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Abstract. We generalize the notion of consequence relation standard in abstract treatments
of logic to accommodate intuitions of relevance. The guiding idea follows the use criterion,
according to which in order for some premises to have some conclusion(s) as consequence(s),
the premises must each be used in some way to obtain the conclusion(s). This relevance
intuition turns out to require not just a failure of monotonicity, but also a move to considering
consequence relations as obtaining between multisets. We motivate and state basic definitions of
relevant consequence relations, both in single conclusion (asymmetric) and multiple conclusion
(symmetric) settings, as well as derivations and theories, guided by the use intuitions, and
prove a number of results indicating that the definitions capture the desired results (at least in
many cases).

§1. Introduction. Logical consequence is the central notion of the logical enterprise.
Meta-mathematical studies of consequence relations start with the works of Tarski
[42] and are part of a long and distinguished tradition ever since (e.g., [9, 17, 35]).
The standard mathematical rendering of the notion of consequence, however, involves
many structural presuppositions that make it unsuitable for a natural representation of
some well known non-classical logics, such as substructural logics (e.g., [21, 37, 39]).
The failure of the Tarskian approach to capture the so-called ‘internal consequence
relation’ of substructural logics is a well-known fact (see, e.g., [21, p. 78]) that provides
reasons to investigate alternate definitions of consequence.1
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1 The internal/external consequence relation dichotomy comes originally from [3], where it

was devised in the context of sequent calculus presentations of linear logic. As we’re not
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RELEVANT CONSEQUENCE RELATIONS: AN INVITATION 763

Prominent among substructural logics are relevant logics (e.g., [1, 2, 38]), which
can be broadly characterised as those which seek to enforce a relevance constraint on
logical consequence, according to which in order for some formula(s) to be entailed by
some other formula(s) (or to be “a logical consequence of” them), the entailed must be
relevant to the entailing. There have been a handful of proposed formalizations of the
relevance constraint; perhaps the most famous is the Variable Sharing criterion, which
requires that in order for an entailment claim to be logically correct, the premises and
the conclusion must have some propositional variable in common (see [1, sec. 22.1.3]).
Another approach, not quite as venerable, though older, is embodied in the so-called
Use Criterion.

Use Criterion: A formula ϕ is relevantly deducible from a collection
of formulas Γ just in case there is a derivation of ϕ from Γ in which
each � ∈ Γ is used.

This statement is adapted from [27], but a version is already mentioned, in passing,
in Church’s early work [11, fact 20] and was further developed in the Fitch-style natural
deduction systems presented in [1]. The idea here is, in certain respects, a bit simpler
than the variable sharing property and is, in addition, more generalizable. Given any
system of derivation for any logic, even one which violates the variable sharing criterion,
we can consider a definition of logical consequence which obeys the use criterion and
is, in that sense and to that extent, relevant. It is relevant consequence relations of
this kind that we shall investigate in this paper, in a more abstract fashion than has
been done before. Usually in relevant logic circles, logics are understood as sets of
formulas, and logical consequence has been taken to be expressed by the theoremhood
of implication formulas (as in the “internal” consequence relations mentioned above).
While metatheoretical characterisations of so-called external relevant consequence
relations have come up for discussion (e.g., [1, secs. 22.2, 23.6] and [17, 18, 26]), this
work hasn’t been done in the kind of abstractness and generality that work concerning
Tarskian consequence relations has been. Our aim in this paper is to begin to fill the gap.

One obvious result of the use-criterion approach to defining relevant consequence
relations is that we don’t have any guarantee that the resulting relations will be
monotone. That is, while we may have that Γ entails α, because there is a derivation
of α in which each formula in Γ is used, we may not have such a derivation for any
arbitrary Γ′ containing Γ. Such failures of monotonicity indicate the key respect in
which relevant consequence relations, in our sense, differ from Tarskian relations, and
provide some mathematical motivation for investigating such relations.

The failure of monotonicity is related to failures of various weakening axioms and
rules in standard relevant logics. In the internal consequence relations of relevant logics,

investigating sequent systems, our use of this distinction is, per force, a bit different, but
the basic intuition is the same. An external consequence relation for a logic (given some
presentation) relates premises to conclusions when if all the former are valid as formulas (or
derivable from an empty collection of formulas) then so is the conclusion. Alternately, an
internal consequence relation concerns whether a particular sequent (or formula) relating the
premises and conclusion is itself valid. Generally speaking, the former kind of consequence
relation is bad news from a relevant logic perspective as it does not come close to respecting
relevance: it concerns only the hyper-coarse relationship between formulas of “both being
valid”, admitting as external relevant ‘consequences’ such inferences as that from � → � to
ϕ → ϕ. This is closely related to the “well-known fact” cited earlier.
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764 GUILLERMO BADIA ET AL.

one has a choice of how to combine premises: basically, the choice is between using
lattice conjunction ∧ or fusion (“multiplicative conjunction”) ◦. If we use the former
to combine premises, then, in general, we don’t have a deduction theorem, as → is not
assumed to residuate ∧ (indeed, ϕ ∧ � → � does not imply ϕ → (� → �)), whereas
using the latter we retain residuation while losing monotonicity (as (ϕ ◦ �) → ϕ is
not generally valid). Our approach is closer in spirit to the latter (though with some
complications), hence the failure of monotonicity.

It should be noted that monotonicity has been questioned on other grounds, perhaps
most famously in the context of non-monotonic logics, as studied by Makinson [24]
and others. These systems, and their motivations, are rather different from relevant
logics—having to do with forms of defeasible reasoning, and generally not involving a
revisionist critique of Tarskian consequence, as in relevant logic, although exceptions
do exist [20]—so we’ll not dwell on these systems beyond briefly mentioning them to
note the salient differences.

Since the multiplicative conjunction of relevant logics is non-idempotent (in
particular, we usually want to avoid having (ϕ ◦ ϕ) → ϕ), we will generally need
to work with multisets of premises—i.e., collections in which each element can occur
multiple times—rather than ordinary sets. Even if the use of multisets can be viewed as a
mere artifact of our approach to relevant consequence, multiset consequence relations
are of independent interest and possess a rich mathematical theory. Monotonic
multiset consequence relations have already been studied in an abstract setting [12];
in this paper, we will limit our investigation of (possibly non-monotonic) multiset
consequence relations to the relevant ones, and will leave a more general study for future
work.

Finally, we’ll consider relevant consequence relations both with single and multiple
conclusions. In the single conclusion setting, things are simpler and we obtain a
collection of results characterising our target relations which flesh out the way our
approach captures aspects of the intended interpretation. In the multiple conclusion
settings, things get a bit more complex, and our approach is a little different than
usual. A consecution in a multiple-conclusion consequence relation, Γ � Δ, is typically
taken to imply that from all the elements of Γ, at least one of the elements of Δ (or a
disjunction of finitely many of them) follows. This might be called the disjunctive reading
of a multiple-conclusion consequence relation, and constitutes the dominant approach
in the literature. There is, however, another, and perhaps more straightforward, reading
which we call the conjunctive reading: from all the elements of Γ, all the elements of Δ
follow. Clearly, in logical settings with the contraction rule (where Γ and Δ are sets),
this can be reduced to a series of elementary claims Γ � � for each � ∈ Δ; this may
explain why disjunctive readings are more prevalent in the literature. Nevertheless, the
conjunctive reading has also been used in classical settings, e.g., in the abstract category-
theoretical study of consequence [22]; and perhaps surprisingly, the conjunctive reading
can be traced back to the very origins of modern mathematical logic. In fact, as early as
in the first half of 1800s, Bolzano [10, p. 54] introduced a notion of multiple-conclusion
consequence with the conjunctive reading:

One especially noteworthy case occurs, however, if not just some, but
all of the ideas that, when substituted for i, j, ... in A,B,C, ... make
all these true, also make all of M,N,O, ... true [... ] with respect to
the variable parts i, j, ... .
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For reasons we’ll discuss later, the conjunctive reading is a nice fit for the study of
multiple-conclusion relevant consequence relations, so that will be our approach here.2

For the sake of simplicity, we’ll restrict our attention to finitary consequence relations
throughout this paper. A generalization to infinite multisets of premises or conclusions
turns out to present certain technical challenges that we prefer to avoid in this initial
exploration and leave them for future research.

Our work builds on previous work by Avron [4, 5], who has investigated a range of
multiset consequence relations, including non-monotonic ones, especially in the case of
linear logic [3]. In our work, we focus particularly on relevance (via the use criterion),
employ a conjunctive reading of the conclusions in the multi-conclusion setting, and
abstract away from the behaviour of particular kinds of connectives. Nonetheless, our
debt to Avron’s work in this area should be noted.

This article will be arranged as follows: Section 2 will go into detail about why
we employ multisets, and why doing so is called for by considerations of relevance
in particular, by considering some untoward consequences of the standard, Tarskian,
account of logical consequence. In Section 3, we shall introduce the key definitions
for single-conclusion consequence: namely that of a (relevant) tree proof in an
axiomatically defined logic and, from there, the abstract definition of single-conclusion
consequence (a form of non-monotonic consequence). Furthermore, we’ll prove some
results indicating that the abstract notion nicely captures the important features of our
concrete starting point. Section 4 considers some examples of the system in practice,
particularly to some extensions of the substructural implication logic BCI, including
some relevant logics (and indicates some limitations of the approach for capturing
relevant logics in languages including their extensional vocabulary). In Section 5, we
extend the framework of Section 3 to accommodate multiple-conclusion consequence
relations, proving some further results indicating that our proposed definitions work
as intended. Finally, in Section 6, we consider in some detail the question of carrying
out derivations in the multiple-conclusion case, and, in Section 7, propose a way to
define theory, adapting the standard definition to our setting, which does some of the
work one expects of that concept.

§2. Tarskian consequence relations: from sets to multisets. We’ll recall the standard,
Tarskian, definition of consequence relation, and consider reasons to alter certain key
features of it. Let us fix a set Fm of formulas. Unless said otherwise, we do not assume
that formulas have any internal structure.3

2 This can be contrasted with a different approach, which takes the disjunctive reading but
uses multiplicative disjunction, or fission, as is available, for instance, in the relevant logic R.
We’ll come back to this point later; but see [17, sec. 6.15] for some further discussion.

3 Thus, even though we only give propositional examples throughout this paper, the definitions
and results apply equally well to (relevant-flavoured) predicate or modal substructural logics.
We omit the usual condition of invariance under substitution for the sake of simplicity
of exposition: the abstract treatment of consequence relations would require representing
substitutions by a monoid action on Fm along the lines of [8, 12, 22]; that would be an
unnecessary complication, as we primarily intend to contrast the relevant and classical
notion of consequence at the level of whole formulas.
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766 GUILLERMO BADIA ET AL.

Definition 2.1 (Finitary Tarskian consequence relations). A finitary Tarskian conse-
quence relation is a relation � between finite sets of elements of Fm and elements of Fm
satisfying the following constraints:

• ϕ � ϕ. Reflexivity

• If Γ, � � ϕ and Δ � � then Γ,Δ � ϕ. Cut

• If Γ � ϕ then Γ, � � ϕ. Monotonicity

Remark 2.2. Traditionally, finitary Tarskian consequence relations � are defined
as relations between arbitrary sets of formulas and formulas obeying the variants of
Reflexivity, Cut, and Monotonicity ( for arbitrary sets Γ and Δ) plus the condition:

• If Γ � ϕ, then there is finite Δ ⊆ Γ such that Δ � ϕ. Finitarity

It is easy to see that (due to Monotonicity) there is one–one correspondence between
these two definitions.

The use of infinite sets of premises has numerous technical advantages in the Tarskian
setting which as we will see later, unfortunately, mostly disappear in the relevant and
multiset setting. For reasons of simplicity and naturalness we’ll restrict our attention
to finite collections of premises throughout the paper. On the mathematical side, this
assumption makes our definitions simpler and allows us to avoid some difficulties.

We’ll be concerned throughout with axiomatic presentations of logics, and we’ll wind
up constructing them out of consecutions, but before doing so in formal detail, let’s
just consider an informal example to note some properties of axiomatic derivations
in a tree form. Consider the following proof in classical logic (CL) of the fact that
ϕ → (� → �), ϕ ∧ � �CL �, using a tacit, but fairly standard axiomatic presentation
of classical (or indeed intuitionistic) logic in the {∧,→}-fragment:

ϕ ∧ � ϕ ∧ � → ϕ
ϕ ϕ → (� → �)

� → �
ϕ ∧ � ϕ ∧ � → �

�
�

Notice that the structure relies on using the deduction rule of modus ponens, and that
the premise ϕ ∧ � is used twice. In a standard axiomatic presentation (in the Fmla

framework, to use Humberstone’s terminology [23]), axioms are taken to be formulas
and deduction rules to operate thereon. We’ll employ a slightly different presentation
by dealing with consecutions: these are objects of the form Γ � ϕ where Γ is a finite set of
formulas, ϕ a formula and � is an entailment relation. Axioms, then, are consecutions
of the form ∅� ϕ, and all the other consecutions are deduction rules: for instance, we
would have the axiom ∅� ϕ ∧ � → ϕ and the deduction rule ϕ ∧ � → �,ϕ ∧ � � �
in a consecution-version of the above proof tree.

Remark 2.3. We take proofs to be finite trees rather than finite sequences. The latter
choice is more standard, and the choice is somewhat arbitrary. Having said that, we’ll
proceed with tree proofs as they simplify some parts of the presentation once we start
incorporating relevance considerations.

Definition 2.4 (Tree-proof). LetAS be an axiomatic system, i.e., a collection of axioms
and deduction rules. In what follows, abusing notation, we identify any axiom of the form
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∅� ϕ with the formula ϕ. A proof of a formula ϕ from a set of premises Γ in AS is a
finite tree labeled by formulas such that:

1. The root is labeled by ϕ.
2. A formula labeling a leaf is an axiom of AS or an element of Γ.
3. For each non-leaf node n, AS contains a rule Δ � � such that � is the label of n

and Δ is the set of formulas labeling the immediate predecessors of n.

If there is a tree-proof of a formula ϕ in AS from a set of premises Γ, we write Γ �AS ϕ.

This is a standard definition, but in adapting it too swiftly to a non-classical setting,
we accidentally introduce some problems; of particular focus here are problems of
relevance and problems concerning multiple uses of premises. For the first, clearly any
Tarskian consequence relation will allow for valid arguments in which some premises
are irrelevant, and not needed: for instance, if we have ∅� ϕ → ϕ among the axioms
of AS, then we’ll have � �AS ϕ → ϕ, despite the fact that �,ϕ may have nothing to
do with one another. Stated in terms of the use criterion, there is, at best, only a rather
attenuated sense in which � can be said to be used in a derivation of an irrelevant
ϕ → ϕ.

As mentioned in the introduction, relevant logics have usually been studied either
as sets of formulas rather than as Tarskian consequence relations, or the Tarskian
consequence relation has not been understood to really express the relation of relevant
entailment (with the exception of [28, 29]), which is rather expressed by an implication
connective→. These amount to a similar point, which is that relevant logics have usually
been studied in terms of internal consequence relations, rather than external ones: that
is, they are studied in terms of that relation which obtains between a collection of
formulas Γ and a formula ϕ when a formula � → ϕ is valid, where � is a complex
formula combining the elements of Γ with some kind of conjunction, usually either the
lattice conjunction ∧ or an intensional conjunction ◦, commonly called “fusion”. Both
of these choices bring along certain difficulties, and if we use the latter, ◦, then, since
there are reasons of relevance for rejecting ϕ ◦ ϕ → ϕ (see [1, sec. 29.5]), we cannot
take the internal consequence relation to hold between sets of formulas and formulas.
In particular, we may not always add new copies of formulas and expect to preserve
validity. This suggests that an approach employing multisets, like that taken in [4, 28,
29], is better suited to the task at hand.4

The standard relevant logics, like R and its neighbours, are somewhat complex—for
instance, do not have finite characteristic matrix presentations—so let’s consider a logic
with a simpler presentation which nicely exemplifies some of these difficulties: Abelian
logic.

Example 2.5. We present a variant of Abelian logic in the language consisting of binary
connectives ∧, ∨, and ◦, a unary connective ¬, and truth constants 0̄ and 1̄.5 Its semantics
is given by the algebra Z = 〈Z,min,max,+, –, 0, 1〉, which is in fact a characteristic

4 It should be noted that already in his dissertation, Meyer noted that set consequence was
inadequate for relevance purposes for precisely the kind of reasons we have mentioned (see
[26, p. 113]).

5 Contrary to the common presentation of Abelian logic, we add an extra constant 1̄ in order
to be able to directly refer to all integers, which allows us to formulate simple syntactical
(counter)examples. For the peculiar properties of Abelian logic (e.g., that intensional
conjunction and disjunction coincide) the reader can check [25] where one can also find
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algebra for Abelian logic. We also consider a defined binary connective →, where ϕ → �
is defined as ¬(ϕ ◦ ¬�), and constants for the integers, namely, n + 1 defined as n̄ ◦ 1̄
and – n as ¬n̄, for all n ≥ 1.

If we take the usual order � on Z, then there are three natural things we might try to
define a consequence relation; for any formulas ϕ1, ... , ϕn, �, let us define:6

ϕ1, ... , ϕn �pZ �, iff Z � 0 � min(ϕ1, ... , ϕn) =⇒ 0 � �,
ϕ1, ... , ϕn ��

Z �, iff Z � min(ϕ1, ... , ϕn) � �,
ϕ1, ... , ϕn �′ �, iff Z � ϕ1 + ϕ2 + ··· + ϕn � �.

Let’s consider these in turn. The relation �pZ is the most natural external consequence
relation, as we are concerned with preservation of designated values (namely, the values
� 0). Indeed, this is a ( finitary) Tarskian consequence relation (in particular, it’s obviously
monotone). However, it does not satisfy the deduction theorem: note that 0 � min(1, 2)
implies 0 � 1, and yet 0 � 1 and 0 � 2 → 1. A natural way to try to buy this back is
to internalise just a bit more, as in ��

Z . This is, again, a finitary Tarskian consequence
relation (studied in [34]), but it also fails to satisfy the deduction theorem (the same
choice of values as before suffices to show this). In addition, this also fails to satisfy the
deduction rule of modus ponens, as min(–1 → –2, –1) � –2.

In light of this, the most obvious way to go more internal is to use + rather than min
(i.e., ◦ rather than ∧) to bunch premises, resulting in �′. Unfortunately, this definition,
which is apparently the intended one, fails to be well-defined for sets of premises. By
the definition, we have that 1 � 1 iff {1} �′ 1 iff {1, 1} �′ 1 iff 2 � 1. By using sets of
premises, we have clearly distorted the intended meaning, and produced an obviously bad
result here: the definition we want calls out to be given in a multiset framework.

These issues, caused by disregarding the number of occurrences of a formula,
motivate a move to multiset consequence.7 Let us recall now some basic notions.

Definition 2.6. A multiset over a set A is a mappingM : A→ N. The natural number
M (a), for a ∈ A, is called the multiplicity of the element a in the multiset M. The set
|M | = {a ∈ A |M (a) > 0} is called the support (or root set) of M.

We say that a multiset is finite if it has a finite support.8 We use the usual square bracket
notationM = [a1, ... , an] for finite multisets, whereM (a) is the number of occurrences
of a in the list a1, ... , an, provided the domain A ⊇ {a1, ... , an} of M is clear from the
context or does not need to be specified.

We denote the set of all multisets over A by P#(A) and the set of all finite multisets
over A by P#

fin(A).

other variants of Abelian logic. Further details on Abelian logic can be found in [30, 31, 32,
34].

6 We use ⇒ as a metalanguage, classical implication and abuse ϕi , � to mean the evaluation
of the formulas in Z on the right-hand side of the symbol �.

7 For the sake of simplicity, we shall just consider multisets here, though we note that working
with sequences or even structures (in the sense of [37]) is also a natural choice. Furthermore,
as we’ll see in the second half of Section 4 and Proposition 4.2, a move in the direction of
even more discerning data types is suggested by some limitations of our proposal.

8 As mentioned earlier, we’ll be concerned throughout with finitary consequence, so our
concern will, for the most part, be with finite multisets.
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A setB ⊆ A is identified with the multisetMB : A→ N such thatMB(a) = 1 if a ∈ B
andMB(a) = 0 if a /∈ B (i.e.,MB is the characteristic function of B on A). The empty
multiset will be written [].

A multisetM ∈ P#(A) is a submultiset of a multisetN ∈ P#(A), writtenM ≤ N , if
M (a) ≤ N (a) for all a ∈ A. The pointwise operations ∪,∩,�, –̇ on multisets over A are
defined as follows, for all a ∈ A:

(M1 ∩M2)(a) = min{M1(a),M2(a)}, Intersection

(M1 ∪M2)(a) = max{M1(a),M2(a)}, Union

(M1 �M2)(a) =M1(a) +M2(a), Sum

(M1 –̇M2)(a) = max{0,M1(a) –M2(a)}. Difference

Returning to the example above, we can now adapt the definition of �′, using multisets,
to be what we really want, namely:

[ϕ1, ... , ϕn] �Z �, iff Z � ϕ1 + ϕ2 + ··· + ϕn � �.
This definition does get us what we want—we have the deduction theorem and the

validity of modus ponens, for instance, as well as a variety of other nice properties. The
move to multisets, and the ensuing rejection even of the version of monotonicity which
we found to fail when premises are combined with ◦ (namely that [ϕ,ϕ] � ϕ), is quite
natural. As mentioned above, the rejection of even this weak form of monotonicity
is also motivated for reasons of relevance. This, along with the example, motivates
our move to multiset consequence as providing a good basis for relevant consequence:
essentially, the reason is that when we reject monotonicity, we want to really reject
monotonicity. Giving such an account will be the goal of the paper.

§3. From relevant tree proofs to relevant consequence relations. Our goal, as
mentioned, is to obtain the right abstract account of relevant consequence. Our
approach will be to start from a concrete approach, defining what it takes for a tree
proof to be relevant (in accordance with the use criterion), and working from there.

The kind of proof system we’ll be interested in are axiomatic, composed out of
consecutions, at first as above, objects of the form Γ � ϕ, where Γ is a multiset of
formulas and ϕ a formula, and then, later, as objects Γ � Δ where both Γ,Δ are
multisets of formulas. In general, a consecution system will comprise a set of axioms
and inference rules, as before. After presenting proofs in such a system, we’ll present
an abstract definition, and relate the latter to the former by way of justification.

We start with a pair of definitions giving us the grist for our mill.

Definition 3.1. An Fm-consecution is a pair 〈Γ, ϕ〉, where Γ is a finite multiset
of formulas from Fm, and ϕ ∈ Fm. We call the elements of Γ the premises and
ϕ the conclusion of the consecution. Instead of ‘〈Γ, ϕ〉’, we write ‘Γ � ϕ’ to refer to
the associated consecution. Slightly abusing notation, we identify the formula ϕ with
the consecution [] � ϕ.

Definition 3.2 (Axiomatic system). An axiomatic system in Fm is a set of Fm-
consecutions. The elements of an axiomatic system of the form Γ � ϕ are called axioms
if Γ = [] and rules of inference9 otherwise.

9 In recent literature, this kind of rules are also called “meta-inferences” (e.g., [15]).
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It is worth observing that in Definition 3.2 we are not requiring closure under
substitution, contrary to the most commonly used notions of axiomatic systems in the
literature.

Let us fix now the central notion of this section: tree-proofs in a given axiomatic
system AS from multisets of premises (once we’ve done so, we’ll pick out the relevant
ones). As in the case of proof from sets of premises, proofs will be certain finite trees
labeled by formulas. There are two main differences:

• As the rules now have multisets of premises, when applying them to obtain
formulas labeling non-leaves we have to speak about the multisets of labels of
the immediate predecessors.

• As some formula could label multiple leaves, we have to make sure that it is
among the premises sufficiently many times (unless it is an axiom).

While the former difference requires only minimal changes in the notion of tree proof,
the latter one requires a bigger change: to stress its importance we shall formulate it as
an extra (fourth) condition in the definition of the tree-proof, even though it makes the
second condition redundant. Recall that our aim is to capture the notion of relevant
proof, which, given the use criterion, means that a formula should occur among the
premises exactly as many times as we need it for the proof. Let’s say a bit more about
why we take this rather strong reading of the use criterion, requiring that we list
premises as many times as they’re used, in addition to requiring that they are used. As
noted in the introduction, in the standard relevant logics, we generally do not have
that (ϕ ◦ ϕ) → ϕ is valid. Indeed, adding this to R gives rise to some rather irrelevant
looking consequences, such as ¬(ϕ → ϕ) → (� → �).10 This indicates that keeping
track not just of what premises are used, but also how many times they’re used is
important for relevance purposes.

Given our robust version of the use criterion, there remains a subtle problem of how
to deal with axioms which could, in principle, occur among premises; our definition
below gives, in our opinion, the appropriate condition, but note that other options
are available, and some will be discussed in Remark 3.4. Roughly speaking, we shall
require axioms to be used in the proof at least as many times as they appear among
the premises (i.e., if you mention it, you have to use it).

Let us state the definitions and then discuss a bit further. The notion of a tree-proof
from a multiset of premises featuring in the following definition is a straightforward
adaptation of the usual one, concerning sets. Our definition is just an adaptation of
that introduced in [12, def. 5.26], but versions of this have been presented in [33, def.
2.31] and [43, def. 7.4]; here, we additionally give a condition when a tree-proof is
relevant (according to the use criterion).

Definition 3.3 (Tree-proof). Let AS be an axiomatic system. A proof of a formula ϕ
from a multiset of premises Γ in AS is a finite tree T labeled by formulas such that:

1. Its root is labeled by ϕ.
2. A formula labeling a leaf is an axiom or an element of the support of Γ.

10 For discussion of related points, see [16, 42].
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3. For each non-leaf node n, there is a rule of inference Δ � � in AS, where � is the
label of n and Δ is the multiset of formulas labeling the immediate predecessors
of n.

4. Each formula � which is not an axiom of AS labels at most Γ(�) leaves.

We say that T is a relevant tree-proof in AS from a multiset of premises Γ if, in addition:

(R) Each formula � labels at least Γ(�) leaves in T.

If there is a (relevant) tree-proof of a formula ϕ in AS from a multiset of premises Γ, we
write Γ �AS ϕ (resp. Γ �rAS ϕ).11

We use the following notation to simplify the restriction in (relevant) proofs
mentioned above: Given a tree T labeled by formulas, by ΛT we denote the multiset of
labels of its leaves. Using this notation we can express the fourth condition in any of
the following equivalent ways:

• If � is not an axiom of AS, then ΛT (�) ≤ Γ(�) .
• Each element of |ΛT –̇ Γ| is an axiom of AS.
• There is a finite multiset of axioms Δ such that ΛT ≤ Γ � Δ.

The relevant condition can then be simply expressed as Γ ≤ ΛT and its conjunction
with the fourth condition is then equivalent to:

• There is a finite multiset of axioms Δ such that ΛT = Γ � Δ.

Remark 3.4. Condition (R) is a simple implementation of the Use Criterion, requiring
just that in a relevant tree derivation, each premise is used. The way the premises must
be used, in particular, is that they should be inputs to one of the rules of inference used to
obtain the conclusion. In many cases, there is only one rule of inference, modus ponens,
so in such systems, to quote Meyer [27, p. 54], “use in a deduction is use in an application
of modus ponens.”

The definition of a relevant proof is further complicated by the fact that some axioms
of AS could appear in Γ, and there is a question of whether we should require these to be
used in the same way that non-axioms are. Consideration of this question naturally gives
rise to two related alternative definitions we could use to replace the relevance condition.
A tree-proof T in AS from a mutliset of premises Γ is:

(wr)Weakly relevant if each element of |Γ –̇ ΛT | is an axiom, i.e., for each � which
is not an axiom of AS we have ΛT (�) = Γ(�).

(sr) Strongly relevant if Γ = ΛT .

Using the suggestive notation �wr
AS and �sr

AS , we observe that, as the names suggest:

�sr
AS ⊆ �r

AS ⊆ �wr
AS ⊆ �AS.

The difference is easily demonstrated: consider a set Fm = {x, y, z} and an axiomatic
system AS with the axioms x and y and no rules. Then the only tree-proof of x in AS we
can write is the one-node tree T whose only node is labeled by x, i.e., ΛT = [x]. We can

11 This notion of tree-proof could be linearized along the lines of the approach in [6], but we
will leave the details of that to the reader.
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easily determine when T is a (weakly/strongly) (relevant) proof of x from a multiset Γ:

• Γ �AS x for any multiset Γ;
• Γ �r

AS x iff Γ ≤ [x];
• Γ �sr

AS x iff Γ = [x];
• Γ �wr

AS x iff Γ(z) = 0.

Therefore we have:

• [x, z] �AS x, but not [x, z] �wr
AS x.

• [x, y] �wr
AS x, but not [x, y] �r

AS x.
• [] �r

AS x, but not [] �sr
AS x.

Note that if AS has no axioms, then:

�r
AS = �sr

AS = �wr
AS .

Throughout, we’ll adopt the relevant condition, leaving aside consideration of weak and
strong relevance, but we note the distinction here in order to draw attention to the fact
that there is a choice point and to give some indication of why we have gone the way we
did.

Remark 3.5. It’s worth noting that the relations �rAS and �AS may coincide, e.g.,
whenever AS contains all instances of the inference rules of Modus Ponens (ϕ,ϕ →
� � �) and weakening (ϕ � � → ϕ).

In such a case we can take any tree-proof T of ϕ from Γ � [�], for any formula �, and
construct a tree-proof T� of ϕ from Γ � [�] such that ΛT ′ = ΛT � [�]: indeed it suffices
to add a new root labeled � → ϕ connected to the original one by weakening and then
adding a new leaf labeled � and new root labeled by ϕ again and connecting them using
Modus Ponens. In a picture, with weakening we can move from the left tree proof below
to the right one, increasing the number of uses of � by one.

Γ

ϕ

�

ϕ

� → ϕ

ϕ

Γ

Repeating this trick as many times as necessary yields a relevant tree-proof S of ϕ from
Γ � [�].

Our next goal is to find some simple description of (relevant) provability relations
�(r)
AS . Below is our definition appropriate to the work we aim to do in this paper and,

as discussed, it differs in key regards from other standard accounts which involve
monotonicity and contraction as defining conditions (the latter just in virtue of using
sets).

Definition 3.6. A consequence relation on a set of formulas Fm is a relation � between
finite multisets of formulas and formulas obeying the following conditions for each finite
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multiset Γ � Δ � [ϕ,�] of formulas:12

• ϕ � ϕ. Reflexivity

• If Γ, � � ϕ and Δ � �, then Γ � Δ � ϕ. Cut

We add the prefix monotone if furthermore:

• If Γ � ϕ, then Γ � Δ � ϕ. Monotonicity

We add the prefix contractive if furthermore:

• If Γ � [�,�] � ϕ, then Γ � [�] � ϕ. Contraction

Furthermore, a consequence relation is Tarskian if it is both monotone and contractive.
A formula � such that � � is called a theorem of �.

We use some usual notational conventions, stated next to their set versions for easy
comparison:

in sets: in multisets:
ϕ1, ... , ϕn � ϕ stands for {ϕ1, ... , ϕn} � ϕ [ϕ1, ... , ϕn] � ϕ,

Γ,Δ � ϕ stands for Γ ∪ Δ � ϕ Γ � Δ � ϕ,
Γ, � � ϕ stands for Γ ∪ {�} � ϕ Γ � [�] � ϕ,

� ϕ stands for ∅ � ϕ [] � ϕ.
Remark 3.7. It is easy to see that there is a one–one correspondence between

finitary Tarskian consequence relations (introduced in Definition 2.1) and our monotone
contractive consequence relations. Moreover, all monotone single-conclusion multiset
consequence relations that arise out of closure operators are contractive [43].

Example 3.8. Recall that in Example 2.5 the third of our attempted definitions, the
relation�′, was actually ill-defined with sets; but the move to multisets avoids the problem.
Indeed the relation �Z defined at the end of Section 2 is clearly an example of a relation
which is non-monotone (e.g., � 0̄ but not 1̄ � 0̄) and non-contractive (e.g., 1̄ � 1̄ but not
1̄, 1̄ � 1̄). See Section 4 for more details and discussion on related logical systems.

Remark 3.9. There’s another well-known kind of motivation for non-monotonic
consequence, which is discussed at length, e.g., in [24].13 The goal of this kind of non-
monotonic consequence is to characterise defeasible inference, where a consequence may
obtain only in the absence of some defeaters—that is, some premises may have a conclusion
as a consequence, but an extension of the premise set by some further premises defeating
some of the existing premises. A famous example here concernsϕ := ‘Tweety is a penguin’,
� := ‘Tweety is a bird’, and � := ‘Tweety flies’. The inference from � to � is defeasibly
correct, but that from {ϕ,�} to � is obviously incorrect. So Monotonicity is clearly
inappropriate for an account of defeasible inference, but relevant consequence, in our
sense, also does not provide an especially good account of this. For instance, note that
whileϕ defeasibly implies�, and� defeasibly implies �, it is not the case thatϕ defeasibly
implies �, and this is just an instance of Cut.

Makinson [24, p. 5], to avoid this sort of problem, considers non-monotonic consequence
relations more appropriate to defeasible inference, given by the following two conditions:

12 Throughout, we’ll state conditions with formula variables as a convention for the universal
closure thereof.

13 Here sets are employed, rather than multisets, so we’ll follow that convention for the
remainder of this remark.
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• Γ � ϕ, for every ϕ ∈ Γ. Generalized Reflexivity

• If Γ,Δ � ϕ and Γ � � for every � ∈ Δ, then Γ � ϕ. Cumulative Cut

Cumulative Cut clearly follows from Cut. On the other hand, given our Definition
3.6, in contrast to Makinson’s approach with a more restrictive cut rule, Generalized

Reflexivity is clearly appropriate for monotone consequence relations only, as we will
see in the next lemma. One could consider a common generalization of both notions, but
doing so would lead us outside the scope of this paper.

With that remark out of the way, let us note that the following facts are immediate:

Lemma 3.10. Let � be a consequence relation. Then for each multiset of theorems Δ,
n � 1, formulas ϕ, �1, ... , �n, and finite multisets Δ1, ... ,Δn of formulas:

• If �1, ... , �n � ϕ and Δi � �i for each i � n, then Δ1, ... ,Δn � ϕ. Relevant Cut

• If Δ1,Δ � ϕ, then Δ1 � ϕ. Theorem Removal

Furthermore, � is monotone iff for each multiset Γ of formulas:

• Γ, ϕ � ϕ. Generalized Reflexivity

Let us note that any consequence relation can be seen as a set of consecutions. This
allows us to state and prove several interesting facts. The first one is obvious.

Lemma 3.11. Let X be a system of (monotone and/or contractive) consequence
relations. Then so is

⋂
X .

Next we prove that the relation �rAS is indeed an example of a consequence relation,
and furthermore that it is an especially simple example of such. This goes part of the
way towards justifying our abstract definition in terms of the concrete examples which
obey the Use Criterion.

Proposition 3.12. Let AS be an axiomatic system in Fm. Then �rAS is the least
consequence relation on Fm containing AS and �AS is the least monotone consequence
relation on Fm containing AS.

Proof. First we show that �rAS (resp. �AS) is a monotone consequence relation on
Fm. The Reflexivity for both �AS and �rAS is obvious as a tree with a single node
labeled by ϕ is a (relevant) tree-proof of ϕ from the premises [ϕ]. The Monotonicity

for �AS is also straightforward (clearly any tree-proof T from premises Γ is a tree-
proof from Γ � Δ for any Δ). Finally, we have to deal with Cut: suppose that we have
a (relevant) tree-proof T of ϕ from Γ � [�] and a (relevant) tree-proof S of � from Δ
and we have to find a (relevant) proof R of ϕ from Γ � Δ. First note that in the relevant
case � has to label a leaf l of T (as Γ � [�] ≤ ΛT ) and in the monotonic one we can,
without loss of generality, assume it at well (indeed otherwise already T would be the
proof of ϕ from Γ � Δ). Thus we can define R as the tree resulting from T by replacing
l by the tree S and note that for each formula � we have:

ΛR(�) =

{
ΛT (�) + ΛS(�), if � �= �,
ΛT (�) + ΛS(�) – 1, if � = �.

To show that R is indeed a tree-proof of ϕ in AS from Γ � Δ we consider a formula �
which is not an axiom and recall from the assumptions we know that:

ΛT (�) ≤ (Γ � [�])(�) and ΛS(�) ≤ Δ(�).
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Thus for � �= � we get:

ΛR(�) = ΛT (�) + ΛS(�) ≤ (Γ � [�])(�) + Δ(�) = Γ(�) + Δ(�) = (Γ � Δ)(�),

and for � = � we get:

ΛR(�) = ΛT (�) + ΛS(�) – 1 ≤ (Γ � [�])(�) + Δ(�) – 1

= Γ(�) + 1 + Δ(�) – 1 = (Γ � Δ)(�).

The proof that R is relevant if T and S are is analogous; we only observe that in this
case we have inequalities converse to those above even for the axioms.

The fact that AS ⊆ �(r)
AS is obvious. In order to show the minimality condition, let

us focus on the relevant case (the monotonic one is just its simpler variant). Consider
any consequence relation � such that AS ⊆ �; we need to show that �rAS ⊆�. Assume
that we have a relevant tree-proof T of ϕ from Γ; for each node n, let ϕn denote the
formula labeling it and let Γn denote the multiset of formulas labeling the leaves of the
subtree of T containing the node n and all its predecessors.

We prove by induction over the tree that Γn � ϕn (in the monotone case we prove
directly that Γ � ϕn). For n being a leaf we have Γn = [ϕn ] and so the claim follows
by the Reflexivity of �. Let [n1, ... , nk] be the multiset of immediate predecessors of
n; then we know that ϕn1 , ... , ϕnk � ϕn ∈ AS and thus also ϕn1 , ... , ϕnk � ϕn (because
AS ⊆ �). By the induction hypothesis we have Γni � ϕni for each i � k and thus by
the Relevant Cut we obtain Γn1 , ... ,Γnk � ϕn . Observe that Γn = Γn1 � Γn2 ··· � Γnk ,
which completes the proof of this part.

To complete the whole proof it suffices to observe that for the root r we have
Γr = ΛT thus ΛT � ϕ. Because T is relevant proof we know that there is a finite
multiset Δ of axioms of AS such that ΛT = Γ � Δ. From the fact that AS ⊆ � we
know that Δ consists of theorems of �, and therefore by Theorem Removal we know
that Γ � ϕ.

So we can obtain the least (relevant) consequence relation for AS by taking that
generated by its (relevant) tree proofs as defined above, and these were defined so
as to guarantee observation of the Use Criterion. So while the abstract consequence
relations we have defined simply remove monotonicity and a form of contraction from
the Tarskian case, nonetheless this relatively minor adaptation is adequate to capture
the behaviour of the concrete cases in which we’ve been most interested. Indeed, we
can say a bit more to justify this connection.

Definition 3.13. Let � be a consequence relation. We say that an axiomatic system AS
is a (relevant) presentation of � whenever � = �(r)

AS .

Clearly any consequence relation � can be seen as an axiomatic system and so due
to Proposition 3.12 it is its own relevant presentation (i.e., � = �r�); if furthermore � is
monotone, then it is its own presentation (� = ��). Therefore we can obtain a variant
of Łoś–Suszko theorem.

Theorem 3.14 (Łoś–Suszko). Every consequence relation � on Fm has a relevant
presentation. Every monotone consequence relation � on Fm has a presentation.

It is worth noting that the previous theorem, perhaps surprisingly, implies that every
monotone consequence relation has a relevant presentation. However, we have seen
already in Remark 2.2, that we could have �AS = �rAS which implies �rAS could be a
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monotone consequence relation: in general, relevance of proof is a property that holds
regardless of one’s choice of axioms and inference rules. If one chooses irrelevant
axioms and rules, then making the proofs ‘relevant’ in our sense won’t do you much
good as far as avoiding relevance is concerned.14 The next two propositions (with
obvious proofs) explicate this phenomenon.

Proposition 3.15. Let AS be an axiomatic system. Then �rAS is a monotone
consequence relation iff

�AS = �rAS.

Proposition 3.16. Let � be a consequence relation. Then for the least monotone
consequence relation �m containing �, known as the monotonic companion of �, we
have:

Γ �m ϕ iff Δ � ϕ for some Δ � Γ.

Furthermore, any relevant presentation of � is a presentation of �m.

§4. An example: BCI and some related systems. Let’s take some time to consider
some concrete examples of relevant consequence relations over some familiar logics in
the vicinity of the relevant logic family. We’ve seen a bit of Abelian logic as an example,
adding some justification to using multisets, but there are a number of better known
systems we can study using these tools. Let’s start with the implication fragment of the
well-known substructural logic BCI:

(I) ϕ → ϕ,
(B) (ϕ → �) → ((� → ϕ) → (� → �)),
(C) (ϕ → (� → �)) → (� → (ϕ → �)),
(mp) ϕ → �,ϕ � �.

This is a sublogic of very many systems, including the relevant logic R, about which
we’ll have more to say shortly, as well as fuzzy logics, intuitionistic logic, and others.
It’s easy to extend this system by an intensional conjunction (or fusion) connective ◦,
with the additional axioms:

(Res1) ((ϕ ◦ �) → �) → (ϕ → (� → �)),
(Res2) (ϕ → (� → �)) → ((ϕ ◦ �) → �).

In general, we’ll just refer to BCI, and let context determine which connectives
are around (for now, it’s just → and ◦). First off, it’s an obvious, nice feature of the
definition of relevant tree proof that we can obtain a proof of a deduction-like theorem
for the internal consequence relation of BCI and some relevant logics expanding it (as
we’ll see, there are some problems that come up for considering the standard relevant
systems in their full vocabularies, but we can give this argument for at least some of
the salient systems).

Proposition 4.1. Γ, ϕ �rBCI � ⇐⇒ Γ �rBCI ϕ → �.

14 A related point was made by Bennett [7] in response to Anderson and Belnap: he noted that
the Use Criterion by itself does not ensure relevance as you can just add further axioms and
rules to obtain all the irrelevant consequences you like. It is, thus, perhaps not surprising
that our approach, reliant on the Use Criterion as it is, has the same property.
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Proof. The proof is straightforward, and is simplified by the fact that if Γ �BCI ϕ and
Δ �BCI � then Γ,Δ �rBCI ϕ ◦ � (this is immediate given (Res1)). We’ll just sketch the
proof and leave it to the reader to fill in details. From right to left is trivial, just relying
on (mp), so for the converse, we’ll proceed by induction on the complexity of proofs,
supposing that Γ, ϕ �rBCI �. The only rule is (mp), and so (disregarding some simple
cases such as those where Γ = [] andϕ = �) the last step of such a derivation must be an
application of this rule, and so there are some submultisets Γ1,Γ2 of Γ � [ϕ] such that
one of these entails� → � and the other�. Suppose Γ1 �rBCI � → � and Γ2 �rBCI �. The
formulaϕmay occur in either Γ1 or Γ2, but the particular occurrence highlighted in the
presupposition must have a unique occurrence in one of them. So depending on where
it occurs, we have either that Γ′

1 �rBCI ϕ → (� → �) or that Γ′
2 �rBCI ϕ → �, where Γ′

i =
Γi –̇ [ϕ]. First, if Γ′

1 �rBCI ϕ → (� → �) then, by (C), Γ′
1 �rBCI � → (ϕ → �) follows,

and thus Γ �rBCI ϕ → � follows by an application of (mp). Second, if Γ′
2 �rBCI ϕ → �

holds, then it follows that Γ = Γ′
2 � Γ1 �rBCI (� → �) ◦ (ϕ → �), and it can easily be

verified that (� → �) ◦ (ϕ → �) �rBCI ϕ → � holds, and thus Γ �rBCI ϕ → � holds, as
desired.

This proposition indicates that, in at least some cases, we’re getting what we want:
that is, that our definition results in a match between the external consequence relation
(of the kind we’ve defined) and the internal consequence relation, given by provable
implication in the logic. BCI is a particularly nice logic, and this result extends to such
extensions as the ‘intensional’ fragment of R (including implication and multiplicative
conjunction and disjunction). However, there are limitations, related to our use of
multisets rather than some more discerning kind of structure. First we’ll note that the
above result fails in some logics weaker than BCI, and then go on to discuss issues with
incorporating the lattice conjunction of R, which is usually (for reasons we’ll mention)
formulated as a meta-rule.

For the first point, note about the inclusion of the permutation axiom (C) that
it ensures that (� ◦ (ϕ ◦ �)) → ((� ◦ ϕ) ◦ �) is derivable in BCI. This, along with
the prefixing axiom (B), ensures that ◦ is associative (hence showing that BCI is an
extension of the associative Lambek calculus, with the left division as a notational
variant of the right). Note, however, that ◦ may not be associative in the case of logics
without (C), and that this has a substantial consequence for the deduction theorem just
proved. Consider the relevant logic T→,◦, the implication/fusion fragment of T, which
can be axiomatised by replacing (C) with the suffixing axiom (B′) and the contraction
axiom (W):

(B′) (ϕ → �) → ((� → �) → (ϕ → �)).
(W) (ϕ → (ϕ → �)) → (ϕ → �).

The failure of the associativity of ◦ gives rise, in T→,◦, to a remarkable failure of
the above deduction-like theorem, given our definitions, as we can see with a simple
matrix argument. We have one direction immediately, given the inclusion of (mp), but
the converse direction fails.

Proposition 4.2. ϕ → � �r
T→,◦ (ϕ ◦ �) → (� ◦ �) and �T→,◦ (ϕ → �) → ((ϕ ◦

�) → (� ◦ �)).
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Proof. The positive part is straightforward, so we’ll just present the matrix to show
the negative part: the desired valuation has ϕ �→ 2, � �→ 0, � �→ 1, where ϕ is true on
a valuation v just when v(ϕ) = 3.15

0

21

3 → 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 1 1 3 3
3 0 1 0 3

◦ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 1 2 3
3 0 1 2 3

This fact also holds for E→,◦, which retains a (very) weak form of permutation but, like
T→,◦, doesn’t validate ϕ ◦ (� ◦ �) → (ϕ ◦ �) ◦ � and, hence, is not fully associative.
However, the famous relevant logic R→,◦, which extends BCI by (W) does enjoy
something like the above deduction-like theorem (and note, BCI is the implication-
fusion fragment of the contraction-free relevant system RW).

Among the usual relevant logics studied in [1, 38], R is the upper limit of deductive
strength, and most of the other systems do not have (C), so among the usual family of
relevant logics, �r only ‘externalises’ the internal consequence relation (that expressed
by the provability of a formula of the form ϕ1 ◦ ··· ◦ ϕn → �) of a handful of (famous,
well-studied) systems. For the others, it seems that even the use of multisets does not
bring in enough structure, and that a move to sequences or even trees (as the data types
of premises) is necessary. This is a natural avenue for future research, but we leave it
aside, focusing on the simple case with multisets.

On to the second point, in order to add a lattice conjunction ∧ to the relevant
systems of [1, 38], it’s not adequate just to use axioms and inference rules, as we’ve
done so far. In particular, these systems have it that if ϕ and � are both derivable from
no premises, then ϕ ∧ � is so derivable. Importantly, this fact is not reflected in an
axiom, such as the usual ϕ → (� → (ϕ ∧ �)), as this delivers ϕ → (� → ϕ) in that
context, the avoidance of which is one of the main aims of the relevant enterprise (and
the fact that (ϕ ∧ �) → (ϕ ∧ �) is derivable does us no good at all). Similarly, using
an inference rule won’t help, as then, given Cut, if we had ϕ,� � ϕ ∧ �, we’d have
ϕ ∧ � �r ϕ and thus ϕ,� �r ϕ, buying us back all the monotonicity we have worked
to avoid. What we need to add will have the effect of what Smiley [41] called a rule of
proof : something of the form “if � ϕ1, ... ,� ϕn then � �”. This is the form of a simple
kind of metarule, with zero premises, and perhaps the most famous example is the
necessitation rule of the global consequence relations of modal logics. The usual rule
of adjunction in relevant logics is given in the form “if �R ϕ and �R �, then �R ϕ ∧ �”,
and as mentioned this is for a good reason. In some relevant logics much weaker than
R, such as those studied in [38], we need to add further rules of proof (such as rule
versions of prefixing, suffixing, and contraposition).

So, the full relevant systems do not fall under the definition of “axiom system” we
gave before without some tweaking—for instance, by taking all the theorems of some

15 This matrix was found using Slaney’s MaGIC. For information, and to download the software,
see http://users.cecs.anu.edu.au/˜jks/magic.html.
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other presentation of R and making that the set of axioms and using the rule (mp) we
could do it (though that smells a little of cheating, it is an option).16 The point of this
discussion of limitations is to suggest further avenues for improving on the proposal we
give here, and motivates the claim that doing so is desirable to capture a wider range
of relevant logics (with all their connectives). This task we leave for another occasion,
focusing on the simpler setting of multiset-consequence.

§5. Symmetric relevant consequence relations. With our adaptation of Tarskian
consequence settled, a natural next step is toward multiple conclusion (or “Scott”)
consequence relations. As mentioned, the approach we’ll take here is inspired by
Bolzano, employing a ‘conjunctive’ reading of the conclusion.17 This is simple, and in
keeping with a common approach (for instance, in [19, 22]), so we’ll adopt it, leaving
investigations into other options for future work.

The rough picture we’re trying to capture is that a collection of premises should
have a collection of conclusions as consequences just in case each conclusion is a
consequence of some of the premises (enforcing the relevance constraints we have
taken on board in the single conclusion case, so that each premise is used in order to
obtain some conclusion or other). This is useful as a heuristic but it doesn’t pin down
any particular formal representation as yet. One choice point concerns when to take a
multiset of premises to have the empty (multi)set of conclusions as a consequence. In
the disjunctive reading, familiar from Gentzen systems, an empty conclusion expresses
the falsum, but this seems inappropriate for the conjunctive reading. Should we take it
that only the empty (multi)set of formulas has itself as a consequence? This approach
has the advantage of simplicity, but it is quite out of step with the usual, monotone,
case. In that case, if a set of premises has the empty set as a consequence, then it also has
every theorem as a consequence—this follows immediately from the usual definition.

16 One more system in the vicinity worth mentioning is R-mingle, or RM. This can be obtained
from R by adding the axiom:

(M) ϕ → (ϕ → ϕ).

Adding this has the effect of making it the case that ϕ, ϕ �rRM→,◦ ϕ is valid, in effect allowing
us to multiply occurrences of premises; combined with (W), allowing us to prove ϕ �r ϕ ◦ ϕ,
and so allowing us to contract occurrences of premises, this ‘undoes’ the multiset effect,
leaving us with, in effect, sets as the data type. This is part of a wider point, that particular
axioms and rules will have the effect of collapsing distinctions our setup has been fine-tuned to
draw (as we’ve also seen with addingϕ,� � ϕ ∧ � to systems, and buying back monotonicity
that way). This just highlights the point, mentioned earlier, that the use criterion does not
pin down systems which are ‘relevant’ in any especially rich sense, but rather just tells you
when a derivation in a system is ‘relevant’, even if the system is itself irrelevant in some other
senses.

17 Note that this feature of our approach causes it to differ from another approach to
multiple conclusion in a relevant setting, taking the premises to be combined in accordance
with multiplicative conjunction ◦ and the conclusions in accordance with multiplicative
disjunction +, as in [17, p. 221]. One of the issues with this approach in general is that while
in some relevant logics, such as R, + is definable, in other systems where no such definition
is possible there is no general consensus on what the properties of + ought to be (though see
[36] for a proof theoretic approach).
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Without monotonicity, however, this is not a consequence of the definition, unless we
build it in explicitly. To a certain extent, the choice here is arbitrary, but so far we have
worked with consequence relation notions that collapse into the Tarskian versions
when we reimpose the Tarskian conditions: taking this on board as a desideratum
suggests that the treatment of empty conclusions should be similar.

Let’s get to the definitions, starting from a relatively simple case. If � is a monotone
and contractive consequence relation, we can define a symmetrization �s in a simple
way, letting Γ � [�1, ... , �n] be a finite multiset of formulas:

Γ �s [�1, ... , �n], iff Γ � �i for each i � n.
Note that this definition has “right-side” contraction built in; indeed we obviously
have:18

• If Γ �s Δ, ϕ, ϕ, then Γ �s Δ, ϕ. r-Contraction

(Clearly, we do not have right-side monotony, just in virtue of the conjunctive reading
of the conclusions. This holds even in the standard case.)

Removing contraction but keeping monotony makes things a bit more complicated,
but still rather intuitive. The basic idea is to pay attention to what parts of Γ are needed
to derive each �i : so we ‘partition’ Γ into the multiset union of a collection Γ1, ... ,Γi
of multisets, requiring that each �i is such that Γi � �i holds for some Γi . So we don’t
build in contraction, as we’re paying attention to how often each premise among Γ
is used, even when multiple copies may be used to obtain different �i ’s among the
conclusions. Stated formally:

Γ �s [�1, ... , �n], iff for each i � n there is Γi ≤ Γ such that Γi � �i and

Γ1 � ··· � Γn ≤ Γ.

In full generality we will obviously want the relation of equality instead of
submultisethood to obtain between the set of premises the multiset union of its subsets
needed to prove each of the conclusions, note however that such a definition would
entail that Γ �s [] holds iff Γ = []. As mentioned earlier, however, this is out of step
with the usual, Tarskian, case. So we’ll build in the usual behaviour (that some premises
Γ have [] as a consequence just in case Γ already has every theorem as a consequence).
These considerations give rise to the following definition, for n ≥ 1:

Γ �s [�1, ... , �n], iff for each i � n there is Γi ≤ Γ such that Γi � �i and

Γ1 � ··· � Γn = Γ,

Γ �s [], iff Γ � � for each theorem � of � .
It is easy to see that by adding the monotony (and contraction), this general definition
gives rise to the more standard one with which we started. With our intuitions fixed and

18 We’ll adopt analogous notational conventions erasing � symbols and square brackets from
multisets on the right, we will however keep square brackets whenever the right-hand side is
a finite (potentially one-element or even empty) multiset given by list (in order to stress the
multi-conclusion nature of the involved symmetric consequence relation).
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formally expressed, let us formulate the essential properties of symmetric consequence
relations.19

Definition 5.1. A symmetric consequence relation on a set of formulas Fm is a binary
relation � on finite multisets of formulas obeying the following conditions for each finite
multiset Γ � Δ � Ψ of formulas:

• Γ � Γ. Reflexivity

• If Γ � Δ and Δ � Ψ, then Γ � Ψ. Transitivity

• If Γ � Δ, then Γ,Ψ � Δ,Ψ. Compatibility

We add the prefix monotone if furthermore:

• If Γ � Δ, then Γ,Ψ � Δ. Monotonicity

We add the prefix contractive if furthermore:

• If Γ, �, � � Δ, then Γ, � � Δ. Contraction

• If Γ � Δ, �, �, then Γ � Δ, �. r-Contraction

Let us define the asymmetric variant �a of a symmetric consequence relation � as
follows:

Γ �a ϕ, iff Γ � [ϕ].

With this, we can prove the following proposition, showing that the symmetric and
asymmetric variants of consequence relations interact as one might hope.

Proposition 5.2.

(i) If � is a (monotone and/or contractive) consequence relation, then �s is
(monotone and/or contractive) symmetric consequence relation and

� = (�s)a.
(ii) If � is a (monotone and/or contractive) symmetric consequence relation, then

the relation �a is a (monotone and/or contractive) consequence relation and

� ⊇ (�a)s .
(iii) If � is a monotone and contractive symmetric consequence relation, then

� = (�a)s .

19 For an example of the kind of multiple conclusion consequences we obtain with this
definition, consider the following, which hold in BCI:

[ϕ, ϕ, �, � → �,ϕ → (ϕ → �)] �sBCI [�,�] as [�, � → �] �rBCI � and

[ϕ, ϕ, ϕ → (ϕ → �)] �rBCI �.

In this case, we can partition the premise multiset into two in such a way that one partition
allows us to derive one copy of �, and another allows us to derive the other copy. As an
example of a non-consequence, see the following:

[p, q, s, p → q] ��sBCI [q, q],

where we have an additional, useless, s floating around in the premises. This non-consequence
is a special case of a general way for multiple conclusion consequences to fail, which we
investigate further in Example 5.4.

https://doi.org/10.1017/S1755020323000205 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000205


782 GUILLERMO BADIA ET AL.

Proof. (i): In the proof of the first part of (i), only transitivity poses a potential
problem: let us assume that Γ �s [�1, ... , �k] and [�1, ... , �k] �s [�1, ... , �n] and show
that Γ �s [�1, ... , �n].

Let us first deal with the case where k = 0: if n = 0 as well then the claim is trivial.
Otherwise from the second assumption we know that the �is are theorems of � and
so, due to the first assumption, Γ � �1 holds and thus fixing Γ1 = Γ and Γi+1 = [] for
each i < n, we obtain the desired partition of Γ, which completes the proof.

Next assume that k > 0 and n = 0: then from the second assumption we know
that �1, ... , �k � � holds for each theorem � of � and, due to the first assumption,
there are multisets Γ1, ... ,Γk such that Γi � �i , and Γ1 � ··· � Γk = Γ. Therefore due
to Relevant Cut we know that Γ � � as required.

The case where k > 0 and n > 0 is only a bit more complex: we know that there
are multisets Γ1, ... ,Γk and Δ1, ... ,Δn such that Γ1 � ··· � Γk = Γ and Δ1 � ··· � Δn =
[�1, ... , �k] and for each i � k and j � n we have Γi � �i and Δj � �j . Without loss
of generality, we can assume that there is a non-decreasing sequence 0 = s1 � s2 �
··· � sk < k of integers and a sequence n1, ... , nk of non-negative integers such that
Δj = [�sj+1, ... , �sj+nj ] (note that this includes the possibility that n = 0, i.e., Δj = []).
To complete the proof it suffices to set Γj = Γsj+1 � ··· � Γsj+nj .

The monotone and/or contractive conditions are easily checked and the rest of the
proof of the first claim is straightforward, so we have that:

Γ � ϕ, iff Γ �s [ϕ] iff Γ (�s)a ϕ.

(ii): For the first part of the proof we will show, on the assumption that � is a
symmetric consequence relation, that �a satisfies Cut and Reflexivity. The second
part is immediate, since ϕ � ϕ holds by the hypothesis on �. So assume that Γ, � �a ϕ
and Δ �a �, in order to show that Γ,Δ �a ϕ or, equivalently, that Γ,Δ � ϕ. We have
that Γ, � � ϕ and Δ � �, and by Compatibility, it follows that Γ,Δ � Γ, � and, hence,
one application of Transitivity gives that Γ,Δ � ϕ. Checking Monotonicity and
Contraction are also simple exercises left to the reader.

Finally, we verify that � ⊇ (�a)s . By definition, Γ (�a)s [�1, ... , �n] only if
for each i � n there is Γi ≤ Γ such that Γi �a �i and Γ1 � ··· � Γn = Γ. The latter,
in turn, implies that for each such Γi , we have that Γi � �i . Now, given Γ2 � �2,
by Compatibility, we have that �1,Γ2 � [�1, �2], and similarly since Γ1 � [�1], we
may obtain that Γ1,Γ2 � �1,Γ2 and hence, by Transitivity, we get Γ1,Γ2 � [�1, �2].
Proceeding in this manner, it follows that Γ1 � ··· � Γn = Γ � [�1, ... , �n], which is
what we wanted.

(iii): In the presence of monotonicity and contraction, our definition of the �s
relation is the one at the beginning of the section. We can see that in this case, �i � �i
by Reflexivity, and then [�1, ... , �n] � [�i ] by Monotonicity. Hence, Γ � [�1, ... , �n]
implies that Γ � [�i ] by Transitivity, so we have that for each i � n, Γ �a �i and
hence, Γ (�a)s [�1, ... , �n] as desired.

Let us consider two examples of different ways of symmetrizing an asymmetric
consequence relation, and ways these options can diverge. In so doing, we’ll show that
the converse inclusion of point (ii) of the previous proposition can fail.

Example 5.3. We stated point (ii) in the previous proposition as an inclusion rather
than an equality, and we can give a simple counterexample to the converse inclusion.
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Consider a singleton set of formulas Fm = {x} and a relation � on multisets on Fm
defined Γ � Δ iff Γ = Δ or Γ(x) > Δ(x) � 2. Clearly:

• � is a symmetric consequence relation (note that � is not monotone as x, x � [x]).
• Γ �a x iff Γ = [x].
• We do not have x, x, x (�a)s [x, x], and thus (�a)s and � are distinct

symmetrizations of �a .

This shows the principle of the thing, but we can give a more natural example.

Example 5.4. Recall the consequence relation �Z , given in Example 3.8, and define
an alternate symmetrization � as follows (recall that we treat the empty sum as 0):

ϕ1, ... , ϕm � [�1, ... , �n] iff Z � ϕ1 + ϕ2 + ··· + ϕm � �1 + �2 + ··· + �n.

It is easy to see that �a = �Z but � �= �sZ and so � �= (�a)s . Indeed we have � [1, – 1],
but since �Z – 1, it follows that �sZ [1, – 1].

Another example could be built using the logic BCI expanded by conjunction ◦ and its
unit, the truth constant t described by axioms ϕ ◦ t → ϕ and ϕ → t ◦ ϕ: let us define an
alternate symmetrization � for it as (treating the empty conjunction as constant t):

ϕ1, ... , ϕm � [�1, ... , �n], iff �BCI ϕ1 ◦ ϕ2 ◦ ··· ◦ ϕm → �1 ◦ �2 ◦ ··· ◦ �n.
As in the previous case, it is easy to see that �a = �BCI (thanks to Proposition 4.1)
but � �= �sBCI and so � �= (�a)s . Indeed we have ϕ ◦ ϕ � [ϕ,ϕ] but if �BCI ϕ we have
ϕ ◦ ϕ �sBCI [ϕ,ϕ].

Let us consider some additional properties of symmetric relations between finite
multisets and their interplay with the defining conditions of symmetric consequence
relations. The following are some natural candidates:

• Γ,Δ � Γ. Generalized Reflexivity

• Γ � []. Theorem Reflexivity

• If Γ � Δ and Δ,Ψ � Φ, then Γ,Ψ � Φ. Multi-Cut

• If [] � Δ and Δ,Ψ � Φ, then Ψ � Φ. Theorem Removal

The proofs of the following are straightforward, and left to the enthusiastic reader.

Proposition 5.5. Let � be a binary relation on finite multisets of formulas.

(i) Reflexivity and Monotonicity entail Generalized Reflexivity.

(ii) Generalized Reflexivity and Transitivity entail Monotonicity.

(iii) Theorem Reflexivity and Compatibility entail Generalized Reflexivity.

Thus in particular a relevant symmetric consequence relation is monotone iff it satisfies
any of the following three conditions: Monotonicity, Generalized Reflexivity, or
Theorem Reflexivity.

Proposition 5.6. Let � be a binary relation on finite multisets of formulas.

(i) Multi-Cut entails Transitivity and Theorem Removal.

(ii) Multi-Cut and Reflexivity entail Compatibility.

(iii) Transitivity and Compatibility entail Multi-Cut.

Thus in particular any relevant symmetric consequence relation enjoys Multi-Cut and
Theorem Removal.
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§6. Derivations in the symmetric case. In the asymmetric case we started from the
concrete, with the notion of a (relevant) tree proof, and moved to the abstract: in
the symmetric case, we’re in the process of doing the opposite. So far we’ve fixed the
abstract notion of symmetric consequence, building on the asymmetric one, but that
leaves the natural question of how to understand derivations of multiple conclusions
from multiple premises, in our sense. To that end, let us fix some definitions and infer
some immediate results indicating that our abstract notion of symmetric consequence
captures an intuitive concrete one (relying, as always, on our assumptions of finitude).

Definition 6.1. A symmetric axiomatic system AS in Fm is a set of Fm-consecutions of
the form Γ � Δ, where Γ,Δ are finite multisets of formulas—i.e., AS is a set of multiple
conclusion consecutions. As in the asymmetric case, if Γ = [] then the consecution Γ � Δ
is an axiom, and otherwise it is a rule of inference.

Definition 6.2 (Finitary derivation). Let AS be a symmetric axiomatic system in Fm.
A derivation of Δ from Γ in AS is a finite sequence Γ = Γ1, ... ,Γn ≥ Δ of finite multisets
of formulas such that for every 1 < i � n, there is a rule Ψ � Ψ′ ∈ AS, such that

Ψ ≤ Γi and Γi = (Γi–1 –̇ Ψ) � Ψ′.

A derivation of Δ is relevant if Γn = Δ. We say that Δ is (relevantly) derivable from Γ in
AS, and write Γ �(r)

AS Δ, if there is a (relevant) derivation of Δ from Γ in AS.

The following lemma supports the adequacy of the given definition.

Lemma 6.3. Let AS be a symmetric axiomatic system in Fm. Then �rAS is the least
symmetric consequence relation containing AS and �AS is the least monotone symmetric
consequence relation containing AS.

Proof. Now we proceed to check all the properties of (monotone) symmetric
consequence relations.

Reflexivity: This is clear from the sequence 〈Γ1〉 where Γ1 = Γ.
Compatibility: Given a (relevant) derivation P = 〈Γ1, ... ,Γn〉 of Δ from Γ in AS,

it is easy to observe that the sequence P′ = 〈Γ1 � Π, ... ,Γn � Π〉 is
a derivation of Δ � Π from Γ � Π (thanks to the fact that in our
notion of proof, we can apply rules in an arbitrary context).

Transitivity: The relevant case is obvious: one must simply concatenate the
relevant derivations of Δ from Γ and of Ψ from Δ (with having
Δ there only once in the middle). The monotone case is a bit trickier
as we have to extend all elements of the latter derivation by the
formulas in the last step of the former derivation which are not in Δ
(so the last step of the former derivation is the same as the first step
of the latter one).

Monotonicity: This is a simple exercise left to the reader.

Now for the proof that�AS is the least such relation. ObviouslyAS ⊆ �rAS . Consider
a symmetric consequence relation� such thatAS ⊆ �, and we show that then�rAS ⊆ �.
Assume that Γ �rAS Δ, i.e., there is a relevant derivation Γ1, ... ,Γn of Δ from Γ in AS.
By induction, we can show that Γ � Γi , and hence in particular Γ � Δ. The base
case is settled with an appeal to Reflexivity. As to the induction step: we know
that Γi+1 = (Γi –̇ Ψ) � Ψ′ for some rule Ψ � Ψ′ ∈ AS ⊆ �. Thus Ψ � Ψ′, and so
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by Compatibility also Ψ � (Γi –̇ Ψ) � Ψ′ � (Γi –̇ Ψ), i.e., Γi � Γi+1. As due to the
induction assumption we know that Γ � Γi , an application of Transitivity completes
the proof. The monotone case is analogous: as we only know that Γn ≤ Δ we only
prove that Γ � Γn; here, however, the monotonicity yields the required result.

Example 6.4. Recall BCI from Section 4. Let’s consider some provable and unprovable
symmetric consecutions in this logic. As a very simple example, note that:

ϕ → �,ϕ → �, ϕ, ϕ � [ϕ,�, �]

as while we can obtain asymmetric proofs for ϕ → �,ϕ � � and ϕ → �, ϕ � �, we
cannot find any further formulas from which to infer the ϕ occurring among the premises.
However, this is the case if we take:

ϕ → �,ϕ → �, ϕ, ϕ, ϕ � [ϕ,�, �].

Furthermore, the relevance constraints mean that, in general, ϕ,� �r [ϕ]. Interestingly,
while in the asymmetric case we have ϕ �r ϕ → ϕ, when we go symmetric we obtain
something related, namely,ϕ �r [ϕ → ϕ,ϕ], for we can obtain, in the asymmetric setting,
�r ϕ → ϕ and ϕ �r ϕ. This is related to the fact that, if we add ◦, along with a constant
formula t expressing [] (i.e., something like a left identity in the sense of [17]) to the
language, then ϕ → (ϕ → ϕ) is not a valid implication, but we do have ϕ → ((ϕ →
ϕ) ◦ ϕ), as t → (ϕ → ϕ) and ϕ → ϕ are both valid, and thus so is ϕ → (t ◦ ϕ) →
((ϕ → ϕ) ◦ ϕ).

The next propositions spell out the relation between derivations and tree-proofs.

Proposition 6.5. Let AS be a single-conclusion axiomatic system, Γ �rAS Δ, and
ϕ ∈ Δ. Then there are multisets of formulas Γϕ and Γr such that Γϕ � Γr = Γ, Γϕ �rAS [ϕ]
and Γr �rAS Δ –̇ [ϕ].

Proof. Let Γ1, ... ,Γn be the assumed relevant derivation of Δ from Γ inAS. For each
i � n, let Γi = [�i1, ... , �

i
ki

] and note that without loss of generality we can assume
that the rule used in the ith step of the proof is [�i1, ... , �

i
pi

] � �i+1
ci

for some pi � ki
and ci � ki+1. Also note that ki+1 = ki – pi + 1 and there is a bijection f between
Γi+1 –̇ [�i+1

ci
] and Γi –̇ [�i1, ... , �

i
pi

] such that �i+1
j = �i

f(j) whenever ci �= j � ki+1.
We construct the labeled graph G with nodes N = {〈i, j〉 | i � n and j � ki}, where
�ij is the label of 〈i, j〉, and edges only between the following nodes:

• rule edges: 〈i, k〉 and 〈i + 1, ci 〉 for each k � pi ;
• non-rule edges: 〈i, f(j)〉 and 〈i + 1, j〉 for j �= ci .

It is easy to see that G is a forest (a disjoint union of trees). Let t be the subtree of
G with root labeled by ϕ (if there are more such nodes, choose any), and let Γϕ be
the multiset of all labels of leaves in t which are not axioms. Then clearly Γϕ ≤ Γ and
t is almost a relevant tree-proof of ϕ from Γϕ ; all we have to do is to collapse nodes
connected by non-rule edges.

Finally, let us by ti denote the multiset of labels occurring on the ith level of t
(assuming that leaves are on the 1st level and root on the nth one) and set Γti = Γ –̇ ti .
Observe that Γt1, ... ,Γ

t
n is almost a proof of Γtn = Γn –̇ [ϕ] from Γt1: we only need to

remove each Γti which equals its predecessor. Defining Γr = Γt1 and observing that
Γr = Γ –̇ Γϕ and Δ –̇ [ϕ] = Γtn completes the proof.
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Proposition 6.6. Let � be a consequence relation (n.b. not a symmetric consequence
relation) with an axiomatic system AS. Then AS is a single-conclusion axiomatic system
for the symmetric consequence �s .

Proof. As clearly AS ⊆ �s , it suffices to show that Γ �s Δ implies Γ �rAS Δ, which is
easy to see.

Proposition 6.7. A symmetric consequence relation � has a single-conclusion
axiomatic system iff � = (�a)s . Therefore monotone and contractive consequence
relations always have single-conclusion axiomatic presentations.

Proof. Assume that � has a single-conclusion axiomatic system; thanks to claim (ii)
of Proposition 5.2 we only have to prove that� ⊆ (�a)s . Assume first that Γ � [] and we
have to prove that Γ �a � for any theorem � of�a . As � is a theorem of�a , then we have
� [�] and so Transitivity completes the proof. Second, assume that Γ � [�1, ... , �n],
and by n uses of Proposition 6.5 we obtain for each i � n a multiset Γi ≤ Γ such that
Γi �a �i and Γ1 � ··· � Γn = Γ; thus demonstrating that Γ (�a)s [�1, ... , �n].

The converse direction follows from the previous proposition and the final claims
from the last part of Proposition 5.2.

Using this proposition we know that the symmetric versions of Abelian logic and
logic BCI introduced in Example 5.4 have no single-conclusion axiomatic systems.

§7. Theories. Now that we have pictures of (relevant) symmetric consequence in
abstract and concrete terms, the question of deductive closure, and the properties of
theories is quite natural. The standard definition of this concept in the Tarskian setting
is well known, but there are some complications which come up in our case. Let us
work our way towards a natural definition, and show that it has some properties.

Recall that we work with a fixed set of formulas Fm. In the classical Tarskian
setting (defined over potentially infinite sets of formulas, cf. Remark 2.2), a �-theory
is a deductively closed set of formulas (i.e., a set of formulas which contains all its
consequences) and the set of all�-theories forms a closure system on the set of formulas
which fully determines both the consequence relation and its symmetrization:

• Γ � ϕ iff ϕ belongs to all �-theories containing Γ as a subset.
• Γ � Δ iff Δ is a subset of the �-theory generated by Γ (i.e., the set {ϕ | Γ � ϕ}).

The problem with this approach for our setting is that both conditions clearly entail
the Monotonicity condition. Further problems are caused by restriction to finite sets
and by working with multisets rather than sets. Our guiding idea will be to see theories
as particular sets of finite multisets of formulas retaining as many nice properties of the
Tarskian case as possible [12].

As we have shown in Section 6, not every symmetric consequence relation arises
from an asymmetric one; therefore we define all the notions in this section for the
symmetric case, which can be retold for asymmetric relations via their symmetrizations.
Let us start by observing that due to Reflexivity and Transitivity, every symmetric
consequence relation � is a preorder on the set of finite multisets of formulas and thus
we can speak about �-upsets, i.e., sets T such that if Γ ∈ T and Γ � Δ, then Δ ∈ T .
We say that a �-upset T is principal if there is a finite multiset of formulas Γ such that
T = {Δ | Γ � Δ}.
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Let us now define the notion of �-theory which will correspond to the notion of
finitely generated theory in the Tarskian setting; we will refrain from defining a general
notion of �-theory as it would be alien to our needs here.

Definition 7.1. Let � be a symmetric consequence relation. A �-theory is a principal �-
upset on the P#

fin(Fm) formulas, i.e., a set Th�(Γ) = {Δ | Γ � Δ} for some finite multiset
Γ. Let us by Th(�) denote the set of all �-theories, respectively.

We will denote theories by uppercase Latin letters T, S, R, etc. Also if � is a
consequence relation, we speak about�-theories instead of�s -theories and analogously
for all upcoming notions in this section.

Obviously, Th�(Γ) is the least theory containing Γ (this is an easy exercise left to the
reader).20 Furthermore, our notion of theory intuitively captures the idea that theories
are deductively closed; it’s just that the objects of deductive interest are themselves
multisets of formulas, and not just formulas, unlike in the standard setting. Despite
this ‘type-lifting’, though, as we’ll see in the next pair of propositions, our notion of
theory has a desirable property from the Tarskian setting, and collapses down to it
when we build in the properties distinguishing relevant from Tarskian consequence
relations. Consider the two bulleted conditions above.

Proposition 7.2. Let � be a symmetric consequence relation. Then for each finite
multisets of formulas Γ and Δ we have:

Γ � Δ iff Δ ∈
⋂

{T ∈ Th(�) | Γ ∈ T} iff Th�(Δ) ⊆ Th�(Γ).

Proof. We prove a chain of implication from left to right: First assume that Γ � Δ
and consider a theory T such that Γ ∈ T and T = Th�(Θ) for some Θ. Therefore
Θ � Γ and by Transitivity it follows that Θ � Δ, which means that Δ ∈ T , so indeed
Δ ∈

⋂
{T ∈ Th(�) | Γ ∈ T}.

For the second implication first note that from Δ ∈
⋂
{T ∈ Th(�) | Γ ∈ T}, we

have that Δ ∈ Th�(Γ) (taking T = Th�(Γ) and appealing to Reflexivity) and thus if
Ψ ∈ Th�(Δ), then (by Transitivity) also Ψ ∈ Th�(Γ).

The final implication is easy: assume that Th�(Δ) ⊆ Th�(Γ) and as we know by
Reflexivity that Δ ∈ Th�(Δ), we obtain Γ � Δ as required.

Recall that if � is monotone and contractive, we can see it as a binary relation on
finite sets of formulas (instead of finite multisets of formulas), so theories can be seen
as sets of finite sets of formulas and we can formulate and prove the following claim
(implicit already in [14]), roughly saying that the usual Tarskian theory is the union of
our theory.

Proposition 7.3. Let � be a monotone and contractive symmetric consequence
relation. Then for each �-theory T we have:

T = {Γ | Γ ⊆
⋃
T}.

Proof. One inclusion is trivial, to show the latter assume that T = Th�(Δ) and
that Γ ⊆

⋃
T . As Γ is finite, there are Δ1, ... ,Δn ∈ T such that Γ ⊆ Δ1 ∪ ··· ∪ Δn.

Due to contraction we know that Δ � Δ1 ∪ ··· ∪ Δn and due to Reflexivity and
Monotonicity, we know Δ1 ∪ ··· ∪ Δn � Γ, which implies that Γ ∈ T .

20 Information about theories in the Tarskian setting can be found in any standard book on
algebraic logic (e.g., [13, 19]).
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Now that we have a collection of objects, we would love to find an algebraic structure
on them: similarly to the Tarskian case, we can find a rather natural one. In particular,
P#

fin(Fm) can be seen as the domain of an Abelian monoid with a neutral element [] and

addition �: we’ll denote this structure by Fm#. Recall that given an Abelian monoid
A = 〈A,+, 0〉 and an order � on A we say that 〈A,�〉 is an ordered Abelian monoid
if a � b implies a + c � b + c (i.e., + is monotone w.r.t. �). Let’s verify that we can
find such a monoid structure on the class of theories.

Theorem 7.4. Let � be a symmetric consequence relation. Then the algebra Th� =
〈Th(�),+�, 0�〉 where 0� = Th�([]) and

Th�(Γ) +� Th�(Δ) = Th�(Γ � Δ)

is an Abelian monoid and the mapping Th� : Fm# → Th� is a surjective homomorphism.
Furthermore 〈Th�,⊆〉 is an ordered Abelian monoid and, finally, � is monotone iff Th�

is a monotone mapping from 〈Fm#,≤〉 into 〈Th�,⊆〉.

Proof. Let us first check that +� is well-defined. To this end, consider multisets
of formulas Γ,Γ′,Δ,Δ′ such that Th�(Γ) = Th�(Γ′) and Th�(Δ) = Th�(Δ′). In
particular, Γ′ � Γ and Δ′ � Δ and so by Compatibility and Transitivity Γ′ � Δ′ �
Γ � Δ, whence Th�(Γ � Δ) ⊆ Th�(Γ′ � Δ′). The other inclusion is proved analogously.

With this fact about +�, it is easy to see that 〈Th(�),+�, 0�〉 is an Abelian monoid.
Commutativity and associativity of +� are trivial by the corresponding properties
of � as a multiset operation. Similarly, 0� = Th�([ ]) is an identity (i.e., Th�(Γ �
[]) = Th�(Γ)) since by properties of multisets, Γ � [] = Γ. The fact that the mapping
Th� : Fm# → Th� is a surjective homomorphism is similarly easy to see.

Let us check now that 〈Th�,⊆〉 is an ordered Abelian monoid. Assume that
Th�(Γ) ⊆ Th�(Δ). Suppose further that Ψ ∈ Th�(Γ � Θ), so Γ � Θ � Ψ. By Reflex-

ivity and our hypothesis, Δ � Γ. Now, by Compatibility, Δ � Θ � Γ � Θ. Hence,
Δ � Θ � Ψ (i.e., Ψ ∈ Th�(Δ � Θ)) as desired by Transitivity.

Suppose now that� is monotone. We want to show that Th� is a monotone mapping.
Assume that Γ ≤ Δ, so if Ψ ∈ Th�(Γ), we have that Γ � Ψ and by Monotonicity, we
have that Γ � (Δ –̇ Γ) � Ψ, so Ψ ∈ Th�(Δ) as desired. On the other hand, suppose
that Th� is a monotone mapping. Assume further that Γ � Ψ, so Ψ ∈ Th�(Γ), which
implies that Ψ ∈ Th�(Γ � Φ) for any Φ by monotonicity of the mapping Th� and the
fact that Γ ≤ Γ � Φ. This gives us the monotonicity of �.

Similarly, it’s desirable that we be able to define a congruence on Fm# using �, which
has other nice properties. This is straightforward: consider a symmetric consequence
relation � and define a binary relation �� of finite multisets of formulas as

Γ �� Δ, iff Γ � Δ and Δ � Γ.

Theorem 7.5. Let � be a symmetric consequence relation on Fm. Then:

(i) the relation �� is a congruence on Fm#,
(ii) the tuple 〈Fm#

�,��〉 is an ordered Abelian monoid, where Fm#
� is the ��-quotient

of Fm#, and

[Γ]�� �� [Δ]��, iff Γ � Δ,
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(iii) the mapping Th′
� : 〈Fm#

�,��〉 → 〈Th�,⊆〉 defined as

Th′
�([Γ]��) = Th�(Γ)

is an antitone surjective homomorphism.

Proof. (i): By Reflexivity and Transitivity, the relation �� is an equivalence.
Suppose that now Γ �� Γ′ and Δ �� Δ′. We wish to show then that Γ � Δ ��
Γ′ � Δ′. By Compatibility, we have that Γ � Δ � Γ′ � Δ and Γ′ � Δ � Γ′ � Δ′, so by
Transitivity we have that Γ � Δ � Γ′ � Δ′. Analogously, Γ′ � Δ′ � Γ � Δ.

(ii): It is not difficult to see that 〈Fm#
�,��〉 is an Abelian monoid. We will show

then that [Γ]�� �� [Δ]�� implies that [Γ � Θ]�� �� [Δ � Θ]��. This simply follows as
a consequence of Compatibility and the definition of the order.

(iii): We will leave checking that the mapping is a surjective homomorphism as an
exercise for the reader. Finally, let us establish the monotonicity property. Suppose that
[Γ]�� �� [Δ]��. We want to show that Th�(Δ) ⊆ Th�(Γ). If Ψ ∈ Th�(Δ), then Δ � Ψ
but since Γ � Δ, by Transitivity, we have that Γ � Ψ, so Ψ ∈ Th�(Γ).

§8. Conclusion. In this paper we have begun to investigate external consequence
relations capturing some of the properties sought in relevant logics, particularly that the
premises of a consecution ought to be used in obtaining the conclusion. Starting from
some intuitive desiderata for how such relations ought to behave, we have fixed plausible
definitions for asymmetric and symmetric consequence relations, and proved a number
of properties of these indicating that they have interesting properties, and allow for
a finer grained analysis of logical consequence than the usual, Tarskian, paradigm
allows. We’ve considered relevant consequence relations in abstract terms, with appeal
to concrete presentations of logics, taking some relevant and substructural logics as our
paradigm examples, and have pinned down a natural definition of theory appropriate
to our aims. This work builds on previous work on liberalizing the standard definition
of consequence in ways appropriate to the motivations of various non-classical logics,
and adapts it to the relevant case.

This paper is not the final word on the topics we’ve investigated, and there remain
a number of promising avenues for future work. Hopefully by the cogency of our
definitions and theorems, we will have convinced the reader that there is a rich seam of
logical work to be done here, which has clear and compelling philosophical motivations.
In the blunt words of [44]: This paper is not meant to be comprehensive or conclusive,
but only a first step, taken in order to claim priority after someone else does the hard
work.
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