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Abstract

Outdoor air pollution is estimated to cause a huge number of premature deaths worldwide. It catalyzes many diseases
on a variety of time scales, and it has a detrimental effect on the environment. In light of these impacts, it is necessary
to obtain a better understanding of the dynamics and statistics of measured air pollution concentrations, including
temporal fluctuations of observed concentrations and spatial heterogeneities. Here, we present an extensive analysis
for measured data from Europe. The observed probability density functions (PDFs) of air pollution concentrations
depend very much on the spatial location and the pollutant substance. We analyze a large number of time series data
from 3544 different Europeanmonitoring sites and show that the PDFs of nitric oxide (NO), nitrogen dioxide (NO2),
and particulate matter (PM10 and PM2:5) concentrations generically exhibit heavy tails. These are asymptotically
well approximated by q-exponential distributions with a given entropic index q and width parameter λ. We observe
that the power-law parameter q and the width parameter λ vary widely for the different spatial locations. We present
the results of our data analysis in the form of a map that shows which parameters q and λ are most relevant in a given
region. Avariety of interesting spatial patterns is observed that correlate to the properties of the geographical region.
We also present results on typical time scales associated with the dynamical behavior.

Impact Statement

Our application paper offers a substantial research contribution at the interface of statistical physics, environ-
mental sciences, geography, and data analytics. It addresses the complex dynamics of air pollution in Europe,
analyzing, in particular, the tails of the observed PDFs which describe high-pollution events. Our work enables a
better understanding of the time-varying dynamics of air pollution, which is essential for policy formulation and
the construction of suitable stochastic models, as well as for analyzing the medical consequences of exposure to
polluted air.

1. Introduction

Outdoor air pollution is estimated to cause 4.2 million premature deaths per year worldwide, according to
estimates of theWHO, and is thus amajor killer. It also causesmanydiseases on a variety of time scalesWorld
HealthOrganization (2020); Shah et al. (2015). There are highly detrimental effects on the environment, as air
pollution affects vegetation and natural ecosystems and plays a role in climate changeOrtiz et al. (2020). In all
densely populated regions of theword, it represents amajor environmental health riskHealth Effects Institute
(2019); World Health Organization et al. (2018); GBD 2016 Risk Factors Collaborators et al. (2017),
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impacting human health, ecosystems, climate, infrastructure, and the economy Ortiz et al. (2020). There are
many different types of air pollutants and they can interact in a complex way. Two air pollutants, namely
particulate matter (PM ) and nitrogen oxides (NOx), pose a considerable threat to the health of citizens.
In 2018, about 55000 and 417000 premature deaths in 41 European countries were attributed to NO2 and
PM2:5, respectivelyOrtiz et al. (2020). In this contribution toClimate Informatics 2024,we focus onNOx and
PM , but our statistical data analytics methods can be applied to other substances as well.

The impact of air pollution on health does not only depend on the pollutant type but also on the type of
surrounding area. The EU European Parliament (2011) uses environmental area types to classify air
quality monitoring sites into traffic, industrial, background, urban, suburban, and rural, based on
predominant emission sources and building density. From an air quality policy perspective, this allows
for evaluating the effectiveness of measures targeting specific emissions sectors, assessing the impact of
those pollutants which dominate the area surrounding a given monitoring station.

A lot of air pollution research concentrates onmean values, but having a thorough understanding of the
time-varying statistics, i.e., of the entire probability density function (PDF) of air pollution concentrations
is crucial for policymakers involved in defining thresholds or reducing overall exposure to air pollution by
suitable mitigation measures. It is also crucial for the construction of suitable statistical physics-based
models using stochastic methods. PDFs such as gamma, log-normal, and Weibull distributions. Hsin-
Chung Lu (2003) has been widely used for fitting air pollutant concentration data. However, these
distributions decay approximately like exponential functions at large values, while previous investiga-
tions have found heavy tails in air pollution statistics Williams et al. (2020); He et al., (2022), which are
not well-described by the above distributions.

Previous papers Giri et al. (2023); Baldasano (2020); Environmental Research Group et al. (2020) have
also explored the COVID-19 lockdown effects on air quality (for example, in megacities such as London
and Delhi), focusing on comparing the PDFs or given moments of the PDFs before and during the
lockdown. Superstatistical methods, originating from turbulence modeling Beck (2007) and applied to
many fields Metzler (2020); Beck et al. (2020); Ourabah (2024), offer a powerful effective approach to
describe the dynamics of air pollution. These types ofmodels are based on the assumption ofwell-separated
time scales Williams et al. (2020). Air pollutants such as NOx have been described successfully using a
superstatistical approach, taking into account nonequilibrium situations with fluctuating variance param-
eters Williams et al. (2020). However, the approach in that paper was verified for limited data sets only,
chosen from the UK (London), and also only for a limited set of pollutants, namely NO and NO2 only. For
European data, recent progress was made by He et al., (2022), where it was shown that many measured air
pollution time series data can be generically understood and modeled by superstatistical methods. In this
conference proceedings, we follow up from that approach. We consider a very large set of measured time
series data in Europe (3544 locations), extract the best-fitting parameters at each spatial location, and then
plot a map of Europe where the best-fitting parameters are visualized at each point. The results are quite
useful to know as they provide some information on what type of power law exponent is to be expected at a
given location, thus describing the risk of high-pollution situations occurring at that location.

This paper is organized as follows.We first describe the data set considered and briefly comment on our
method of finding the best-fitting parameters. Some relevant background on superstatitical methods and
q-exponential functions will be given.We then present our main result on air pollution statistics in Europe
in the form of a visual display of the map of Europe with the given power-law statistics parameters that we
obtained in our detailed analysis. Finally, we discuss the observed patterns and spatial correlations.

2. Methods

2.1. The data set considered

We use air quality monitoring data from a large number of locations in Europe through the interface
“Saqgetr”, which is an R package available on the Comprehensive RArchive Network (CRAN) Grange
(2019). Most of the data are openly Available at the European Commission’s Airbase and air quality
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e-reporting (AQER) repositories European Parliament, Council of the European Union (2008);
European Commission (2011). We also import surface meteorological data from NOAA ISD Smith
et al. (2011) via the “worldmet” Carslaw (2017) R package. Initially, we started with 9698 different
locations and used measured data from January 2017 to December 2021, recorded at 1-hour intervals.
However, with certain selection criteria applied on the quality of the measured data, this reduces to a set
containing 3544 sites. Our selection criteria are described in detail in He (2024). A main criterium was
that at least one year of measured data should be available. Our interest is in the behavior of the tails of
the PDFs, as illustrated in Figure 1. These tails correspond to high pollution states and are most

Figure 1. (a) The white dots show the positions of all European measuring stations considered. A red dot
singles out an example of a station at Illmitz, Austria. For such a given example location, the time series
data of the four measured concentrations are shown in panels b and d. The corresponding tails of the
PDFs (as shown in c, e) are then automatically analysedwith a fitting programHe (2024) that extracts the
parameters q,λð Þ for the best-fitting q-exponential. This is done for all 3544 sites.
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damaging to health. The measuring stations are divided into three categories: traffic, industrial, and
background based on predominant emission sources; the surrounding areas are classified as urban,
suburban, or rural based on the building density. Measuring station types are combined with area types
to provide an overall station classification, and we analyze our data conditioned on this station
classification.

2.2. Fitting with q-exponentials

In He et al., (2022), evidence was presented that generic air pollution PDFs often decay as a power law. To
extract the power law exponent, it is best to apply a fitting approach based on q-exponential functions.
These functions asymptotically approach a power law (with an exponent of�1= q�1ð Þ if q > 1) and also
take into account the next-to-leading order terms in the asymptotics. The form of q-exponentials is
motivated by generalized versions of statistical mechanics based on nonadditive entropies Tsallis (2009),
as well as on superstatistical approaches Beck and Cohen (2003); Beck et al. (2005). The reason for the
occurrence of q-exponentials is that exponentials with varying rate parameters, when integrated over the
probability density of the rate parameter, in leading order lead to q-exponentials. The functional form of
the q-exponential is given by

f q,λ xð Þ¼ 2�qð Þλ 1� λ 1�qð Þx½ � 1
1�q for 1� λ 1�qð Þx≥ 0,x> 0, (1)

where q is the entropic index Tsallis (2009); Hanel et al. (2011); Jizba and Korbel (2019), λ is a
positive width parameter and x, in our case, denotes the air pollutant concentration. Eq. (1) contains the
exponential distribution as a special case, namely that is obtained in the limit q! 1, as the q-exponential
function, defined as eq xð Þ¼ 1þ 1�qð Þx½ � 1

1�q, converges to the exponential function in the limit q! 1.
For q< 1, f q,λ xð Þ is also well defined but in this case lives on a finite support and becomes exactly zero
above a critical value x, since, by definition, eq xð Þ¼ 0 for 1� λ 1�qð Þx< 0. In contrast, if q> 1,
1� λ 1�qð Þx> 0, then Eq. (1) exhibits power-law asymptotic behavior. Both cases are relevant for
air pollution fits.

The occurrence of q-exponentials with q> 1 in PDFs of complex systems has been previously
explained as originating from a superstatistical dynamics Beck and Cohen (2003); Beck, Cohen, and
Swinney (2005); Ourabah (2024). In these types of models, one assumes a temporally fluctuating
parameter λ̂ for local exponential distributions � e�λ̂x. This means that in a sense the parameters of the
system are random variables as well, but they change on a much larger time scale. These variations of λ̂
take place on a long-time scale, which is much longer than the local relaxation time to equilibrium.
Physically, one may think of this as describing changing weather conditions (e.g. changes in the wind
pattern) at the measuring site. The marginal distribution, obtained by integration over all possible values
of λ̂ and describing the long-term behavior of the air pollution concentration dynamics, is then a q-
exponential, with

q¼ 〈λ̂
2
〉

〈λ̂〉2
: (2)

Here, 〈⋯〉 denotes the expectation with respect to the PDF of λ̂, see Beck and Cohen (2003) for more
details. Strictly speaking, a q-exponential is only obtained exactly if λ̂ is Γ-distributed, but the general idea
of superstatistics is that a parameter q can be defined by Eq. (2) for more general distributions different
than the Γ distribution as well.

In our automatically applied fitting procedure for the 3544 measuring stations, we obtain the optimal
fitting parameters via MLE, i.e. maximizing the likelihood under the assumption that the data originates
from the assumed q-exponential distribution. One may ask whether other distributions, such as the
previously studied lognormal distribution, Weibull distribution, or gamma distribution might yield
equally good fits as the q-exponential distribution. To illustrate the goodness of fit, we compare all these
functions with the measured histogram for NO data in Figure 2 for an example site (Barnsley Gawber in
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the UK). Clearly, the q-exponential fit yields the best fit of the tails of the distribution. It also yields the
largest log-likelihood value compared to the other distributions. We systematically compared the
goodness-of-fit using maximum likelihood estimation to determine the best fitting parameters and
hence computed the likelihood for each fitting function. Overall, we find that q-exponentials generate
the highest log-likelihoods for all four pollutants, when averaging over all sites. Hence, we apply
q-exponentials as our main method for analyzing the tails of air pollution statistics. See also github He
(2024) for full technical details.

2.3. Extracting the long superstatistical time scaleT
Utilizing the q-exponential distribution for fitting the PDFs opens the option to identify a long time scale
T , as discussed in the superstatistics approach Beck and Cohen (2003); Beck et al. (2005). In this view, we
assume that on time scales shorter than T , we observe random samples from a simple distribution, which
we assume to be exponential distributions here.Meanwhile, the overall complex time series, characterized
frequently by heavy-tailed probability distributions, is seen as a superposition of several of these simpler,
local distributions.

When considering shorter time slices, if the local time series approximately follows an exponential
distribution, the kurtosis for a local snapshot should be Kexp¼ 9. To determine T , we compute the local
average kurtosis Beck et al. (2005) as follows:

κ Δtð Þ¼ 1
tmax�Δt

Z tmax�Δt

0
dt0

〈 u�uð Þ4〉t0,Δt
〈 u�uð Þ2〉2t0,Δt

, (3)

where tmax is the length of the time series and 〈〉t0,Δt denotes the expectation for the time slice of length Δt
starting at t0. The long-time scale T is then defined by the condition κ Tð Þ¼Kexp. In this case, the average
kurtosis of windows of length T has a kurtosis Kexp ¼ 9. Once T is determined, the time series can be
divided into multiple snapshots, each spanning a length of T . This provides a collection of slices with
approximately local exponential distributions, eachwith a distinct decay parameter λ̂ that fluctuates on the
time scale T .

Figure 2.Measured histogram of NO concentrations, recorded at the example site Barnsley Gawber, UK,
together with the best log-normal (blue), Weibull (orange), Gamma (brown), and q-exponential (purple)
fits, together with their respective log-likelihood values. Also displayed are the optimum values of the q
and λ parameters for the q-exponential distribution. The q-exponential fits the measured data best, as
indicated by the highest log-likelihood value. Similar plots can be produced for all 3544 sites.
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3. Results

Figure 3 shows the best-fitting parameters q and λ for the tails of the observed PDFs at all 3544 sites
evaluated. As mentioned above, it is natural to expect q-exponential distributions as these simply arise
from the agglomeration of many exponential distributions that have temporal fluctuations of the effective
decay rate.

What is noticeable is the fact that one observes an immensely large range of values of the parameter λ
for the best-fitting q-exponential as given in Eq. (1) for the various measuring stations. Note the
logarithmic scale of the plots. The parameter λ can take on values as small as 10�2 up to values as large
as 102, which spans four orders of magnitude. Typical q-values are in the range 0:8�1:4, but there are
subtle differences between the various substances, with NO reaching large q-values such as 1.6, and NO2

reaching small q-values such as 0:6 in the scattering plots. Figure 3, panels a and b, indicate that roughly q
grows linearlywith logλ forNOx. Traffic areas are clustered on the left, while urban/suburban background
points are in the middle part, and rural background points are scattered widely at the right. The PDF decay
rate increases as λ increases from highly polluted urban traffic sites to less polluted rural background areas.
For PM2:5 and PM 10, there is a slightly different statistical relationship between q values and λ, as can be
seen in Figure 3 panels c and d. The urban points approach small λ values such as 0:01 for PM10, and
suburban/rural traffic, suburban/rural industrial, and rural background points cluster at the right-hand side
with large λ. The observed range of λ values is smaller as compared to the case of NOx, and the shape of
possible values q,λð Þ as displayed in the figure is more spherical. The stronger color mixing for PM may
be due to the fact that by airmovement there is transport of the pollutants, hence the distributions cannot be
uniquely identified with the original environmental types where the PM -particles were produced.

So far we conditioned the observed distributions on the environmental type, such as high-traffic region,
industrial region, or rural area. This leads to a pretty mixed pattern of states as displayed in Figure 4.
However, it is useful to keep the spatial information where the actual measurements were done. Thus, the

Figure 3. Best-fitting parameters of q-exponentials at the various measuring stations. There is an
increasing trend of q versus logλ for NO (a) and NO2 (b), whereas a disk-shaped pattern is observed for
PM2:5 (c) and PM10 (d). The colors encode the area type where the measurements were done. There are
predominant patches of a single color in the parameter space forNOandNO2, where for PM2:5 andPM10

the color pattern looks more mixed. Deep green points correspond to cleaner rural areas.
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Figure 4. Spatial distribution of best-fitting parameters q,λð Þ characterizing the measured PDFs of NOx

and PM x pollutants across Europe. The color codes are directly indicated in the individual figures. A
large value of q indicates heavy tails in the distribution. A small value of λ indicates heavy average
pollution. The pollutant characteristics across Europe is quite inhomogeneous.
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idea in the following is to plot an air pollutionmap of Europewhere the color encodes the value of the best-
fitting fitting parameters q,λð Þ relevant in that given region of Europe. This map is shown in Figure 5. The
novel approach here is that we do not only consider average values of pollution concentrations as
observed in a given region but encode information on the entire probability distribution. The parameter q
describes the power-law tails of the probability densities, which decay with an exponent given by
�1= q�1ð Þ. Thus, q is related to the frequency of occurrence of extreme events describing high-
pollution states.

The q values forNO2 are smaller in Germany and the UK as compared to other countries, in fact below
1 (green colors), which indicates there are no heavy tails. Since the primary emission source ofNOx is fuel
combustion, this pattern suggests that these regions cope better with extreme situations and have a
decreased susceptibility to extremeNOx events. The q values for PM pollutants exhibit a slightly different
spatial pattern, with lower values (green) in theWestern regions and higher values (red) in the East. The λ
values in Central Europe and theUK are smaller compared to those in other European regions, indicating a
higher average pollution, in particular forNO. As for the spatial distribution of λ values for PM pollutants,
there is a slight eastward shift in the clustering of red dots, suggesting a higher pollution in Eastern Europe.

Note that the average concentration of pollutants is proportional to λ�1. This means the smaller λ the
bigger is the average air pollution concentration in that region. For this reason, we have color-coded
smaller values of λ in red and bigger values in blue. Some of the Scandinavian countries appear to host a
couple of blue dots, whereas in Turkey there are big concentrations of red dots, in particular for PM10. For
the q-values, describing extreme events, the tail in the distribution is more pronounced and the bigger q.
Some Eastern European countries exhibit particularly heavy tails, as indicated by red colors in the q
panels. On the other hand, if q is smaller than 1 then the distributions live on a finite support, and there are
no heavy tails. This case is indicated by green colors in the q-plane. Some regions of Germany and
Western Europe exhibit predominantly green colors.

Figure 5. The long time scales T describing the scale of typical changes of the temporal mean and
variance of the measured time series for NO (a), NO2 (b), PM 2:5 (c), and PM10 (d). The color coding is
explained at the bottom of each figure.
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Figure 5 displays the superstatistical time scale T as extracted for the four pollutants, indicating distinct
temporal dynamics.NO overall has amajority of shorter time scales T , typically less than a week.NO2, on
the other hand, comprises higher values of time scales T , mostly ranging between a week to a year. This
difference could be explained by the fact that NO is highly reactive and tends to quickly oxidize to form
NO2 in the presence of oxygen. This rapid transformation means that NO concentrations can change
swiftly over short periods. The extracted time scales for PM2:5 are of similar order of magnitude as for
NO2, whereas the extracted time scales for the PM10 dynamics appear to be smaller than for PM2:5 on
average.

4. Discussion

In this paper, we applied data analytics tools to better understand the probability densities of measured air
pollution time series. In particular, we were interested in the tail behavior. The parameters q and λ, as
obtained from the optimum fittings of data from 3544 measuring stations in Europe, exhibit interesting
patterns in the q,λð Þ plane. They also exhibit interesting patterns when associated with a map of Europe.
There are significant differences between the NO, NO2, and the PM statistics.

The shape of scattered q,λð Þ values in the plane depends on the local characteristics, e.g. whether the
measurements are done in a rural area or densely populated area. There is a typical range of parameter
values for a given class of this type. We observe an immensely large range of values of the parameter λ for
the various measuring stations.

We also observe a significant spatial heterogeneity in the best-fitting shape parameters of the PDFs.
Eastern Europe shows a tendency for more severe PM pollution events and higher average concentration
exposure, described by higher q values and lower λ values, respectively. Northern Europe shows a
tendency for lower air pollutant concentration, described by higher λ values, but is more susceptible to
extreme events, described by higher q values. Additionally, there are strong variations of PDFs at local
level as well. These disparities highlight the importance of tailored strategies for air pollution mitigation
strategies in different areas. Recall that q contains information about the tail, i.e. extreme events and λ
about the scale and thereby the mean pollution level, i.e. we distinguish thereby between regions with low
and high average pollution and simultaneously regions with many or few extreme events.

We also extracted the long superstatistical time scales T for the measured time series for each of the
3544 measuring sites and each of the four pollutants considered, thus incorporating dynamical informa-
tion that amends the static information contained in the PDFs. This information was displayed in the form
of a map of Europe, too, and shows a variety of time scales relevant at different spatial locations. The
observed wide range of time scales, in particular for NO2 and PM2:5, can be attributed to a variety of
factors, including but not limited to fluctuating local meteorological conditions and anthropogenic
activities.

Future research, for each given location taking into account the local circumstances, should help to
gain a clearer systematic understanding of the relationship between meteorological and anthropogenic
factors and the relevant time scales and q,λð Þ-values of air pollutants. Amain result of our investigation is
strong local heterogeneity, i.e. the temporal dynamics of air pollution can be quite different if one proceeds
from one local measurement station to the next. Different local wind conditions are expected to play an
important role in this context.

Further statistical analysis of more detailed data at local level could support policymakers to produce
more precise rules and thresholds for individual types of environmental conditions and meteorological
conditions, taking into account fluctuations, extreme events, and variations of concentrations on different
time scales.

For our statistical analysis, the different types of air pollutants have different data availability in the
various geographical regions. For this reason, in the air pollution maps that we have produced in this
paper, some regions are less frequently covered by points than others. We hope that in the future more
measurements at further locations will become available, given the importance of the air pollution
problem. Our analysis could also be extended to other substances, such as sulfur oxide, carbon oxide,

Environmental Data Science e30-9

https://doi.org/10.1017/eds.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.43


and ozone, besidesNOx and PM . We stress again that the detailed description of the entire pollution PDF,
including the exact behavior of the tails, seems critical here to better estimate the risks of very high
pollution situations.
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