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Abstract

Given a singular modulus j0 and a set of rational primes S, we study the problem of
effectively determining the set of singular moduli j such that j − j0 is an S-unit. For every
j0 �= 0, we provide an effective way of finding this set for infinitely many choices of S.
The same is true if j0 = 0 and we assume the Generalised Riemann Hypothesis. Certain
numerical experiments will also lead to the formulation of a “uniformity conjecture” for
singular S-units.

2020 Mathematics Subject Classification: 11G05, 14K22, 11G15 (Primary);
11R52, 11G50 (Secondary)

1. Introduction

This paper is devoted to the study of some diophantine properties of j-invariants of elliptic
curves with complex multiplication defined over C. These numbers, which are classically
known by the name of singular moduli, have been studied since the time of Kronecker
and Weber, who were interested in explicit generation of class fields relative to imaginary
quadratic fields [16]. In this respect, singular moduli prove to be a useful tool, since they
are indeed algebraic integers which can be used to generate ring class fields of imaginary
quadratic fields [11, Theorem 11.1].

During the last decade, there has been an increasing interest in understanding more dio-
phantine properties of these invariants. One of the questions that, for instance, has been
addressed is the following: given a set S of rational primes, is the set of singular moduli
that are S-units (singular S-units) finite? In case of an affirmative answer, is it possible to
provide an effective method to explicitly compute this set? This question, which has been
originally motivated by the proof of some effective results of André–Oort type (see [3] and
[29]), does not have at present a complete answer. Several partial results have nonetheless
been achieved.

In [2] it is proved, building on the previous ineffective result of Habegger [23], that no
singular modulus can be a unit in the ring of algebraic integers. This settles the case S = ∅
of the question. With different techniques, Li generalises this theorem and proves in [34]
that for every pair j1, j2 ∈Q of singular moduli, the algebraic integer �N( j1, j2) can never
be a unit. Here �N(X, Y) ∈Z[X, Y] denotes the classical modular polynomial of level N, so
we recover the main result of [2] by setting j2 = 0 and N = 1. In a different direction, the
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fact that no singular modulus is a unit has been used by the author of this manuscript to
prove that, if S0 is the infinite set of primes congruent to 1 mod 3, then the set of singular
moduli that are S0-units is empty [8]. Moreover, very recently Herrero, Menares and Rivera–
Letelier gave an ineffective proof of the fact that for every fixed singular modulus j0 ∈Q and
for every finite set of primes S, the set of singular moduli j such that j − j0 is an S-unit is
finite, see [25] [26] and [27].

In this paper we explore the possibility of providing, for a given singular modulus j0
and for specific sets of primes S, an effective procedure to determine the set of all singular
moduli j such that j − j0 is an S-unit. In order to better state our main results, we introduce
some notation. First of all, we say that a singular modulus has discriminant� ∈Z if it is the
j-invariant of an elliptic curve E/C with complex multiplication by an order of discriminant
�. Let j ∈Q be a singular modulus of discriminant � and let S ⊆N be a finite set of prime
numbers. We call the pair ( j,S) a nice �-pair if the following two conditions hold:

(1) every prime � ∈ S splits completely in Q( j);

(2) we have � � NQ( j)/Q( j)NQ( j)/Q( j − 1728)� for all � ∈ S, where NQ( j)/Q(·) denotes the
norm map from Q( j) to Q.

The first main result of the paper is the following.

THEOREM 1·1. Let ( j0, S) be a nice�0-pair with�0 <−4 and #S ≤ 2. Then there exists
an effectively computable bound B = B( j0, S) ∈R≥0 such that the discriminant � of every
singular modulus j ∈Q for which j − j0 is an S-unit satisfies |�| ≤ B. Moreover, if the exten-
sion Q⊆Q( j0) is not Galois, then the discriminant � of any singular modulus j such that
j − j0 is an S-unit is of the form �= p2n�0 for some prime p ∈ S and some non-negative
integer n.

The bound B( j0, S) in the statement of Theorem 1·1 can be made explicit from its proof.
To give an idea of what kind of bounds one can get, we take j0 = −3375, the j-invariant of
any elliptic curve with complex multiplication by Z[(1 + √−7)/2], and choose S to be any
subset of at most two elements in {13, 17, 19}. We get the following result.

THEOREM 1·2. Let j ∈Q be a singular modulus of discriminant�, and let S := {13, 17}.
If j + 3375 is an S-unit, then |�| ≤ 1081. The same holds with S′ = {13, 19} and S′′ =
{17, 19}.

In general, in order to construct nice �-pairs it suffices to fix a singular modulus j of
discriminant � and to choose, among the set of primes splitting completely in Q⊆Q( j), a
finite subset S satisfying condition (2) above. Since the set of rational primes that are totally
split in Q( j) is infinite by the Chebotarëv’s density theorem, this gives rise to infinitely
many nice �-pairs for a fixed discriminant �. We remark that if Q⊆Q( j) is not Galois,
then every prime splitting completely in this extension will be also totally split in Q(

√
�)

(see the end of the proof of Theorem 1·1). Hence, in some cases one could use [7, Theorem
2.2.1] to show that, for appropriate nice �0-pair ( j0, S) with Q⊆Q( j0) non-Galois, the set
of singular moduli j ∈Q for which j − j0 is an S-unit is in fact empty. We point out that the
set of singular moduli j that generate a Galois extension of Q is finite, see Proposition 4·2.

The reason why Theorem 1·1 only deals with sets S containing at most two primes will be
apparent from its proof, which we now sketch. Our strategy follows the same idea used in
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[2]: given a singular modulus j ∈Q such that j − j0 is an S-unit, we compute the (logarithmic)
Weil height h( j − j0). This is defined, for every x ∈Q, as

h(x) = 1

[K : Q]

∑
v∈MK

[Kv : Qv] log+ |x|v,

where K := Q(x) is the field generated by x over the rationals, MK is the set of all places of
K, the integer [Kv : Qv] is the local degree at the place v and log+ |x|v := log max{1, |x|v}.
Here, for every non-archimedean place v corresponding to the prime ideal pv lying above
the rational prime pv, the absolute value |·|v is normalised in such a way that

|x|v = p
−vpv (x)/ev
v ,

where ev is the ramification index of pv over pv and vpv(x) is the exponent with which
pv appears in the prime ideal factorisation of the OK-fractional ideal generated by x.
Hence the logarithmic Weil height naturally decomposes into an “archimedean” and
“non-archimedean” part.

Since j − j0 is an algebraic integer, the non-archimedean part of its Weil height vanishes.
In order to exploit the fact that the above difference is an S-unit, we rather compute the
height of ( j − j0)−1. Using standard properties of the Weil height, we obtain

h( j − j0) = h(( j − j0)−1) = (archimedean part)+ (non-archimedean part)

with

(non-archimedean part)= 1

[Q( j − j0) : Q]

∑
p

fp · vp( j − j0) log �p,

where the sum is taken over the prime ideals of Q( j − j0) lying above the rational primes
contained in S and, for every such prime p, we denote by fp and �p respectively the inertia
degree and the residue characteristic of p. Our goal is to effectively bound this height from
above and from below in such a way that the two bounds contradict each other when the
absolute value of the discriminant of the singular modulus j becomes large. This will give
the desired effective bound.

An upper bound for the archimedean part has been already studied in [2] and [6]. In order
to estimate from above the non-archimedean part, we have to understand the valuation of
j − j0 at primes above S. This requires the use of some deformation-theoretic arguments
involving quaternion algebras, and constitutes the technical core of the paper. We detail this
discussion in Section 3, which culminates in the proof of Theorem 3·1, where we obtain
the seeked estimates. Concerning the lower bound for the Weil height, we compare it to
the stable Faltings height of the elliptic curve with complex multiplication having j as sin-
gular invariant. Using work of Colmez [9] and Nakkajima–Taguchi [36] it is possible to
relate this Faltings height to the logarithmic derivative of the L-function corresponding to
the CM field evaluated in 1. The known lower bounds on this logarithmic derivative become
strong enough for our purposes only if we restrict to sets S containing no more than two
primes.

When �0 ∈ {−3, −4}, i.e. when j0 ∈ {0, 1728}, the same techniques also lead to similar
finiteness results, but one has to be more careful in theses cases since the complex elliptic
curves having j0 as singular invariant possess non-trivial automorphisms. This is indeed a
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problem, and will force us to resort to the Generalised Riemann Hypothesis (GRH) in the
case j0 = 0. Here are the results that we obtain in these two cases.

THEOREM 1·3. Let S0 be the set of rational primes congruent to 1 modulo 4, let �≥ 5
be an arbitrary prime and set S� := S0 ∪ {�}. Then there exists an effectively computable
bound B = B(�) ∈R≥0 such that the discriminant � of every singular modulus j ∈Q for
which j − 1728 is an S�-unit satisfies |�| ≤ B.

THEOREM 1·4. Let S0 be the set of rational primes congruent to 1 modulo 3, let �≥ 5 be
an arbitrary prime and set S� := S0 ∪ {�}. If the Generalised Riemann Hypothesis holds for
the Dirichlet L-functions attached to imaginary quadratic number fields, then there exists an
effectively computable bound B = B(�) ∈R≥0 such that the discriminant� of every singular
S�-unit j ∈Q satisfies |�| ≤ B.

The statement of Theorem 1·4 has been simplified for the sake of exposition in this intro-
duction. Indeed, one does not need the full strength of GRH to carry out the proof, but only
a weaker, more technical assumption on the logarithmic derivative at s = 1 of the Dirichlet
L-functions of imaginary quadratic fields. We refer the reader to Theorem 5·5 for the stronger
result that we are actually going to prove.

After performing some numerical computations, one soon realizes that, given a singular
modulus j0 and a finite set of primes S, the upper bound for the number of singular moduli j
such that j − j0 is an S-unit seems not to depend on the primes contained in S but only on the
size of the set S itself. Since being an S-unit is a Galois-invariant property, this would entail a
bound, depending only on #S, on the size of the Galois orbits of such j’s and, by the Brauer–
Siegel theorem [32, Chapter XIII, Theorem 4], an analogous bound on their discriminants.
Choosing j0 = 0, this observation leads to the formulation of the following conjecture for
singular S-units.

CONJECTURE 1·5. For every s ∈N, the number of singular moduli that are S-units for
some set of rational primes S with #S = s is finite.

This conjecture, which we will call “uniformity conjecture for singular S-units”, will be
discussed in Section 7, where we also provide some numerical data to support it.

The paper is structured as follows. In Section 2 we recall known facts from the the-
ory of complex multiplication and quaternion algebras, and we fix the terminology which
will be used in the paper. In Section 3 we prove Theorem 3·1, which allows to bound the
�-adic absolute value of differences of singular moduli for certain primes �. In Section 4 we
provide a proof of Theorems 1·1 and 1·2 while in Section 5 we give a proof of Theorems 1·3
and 1·4. Section 6 discusses the optimality of the bounds found in Theorem 3·1 in the case
j0 = 0. Finally in Section 7 we provide numerical evidence for some uniformity conjectures
concerning differences of singular moduli that are S-units.

2. Prelude: CM elliptic curves, quaternion algebras and optimal embeddings

We recall in this section some of the main definitions and results that will be used in the
rest of the paper. We fix once and for all an algebraic closure Q⊇Q of the rationals.

A singular modulus is the j-invariant of an elliptic curve defined over Q with complex
multiplication. For every imaginary quadratic order O of discriminant � ∈Z<0 there are
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exactly C� isomorphism classes of elliptic curves over Q with complex multiplication by O,
where C� ∈N denotes the class number of the order O. Hence, there are C� corresponding
singular moduli, which are all algebraic integers and form a full Galois orbit over Q (see [11,
Corollary 10.20], [11, Theorem 11.1] and [11, Proposition 13.2]). We call them singular
moduli of discriminant � or singular moduli relative to the order O. Reversing subject and
complements, we will sometimes also speak of discriminant, CM order, CM field, etc. . .
associated to a singular modulus j.

Recall that, given a number field K ⊆Q and a set S ⊆N of rational primes, an element
x ∈ K is called an S-unit if for every prime p⊆ K not lying above any prime p ∈ S, we have
x ∈O×

Kp
, where OKp ⊆ Kp denotes the ring of integers in the completion Kp of the number

field K at the prime p. Note that this definition does not depend on the particular number
field K containing x. Moreover, if x is actually an algebraic integer, then x is an S-unit if
and only if its absolute norm NK/Q(x) is divided only by primes in S. In this paper we are
interested in the study of S-units of the form j − j0 with j, j0 ∈Q singular moduli. If j0 = 0
is the unique singular modulus of discriminant �0 = −3, we speak of singular S-units. As
we will see, the study of these singular differences is intimately related to the theory of
supersingular elliptic curves and quaternion algebras. We summarize some relevant results
from this theory.

Let k be a field of characteristic char(k) = � > 0 with algebraic closure k ⊇ k and let E/k be
an elliptic curve. We say that E is supersingular if E[�](k) = {O} i.e. if the unique �-torsion
point of E defined over k is the identity O ∈ E(k). If this is the case, then the endomorphism
ring Endk(E) is isomorphic to a maximal order in the unique (up to isomorphism) quaternion
algebra over Q ramified only at � and ∞ (see [13] or [44, Proposition 42.1.7 and Theorem
42.1.9] for a modern exposition). If k is a finite field, then by Deuring’s lifting theorem
[31, Chapter 13, Theorem 14] every supersingular elliptic curve over k arises as the reduction
of some elliptic curve with complex multiplication defined over a number field. Finding such
a CM elliptic curve is difficult in general. In contrast, it is very easy to see for which primes
a CM elliptic curve defined over a number field has good supersingular reduction. Namely,
let F be a number field with ring of integers OF and let E/F be an elliptic curve with CM by
an order in an imaginary quadratic field K. Fix a prime ideal μ⊆OF lying above a rational
prime � ∈Z that does not split in K. Since CM elliptic curves have potential good reduction
everywhere (see [43, VII, Proposition 5.5]) we can assume, possibly after enlarging the field
of definition F, that E has good reduction at μ and that all the geometric endomorphisms
of E are defined over F. Then the reduced elliptic curve Ẽ := E mod μ is supersingular by
[31, Chapter 13, Theorem 12]. Moreover, the natural reduction map modulo μ induces an
injective ring homomorphism

ϕ : EndF(E) ↪→ EndF� (̃E)

between the corresponding endomorphism rings (see [42, II, Proposition 4.4]). As we will
see in Theorem 2·4, in many cases (depending on the prime � and on the CM order of E) the
above embedding will be optimal, in the following sense.

Let B be a quaternion algebra over Q and let R ⊆B be an order, i.e. a full Z-lattice which
is also a subring of B. Let Q⊆ K be a quadratic field extension and let O ⊆ K also be an
order. Any ring homomorphism ϕ : O → R can be naturally extended, after tensoring with
Q, to a ring homomorphism K →B that we still denote by ϕ, with abuse of notation. We say
that an injective ring homomorphism ι : O ↪→ R is an optimal embedding if

ι(K) ∩ R = ι(O),
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where the above intersection takes place in B. There is a simple criterion which allows to
determine whether a given imaginary quadratic order optimally embeds into a quaternionic
order. In order to state it, let us denote by trd, nrd : B→Q respectively the reduced trace and
the reduced norm in the quaternion algebra B, see [44, Section 3.3]. This notation will be in
force for the rest of the paper.

LEMMA 2·1. Let R be an order in a quaternion algebra B and O an order of discriminant
� in an imaginary quadratic field K. Let V ⊆B be the subspace of pure quaternions

V := {x ∈B : trd(x) = 0}.
Then O embeds (resp. optimally embeds) in R if and only if |�| is represented (resp.
primitively represented) by the ternary quadratic lattice

R0 := V ∩ (Z+ 2R)

endowed with the natural scalar product induced by the reduced norm on B.

Remark 2·2. This lemma has been proved for non-optimal embeddings and for maximal
orders R in [19, Proposition 12.9]. Probably for this reason, the lattice R0 is sometimes
called the Gross lattice associated to R. The argument in loc. cit. easily generalises to our
situation. We provide a full proof for completeness.

Proof. We first prove that O embeds in R if and only if |�| is represented by R0, and we
discuss conditions on the optimality of this embedding at a second stage.

Write O =Z[(�+ √
�)/2] and suppose first that f : O ↪→ R is an embedding. Let b :=

f (
√
�) so that trd(b) = 0 and nrd(b) = |�|. Since

f

(
�+ √

�

2

)
= �+ b

2
∈ R

we see that b ∈ R0 so that |�| is represented by this lattice. Suppose conversely that there
exists b ∈ R0 such that nrd(b) = |�|. Since trd(b) = 0, we see that b2 =�. By writing b =
a + 2r with a ∈Z and r ∈ R, one has

b2 = (a + 2r)2 = a2 + 4r2 + 4ar =�

and this immediately implies that a ≡� mod 2, so that �+ b ∈ 2R. Hence we have (�+
b)/2 ∈ R and we obtain an embedding f : O ↪→ R by setting

f

(
�+ √

�

2

)
= �+ b

2
. (1)

We now discuss optimality. Fix {α1, α2, α3} to be a basis of R0 as a Z-module and let
Q(X, Y , Z) be the ternary quadratic form induced by the reduced norm with respect to this
basis.

Assume that f : O ↪→ R is an optimal embedding. By the proof above, we know that b :=
f (

√
�) ∈ R0 is such that nrd(b) = |�|. Suppose by contradiction that b = a1α1 + a2α2 +

a3α3 with a1, a2, a3 ∈Z not coprime, so that c := gcd (a1, a2, a3)> 1 (we adopt the con-
vention that the greatest common divisor is always positive). Then b̃ := b/c ∈ R0 satisfies
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b̃2 = �

c2
∈Z and

1

2

(
�

c2
+ b̃

)
∈ R.

in the same way as above. Thus 1
2

(
(�/c2) + (

√
�/c)

)
∈ K is an algebraic integer and the

order Õ := Z
[

1
2

(
(�/c2) + (

√
�/c)

)]
, which strictly contains O, also embeds in R through

the extension f : K ↪→B. This contradicts the optimality of f : O ↪→ R.
Suppose now that |�| is primitively represented by R0 i.e. that there exist a1, a2, a3 ∈

Z coprime such that nrd(a1α1 + a2α2 + a3α3) = |�|. We want to show that, setting b :=
a1α1 + a2α2 + a3α3, the embedding f defined by (1) is optimal. We will equivalently prove

that, if c ∈Z>0 is such that Õ := Z
[

1
2

(
(
√
�/c) + (�/c2)

)]
is an order, then

f (K)∩ R = f
(Õ)

(2)

implies Õ =O. Since b = f (
√
�), equality (2) entails 1

2

(
(b/c) + (�/c2)

) ∈ R so that b/c ∈
R0. But now

b/c = a1

c
α1 + a2

c
α2 + a3

c
α3 ∈ R0

and all the coefficients ai/c must be integral since {α1, α2, α3} is a basis of R0 as a Z-
module. By assumption, the ai’s are coprime, so we must have c = 1. Hence Õ =O and this
concludes the proof.

Remark 2·3. The proof of Lemma 2·1 actually establishes a bijection between the set of
embeddings f : O ↪→ R and the set of elements b ∈ R0 such that nrd(b) = |�|. Under this
bijection, the embedding f corresponds to the element f (

√
�) ∈ R0.

In order to carry out our study of singular differences that are S-units, it is fundamental to
understand what is the biggest exponent with which a prime ideal can appear in the factorisa-
tion of such a difference. Roughly speaking, saying that a difference of singular moduli j − j0
has a certain μ-adic valuation n = vμ( j − j0) for some prime ideal μ⊆Q( j − j0) is equiva-
lent to saying that the CM elliptic curve Ej with j(Ej) = j is isomorphic to the elliptic curve
Ej0 with j(E0) = j0 when reduced modulo μn. Therefore, in order to understand the expo-
nents appearing in the prime ideal factorisation of a singular difference, it is crucial to deter-
mine when such isomorphisms can occur. With this goal in mind, we conclude this section
by outlining some aspects of the reduction theory of CM elliptic curves defined over number
fields. We refer the reader to [10, 20, 21] and [33] for further discussions on the topic.

Let O be an order of discriminant � in an imaginary quadratic field K and let � �� be a
prime inert in K. Consider an elliptic curve E′ with complex multiplication by the order O
and defined over the ring class field HO := K( j(E′)). After completing with respect to any
prime above �, we can consider HO as a subfield of the maximal unramified extension Qunr

�

of Q�. This is because the extension Q⊆ HO is unramified at � by the assumption � ��, see
[11, Chapter 9, Section A]. Let L := Q̂unr

� be the completion of Qunr
� with ring of integers W

and uniformiser π . Then by [40, Theorems 8 and 9] and [31, Chapter 13, Theorem 12] there
exists an elliptic scheme E → Spec W such that:

(i) the generic fiber E := E ×W Spec L is isomorphic to E′ over the algebraic closure of
L. Since the CM order O is contained in W, all the geometric endomorphisms of E
are defined over L, see [41, Chapter II, Proposition 30];
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(ii) the special fiber E0 := E ×W Spec W/π is a supersingular elliptic curve since, by
assumption, � does not split in K. Note that W/π ∼= F�, the algebraic closure of the
finite field with � elements.

For all n ∈N, set En := E ×W Spec W/πn+1. We are interested in understanding the endo-
morphism rings A�,n := EndW/πn+1 (En). When n = 0, we have already seen that the ring A�,0
is isomorphic to a maximal order in B�,∞, the unique (up to isomorphism) definite quater-
nion algebra over the rationals which ramifies only at � and ∞. All the other rings A�,n can
be recovered from A�,0, as explained in the following theorem.

THEOREM 2·4. Let O be an order of discriminant � in an imaginary quadratic field
K and let � �� be a prime inert in K. Set L := Q̂unr

� to be the completion of the maximal
unramified extension of Q�, with ring of integers W and uniformiser π . Let E → Spec(W) be
an elliptic scheme whose generic fiber E := E ×W Spec L has complex multiplication by O.
For every n ∈N, denote by

En := E ×W Spec W/πn+1and A�,n := EndW/πn+1 (En)

respectively the reduction of E modulo πn+1 and its endomorphism ring. Then:

(a) for every n ∈N we have

A�,n ∼=O + �nA�,0,

where the sum takes place in A�,0 in which O is embedded via the reduction modulo
π ;

(b) for every n ∈N the ring EndW/πn+1 (En) is isomorphic to a quaternion order in B�,∞
and the natural reduction map

O ∼= EndW (E) −→ EndW/πn+1 (En)

induced by the reduction modulo πn+1 is an optimal embedding.

The above theorem is a combination and a reformulation of various results already appear-
ing in the literature. We give a brief overview of the proof and point out the relevant
references.

Proof of Theorem 2·4. Part (a) of the theorem is a special case of [33, Formula 6.6]. As for
part (b): the first statement follows from the fact that � is a prime of supersingular reduction
for E and from part (a). For the second statement, note first of all that there is a natural
isomorphism between EndL(E) ∼=O and EndW (E), since by assumption E is a Néron model
for E over W (see [5, Propositions 1.2/8 and 1.4/4]). Reductions modulo π and πn give the
following commutative diagram
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in which all the arrows are injective by [10, Theorem 2.1 (2)]. Since � does not divide the
conductor of the order O, the embedding ϕ0 is optimal by [33, Proposition 2.2]. It follows
from the commutativity of the diagram above that also the embedding ϕn−1 is optimal, and
the theorem is proved.

3. The �-adic valuation of differences of singular moduli

In order to bound from above the Weil height of a difference of singular moduli, it is of
crucial importance to understand the exponents appearing in the prime factorisation of such
a difference. The goal of this section is to prove, under certain conditions, an upper bound
for these exponents. In what follows, we will always use F� to denote the finite field with
� elements, where � ∈N is a prime number, and denote by F� an algebraic closure of this
field. Recall also that given an order O in an imaginary quadratic field K, the ring class field
of K relative to the order O is the field generated over K by any singular modulus relative
to O.

THEOREM 3·1. Let j0 ∈Q be a singular modulus relative to an order Oj0 of discriminant
�0 and let � ∈Z be a prime not dividing �0. For any singular modulus j ∈Q relative to
an order Oj of discriminant � �=�0, denote by H the compositum of the ring class fields
relative to Oj0 and Oj. Let μ⊆ H be a prime ideal lying above � and assume that:

(i) the prime μ∩Q( j0) has residue degree 1 over �;

(ii) there exists an elliptic curve E0/Q( j0) with j(E0) = j0 and having good reduction at
μ∩Q( j0).

Then, if vμ(·) denotes the normalised valuation associated to μ, we have

vμ( j − j0) ≤
⎧⎨⎩ d0

2

(
log (�2

0|�|)
2 log � + 1

2

)
if � �� and Oj0 �⊆Oj,

d0
2 if � |�,

(3)

where d0 is the number of automorphisms of any elliptic curve E/F� with j(E) = j0 mod μ.

Remark 3·2. Note that we have d0 = 2 in all cases except if j0 ≡ 0 or j0 ≡ 1728 mod μ. In
these two cases, the value of d0 also depends on �, see [43, III, Theorem 10.1].

The dichotomy in the conclusion of Theorem 3·1 is reflected by its proof, which we divide
according to the conditions displayed in (3). In all cases, everything boils down to the study
of optimal embeddings of the order Oj in a family of nested orders contained in the endo-
morphism ring of a certain supersingular elliptic curve defined over F�. One of the main
issues is that for a supersingular elliptic curve E/F� , explicitely computing its endomor-
phism ring is a difficult problem in general. An explicit parametrisation of the endomorphism
rings of supersingular elliptic curves over F� has been achieved by Lauter and Viray in [33,
Section 6]. However, the author found these parametrizations somehow difficult to use for
explicit estimates. Therefore, in order to achieve our results, we adopted a different strategy.
The idea is that, since we are only interested in providing estimates for the μ-adic valua-
tion of singular differences and not in precisely determining their prime ideal factorisation,
we do not need the full knowledge of the supersingular endomorphism rings of the elliptic
curves involved. We instead “approximate”, when possible, the unknown quaternion orders
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with quaternion orders whose properties are less mysterious. The next proposition is the
cornerstone of this strategy.

PROPOSITION 3·3. Let j ∈Q be a singular modulus of discriminant � and let E/Q( j) be an
elliptic curve with j(E) = j. Choose a degree 1 prime p⊆Q( j) lying above a rational prime
p ∈Z not dividing � and suppose that E has good supersingular reduction Ẽ modulo p.
Denote by ϕ ∈ EndFp

(̃E) the Frobenius endomorphism (x, y) �→ (x p, y p), where the coordi-
nates x,y come from the choice of a Weierstrass model for E. Then there exists a morphism
ψ ∈ EndFp

(̃E) such that

ψ2 + |�|ψ + �2 + |�|
4

= 0 and ψ ◦ ϕ = ϕ ◦ψ ,

where · :EndFp
(̃E) ⊗Z Q→ EndFp

(̃E) ⊗Z Q denotes the standard involution. In fact, the

morphism ψ can be taken inside the image of the reduction map EndQ(E) → EndFp
(̃E)

modulo any prime in Q lying above p.

Remark 3·4. Recall that the standard involution on the quaternion algebra EndFp
(̃E) ⊗Z Q

corresponds to taking the dual isogeny when restricted to EndFp
(̃E). This essentially follows

from the uniqueness of the standard involution on quaternion algebras, see [44, Corollary
3.4.4].

Proof. In this proof, we fix for convenience an embedding Q ↪→C. Let O be the order
of discriminant � and K ⊆Q be its field of fractions. For an element β ∈ K, we denote by
β its conjugate through the unique non-trivial automorphism of K/Q. This will not cause
confusion with the standard involution on EndFp

(̃E) ⊗Z Q, as we explain below.
By assumption, there exists an elliptic scheme E over the localisation at p of the ring of

integers in Q( j) such that the generic fiber of E is isomorphic to E while its special fiber is
a supersingular elliptic curve Ẽ defined over Fp. Set HO := K( j), which is a degree 2 exten-
sion of Q( j), and fix a prime P ⊆ HO lying above p. Since E has supersingular reduction
modulo p, the latter has degree 1 and p is unramified in K, by [31, Chapter 13, Theorem
12] we must have f (P/p) = 2, where f (P/p) denotes the inertia degree of P over p. In par-
ticular, we see that the decomposition group of P over p is precisely Gal(HO/Q( j)). We
fix σ ∈ Gal(HO/Q( j)) to be the unique non-trivial element. Then σ restricts to an automor-
phism of RP , the localization at P of the ring of integers of HO, inducing the Frobenius
endomorphism τ : x �→ xp on the residue field.

With abuse of notation, we denote again by E the base-change ERP and by Ẽ the special
fiber of ERP (which is isomorphic to the base-change of the special fiber of E to the residue
field of RP ). It follows from the Néron mapping property [5, Proposition 1.4/4] that every
endomorphism λ ∈ EndHO (E) induces an endomorphism λE of E . Define λ mod P to be the
restriction of λE to Ẽ. The Galois group Gal(HO/Q( j)) acts on RP and this in turn induces a
Galois action on EndRP (E). In the same way, there is an action of Gal(Fp/Fp) on EndFp

(̃E).
These two actions are compatible, in the sense that for every λ ∈ EndHO (E) we have

σ (λE ) mod P = τ (λ mod P), (4)

as one can see using the various functorial properties of fibered products. In what follows, we
will often omit the subscript E when dealing with endomorphism of E induced by elements
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in EndHO (E). This allows us to ease a bit the notation, since usually elements of EndHO (E)
will already come equipped with their own subscript.

We now fix a normalised isomorphism

[·]E : O ∼−→ EndQ(E)

following [42, II, Proposition 1.1]. Let α := (�+ √
�)/2 ∈O and note that [α]E ∈

EndHO (E) because, by [41, Chapter II, Proposition 30], all the endomorphisms of E are
defined over HO. Since α2 + |�|α + (�2 + |�|)/4 = 0, also [α]E satisfies the same relation.
One also has

σ ([α]E) = [σ (α)]Eσ = [α]E, (5)

where the first equality follows from [42, II, Theorem 2.2 (a)] and in the second equality we
are using the fact that E is defined over Q( j) and σ is non-trivial.

Let nowψ := ([α]E mod P) ∈ EndFp
(̃E). For β ∈O, the association [β]E �→ [β]E defines

a standard involution on EndHO (E), in the sense of [44, Definition 3.2.4]. Since reduction
mod P defines an embedding of EndHO (E) ↪→ EndFp

(̃E), by the uniqueness of the stan-

dard involution on quadratic Q-algebras (see [44, Lemma 3.4.2]) we have [α]E mod P =ψ ,
where now the conjugation above ψ denotes the usual standard involution on the quaternion
algebra EndFp

(̃E) ⊗Z Q. We have

ψ = [α]E mod P = σ ([α]E) mod P = τ ([α]E mod P) = τ (ψ),

where we have applied equalities (4) and (5). This yields

ϕ ◦ψ = ϕ ◦ τ (ψ) = τ (τ (ψ)) ◦ ϕ =ψ ◦ ϕ
and here we have used the facts that for every λ ∈ EndFp

(̃E) one has ϕ ◦ λ= τ (λ) ◦ ϕ, as can

be checked using local coordinates for Ẽ, and that τ (τ (ψ)) =ψ because ψ is defined over a
quadratic extension of Fp. The proof is concluded.

We are now ready to begin the proof of Theorem 3·1. Let us fix the notation that

will be in force during the entire argument. Given the orders Oj =Z
[
(�+ √

�)/2
]

and

Oj0 =Z
[
(�0 + √

�0)/2
]

as in the statement of Theorem 3·1, we denote by Kj and Kj0 the
corresponding imaginary quadratic fields containing them. We then set Hj and Hj0 to be
the ring class fields of Kj and Kj0 relative to the orders Oj and Oj0 respectively. Using this
notation, the field H in the statement of Theorem 3·1 is the compositum in Q of Hj and Hj0 .

3·1. First case: � does not divide � and Oj0 �⊆Oj

Assume that E0 in the statement of the theorem is given by an integral model over the ring
of integers of Q( j0) with good reduction atμ∩Q( j0). Let (E0)/H be the base-change to H of
the elliptic curve (E0)/Q( j0), and let (Ej)/H be an elliptic curve with j(Ej) = j and with good
reduction at all prime ideals above �. Such an elliptic curve Ej exists by [40, Theorems 8
and 9], which we can apply since � �� by assumption. In particular, Ej will have good
reduction at the prime μ. We will always identify Oj and Oj0 with the endomorphism rings
of Ej and E0 respectively.

Let Hμ be the completion of H at the prime μ. The extension Q⊆ H is unramified at
� because � ���0 (see [11, Chapter 9, Section A]), hence Hμ is contained in Q̂unr

� , the
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completion of the maximal unramified extension of Q�. Denote by W the ring of integers in
Q̂unr
� and let π ∈ W be a uniformizer. By abuse of notation, we also use E0, Ej to denote the

elliptic schemes over W with generic fibers isomorphic to the base-changes of E0, Ej to Q̂unr
�

respectively. Note that, by our choices, E0 mod π is defined over F�.

LEMMA 3·5. In the notation above, we have

vμ( j − j0) ≤ d0

2
· max{n ∈N≥1 : IsoW/πn(Ej, E0) �= ∅},

where, for every n ∈Z≥1, we denote by IsoW/πn(Ej, E0) the set of isomorphisms between
Ej mod πn and E0 mod πn.

Proof. Notice first of all that the normalised valuation on Q̂unr
� , i.e the valuation v satisfy-

ing v(π) = 1, extends theμ-adic valuation vμ on H because vμ(�) = 1. Since W is a complete
discrete valuation ring whose quotient field has characteristic 0 and whose residue field F� is
algebraically closed of characteristic � > 0, we can apply [21, Proposition 2.3] which gives

vμ( j − j0) = 1

2

∞∑
n=1

#IsoW/πn(Ej, E0).

Now, certainly IsoW/πn+1 (Ej, E0) �= ∅ implies IsoW/πn(Ej, E0) �= ∅ for every n ∈N>0, since
reductions of isomorphisms are isomorphisms. Moreover, whenever the set IsoW/πn(Ej, E0)
is non-empty, its cardinality equals the order of the automorphism group AutW/πn(E0) of
E0 mod πn. By [10, Theorem 2.1 (2)], we always have the inclusions

EndW (E0) ↪→ EndW/πn(E0) ↪→ EndW/π (E0)

induced respectively by the reduction modulo πn and modulo π . This means that

#AutW (E0) ≤ #AutW/πn(E0) ≤ #AutW/π (E0) = d0 (6)

so, setting M := max{n ∈N≥1 : IsoW/πn(Ej, E0) �= ∅}, we obtain

vμ( j − j0) = 1

2

∞∑
n=1

#IsoW/πn(Ej, E0) = 1

2

M∑
n=1

#AutW/πn(E0) ≤ d0

2
· M

which proves the lemma.

By Lemma 3·5, in order to estimate the valuation at μ of the difference j − j0, we need
to bound the biggest index n such that the reductions modulo πn of the elliptic curves Ej

and E0 are isomorphic. If this maximum is 0, then the two elliptic curves are not even
isomorphic over F� ∼= W/π , so the prime μ cannot divide j − j0 and there is nothing to
prove. Hence, from now on we suppose that μ divides j − j0 so that E0 mod π ∼= Ej mod π
over F�. Since � does not divide the conductors of the orders Oj and Oj0 by assumption,
and the two orders are different, [31, Chapter 13, Theorem 12] ensures that � is a prime
of supersingular reduction for both Ej and E0. In particular, the ring R := EndW/π (E0) is
isomorphic to a maximal order in B�,∞ ∼= R ⊗Z Q.

Suppose now that IsoW/πn+1 (Ej, E0) is non-empty. Our goal is to find a bound on the
exponent n + 1. A choice of f ∈ IsoW/πn+1 (Ej, E0) induces an isomorphism
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f̃ : EndW/πn+1 (Ej) −→ EndW/πn+1 (E0), α �−→ f ◦ α ◦ f −1

which, precomposed with the reduction map Oj ↪→ EndW/πn+1 (Ej), gives rise to an optimal
embedding

ψn+1 : Oj ↪−→ EndW/πn+1(E0) (7)

by Theorem 2·4 (b). For growing n, Theorem 2·4 (a) shows that the endomorphism ring of
E0 mod πn+1 becomes more and more “�-adically close” to the order Oj0 . Intuitively, this
must imply that having an embedding as in (7) should not be possible for n large enough,
yielding the desired bound on n + 1. This intuition is correct, as we show below. The main
obstacle to making this idea precise is that, as we already said, it is not easy to explic-
itly compute the endomorphism rings EndW/πn+1 (E0) for a generic elliptic curve E0/W . To
circumvent this problem, we “approximate” the rings EndW/πn+1 (E0) with smaller orders
where we are able to perform the relevant computations. The hypotheses on the prime μ and
on the elliptic curve E0 will make this strategy successful.

Recall that Oj0 =Z
[
(�0 + √

�0)/2
]

and let ψ ∈ R be the image of (�0 + √
�0)/2 via

the reduction map modulo π . Denote also by ϕ ∈ EndW/π (E0) the Frobenius endomorphism
(x, y) �→ (x�, y�). By Proposition 3·3 and using the fact that E0 mod π is a supersingular
elliptic curve defined over F�, we have

ϕ2 + �= 0, ψ2 + |�0|ψ + �2
0 + |�0|

4
= 0 and ψ ◦ ϕ = ϕ ◦ψ , (8)

where · denotes the standard involution on EndW/π (E0) ⊗Z Q. Hence, the ring R̃ :=
Z[ψ , ϕ] ⊆ R is a rank-4 order inside B�,∞ with basis B = {1,ψ , ϕ,ψϕ} satisfying the rela-
tions (8). Notice that the reduction map Oj0 ↪→ R identifies Oj0 with the subring Z[ψ] ⊆
Z[ψ , ϕ]. The matrix of the bilinear pairing 〈α, β〉 = trd(αβ) computed on the basis B is
given by

A =

⎛⎜⎜⎜⎝
2 �0 0 0

�0
�2

0+|�0|
2 0 0

0 0 2� �0�

0 0 �0�
�2

0+|�0|
2 �

⎞⎟⎟⎟⎠
so the discriminant of the order R̃ equals det A =�2

0�
2 (see [44, Definition 15.2.2 and

Exercise 13 in Chapter 15]). Hence, by [44, Lemma 15.2.15, Lemma 15.4.7 and Theorem
15.5.5] R̃ has index |�0| inside any maximal order containing it, so in particular |R : R̃| =
|�0|. Now, since we are in the hypotheses of Theorem 2·4 (a), we have

EndW/πn+1 (E0) ∼=Z[ψ] + �nR ⊇Z[ψ] + �nR̃

and we shall show that the index of the latter inclusion is also bounded by |�0|.
LEMMA 3·6. For all n ∈N the index

∣∣(Z[ψ] + �nR) : (Z[ψ] + �nR̃)
∣∣ divides |�0|.

Proof. Since R̃ ⊆ R, we have Z[ψ] + �nR =Z[ψ] + �nR + �nR̃. Hence

Z[ψ] + �nR

Z[ψ] + �nR̃
= Z[ψ] + �nR + �nR̃

Z[ψ] + �nR̃
∼= �nR

(Z[ψ] + �nR̃) ∩ �nR
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as abelian groups. Now, the containment �nR̃ ⊆ (Z[ψ] + �nR̃) ∩ �nR gives an epimorphism

�nR

�nR̃
� �nR

(Z[ψ] + �nR̃) ∩ �nR
,

and, since R is non-torsion, we have �nR/�nR̃ ∼= R/R̃. Since the latter has cardinality |�0|,
the lemma is proved.

COROLLARY 3·7. The embedding (7) induces an injection

Oj,|�0| := Z

⎡⎣�2
0�+

√
�2

0�

2

⎤⎦ ↪→Z[ψ] + �nR̃. (9)

Proof. By Lemma 3·6, for every x ∈Z[ψ] + �nR we have |�0|x ∈Z[ψ] + �nR̃. Since
Oj,|�0| =Z+ |�0|Oj, the corollary follows.

Combining Corollary 3·7 with Lemma 2·1, we see that |disc(Oj,|�0|)| =�2
0|�| must be

represented by the Gross lattice ��,n of the order Z[ψ] + �nR̃. Note that this represen-
tation is not necessarily primitive, because the embedding (9) is not necessarily optimal.
A computation shows that

��,n = 〈|�0| + 2ψ , 2�nϕ, 2�nψϕ
〉
Z

i.e. B′ = {|�0| + 2ψ , 2�nϕ, 2�nψϕ} is a Z-basis for the Gross lattice of Z[ψ] + �nR̃. The
reduced norm restricted to the lattice ��,n induces the ternary quadratic form

Q�,n(X, Y , Z) = |�0|X2 + 4�2n+1Y2 + �2n+1(�2
0 + |�0|)Z2 + 4�2n+1�0YZ (10)

written with respect to the basis B′.
After setting

X̃ = X, Ỹ = Y + 1

2
�0Z, Z̃ = Z

we get the diagonal quadratic form

Q̃�,n(X̃, Ỹ , Z̃) = |�0 |̃X2 + 4�2n+1Ỹ2 + �2n+1|�0 |̃Z2.

Suppose now that Q�,n(X, Y , Z) =�2
0|�| has an integral solution (x, y, z) ∈Z3 corresponding

to the embedding (9). We first claim that at least one among y and z is non-zero. This follows
from our assumptions on Oj and from the following proposition.

PROPOSITION 3·8. If y = z = 0 then Oj0 ⊆Oj.

Proof. Let x ∈Z>0 be such that Q�,n(x, 0, 0) =�2
0|�|. By Remark 2·3, this equality

corresponds to the embedding

Z

[
1

2

(
�2

0�+
√
�2

0�

)]
↪−→Z[ψ] + �nR̃,

1

2

(
�2

0�+
√
�2

0�

)
�−→ 1

2

(
�2

0�+ x(|�0| + 2ψ)
)

(11)
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of the order Oj,|�0| ⊆ K := Q(
√
�) into Z[ψ] + �nR̃. The injection (11) is not optimal if

x �= ±1. Indeed, using the proof of Lemma 2·1 we get the optimal embedding

Z

⎡⎣1

2

⎛⎝�2
0

x2
�+

√
�2

0

x2
�

⎞⎠⎤⎦ ↪−→Z[ψ] + �nR̃,
1

2

⎛⎝�2
0

x2
�+

√
�2

0

x2
�

⎞⎠
�−→ 1

2

(
�2

0

x2
�+ (|�0| + 2ψ)

)

determined by the equality Q�,n(1, 0, 0) = (�2
0|�|)/x2. Since Q�,n(1, 0, 0) = |�0|, we see

that the above injection is actually the same as

Oj0 =Z

[
�0 + √

�0

2

]
↪−→Z[ψ] + �nR̃,

�0 + √
�0

2
�−→ψ . (12)

Recall that we also have embedding (7), which can be rewritten as

Oj =Z

[
�+ √

�

2

]
↪−→Z[ψ] + �nR. (13)

We remind the reader that the above injection (13) is again optimal, and that (11) is originally
induced by (13). It is then clear that the injections (11), (12) and (13) are all compatible
between each other, meaning that, after tensoring with Q, one gets the same map ι : K ↪→
B�,∞. In particular, Oj and Oj0 are contained inside the same imaginary quadratic field
K =Q(

√
�) =Q(

√
�0).

Consider now the order O := Oj +Oj0 ⊆ K. We have that ι(O) ⊆Z[ψ] + �nR, and from
the optimality of (13) it follows that O =Oj. Hence Oj0 ⊆Oj, and this concludes the proof.

Since at least one among y and z is non-zero, we also have that at least one among ỹ :=
y + (�0z)/2 and z̃ = z is non-zero. Note that ỹ ∈ 1

2Z and z̃ ∈Z. Then we have

�2
0|�| = Q̃�,n(̃x, ỹ, z̃) = |�0 |̃x2 + 4�2n+1̃y2 + �2n+1|�0 |̃z2

≥ max{4�2n+1̃y2, �2n+1|�0 |̃z2} ≥ �2n+1

which implies

n + 1 ≤ log (�2
0|�|)

2 log �
+ 1

2
. (14)

Combining now (14) with Lemma 3·5 concludes the first case of the proof of Theorem 3·1.

3·2. Second case: � divides �

For this part of the proof, we are going to heavily rely on [33], of which we have kept the
notation. We again assume that the elliptic curve E0 is given by an integral model over the
ring of integers of Q( j0) that has good reduction at μ∩Q( j0).

Suppose initially that � divides the conductor of the order Oj. Let Hj ⊆ F be a minimal
extension of the ring class field Hj such that there exists an elliptic curve (Ej)/F with j(Ej) = j
and having good reduction at all primes of F lying above �. Fix such an elliptic curve Ej and
base-change it to the compositum L = F · Hj0 . Consider also a prime μL ⊆ L lying above
μ⊆ H and denote by A the ring of integers in the completion of the maximal unramified
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extension of LμL , with maximal ideal μLA ⊆ A. By abuse of notation, we denote by E0, Ej

the elliptic schemes over A with generic fibers isomorphic to the base-changes of E0, Ej to
the completion of the maximal unramified extension of LμL . The elliptic schemes Ej and E0

have good reduction over A and, since A is a complete discrete valuation ring of characteristic
0 with algebraically closed residue field of characteristic � > 0, we can use the same proof
of Lemma 3·5 to see that

vμ( j − j0) ≤ vμL( j − j0) ≤ d0

2
· max{n ∈N≥1 : IsoA/μn

LA(Ej, E0) �= ∅}. (15)

Since � ��0, we can now apply [33, Proposition 4.1] with E = E0, Od1 =Oj0 and Od2 =
Oj. This proposition, used together with the fact that � divides the conductor of Oj, implies
that IsoA/μn

LA(Ej, E0) = ∅ if n> 1. Combined with (15), this gives

vμ( j − j0) ≤ d0

2

as desired. This yields the theorem in the case that � divides the conductor of Oj.
Assume now that � divides � but does not divide the conductor of the order Oj. Then,

if again Ej is an elliptic curve with j(Ej) = j, we can choose F = Hj as a field where Ej has
a model with good reduction at all primes dividing �. This follows from [40, Theorem 9].
If we complete H at μ, and we take A to be the ring of integers in the completion of the
maximal unramified extension of Hμ and W to be the ring of integers in the completion
of the maximal unramified extension of Q�, then Frac(W) ⊆ Frac(A) is a ramified degree 2
field extension because the ramification index e(μ/�) = 2 by our assumptions. Again by [33,
Proposition 4.1], since we are assuming that � does not divide the conductor of Oj, for every
n ∈N>0 we have

#IsoA/μnA(E0, Ej) ≤ C · #SLie
n (E0/A), (16)

where C = C( j) ≤ 6 is a positive constant depending on j and SLie
n (E0/A) is the set of all

endomorphisms ϕ ∈ EndA/μnA(E0) satisfying the following three conditions (cfr. [33, pag.
9218]):

(1) ϕ2 −�ϕ + 1
4 (�2 −�) = 0;

(2) the inclusion Z[ϕ] ↪→ EndA/μA(E0) is optimal at all primes p �= �. We recall that an
embedding of Z-modules O ↪→ R is optimal at a prime p if the equality

(ι(O) ⊗Z Qp) ∩ (R ⊗Z Zp) = ι(O) ⊗Z Zp

holds (note that the corresponding [33, Definition 2.1] contains a misprint);

(3) as endomorphism of Lie(E0 mod μnA) we have ϕ ≡ δ mod μn, where δ ∈ A is a fixed
root of the polynomial x2 −�x + 1

4 (�2 −�).

The set SLie
n (E0/A) can be partitioned as

SLie
n (E0/A) =

⋃
m∈N

SLie
n,m(E0/A),

where SLie
n,m(E0/A) consists of all the endomorphisms ϕ ∈ SLie

n (E0/A) such that

disc
(Oj0[ϕ]

) = m2.
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We first claim that, under our assumptions, the sets SLie
n,0 (E0/A) are empty for all n ∈N>0.

Indeed, let ϕ ∈ SLie
n,0 (E0/A) so that disc

(Oj0[ϕ]
) = 0. Since a division quaternion algebra

does not contain suborders of rank 3, this in particular implies that Oj0[ϕ] has rank 2 as
Z-module, so that Z[ϕ] is isomorphic to an order in Kj0 , not necessarily contained in Oj0 .
By the definition of SLie

n (E0/A), the order Z[ϕ] has discriminant �, and we deduce that
Z[ϕ] ∼=Oj ⊆ Kj0 . However, by assumption � divides � but does not divide the conductor of
Oj. Hence � must divide the discriminant of Kj0 which in turn implies � |�0, contradicting
our hypotheses. This proves the claim.

On the other hand, in the second paragraph of [33, pag. 9247] it is proved that, when
� divides � but does not divide the conductor of Oj, and � ��0, then for every m> 0 and
n> 1, the set SLie

n,m(E/A) is empty. We deduce that SLie
n (E/A) = ∅ for all n> 1, and combining

this with inequality (16) we obtain IsoA/μnA(E0, Ej) = ∅ for all n> 1. Finally, using [21,
Proposition 2.3] we obtain

vμ( j − j0) = 1

2
#IsoA/μA(E0, Ej) ≤ d0

2

and this concludes the proof of Theorem 3·1.

4. Proof of Theorem 1·1
The main scope of this section is to present the proof of Theorem 1·1. At the end of this

proof, we will point at the precise estimates that can be used to prove Theorem 1·2 and
similar results, and we will provide a proof of the fact (stated in the introduction) that the
extension Q⊆Q( j0) can be Galois for at most a finite number of singular moduli j0. Before
starting, let us recall some notation already used in the introduction. For a number field
K we denote by MK the set of all places of K and by M∞

K ⊆MK the subset of all the
infinite ones. For every w ∈MK \M∞

K we indicate by |·|w the absolute value in the class
of w normalised as follows: if pw denotes the prime ideal corresponding to w and pw is the
rational prime lying below pw, then

|x|w = p
−vpw (x)/ew
w

for all x ∈ K \ {0}, where vpw(x) is the exponent with which the prime pw appears in the
factorisation of x, and ew is the ramification index of pw over pw.

Proof of Theorem 1·1. Let ( j0, S) be a nice �0-pair with �0 <−4 and #S ≤ 2. We can
assume without loss of generality that #S = 2, since if S contains fewer than two elements the
statement of the theorem becomes weaker. Hence we can write S = {�1, �2} with �1, �2 ∈N
two distinct primes.

In order to prove Theorem 1·1, we follow the strategy used in [2] to prove the emptiness
of the set of singular units. Let j be a singular modulus of discriminant � such that j − j0 is
an S-unit, and let h(·) denote the logarithmic Weil height on algebraic numbers. By the usual
properties of height functions [4, Lemma 1.5.18], we have

h( j − j0) = h(( j − j0)−1) = 1

[Q( j − j0) : Q]

∑
v∈MQ( j−j0)

dv log+ |( j − j0)−1|v = A + N, (17)
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where dv := [Q( j − j0)v : Qv] is the local degree of the field Q( j − j0) at the place v and

A := 1

[Q( j − j0) : Q]

∑
v∈M∞

Q( j−j0)

dv log+ |( j − j0)−1|v,

N := 1

[Q( j − j0) : Q]

∑
v|�1�2

dv log |( j − j0)−1|v

are, respectively, the archimedean and non-archimedean components of the height. Notice
that the expression for N follows from our assumption on j − j0 being an S-unit and from the
fact that j − j0 is an algebraic integer. We study these two components separately, starting
with the archimedean one. From now on, we assume |�|>max{|�0|, 1015}.

Denote by C0 and C� the class numbers of the orders associated to j0 and to j respectively.
Then by [6, Corollary 4.2 (1)] we have

A ≤ 8F log |�| · C0

[Q( j − j0) : Q]
+ log

(
F log |�| · C0 · |�|1/2

[Q( j − j0) : Q]

)
+ 4 log |�0| + 0.33, (18)

where F := max{2ω(a) : a ≤ |�|1/2} and ω(n) denotes the number of prime divisors of an
integer n ∈N. Using [15, Theorem 4.1] we have

[Q( j − j0) : Q] = [Q( j, j0) : Q] ≥ [Q( j) : Q] = C�

which, combined with (18), gives

A ≤ 8F log |�| · C0

C�
+ log

(
F log |�| · C0 · |�|1/2

C�

)
+ 4 log |�0| + 0.33. (19)

As far as the non-archimedean part is concerned, we have

N = 1

[Q( j − j0) : Q]

∑
v|�1�2

dv log |( j − j0)−1|v = 1

[Q( j − j0) : Q]

∑
i∈{1,2}

∑
p|�i

vp( j − j0) log �
fp
i

= log �1

[Q( j − j0) : Q]

∑
p|�1

vp( j − j0)fp + log �2

[Q( j − j0) : Q]

∑
p|�2

vp( j − j0)fp, (20)

where fp denotes the residue degree of the prime p⊆Q( j − j0) lying over p∩Q. For every
p | �1�2, we choose a prime ideal μ⊆ H that divides p, where H denotes the compositum
inside Q of the ring class fields relative to j and j0. Note that this makes sense, since we have
Q( j − j0) ⊆Q( j, j0) ⊆ H (the first inclusion is actually an equality by [15, Theorem 4.1]).
We wish now to use Theorem 3·1 to bound vμ( j − j0) for all these primes μ. Let’s check
that the hypotheses of the theorem are verified in our context:

(1) since we are assuming |�0|< |�|, certainly we have � �=�0;

(2) since ( j0, S) is a nice�0-pair, for i ∈ {1, 2} the prime �i splits completely in Q( j0). In
particular, μ∩Q( j0) has residue degree 1, as required;
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(3) since ( j0, S) is a nice �0-pair, for i ∈ {1, 2} the prime �i does not divide either �0

or NQ( j0)/Q( j0( j0 − 1728)). In particular, this last condition implies that the elliptic
curve

E0/Q( j0) : y2 + xy = x3 − 36

j0 − 1728
x − 1

j0 − 1728

with j(E0) = j0, has good reduction at μ.

This discussion shows that we can apply Theorem 3·1 to bound vμ( j − j0). Notice
that under our assumptions we have, in the notation of the theorem, that d0 = 2 since
�i � NQ( j0)/Q( j0( j0 − 1728)) for i ∈ {1, 2}. Moreover, the imaginary quadratic order asso-
ciated to j cannot contain the order associated to j0 because |�|> |�0|. Thus we obtain

vp( j − j0) ≤ vμ( j − j0) ≤ max

{
log (�2

0|�|)
2 log �i

+ 1

2
, 1

}

for all primes p | �i. Combining this with (20) and setting L := max{�1, �2} we obtain

N ≤ log �1

[Q( j − j0) : Q]

∑
p|�1

max

{
log (�2

0|�|)
2 log �1

+ 1

2
, 1

}
fp + log �2

[Q( j − j0) : Q]
(21)

×
∑
p|�2

max

{
log (�2

0|�|)
2 log �2

+ 1

2
, 1

}
fp

≤ ( log �1) max

{
log (�2

0|�|)
2 log �1

+ 1

2
, 1

}
+ ( log �2) max

{
log (�2

0|�|)
2 log �2

+ 1

2
, 1

}

= max

{
log (�2

0|�|)
2

+ log �1

2
, log �1

}
+ max

{
log (�2

0|�|)
2

+ log �2

2
, log �2

}

≤ 2 max

{
log (�2

0|�|)
2

+ log L

2
, log L

}
= max{log (�2

0|�|) + log L, 2 log L},

where in the second inequality we have used the fact that, for every number field K and any
prime q ∈N, we always have

∑
q|q fq ≤ [K : Q] (here the sum is taken over the prime ideals

of K lying above q). Using now together (17), (19) and (21) we obtain the following upper
bound

h( j − j0) ≤ 8F log |�| · C0

C�
+ log

(
F log |�| · C0 · |�|1/2

C�

)
+ 4 log |�0| + 0.33 (22)

+ max{log (�2
0|�|) + log L, 2 log L}

for the Weil height of j − j0. We now look into lower bounds.
In order to find a lower bound for h( j − j0), we first reduce to the problem of finding a

lower bound for h( j) by means of the elementary inequality

h( j − j0) ≥ h( j) − h( j0) − log 2 (23)

https://doi.org/10.1017/S0305004122000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000378


434 FRANCESCO CAMPAGNA

see [4, Proposition 1.5.15]. As for bounding h( j), we use the lower bound [2, Proposition
4.3]

h( j) ≥ 3√
5

log |�| − 9.79 (24)

together with [2, Proposition 4.1]

h( j) ≥ π |�|1/2 − 0.01

C�
(25)

which generally holds for |�| ≥ 16. Combining (23) with (24) and (25), and adding 1 on
both sides, we obtain

Y(�) := max

{
3√
5

log |�| − 8.79,
π |�|1/2

C�

}
≤ h( j − j0) + h( j0) + log 2 + 1. (26)

Concatenating now (26) with (22), and dividing both sides by Y(�), yields the inequality

1 ≤ A(�) + B(�) + C(�) + D(�), (27)

where

A(�) = 8F log |�| · C0

Y(�)C�
,

B(�) = log (F log |�|)+ log C0 + 4 log |�0| + h( j0) + 1.33 + log 2

Y(�)
,

C(�) = 1

Y(�)
log

( |�|1/2
C�

)
,

D(�) = 1

Y(�)
· max{log (�2

0|�|) + log L, 2 log L}.

We want to show that (27) cannot hold if |�| is sufficiently large. As far as estimating
the first three terms of (27) is concerned, we find ourselves in the same situation as Cai in
[6, Sections 6.1–6.4], and we can directly use the bounds therein obtained. More precisely
from [6, Section 6.2] we have, since |�|> 1015, that

A(�) ≤ 8F log |�| · C0

π |�|1/2 ≤ 8C0

π
|�|−0.1908

so for every εA > 0,

A(�) ≤ 8C0

π
|�|−0.1908 < εA (28)

holds for |�| sufficiently large. Moreover, using

log (F log |�|) ≤ log 2

2
· log |�|

log log |�| − c1 − log 2
+ log log |�|

which is [2, Inequality (5.8)] (here c1 ∈R is an effectively computable absolute constant
defined in [2, Section 5.2]), we have that, for every εB > 0, the inequality
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B(�) ≤ 1

(3/
√

5) log |�| − 8.79

(
log 2

2
· log |�|

log log |�| − c1 − log 2
+ log log |�| + K

)
< εB,

(29)
where K := log C0 + 4 log |�0| + h( j0) + 1.33 + log 2, holds for |�| sufficiently large.
Finally, using the fact that x �→ log (x)/x is a decreasing function when x ≥ 4, for every
εC > 0 one has

C(�) ≤ 1

Y(�)
log

(
π−1Y(�)

)
≤ 1

(3/
√

5) log |�| − 8.79
log

(
π−1

(
3√
5

log |�| − 8.79

))
< εC (30)

for |�| sufficiently large. We are then left with bounding D(�) from above. For |�| ≥
L/|�0|2 we have

D(�) = 1

Y(�)
· max

{
log (�2

0|�|) + log L, 2 log L
}

≤ 1
3√
5

log |�| − 8.79
·
(

log |�| + log L

(
log�2

0

log L
+ 1

))

=
√

5

3
+ 1

3√
5

log |�| − 8.79
·
(√

5

3
· 8.79 + log L

(
log�2

0

log L
+ 1

))

so for every εD > 0 we obtain

D(�) ≤
√

5

3
+ εD ≤ 0.75 + εD (31)

for |�| sufficiently large (depending on �0 and �1, �2). We can now combine (28), (29),
(30), (31) with (27) to obtain

1 ≤ εA + εB + εC + εD + 0.75 (32)

which holds for |�| ��1,�2,�0,εA,εB,εC ,εD 0. Choosing εA, εB, εC, εD small enough, the
inequality cannot be verified for sufficiently large |�|. This proves that there are at most
finitely many singular moduli j such that j − j0 is an S-unit, and concludes the proof of the
first part of Theorem 1·1.

We now begin the proof of the second part of Theorem 1·1. Suppose Q⊆Q( j0) is not
Galois. We first claim that every prime in S must be split in Q(

√
�0). Indeed, assume by

contradiction that a prime � ∈ S is inert in Q(
√
�0) (it cannot ramify by definition of a nice

�0-pair). Let HO := Q( j0,
√
�0) which is a semidihedral Galois extension of Q, and let

H := Gal(HO/Q( j0)) ⊆ Gal(HO/Q) =: G

with generator σ ∈ H. Since � splits completely in Q( j0) and is inert in Q(
√
�0), the decom-

position group of any prime of HO above � has order 2 and certainly contains H, since all the
primes in Q( j0) lying above � are inert in Q( j0) ⊆ HO. Hence, every such decomposition
group must be equal to H and this means in particular that τHτ−1 = H for all τ ∈ G. We
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deduce that σ commutes with every element of G, so G must be abelian and we reach the
desired contradiction.

Let now j ∈Q be a singular modulus of discriminant� such that j − j0 is an S-unit. Since
j − j0 cannot be a unit by [34, Corollary 1.3], there exists a prime � ∈ S dividing the norm of
j − j0. This implies that there exists a number field K, a prime μ⊆ K lying above � and two
elliptic curves E0, Ej defined over K with good reduction at μ such that j(Ej) = j, j(E0) = j0
and E0 mod μ∼=F�

Ej mod μ. Moreover, since � splits in Q(
√
�0) by the discussion above,

both E0 and Ej have ordinary reduction modulo μ by [31, Chapter 13, Theorem 12]. From
the reduction theory of CM orders (see again [31, Chapter 13, Theorem 12]) and the fact
that � ��0, we deduce that �= �2n�0 for some non-negative integer n, as wanted.

Remark 4·1. The proof of Theorem 1·1 can now be specialised to different situations to
obtain explicit results on singular differences that are S-units. Indeed, for a given nice �0-
pair ( j0, S), it suffices to find a discriminant � whose absolute value is sufficiently large to
violate inequality (32), which in turn is a combination of the explicit inequalities (28), (29),
(30) and (31). For instance, in the case of Theorem 1·2, with the choice of the nice (−7)-pair
(−3375, {13, 17}) and |�|> 1081 one gets

εA + εB + εC + εD < 0.2485

and similarly with the other choices of primes in the theorem.

We conclude this section by proving that the hypothesis on the extension Q⊆Q( j0) being
Galois, which appears in the statement of Theorem 1·1, is verified only for finitely many
singular moduli j0.

PROPOSITION 4·2. There are at most finitely many singular moduli j ∈Q such that the
extension Q⊆Q( j) is Galois.

Proof. Let O be the imaginary quadratic order relative to j, and denote by K its fraction
field, with ring of integers OK and discriminant �K . By [1, Corollary 3.3] the extension
Q⊆Q( j) is Galois if and only if the class group Pic(O) of the order O is elemen-
tary 2-abelian. Since the natural homomorphism Pic(O) → Pic(OK) is surjective (see [37,
Proposition I.12.9]), we deduce that also the class group of OK has exponent 2. Hence,
by [45, Theorem 1], there exists a negative fundamental discriminant D such that either
|�K | ≤ 5460 or �K = D. In particular, we have only a finite number of possibilities for the
imaginary quadratic field K.

In order to show that there is also a finite number of possibilities for the order O, we
need to bound the possible conductors f := |OK : O|. To do so, consider the genus field
GO relative to the order O: it is the maximal subextension of the ring class field HO that
contains K and is abelian over Q. It can also be described as the fixed field by Pic(O)2 under
the Artin isomorphism Gal(HO/K) ∼= Pic(O), see [24] and [30, Section 2.2] (note also that
the first part of the proof of [11, Theorem 6.1] carries over to non-maximal orders after
making appropriate modifications). Since Pic(O) is elementary 2-abelian by hypothesis, we
deduce that GO = HO and then [30, Equation (2.3)] implies that

#Pic(O) ≤ 2ω(f 2�K )+1, (33)

where ω(f 2�K) denotes the number of distinct prime divisors of f 2�K . On the other hand,
by [11, Theorem 7.24] we can write
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f
∏
p|f

(
1 −

(
�K

p

)
1

p

)
= |O×

K : O×|
#Pic(OK)

#Pic(O). (34)

Combining (33) with (34), and using the fact that K ranges among a finite set of imaginary
quadratic fields, it is not difficult to see that f must be in fact bounded. This concludes the
proof.

5. Theorems 1·3 and 1·4
The proofs of Theorems 1·3 and 1·4, after a preliminary reduction step, become analo-

gous to the proof of Theorem 1·1. The reader may then wonder why we decided to not write
one single argument for all these results. The reason is double: first, for clarity of exposi-
tion, since already the proof of Theorem 1·1 contains quite involved computations. Second,
because differences of the form j − j0 with j0 ∈ {0, 1728} require some extra attention due
to the fact that the corresponding elliptic curves (E0)/Q with j(E0) = j0 have more geometric
automorphisms than in the other cases. After pondering all these aspects, we chose to only
sketch the proofs of the two aforementioned theorems, outlining with all the details only the
parts in which they differ from the proof of Theorem 1·1. We begin with Theorem 1·3.

Proof of Theorem 1·3. First of all, we show that it is sufficient to prove that, under the
assumptions of the theorem, the set of singular moduli j such that j − 1728 is an {�}-unit is
finite and the discriminants of its elements can be effectively bounded. Indeed, suppose that
j − 1728 is a singular S�-unit and assume that p ∈ S0 is a prime dividing its norm NQ( j)/Q( j −
1728). Then for every prime p⊆Q lying above p we have j ≡ 1728 mod p and p is a prime
of ordinary reduction for every elliptic curve over Q with j-invariant 1728 or j. In particular,
1728 and j must be associated with the same imaginary quadratic field Q(

√−1). It has then
been proved in [8, Claim 6.1] that in this case, there are at least other 3 primes not congruent
to 1 modulo 4 dividing this norm. In particular, j − 1728 cannot be a singular S�-unit (the
existence of this argument is also remarked in [27, Section 1.1]).

Hence we are reduced to bounding the discriminants of the singular moduli j such that
j − 1728 is an {�}-unit for �≥ 5 a prime congruent to 3 modulo 4. Let then j ∈Q be a singular
modulus such that j − 1728 is an {�}-unit. In the same way as in the previous section, we
compute the Weil height

h( j − 1728) = h(( j − 1728)−1) = 1

[Q( j) : Q]

∑
v∈MQ( j)

dv log+ |( j − 1728)−1|v = A + N,

(35)
where, again, dv := [Q( j)v : Qv] is the local degree at the place v and

A := 1

[Q( j) : Q]

∑
v∈M∞

Q( j)

dv log+ |( j − 1728)−1|v and

N := 1

[Q( j) : Q]

∑
v|�

dv log+ |( j − 1728)−1|v

are, respectively, the archimedean and non-archimedean components of the height. For |�|
big enough, we can bound the archimedean component using another time the work of
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Cai [6]. More precisely, [6, Corollary 4.2] gives for |�| ≥ 1014

A ≤ 4F log |�|
C�

+ 2 log
F|�|1/2 log |�|

C�
− 2.68, (36)

where C� is the class number of the order of discriminant� and F = max{2ω(a) : a ≤ |�|1/2}
as in the previous section. The non-archimedean component can be rewritten as

N = 1

[Q( j) : Q]

∑
p|�

vp( j − 1728) log �fp = log �

[Q( j) : Q]

∑
p|�

vp( j − 1728)fp, (37)

where the sum runs over primes p of Q( j) lying above �, and fp denotes the residue degree
of p over �. To estimate the valuation from above, we can apply Theorem 3·1 since all the
hypotheses are met also in this case: � has certainly degree 1 in Q(1728) =Q and is coprime
with −4 = disc Q(i). Moreover, the elliptic curve E1728/Q : y2 = x3 + x has j(E1728) = 1728
and good reduction at all primes � �= 2. We deduce that for all p | � we have

vp( j − 1728) ≤ max

{
log (16|�|)

log �
+ 1, 2

}
,

where in the application of Theorem 3·1 one has d0 = 4 since �≥ 5 (see [43, III, Theorem
10.1]). Combining the above estimate with (37) we obtain

N ≤ max{log (16|�|) + log �, 2 log �} (38)

so putting together (35), (36) and (38) we get

h( j − 1728) ≤ 4F log |�|
C�

+ 2 log
F|�|1/2 log |�|

C�
− 2.68

+ max{log (16|�|) + log �, 2 log �} (39)

for |�| ≥ 1014. Now the lower bound (26) allows to conclude exactly in the same way as in
the proof of Theorem 1·1.

As the reader may have noticed, the intimate reason why the proofs of Theorems 1·1 and
1·3 work out is that the lower bound (26) is sufficiently good to prevail on the estimates
(21) and (38) for the non-archimedean parts of the relevant Weil heights. This will not be
the case for j0 = 0, since in this case one has to take d0 ≥ 6 in the inequalities of Theorem
3·1. This is the reason why the proof of Theorem 1·4 is conditional under GRH. However,
as already mentioned in the introduction, Theorem 1·4 does not need the full strength of
the Generalised Riemann Hypothesis to be proved, but only that a weaker condition on the
Dirichlet L-functions associated to imaginary quadratic fields holds. The aim of the subse-
quent discussion is to introduce this condition, and to deduce from its assumption a lower
bound for the Weil height of a singular modulus that is sharp enough to prove Theorem 1·4
with our methods.

Recall that non-principal real primitive Dirichlet characters are precisely the Kronecker
symbols attached to quadratic field extensions of Q. We say that such a Dirichlet character
has discriminant D ∈Z if it is the Kronecker symbol attached to a quadratic field of
discriminant D.
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Definition 5·1. Let k ∈R be a non-negative real number. A non-principal real primitive
Dirichlet character χ of discriminant D is said to satisfy property P(k) if

L′(χ , 1)

L(χ , 1)
≥ −0.2485 log |D| − k

where the left-hand side of the inequality is the logarithmic derivative of the Dirichlet L-
function L(χ , s) associated to χ .

Remark 5·2. The inequality appearing in Definition 5·1 may seem a bit arbitrary, and indeed
it is. Actually for our purposes, we could take any inequality of the form

L′(χ , 1)

L(χ , 1)
≥ −c log |D| − k

with c< 0.25 as a definition for the property P(k), and all the following proofs would work
in the same way.

Remark 5·3. It is proved in [35] that the logarithmic derivative of Dirichlet L-functions
attached to Kronecker symbols of imaginary quadratic fields is actually positive for infinitely
many negative fundamental discriminants. In particular, property P(0) holds for infinitely
many real primitive Dirichlet characters of negative discriminant.

Let now j ∈Q be a singular modulus relative to an order in the imaginary quadratic field
K. Under the assumption that the Kronecker symbol associated to K satisfies property P(k)
for some non-negative k ∈R, we are able to provide a lower bound for the Weil height
of j in terms of its discriminant �. In order to make this assertion precise, we introduce
some notation. For an elliptic curve E defined over a number field L, denote by hF(E) its
stable Faltings height [14, pag. 354] with Deligne’s normalisation [12]. We continue writing
h : Q→R for the logarithmic Weil height of an algebraic number.

PROPOSITION 5·4. Let j be a singular modulus of discriminant�= f 2�K, where�K is the
discriminant of the imaginary quadratic field K relative to j. If for some k ∈R≥0 property
P(k) holds for the non-principal real primitive Dirichlet character χ of discriminant �K,
then

h( j) ≥ 1.509 log |�| + C

for some effective constant C = C(k) ∈R.

Proof. Let E/Q( j) be an elliptic curve with j(E) = j. Using [17, Lemma 7.9], the loga-
rithmic Weil height of j can be bounded from below by the stable Faltings height of E as
follows

h( j) ≥ 12hF(E) + 8.64. (40)

We can explicitly compute the stable Faltings height of E using the well-known results
of Colmez [9] and Nakkajima–Taguchi [36], as done for instance in [22, Lemma 4.1].
One has

hF(E) = 1

4
log (|�|) + 1

2

L′(χ , 1)

L(χ , 1)
− 1

2

⎛⎝∑
p|f

ef (p) log p

⎞⎠ − 1

2
(γ + log (2π))
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where γ is the Euler–Mascheroni constant, f is the conductor of the CM order and for a
prime p we define

ef (p) := 1 − χ(p)

p − χ(p)

1 − p−vp(f )

1 − p−1
.

Using property P(k) we then get

hF(E) ≥ 1

4
log (|�|) + 1

2
(−0.2485 log |�K | − k)− 1

2

⎛⎝∑
p|f

ef (p) log p

⎞⎠ − 1

2
(γ + log (2π))

= 1

4
log (|�|) + 1

2
( − 0.2485 log |�| − 0.2485 log f −2 − k)

− 1

2

⎛⎝∑
p|f

ef (p) log p

⎞⎠ − 1

2
(γ + log (2π))

= 0.12575 log |�| + 0.2485 log f − 1

2

⎛⎝∑
p|f

ef (p) log p

⎞⎠ − 1

2
(γ + log (2π) + k).

We want to bound from below the quantity

A( f ) := 0.2485 log f − 1

2

⎛⎝∑
p|f

ef (p) log p

⎞⎠ .

To do this, one can proceed exactly as in [2, Section 4]. First, one notices that

ef (p) ≤ 2

p + 1
· 1 − p−vp(f )

1 − p−1

by considering all the possible values of the Dirichlet character χ(p). Setting now for all
n ∈N>0

δ(n) := 0.2485 log n −
⎛⎝∑

p|n

log p

p + 1
· 1 − p−vp(n)

1 − p−1

⎞⎠ ,

one notices that δ(n) is an additive function and satisfies δ(pr+1) ≥ δ(pr) for all primes p ∈N
and integers r> 0. Since one has δ(2), δ(3)< 0 and δ(p)> 0 for all primes p ≥ 5, we deduce
that δ(n) ≥ δ(2) + δ(3) for all n ∈N>0. We then have

A(f ) ≥ δ(f ) ≥ δ(2) + δ(3) = 0.2485( log 2 + log 3) −
(

log 2

3
+ log 3

4

)
>−0.0605.

In conclusion, we obtain

hF(E)> 0.12575 log |�| − C0, (41)

where we set

C0 = 1

2
(γ + log (2π) + k) + 0.0605.
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Combining now (40) with (41) we obtain

h( j)> 1.509 log |�| − 12C0 + 8.64

and this concludes the proof.
We now state and prove a stronger version of Theorem 1·4, whose proof relies on the use

of property P(k) rather than on the use of GRH. We then show how Theorem 1·4 follows
from this stronger statement.

THEOREM 5·5. Let S0 be the set of rational primes congruent to 1 modulo 3, let �≥ 5 be
an arbitrary prime and set S� := S0 ∪ {�}. Assume that all the Kronecker symbols attached
to imaginary quadratic fields satisfy property P(k) for some fixed k ∈R≥0. Then there exists
an effectively computable bound B = B(�, k) ∈R≥0 such that the discriminant �j of every
singular S�-unit j ∈Q satisfies |�j| ≤ B. In particular, the set of singular moduli that are
S�-units is finite and its cardinality can be effectively bounded.

Proof. The proof is essentially identical to the proof of Theorem 1·3, and we only sketch
the argument. First of all, it is again sufficient to prove that, under the assumptions of the
theorem, the set of singular {�}-units is finite and the discriminants of its elements can be
effectively bounded. This follows in the same way as done at the beginning of the proof
of Theorem 1·3, but this time appealing to the proofs of [8, Theorem 1.2 and Claim 3.1].
Hence we are reduced to bounding the discriminants of singular {�}-units for �≥ 5 a prime
congruent to 2 modulo 3. Let j be a singular {�}-unit relative to the order O of discriminant
�. Again, one decomposes its logarithmic Weil height h( j) into a sum h( j) = A + N of an
archimedean and a non-archimedean component.

The archimedean component A has been studied in [2, Corollary 3.2]. Here it is proved
that, for |�| ≥ 1014, we have

A ≤ 12F log |�|
C�

+ 3 log
F|�|1/2 log |�|

C�
− 3.77, (42)

where C� is the usual class number of the order of discriminant � and F = max{2ω(a) : a ≤
|�|1/2}. Note that, although [2, Corollary 3.2] is only formulated for singular units, it also
holds for general singular moduli (with the same proof) if one restricts to considering the
archimedean component of their height. The non-archimedean part can be written as

N = log �

[Q( j) : Q]

∑
p|�

vp( j)fp, (43)

where fp denotes the residue degree of the prime p⊆Q( j) lying above �. Using Theorem 3·1
with the elliptic curve E0/Q : y2 = x3 + 1 with j(E0) = 0 and noticing that d0 = 6 because
�≥ 5 we have

vp( j) ≤ max

{
3

(
log (9|�|)

2 log �
+ 1

2

)
, 3

}
and, combining this estimate with equality (43), we get

N ≤ max

{
3

2
( log (9|�|) + log �), 3 log �

}
. (44)
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A lower bound for the height h( j) can be obtained by combining the conditional
Proposition 5·4 with (25). The conclusion of the proof can be then carried out in the same
way as the proof of Theorem 1·1.

Proof of Theorem 1·4. The fact that the Dirichlet L-functions attached to imaginary
quadratic fields satisfy GRH implies in particular that for every non-principal real primitive
Dirichlet character χ of negative discriminant D we have

L′(χ , 1)

L(χ , 1)
= O( log log |D|),

where the implied constant is absolute, see for instance [18, Section 3.1] or [28, Theorems
1 and 3] for the explicitness of the implied constant in the case |D|> 8 (in the remaining
cases, one can find an explicit bound for the absolute value of the logarithmic derivative
for instance by first relating it to the Faltings height as done in [22, Lemma 4.1] and then
by using some bounds on the difference between the Faltings height and the j-height [38,
Lemmas 2.6 and 3.2]). In particular, there exists k ∈R≥0 such that property P(k) holds for all
Kronecker symbols attached to imaginary quadratic fields. Now one concludes by applying
Theorem 5·5.

6. An unsuccessful attempt at making Theorem 1·4 unconditional

The aim of this section is to show that the naive attempt at making Theorem 1·4 uncondi-
tional by improving the bounds obtained in Theorem 3·1 is fruitless. Namely, we will prove
that the order of magnitude of the bounds appearing in Theorem 3·1 cannot be improved in
general, at least in the case j0 = 0. Under the condition that the considered prime � divides
the discriminant of the order Oj corresponding to the singular modulus j, it is easy to provide
examples in which the second upper-bound of (3) is reached. For instance, each of the sin-
gular moduli j of discriminant �= −7 · 52 is divided by the unique prime p5 ⊆Q( j) above
5 and we have vp5( j) = 3 (note that d0 = 6 in this case). On the other hand, if � does not
divide the discriminant of Oj the claimed optimality follows from the following theorem.

THEOREM 6·1. Let �≥ 5 be a prime with �≡ 2 mod 3. There exists an infinite family
of singular moduli j whose corresponding discriminant �j is coprime with � and which
satisfy

vμ( j) ≥ 3

(
log (|�j| − 3)

2 log �
+ 1

2
− log 2

log �

)
for some prime ideal μ⊆ HO lying above �. Here HO denotes the ring class field relative to
the order O associated to j.

To prove the theorem, we need two preliminary results.

PROPOSITION 6·2. Let �≥ 5 be a prime with �≡ 2 mod 3 and consider the elliptic curve
E0 : y2 = x3 + 1 defined over F�. Then we have that

EndF�(E0) =Z+Zζ3 +Zξ +Zη

is isomorphic to a maximal order in the quaternion algebra B�,∞. Here, if ζ ∈ F� denotes
a fixed primitive 3-rd root of unity, the endomorphisms ζ3, ϕ, ξ , η ∈ EndF�(E0) are such that
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ζ3 : (x, y) �→ (ζx, y), ϕ : (x, y) �→ (x�, y�), 3ξ = 2 + ζ3 + 2ϕ + ζ3ϕ and 3η= −1 + ζ3 − ϕ −
2ζ3ϕ.

Proof. This proposition is certainly well known, but the author has not been able to find
a suitable reference. One could directly verify that the given order is a maximal order in
B�,∞ whose elements represent endomorphisms of the elliptic curve E0. We outline a possi-
ble strategy leading to the computation of this endomorphism ring, kindly suggested to the
author by John Voight.

Since �≡ 2 mod 3, the elliptic curve E0 is supersingular and OE0 := EndF�(E0) is a max-
imal order in the quaternion algebra B�,∞. Throughout this proof, we will always identify
OE0 with its image in B�,∞ under some fixed embedding. Notice that OE0 contains the sub-
ring O := Z[ζ3, ϕ]. As we have ϕ2 = −�, the ring O is actually a rank 4 suborder of OE0

having Z-basis {1, ζ3, ϕ, ζ3ϕ}, and a discriminant computation shows that |OE0 : O| = 3.
Hence, OE0 contains an element of the form

α = A + Bζ3 + Cϕ + Dζ3ϕ

3
, A, B, C, D ∈Z

with 3 � gcd (A, B, C, D). Since α is an element of a quaternion order, it is in particular
integral. This implies that its reduced trace and norm must both be integers. One has

trd(α) = 2A − B

3

nrd(α) = −�CD − AB + A2 + B2 + �(C2 + D2)

9
,

where trd(·) and nrd(·) denote respectively the reduced trace and the reduced norm in the
quaternion algebra B�,∞. Note now that, since O ⊆OE0 , the integers A, B, C, D can be
chosen to lie in {0, 1, 2}. Hence there is just a finite number of possibilities to check. A
computation shows that the possible options for the tuple (A,B,C,D) are the following four:

(1, 2, 1, 2) (1, 2, 2, 1) (2, 1, 1, 2) (2, 1, 2, 1).

By adding the corresponding α’s to the order O we get the following possibilities:

(1, 2, 1, 2), O1 : Z+Zζ3 +Z

(
1

3
− 1

3
ζ3 + 1

3
ϕ + 2

3
ζ3ϕ

)
+Z

(
−2

3
− 1

3
ζ3 − 2

3
ϕ − 1

3
ζ3ϕ

)
(1, 2, 2, 1), O2 : Z+Zζ3 +Z

(
1

3
− 1

3
ζ3 + 2

3
ϕ + 1

3
ζ3ϕ

)
+Z

(
−2

3
− 1

3
ζ3 − 1

3
ϕ − 2

3
ζ3ϕ

)
(2, 1, 1, 2), O3 : Z+Zζ3 +Z

(
2

3
+ 1

3
ζ3 + 1

3
ϕ + 2

3
ζ3ϕ

)
+Z

(
−1

3
+ 1

3
ζ3 − 2

3
ϕ − 1

3
ζ3ϕ

)
(2, 1, 2, 1), O4 : Z+Zζ3 +Z

(
2

3
+ 1

3
ζ3 + 2

3
ϕ + 1

3
ζ3ϕ

)
+Z

(
−1

3
+ 1

3
ζ3 − 1

3
ϕ − 2

3
ζ3ϕ

)
.

Looking at the generators of these orders, we see that O1 =O4 and O2 =O3, so we
discard the first two and we only consider O3 and O4. We need to decide which of
these two rings is the “correct one”. Indeed, the desired order must be identified with
the endomorphism ring of the elliptic curve E0. An element of the form 1

3β, with β ∈
EndF�(E0), is an endomorphism of E0 if and only if the endomorphism β factors through
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the multiplication-by-3 morphism. This happens if and only if the 3-torsion points of E0

are in the kernel of β. The idea is then to compute the generators of the group of 3-torsion
points of E0 and to test which order contains the “right” elements. The 3-division polynomial
of E0 is

�3(x) = 3x(x3 + 4),

so we can choose as generators of the full 3-torsion subgroup E0[3](F�) the points

P = (0, 1), Q = ( − 3
√

4,
√−3)

for fixed choices of 3
√

4,
√−3 ∈ F� as follows. Observe that for a prime �≥ 5 and �≡

2 mod 3, all elements in F� are cubes and −3 is not a square modulo �. In view of this
remark, we choose Q in such a way that the first coordinate lies in F�. The second coordinate
of Q defines in any case a quadratic extension of F�, so that

(
√−3)� = −√−3.

We are ready to verify that O4 is the correct order. Let

�= 2 + ζ3 + 2ϕ + ζ3ϕ ∈OE0

� = −1 + ζ3 − ϕ − 2ζ3ϕ ∈OE0 .

Then, using the fact that 2P = −P and 2Q = −Q we get that �=� on the 3-torsion
points, so

�(P) = [2](0, 1) + (0, 1) + [2](0, 1) + (0, 1) = 0

�(Q) = ( − 3
√

4, −√−3) + ( − ζ
3
√

4,
√−3) + [2](( − 3

√
4)�, (

√−3)�)

+ (ζ ( − 3
√

4)�, (
√−3)�) = 0

which shows that E0[3] ⊆ ker� and E0[3] ⊆ ker�. One can also verify that

(2 + ζ3 + ϕ + 2ζ3ϕ)(Q) �= 0.

This proves the proposition.

PROPOSITION 6·3. Let O be an order in an imaginary quadratic field K and � ∈N be a
prime inert in K that does not divide the conductor of O. Let W be the ring of integers in
the completion Q̂unr

� of the maximal unramified extension of Q�, with uniformizer π ∈ W.
Fix n ∈Z>0 and let E0 → Spec(W/πn) be an elliptic scheme such that the reduction modulo
π is supersingular. If f : O ↪→ EndW/πn(E0) is an optimal embedding, then there exists an
elliptic curve E/W such that:

(i) E mod πn ∼= E0;

(ii) EndW (E) ∼=O.

Proof. This is an application of Gross and Zagier’s generalisation [21, Proposition 2.7] of
the Deuring lifting Theorem [31, Theorem 13.14]. Note that the proof of Gross and Zagier’s
result in the supersingular case does not require, in their notation, the ring Z[α0] to be
integrally closed but only � not dividing its conductor.
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Write O =Z[τ ] for some imaginary quadratic τ ∈ K and let α0 := f (τ ). The endomor-
phism α0 induces on the tangent space Lie(E0) the multiplication by an element w0 ∈ W/πn

which is a root of the minimal polynomial g(x) = x2 + Ax + B ∈Z[x] of τ over Q. In order
to apply [21, Proposition 2.7], we need to show that there exists w ∈ W such that g(w) = 0
and w mod πn = w0. Let β := w0 mod π ∈ F�. Then β is a root of g(x) mod π lying in F�. If
g′(β) = 0, then β would actually lie in F�. However, since � is inert in K and does not divide
the conductor of O, the polynomial g(x) is irreducible over F� by the Kummer–Dedekind
Theorem [37, Proposition I.8.3], and this implies that the derivative of g(x) does not van-
ish on β (an irreducible polynomial over a finite field has never a common zero with its
derivative). Then by Hensel’s lemma there exists a unique w ∈ W lifting β. This w satisfies
g(w) = 0 and w mod πn = w0 by construction.

We now apply [21, Proposition 2.7] to deduce that there exists an elliptic curve E/W and an
endomorphism α ∈ EndW (E) such that E mod πn ∼= E0 and α mod πn = α0. In principle, the
ring EndW (E) could strictly contain the order Z[α]. However, the reduction map identifies
Z[α] with O, and the latter optimally embeds in EndW/πn(E0). Since the reduction map also
embeds EndW (E) ↪→ EndW/πn(E0), we deduce that EndW (E) =Z[α] ∼=O, as wanted.

Proof of Theorem 6·1. Let W be the ring of integers in the completion Q̂unr
� of the

maximal unramified extension of Q�, with uniformizer π ∈ W. For every n ∈N let Rn :=
EndW/πn+1 (E0) be the endomorphism ring of the reduction of E0: y2 = x3 + 1 modulo πn+1.
By Theorem 2·4 (a) we know that Rn ∼=Z[ζ3] + �nR0, where R0 is the order appearing in the
statement of Proposition 6·2. A computation similar to the one carried out during the proof
of Theorem 3·1 shows that the ternary quadratic form induced by the reduced norm on the
Gross lattice of Rn with basis {1 + 2ζ3, �n(2ξ − 1), 2�n(ϕ + ζ3ϕ)} is given by

Q�,n(X, Y , Z) = 3X2 + �2n 4�+ 1

3
Y2 + 4�2n+1Z2 + 2�nXY + 4�2n+1YZ ∈Z[X, Y , Z] (45)

for all n ∈N. Proposition 6·3 combined with Lemma 2·1 implies in particular that, for any
primitive triple of integers (x, y, z) ∈Z3 such that −D := Q�,n(x, y, z) is not divisible by �,
there exists an elliptic curve E/W with complex multiplication by the order of discriminant
D and which is isomorphic to E0 : y2 = x3 + 1 modulo πn+1. The primitive triple (1, 0, 1)
gives

Q�,n(1, 0, 1) = 3 + 4�2n+1

which is not divisible by �. The j-invariant of the corresponding elliptic curve E with CM by
the order of discriminant D will satisfy, by [21, Proposition 2.3], the inequality

vμ( j) ≥ 3(n + 1) = 3

(
log (|D| − 3)

2 log �
+ 1

2
− log 2

log �

)
for some prime μ⊆ HO lying above �. This concludes the proof of the theorem.

7. A uniformity conjecture for singular moduli

In this final section we make some speculations, based on computer-assisted numerical
calculations, concerning differences of singular moduli that are S-units. The starting point of
our discussion is the following observation, which was already made in a previous version
of this manuscript (compare also with [27, Question 1.2]): numerical computations seem
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to show that j−11 = −215, which is the unique singular modulus relative to the order of
discriminant �= −11, may also be the only singular modulus that is an {�}-unit for some
prime �. In other words, it seems that the set J1 of singular moduli that are S-units for some
set of primes S of cardinality 1 contains only one element, namely j−11. It appears then
natural to ask what happens if we increase the cardinality of the set S. Motivated by this
question, we have performed some computations, whose results are displayed in Table 1.
Let us describe the notation and the content of this table.

If a singular modulus of discriminant� is an S-unit for some set S of rational primes, then
actually all singular moduli of discriminant � are singular S-units since, as we discussed in
Section 2, the set of singular moduli relative to the same discriminant form a full Galois orbit
over Q. For every s, A ∈N denote then by Js the set of Galois orbits of singular moduli that
are S-units for some set S of rational primes satisfying #S = s and by Js(A) the subset of Js

consisting of those orbits whose corresponding singular moduli have discriminant � satis-
fying |�| ≤ A. Similarly, denote by �max,s (resp. �max,s(A)) the biggest (in absolute value)
imaginary quadratic discriminant such that there exists a singular modulus of discriminant
�max,s whose Galois orbit belongs to Js (resp. to Js(A)). If Js is an infinite set, we put
�max,s = −∞. Clearly, for every pair of natural numbers A1 ≤ A2 we have

|�max,s(A1)| ≤ |�max,s(A2)| ≤ |�max,s|.
In Table 1 we have computed, with the help of SAGE [39], the cardinality of Js(50000) for
s ∈ {1, ..., 7}, and the corresponding �max,s(50000). Moreover, in the last column we have
collected all the primes appearing in the norm factorisations of j ∈Js(50000).

The results displayed in Table 1 show, for small values of s ∈N, that �max,s(50000)
is much smaller compared to the bound |�| ≤ 50000 up to which we have performed

Table 1. The table displays for s ∈ {1, ..., 7} the number of imaginary quadratic discriminants
up to −5 · 104 for which the corresponding singular moduli are S-units with #S = s (second
column). The third column shows the biggest among the found discriminants and the fourth
column shows all the primes appearing in the factorisations of the norms of the corresponding
singular moduli.

s #Js(50000) �max,s(50000) primes appearing in the factorisations
1 1 − 11 2
2 9 − 83 2, 3, 5, 11
3 28 − 227 2,3,5,11,17,23,29,41
4 67 − 523 2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89
5 119 − 987 2, 3, 5, 7, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89,

101, 107, 113, 131, 137, 149, 167, 173, 179, 281, 317
6 195 −2043 2, 3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89,

101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197,
227, 233, 239, 251, 257, 263, 269, 281, 293,

311, 317, 353, 383
7 291 −2587 2, 3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89,

101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197,
227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317,

347, 353, 359, 383, 389, 419, 431, 449, 467, 491,
509, 521, 557, 569, 617, 641, 653, 677
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our computations. For instance, we see that among all the Galois orbits of singular mod-
uli with discriminant |�| ≤ 50000, only 9 orbits contain singular S-units for some set S with
#S ≤ 2. Moreover, the biggest discriminant associated to a singular modulus belonging to
one of these 9 orbits is �= −83. All this seems to suggest that �max,s(A) will remain con-
stant for all A ≥ 50000 i.e. that �max,s(50000) =�max,s for s ∈ {1, ..., 7}, which would mean
that the number of primes dividing the norm of a singular modulus must increase as the abso-
lute value of its discriminant gets bigger. If this were actually true, then the last column of
Table 1 would show which primes a set S of cardinality s must contain in order for the set of
singular S-units whose norm has exactly s prime factors to be non-empty (but for some of the
resulting s-tuples the corresponding set of singular S-units is empty). For example, it seems
from these computations that the set of singular {17, 23}-units does not contain any singular
modulus. All this discussion leads to the formulation of the following conjecture.

CONJECTURE 7·1 (Uniformity conjecture for singular units). For every s ∈N, the set Js

is finite.

We could have equivalently formulated the above conjecture by saying that for every finite
set S of rational primes, the set of singular S-units is finite and its cardinality can be bounded
only in terms of the cardinality of S, regardless from the primes contained in the latter set.
The fact that this statement is equivalent to Conjecture 7·1 can be seen as follows: suppose
that for every s ∈N there exists a constant C(s) ≥ 0 such that the set of singular S-units has
cardinality bounded by C(s) whenever S is a set of rational primes satisfying #S = s. Since
being an S-unit is Galois invariant, this implies that C(s) also bounds the size of the Galois
orbit of any such singular S-unit, hence the class number of the corresponding imaginary
quadratic order. By the Brauer–Siegel Theorem [32, Chapter XIII, Theorem 4] this entails

Table 2. The table displays for s ∈ {1, ..., 7} the number of imaginary quadratic discriminants
up to −5 · 104 for which the corresponding singular moduli j are such that j − 1728 is an S-unit
for some S with #S = s (second column). The third column shows the biggest among the found
discriminants and the fourth column shows all the primes appearing in the factorisations of the
corresponding norms of j − 1728.

s #Js(50000) �max,s(50000) primes appearing in the factorisations
1 0 / /

2 3 − 8 2, 3, 7
3 14 − 52 2, 3, 7, 11, 19, 23, 31, 43
4 31 −139 2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 79, 83,

103, 127, 139
5 54 −259 2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83,

103, 107, 127, 139, 151, 163, 211, 223
6 93 −571 2, 3, 5, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83,

103, 107, 127, 131, 139, 151, 163, 167, 179, 191,
199, 211, 223, 271, 283, 307, 331, 571

7 145 −835 2, 3, 5, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83,
103, 107, 127, 131, 139, 151, 163, 167, 179, 191,
199, 211, 223, 227, 239, 251, 271, 283, 307, 311,
331, 367, 379, 383, 439, 463, 487, 499, 523, 547,

571, 631, 691
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a bound on the discriminant of any singular S-unit with #S = s. Hence any such singular
modulus must lie in a finite set that depends only on s, but not on S and Conjecture 7·1
follows.

Inspecting the computations displayed in Table 1, one could also try to be more precise
on the cardinality of the sets Js. For instance, we may ask the following

Question 7.2. Is it true that there exists only 1 singular modulus which is an S-unit for
#S = 1, and 9 Galois orbits of singular moduli that are S-units for #S = 2?

The author finds it more difficult to formulate precise conjectures on how the number of
primes dividing the norm of a singular modulus increases with respect to its discriminant.

Of course, there is no reason to restrict our attention to singular S-units. One can make
similar conjectures for differences of the form j − j0 with j0 a fixed singular modulus. For
instance, Table 2 shows how the above considerations seem to hold true also for differences
of the form j − 1728. The notation is the same used for Table 1, but with the necessary
modifications: Js is the set of Galois orbits of singular moduli j such that j − 1728 is an
S-unit for some set S of rational primes satisfying #S = s, etc. Further computations with
other differences j − j0 would probably shed more light on whether it is possible that for
every s ∈N, there is only a finite number of singular differences j1 − j2 that are S-units for
some sets S of cardinality s. But we do not want to enter this territory here.
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