terms are 
eliminated. They describe the evolution of the-mean elements of the Moon. 
Only the equations involving the variation of the semi-major axis are 
considered here. Simplified equations, preserving the Hamiltonian form 
of the lunar theory are first considered and solved. It is shown that 
librations exist only for those terms which have a coefficient in the 
lunar theory larger than a quantity A which is function of the magnitude 
of the tidal effects. The solution of the general case can be derived 
from a Hamiltonian solution by a method of variation of constants. The 
crossing of a libration region causes a retardation in the increase of 
the semi-major axis. These results are confirmed by numerical integra­
tion anc! orders of magnitude of this retardation are given. 

I. INTRODUCTION 

The secular acceleration of the Moon has been studied for many 
years. It is well known that the lunar orbit undergoes a secular accele­
ration due to the Earth's tidal deformation. Presently, this accelera­
tion is estimated to dn/dt = - 25"/century2 (see, for instance, Calame 
and Mulholland, 1978, Ferrari et al., 1980 or Cazenave and Daillet,1981). 
As it is shown by Lambeck (1978), this value seems to have been surpri­
singly constant throughout the last 500 million years as inferred from 
the paleontological evidence from fossile corals or bivalves (e.g. John­
son and Nudds, 1974). 

In the general theory of tides, it is customary to introduce a lag 
due to the viscosity of the Earth between the direction of the Moon and 
the main axis of the tidal bulge (Melchior, 1973). This angle corresponds 
to a delay At of about 10 minutes between the excitation and the deforma-
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tion. It is principally a function of the second order Love number k2 . 

Observational evidence quoted above allows us to assume that this 
time-lag was more or less constant in the past. In this case, it is pos­
sible to integrate the equation giving the variations of the semi-major 
axis of the lunar orbit (MacDonald, 1966). It is found that, when the 
solution is extended in the past, one has a = 0 at about -1.8 x 10~9 
year. This number is 2 1/2 times too small in comparison with the actual 
age of the Earth-Moon system. In order to interpret this difference, it 
can be alleged that in the earlier past, Love numbers were different so 
that the time lag was smaller, allowing a much slower tidal evolution. 

The goal of the work which is reported here is to attempt to find 
other - purely dynamical - effects that might affect the speed of the 
secular increase of the lunar semi-major axis. 

II. EQUATIONS 

The equations that describe the evolution of the Earth-Moon system 
are obtained from the combination of the usual equations of the lunar 
theory and the equations that describe the tidal evolution of the Moon. 
In the present work, the latter were taken from a series of papers pu­
blished by Mignard on the evolution of the Earth-Moon system (Mignard, 
1979 and 1980) that seem to be the most complete ever published. We 
introduce the following parameter : 

, _ 3Gm2 k2 R5 At ,.. 

where G is the geocentric constant of gravitation, k2 is the Love number 
describing the second order term of the Earth tidal potential, R is the 
radius of the Earth and m is the mass of the Moon, the Earth's mass M 
being taken as unity. 

u = mM / (m + M) 

The numerical value of k is -2.3 1 0 - ^ if the unit of mass is the 
Earth's mass, the unit of length, the semi-major axis of the lunar or­
bit and the unit of time, 1/2TT the period of the lunar orbit. 

We introduce also 0/n, ratio of the rotational speed of the Earth 
to the mean motion of the Moon n. 

Mignard (1980) gives the general expressions of the components of 
the tidal acceleration due to a Love number \s-2 of any order t in func­
tion of the osculating elements of the lunar orbit. Taking £ = 2 and 
substituting the expressions in the Gaussian equations of motion (see 
for instance, Kovalevsky, 1967), one gets the basic equations giving 
the variation of the osculating elements in function of time. Let us 
reproduce the equations for the metric elements. 
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da 
dt 

2k 

a' 
(—) (1 + 2e + 2e cos v - e cos 2v) 

1-e2 
(2) 

2a k r. T ,&^ , • n -> 7 vi-e*- (,—) (cos e cos I + sin e sin I cos \l ) 2a 

n a 

—— = -—z- (—) (3e + 2 cos v - e cos 2v) 
dt a8 r 

n a8 

(3) 

— • (—) (—r-+2cosv+7rcos2v) (cose cos i +sinesinicos Q ) 

vW r 2 2 

d i 1 a_k 

a8 d t 4 n - 8 / ^ 2 T 

a 6 (4) 2 sin i (1 + 2 cos 2( to + v)) 

+ 2 sin e cos i cos ti 

+ sine (1+cos i)cos(2oi+ 2v + fi ) 

- sin e (1 - cos i ) cos (2co + 2v - 0,) 

(4) 

The classical osculating elements are noted a , e, i, U , 0) , t . 
Furthermore, r is the radius vector, v is the true anomaly, e is the 
obliquity of the ecliptic. 

When developed in trigonometric functions of t , the right-hand 
members will be even series of Z , fi and CO . Similar equations can be 
derived for the angular elements Q , CO and t . The right-hand members 
are odd in v (and, hence, in L ) and therefore do not produce secular 
effects. We do not have to consider them in the present study. Equations 
with the same properties may be derived if Delaunay variables are chosen 
instead of the elements. 

The terms originated by the solar perturbation derive from a distur­
bing function of the form : 

,2 2 V 
= n' a / l a A (e,e'.sirfc-,—, ,u)cos(ifi +joo +kl +hf ) 

Z 3. 
(5) 

ijkh 

where the primed quantities refer to the apparent ellipse described by 
the Sun around the Earth and are considered as being constant in the 
problem. The contribution to the right-hand members is a series of odd 
terms in the case of equations (2) to (4), and even terms in the equa­
tions relative to angular elements. 

III. Elimination of terms 
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The complete equations, written in a pseudo-hamiltonian form using con­
jugate variables E,\, T\- (j = 1 to 3) have the following form : 

If! 
dt 

dn. 
J _ 

dt 

8F 

J 

9F 

X. 
J 

+ Y. 
J 

(6) 

the where F is the Hamiltonian of the main lunar problem and X;, Y- are t 
tidal terms. Periodic terms may be eliminated by Delaunay method or 
any of the derived methods (von Zeipel, Lee series, etc...). As shown 
by Brouwer and Hori (1961), the elimination can also be applied to the 
terms that have not the hamiltonian form. Following their theory, after 
the elimination of all the periodic terms of the lunar theory, equations 
(6) become : 

dt = x. (C,n') + 

ax. 
i 

3£! 6k + 

9X. 
1 

3n! 
Sn.) i 

dnV 

dt 
9F'(g') 

Y.(5\n') + 
9Y. 

(—J- S^ 
9Y. 
J 

3n! 
6n.) 

i 

where the primed quantities indicate the new Hamiltonian or variables 
after the elimination has been performed. The periodic terms of X; and 
Y- can be similarly eliminated. Because of the smallness of k, a first 
order solution is sufficient, so that it may just be added to the solu­
tion. After this, taking into account the fact that Yi are odd functior 
of the arguments, the equations become : 

dC! 

dt j 
(7) 

dn! 

dt 
9F'(g') 

3 5 i 
Their solution gives the secular-variations of all the six variables. 

IV. EQUATIONS FOR THE RESONANT CASE 

This procedure fails if, among the terms of the lunar theory, there 
exist one or several terms whose period is so large that they cannot be 
eliminated and that resonance theory has to be applied. Let us consider 
one of such arguments : 

ifi + jw + k£ •+ hi' 
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The corresponding mean motion is 

•*n J n , + kn„ + tin' 

where the indexed n are functions of the mean elements a", e" and i". If 
one takes the present values of these elements, there is no known combi­
nation of integers i, j, k, h that leads to a sufficiently small ng . 
But since in the past a", e" and i" were slowly varying because of the 
tidal effects, many such combinations may have existed. Let us consider 
such a case and let 0 be the corresponding critical argument. The elimi­
nation procedure being applied to all the other - non critical - periodic 
terms, we end up with equations of the form : 

- g J - . X . U ' ) + x . s i n 

d n ' j 3 F ' ( g ' ) , 

~dr= - ~wr~ y j c o s 

(8) 

It is possible, by a canonical tranformatiori, to have 9 as one of the 
angular variables so that the other two become ignorable, and we are 
left with three equations in £' and one in n' = 0 . As a final transfor­
mation, we shall come back to the mean elliptic elements and the equa­
tions will have the following form : 

da , „ • n 
It = "l + 31 S l n 9 

|| = a2 + 32 sin 9 

di ^ o 
It = a3 + 63 S l n 

d9 
IE = n0 + y0 COS 

(9) 

where the coefficients are all functions of a, e and i. Note that, at 
this point, we have dropped the primes and that now on, unprimed quan­
tities are used for the mean elements, solutions of (9). 

REDUCED EQUATIONS IN THE LUNAR CASE 

In this paper, we shall neglect the equations in e and i. In other 
terms, we shall assume that the variations in e and i are sufficiently 
small so as not to introduce in the first and last equations sizeable 
effects. This is clearly a simplifying assumption made in order to study 
the behaviour of the solution. Later, the equations (9) should be 
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discussed as a whole. Using (2), one obtains : 

2a k 

/GM a 1 1 / 2 

da = 2k 
d t ~ a? 

— = n (a) + Q'cos 

cos e cos i + Q sin 

(10) 

where Q and Q' are the coefficients of the resonant terms coming from 
the lunar theory. 

In a last change of variables, let us put 

a + x 
o 

where a is the value of such that 

n
fl

 ( a o } 0 

If now, we put 

2k 2a 
A = 

y/GM 
1/2 

COS £ COS 1 

m 
"e " »e <ao> * ( T ! ) 

the equations (10) become 

•14k 11a k cos e cos i 

/GM a 

x = 2 Gx 

13/2 

(11) 

dx 
-r— = A - Bx + Q sin 
at 

4̂ - = 2 Gx + Q' cos 
at 

In order to have a feeling of the actual order of magnitude of the 
coefficient, the present values of A and B are : 

A 

B 

1.10 10~12 

5.95 10- 1 2 

Q and Q' can be any term taken from the lunar theory , nothing can be 
said about their size. However, the present study has dealt with values 
of Q smaller than 10-9 or 10_1°. Finally, G is normally a finite number. 
This means that Q' is negligible with respect to 2 Gx. So, we shall ef­
fectively neglect it and reduce the equations to : 
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4^ = A - Bx + Q sin 
dt 

d9 
5-= 2 Gx 
dt 

(12) 

Equations (12) describe the behaviour of the semi-major axis a and of 
the critical argument 6 when a is close to the resonant situation. It is 
important to note that (12) is not a hamiltonian system. 

VI. STUDY OF SOME PARTICULAR CASES 

Let us first describe the solution of some particular cases of the 
system (12). This will help to understand the behaviour of the general 
system. 

6.1. Q = 0 

Equations (12) describe simply the secular effect of the tides on 
the semi-major axis. The equations separate and one gets the general so­
lution 

1 T |A - Bx| 
t - to =-Log | - T — | 

or 

A 
B 

[l - exp (-B(t - tQ)j] (13) 

This is equivalent to the general solution as given by MacDonald 
(1966). For small values of x, this solution may be approximated by a 
linear function of time 

x = A (t - tQ) (14) 

6.2. A = B = 0 

The system (12) describes a resonant situation in the lunar theory. 
It has a Hamiltonian 

H = - Gx2 - Q cos 9 

The variations of x in function of 8 are described in the x - 0 plane 
by the integral H = C. The eauilibrium points correspond to the maxima 
and minima of H=C in the x - 0 plane. For various values of C, one gets 
classical libration or circulation orbits and the limiting cases of a 
stable equilibrium or asymptotic orbits (see fig. 1). 

6.3. B = 0, A t 0 
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Figure 1. Solution of the A = B = 0 case in the x -6 plane. 

The system (12) now describes the motion under a resonant situation 
with a tidal effect that does not depend upon the semi-major axis. It 
has the form 

dx 
dt 

dt 

= A + Q sin 

2 Gx 

(15) 

and has the Hamiltonian H = A0 - Q cos 0 - Gx , so that the integral 
H = C exists and may be used to discuss the motion. In the x - 0 plane, 
curves H = C are sinusoidal curves constructed with respect to an incli­
ned axis. 

G G 
Q --cos (16) 

As in the preceding case, equilibrium points correspond to maxima 
or minima of (15) in the x' - 0 plane. They are given by 

-T— = 0 or x = 0 ; 7 ^ = 0 or sin 0 = - — 
dx ' 8 0 Q 
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Their existence depends upon the value of the ratio A/Q. 

a) |A| < |Q| . The situation is described in figure 2. The integral 
curves in the x - 6 plane have several components and, depending upon the 
initial value of 0, one may be trapped in a libration orbit or be on a 
circulation orbit. 

Figure 2. Solution for the B = 0 case in the x - 9 plane. 

The entire picture has a periodicity of 2TT in 6 corresponding to 
2ITA in C. However, physically, there is continuity when C varies and one 
should consider only the curves that originate from a given stable equi­
librium point. When C increases, starting from such a point, one has 
successively libration orbits, a limiting asymptotic orbit and then, sy-
metric circulation orbits. 

The libration period is given by : 

/G / /c + A e - q cos e 
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where 6 •] and 6 2 are the values of 6 surrounding the stable equilibrium 
in 90 and for which x^ = 0 (see figure 2). 

b) |A| > |Q| . The xz = f(0) curve has no horizontal tangent and 
it crosses the x^ axis in a single point P (figure 3). The corresponding 
orbit is a circulation orbit with continuously increasing x. So, in prac­
tice, if the terms Q sin 6 disturb the purely tidal evolution of the sys­
tem, they do not change the general evolutionary behaviour. 

Figure 3. Constant C curves in the x - 0 plane when A > |Q| 

c) A = |Q| . One has the same situation as above, except that there 
exist unstable equilibrium points for 8 = TT/2 + kTT 

VII. EXTENSION TO THE GENERAL CASE 

Let us now consider the complete equations (12), assuming B ̂  0. 
There is no more integral of the type that was used for Hamiltonian sys­
tems studied in the last section. 

Qualitatively, one may consider that equations (12) are represented 
by (15) where A is allowed to be slightly modified by Bx. In practice, 
A and B are of the same order of magnitude whereas x in the libration 
region is smaller than 10~4. it is therefore possible to consider (12) 
as a perturbed case of (15) where A is replaced by AQ - Bx, Bx remaining 
very small as compared with AQ. The equations that are obtained are ana­
logous to those studied by Burns (1979) for the rotation of Mercury. It 
is also possible to apply the adiabatic invariant theory (Henrard, 1982). 
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Let us consider a solution of the reduced system (15), solution 
that can explicitely be obtained, since the system is integrable. 

xo = xo ^t> c» P) 

eo = e (t , c, p) 
(17) 

where C and p are the two independent integration constants. Let us cons­
truct the general solution of (12) in the form (17) where increments of 
C and p are now considered as functions of time. 

C = C0 + Ac(t) 

p = P o + Ap(t) 

The solution of (12) has the form : 

•• - Xo(t'Co'Po) +(-^§)o
 A C + 

= V^o'V +(^§) AC + 

(18) 

36 

3P 

Ap 

Ap 

(19) 

/ o 

In order to obtain the differential equations in C and p, let us write 
the derivatives of (19) : 

8 ,dx, dx _ dx0 3 ,dx0, 

dt at 3c (~St} AL 3P "-ar 
rUA0-> An + ̂ 5a d A C + 9xO dAP 
{~^} A p 3C ~dt ~3p" dt~ 

d£ = d6o + ^ (de^} Ac + ^ ^ Ap 
dt dt 3C dt 3p dt 

3J|o dAC 30^ dAp 
3C dt + 3p dt 

and substitute whenever possible the right-hand members of (15) for 
dx0/dt and d60/dt. Then we equate them to the right-hand members of (12) 
where x and 6 are replaced by (19) and where second order terms in AC 
and Ap are neglected. This permits to linearize the system in AC and Ap 
that describes locally the general solution in the form (17). After some 
algebra, calling 

y = % AC • * 
3p 

Mfl AC + 1 ^ 
3C A C 3P 

Ap 

AP 

one finally obtains the following system : 

-r̂- - By - Qz cos 0 
dt y x o Bx 

dz 
; dF " 2Gy 

(20) 

(21) 
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The system (21) is equivalent to (12), the solution being written 
under the form (17). It describes how the actual perturbed orbit can be 
considered as slowly varying orbits of the kind studied in VI-3. 

If we consider the solutions trapped in the libration region, they 
will only very slightly differ from the orbits given in figure 2. In par­
ticular, in the case B = 0, the mean value in time of x is zero, because 
of the symmetry dx/dt and of the orbit with respect to the axis x = 0. 
At present, one has, neglecting higher order terms : 

dt TS Bx,. 

Figure 4 shows simultaneously the orbit x 0 = f(9), the curve dxQ/dt 
and dx/dt. It results that the mean value x of x over a period of 6 is 
positive, since the time spent in the upper half of the orbit is larger 
than in the lower. However, x is of the order of B|x0| and, therefore, 
is very small. Consequently, while the body is trapped in libration, the 
mean value of the semi-major axis is practically constant. 

Figure 4. Variations of x 
orbit. 

dx0/dt and dx/dt for a libration 

VIII. EVOLUTION OF THE ORBIT 

Using the preceding results, it is possible to present a qualita­
tive description of the evolution with time of the semi-major axis of 
the orbit (i.e. x ) . 
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8.1. Before entering the libration region. 

Outside the libration region, it is still possible to eliminate the 
term Q sin 0 from the equations (6), so that finally only the secular 
terms are left in the reduced equations. The evolution of the orbits is 
described by the case VI-1. There is a continuous increase of x given by 
(13) or (14). 

8.2. While crossing the libration region. 

Two cases are to be considered. 

a) |Q| ^ A. There exist no libration regions (see VI-3-b) so that 
the evolution of x continues while the critical argument no crosses the 
value zero. It is however to be expected that this evolution is somewhat 
perturbed by this term, especially if |Q| is not too much smaller than A. 

b) |Q| > A. The orbit is trapped in the libration region and evolves 
in it as described in section VII. In this first approach to the problem, 
we have not evaluated the time during which it is trapped nor did we con­
sider the capture probabilities. If it is captured, during a certain time 
AT, the semi-major axis does not change. 

8.3. After leaving the libration region. 

The situation is the same as in the first case. The Q sin 0 term 
can again be eliminated and formulae (13) or (14) are again valid. 

Finally, if |Q| i |A| , the critical term does not affect the gene­
ral increase of the semi- major axis. If |Q| > |A|, this increase is 
stopped during the time AT defined above. 

IX. NUMERICAL SIMULATIONS 

A number of numerical integrations was performed over the system 
(12). It led to confirm some of the results given in the present paper. 

9.1. Effects of |Q| / A. 

Figure 5 shows the results of numerical integrations of the equa­
tions (12) with A = 1.1 10-12 and B = 5.95 10

-12, when Q varies between 
10-13 and 5.10"11. The dotted line represents the variation of x with 
Q = 0 (case VI-1). The separation between the trapped and untrapped or­
bits appears very clearly for QQ = 1.113 10~12, The difference with the 
theoretical value A comes from the disturbing effect of B (figure 5). 

All these orbits - and many others that were calculated - started 
from x = 0, so that they correspond initially to a position in the libra­
tion region. All the orbits with Q > Q0 that were initially trapped, es­
caped after a certain time. No example of orbit that could not escape 
was found. 
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Q=1.1 10 
-12 

Q-1.2 10-i2
O0+5> 

yr 

Figure 5. Evolution of x for various values of Q. Curves are 
stopped when the effect of Q becomes short-periodic and affects the 
integration scheme. 

20 T (10+5yr) 

Figure 6. Some evolutionary tracks crossing the libration re­
gion. Curves are stopped when the effect of Q becomes short-periodic and 
affects the integration scheme. 
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9.2. Case when Q < Q0 

It can also be seen that the mean slopes of evolutionary tracks de­
crease when Q increases for Q < Q0. This effect also plays a role in the 
lengthening of the evolution time. Several runs have been made also to 
study haw some orbits arrive in the libration region, get trapped and 
then, escape. Figure 6 gives some examples of such evolutionary tracks. 
They illustrate the general features that were described in section VII. 
It would be of interest to explain analytically more detailed features 
that appear in these curves. 
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