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Abstract

The assessment of soil-structure interaction (SSI) under dynamic loading conditions remains a challenging task due to the
complexities of modeling this system and the interplay of SSI effects, which is also characterized by uncertainties across
varying loading scenarios. This field of research encompasses a wide range of engineering structures, including
underground tunnels. In this study, a surrogate model based on a regression ensemble model has been developed for
real-time assessment of underground tunnels under dynamic loads. The surrogate model utilizes synthetic data generated
using Latin hypercube sampling, significantly reducing the required dataset size while maintaining accuracy. The synthetic
dataset is constructed using an accurate numerical model that integrates the two-and-a-half-dimensional singular boundary
method for modeling wave propagation in the soil with the finite element method for structural modeling. This hybrid
approach allows for a precise representation of the dynamic interaction between tunnels and the surrounding soil. The
validation and optimization algorithms are evaluated for two problems: underground railway tunnels with circular and
rectangular cross-sections, both embedded in a homogenous full-space medium. Both geometrical and material charac-
teristics of the underground tunnel are incorporated into the optimization process. The optimization target is to minimize
elastic wave propagation in the surrounding soil. The results demonstrate that the proposed optimization framework,
which combines the Bayesian optimization algorithm with surrogate models, effectively explores trade-offs among
multiple design parameters. This enables the design of underground railway tunnels that achieve an optimal balance
between elastic wave propagation performance, material properties, and geometric constraints.

Impact statement

Railway-induced vibrations can disturb residents, interfere with sensitive instruments, and damage historical
structures near railway corridors. In Europe, over 7.5 million residents are potentially affected by railway noise
and vibrations. An effective approach to attenuate vibration levels at receiving points is to minimize the vibration
source, which requires an accurate predictive model for assessing tunnel—soil interaction under dynamic loading
conditions. While various models exist, none offer rapid and precise predictions suitable for complex tunnel—soil
interaction problems and computationally demanding optimization tasks. This study presents an instant
prediction model for optimizing the geometry and materials of underground railway tunnels, enabling industries
to design tunnels based on specified constraints, with the objective of minimizing the elastic waves propagated
into the surrounding soil.
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1. Introduction

Dynamic soil-structure interaction (SSI) is an engineering discipline situated at the intersection of soil
science and structural dynamics. It is closely related to fields such as earthquake engineering, geophysics,
geomechanics, materials science, and computational mechanics (Kausel, 2006). Over recent decades,
scientific and technical communities have shown growing interest in the dynamic assessment of SSI
problems. Concurrently, a wide variety of modeling methodologies have been developed to address these
complex engineering challenges. For SSI problems that can be assumed to be longitudinally invariant,
such as railway tracks (Galvin et al., 2010), tunnels (Galvin et al., 2010; Jin et al., 2018), roads (Frangois
etal.,2010), and pipelines (Ozdemir et al., 2013), 2.5D modeling approaches (Lombaert et al., 2015) have
proven to be a more efficient alternative to full 3D models (Andersen and Jones, 2006). The wavenumber—
frequency domain has been widely adopted in models examining dynamic SSI between the soil and
various types of infrastructure, including at-grade railway tracks (Francois et al., 2010; Galvin et al.,
2010), underground tunnel systems (Galvin et al., 2010; Jin et al., 2018), roads (Lombaert et al., 2000),
and pipelines (Ozdemir et al., 2013). This paper particularly focuses on underground railway tunnel—soil—
structure interaction problems, as shown in Figure 1. It is important to note that the methodology
developed in this study takes into account the full-space model of the soil. In the following sections,
the existing studies on numerical models for the assessment of underground railway tunnel-soil
interaction problems are presented, along with the introduction of surrogate models and optimization
algorithms in this context.

1.1. 2.5D numerical models for SSI problems in elastodynamics

The applicability of 2.5D modeling approaches to SSI problems was first introduced through an
application of 2.5D finite element method (FEM) to soil-structure systems (Hwang and Lysmer,
1981). Subsequently, a 2.5D approach incorporating finite and infinite elements was developed to model
longitudinally invariant unbounded systems subjected to moving loads, with infinite elements employed
to represent the unbounded domain (Yang and Hung, 2001). A widely adopted method for addressing SSI
problems is the coupled FEM—boundary element method (BEM), where FEM is applied to model the
structure and BEM is used to represent the soil medium. In this context, a 2.5D FEM-BEM approach was
developed (Sheng et al., 2005). Another notable contribution involved the utilization of Green’s functions
for a layered half-space as fundamental solutions, instead of full-space ones, resulting in a significant
reduction in the number of boundaries requiring meshing (Frangois et al., 2010). This method has been
applied to predict railway-induced vibrations (Galvin et al., 2010). An alternate strategy for deriving
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Figure 1. Schematic description of the underground railway tunnel—soil interaction problem.
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Green’s functions needed for 2.5D BEM in elastodynamics is the thin layer method (De Oliveira Barbosa
etal.,2015). Furthermore, a 2.5D FEM—perfectly matched layer (PML) approach was introduced to study
vibrations in buildings caused by underground railway traffic, employing FEM to model the structure and
PML to represent the unbounded soil domain (Lopes et al., 2014).

Meshless methods, as an alternative to traditional mesh-based approaches, have garnered increasing
interest from the research community over the past decades. These methods do not rely on a predefined
mesh topology, leading to simpler formulations and computational implementation procedures, while
maintaining the robustness and accuracy of mesh-based approaches (Liravi, 2022). In recent years,
numerous studies have focused on the development of novel meshless approaches. Among these, the
method of fundamental solutions (MFS) and the singular boundary method (SBM) are particularly well
known. For instance, a 2.5D FEM-BEM-MFS approach has been proposed, wherein the BEM is first
used to calculate SSI forces, followed by the application of the MFS to compute radiated elastic waves
(Liravi et al., 2021). Despite the advantages of hybrid approaches such as FEM-MFS (Amado-Mendes
etal., 2015; Colago et al., 2021) and FEM-BEM-MFS, significant challenges remain when dealing with
complex boundary shapes, including geometric singularities. To address these challenges, modified
meshless strategies have been introduced, such as the FEM—SBM approach (Liravi, 2022). In the most
recent developments, a hybrid method combining both the SBM and the MFS, referred to as the hybrid
SBM-MFS, has been developed. This method capitalizes on the strengths of both techniques and is
particularly effective for addressing problems involving geometric singularities in elastic (Liravi et al.,
2024) and acoustic (Fakhraei et al., 2024) media.

Numerous alternative meshless methods have been proposed in the literature. For instance, the
regularized meshless method was first introduced by Young et al. (2005) and later enhanced by
incorporating the double-layer potential into the desingularization procedure (Liu, 2017). Another
technique, known as the boundary-distributed source approach, replaces concentrated sources with
circularly distributed ones, resulting in a singularity-free method (Kim, 2013). Additional meshless
methods discussed in the literature include the dual surface method (Fakhraei et al., 2023), the boundary
knot method (Sun et al., 2020), the localized boundary knot method (Wang et al., 2020; Yue et al., 2021),
and the local Petrov—Galerkin method (Dehghan and Salehi, 2014). Although meshless methods are
competitive in terms of efficiency for dynamic SSI problems, they still incur substantial computational
time. Moreover, due to the inherent complexity of these problems, they limit the feasibility of a systematic
investigation of design options.

1.2. Surrogate models

To reduce the lead time from design, that is, by varying the simulation parameters, to analysis results,
surrogate models can be employed. This technique reconstructs the solution space by appropriate interpol-
ation paradigms. It is successfully applied in several geotechnical problems, such as tunnel track design (Bui
et al., 2023), real-time prediction of settlement (Cao et al., 2016), or vibrations induced by pile driving
(Abouelmaty et al., 2024). Typical surrogate models include proper orthogonal decomposition using radial
basis functions, Artificial Neural Network (ANN)-based models, and gradient boosting approach.

In the Proper Orthogonal Decomposition (POD) approach, snapshots are constructed by extracting
information from the numerical results. This is often encoded in the vector form. Principal component
analysis, such as Singular Value Decomposition (SVD) decomposition, is then used to extract the
eigenvalues and eigenvectors. For the large problem, only several largest eigenvalues are kept to retain
the most information of the input data. The interpolated solution of the original problem can then be
reconstructed by employing Radial Basis Functions (Freitag et al., 2015; Bui et al., 2023).

Instead of performing numerical analysis on the snapshots, ANN approach mimics the way the human
brain facilitates information by embedding the prediction data in the network weights via progressive
training (Nini¢ and Meschke, 2015; Ninic et al., 2021). For numerical prediction tasks, a feedforward
network is usually sufficient. Nevertheless, convolutional neural networks show to be exceptional in
prediction involving temporal and historical data. However, in Bui et al. (2023), ANN is shown not to be
as accurate as the POD approach for the numerical prediction task for the same computational effort.
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Hybrid approaches are also developed to improve the efficiency and reliability of surrogate models.
For example, Freitag et al. (2015) and Cao et al. (2016) combine POD and ANN for application in
mechanized tunneling. Another branch of machine learning, the so-called Ensemble learning, has also
gained widespread use in the geotechnical community (Thai et al., 2021; Xu et al., 2023). This technique
relies on simpler learning models and uses boosting methods to connect and improve the robustness of the
integral model.

1.3. Optimization algorithms

The surrogate model usually provides sufficiently smoothed output space for the optimization problem. In
this regard, local optimization can be used, providing that the second gradient of the output with respect to
the input space exists. In this case, the steepest descent approach or Newton Raphson algorithm will
provide a quadratic converged solution efficiently. Nevertheless, for real applications, when the input
parameters vary greatly and have intricate coupling, the local optimization may resort to a local minima
solution (Nocedal and Wright, 2006). This effect becomes more profound if there are additional
constraints. As a result, a locally optimized solution may not be the global one. To overcome this, a
global optimization algorithm is required (Liravi et al., 2025). This method of searching for an optimized
solution typically employs an evolutionary approach where an initial solution is created. The solution is
then improved gradually by searching in the appropriate domains. To avoid the local minima, an
exhaustive search can be used or a disruptive solution can be fabricated as in the case of genetic algorithms
(Petrowski and Ben-Hamida, 2017). In particle swarm optimization, multiple solutions are defined in the
swarm of particles, which then be steered toward the global optimum by simulating the social behavior of
moving organisms (Nini¢ et al., 2017). This type of optimization method, together with the genetic
algorithm, adopts the natural behavior and is heuristic by default.

Despite advancements in global optimization methods, many rely on iterative evaluations of compu-
tationally expensive objective functions, limiting their applicability in real-world engineering problems
(Moens and Hanss, 2011). This gap highlights the need for a more efficient approach capable of balancing
exploration and exploitation while minimizing computational costs. Bayesian optimization offers a
compelling alternative for such scenarios (Shahriari et al., 2016; Diessner et al., 2024). By leveraging
surrogate models, Bayesian optimization intelligently selects the next evaluation points based on
probabilistic estimates of the objective function. This method not only reduces the number of required
evaluations but also adapts to high-dimensional, noisy, and constrained problems (Shahriari et al., 2016),
making it particularly well suited for tunnel—soil interaction problems or other scenarios with complex
input—output coupling.

1.4. Problem statement and novelty

The optimization of geometrical and material properties in tunnel-soil interaction problems under
elastodynamic conditions remains a challenging task due to the high computational cost of conventional
meshless or mesh-based approaches. While surrogate models have shown promise in smoothing the
output space to enhance optimization performance (Liu et al., 2016), their application to minimizing
elastic wave propagation in the surrounding soil, by optimizing specific tunnel design parameters, has not
been thoroughly investigated. This gap highlights the need for research into integrating surrogate models
with optimization algorithms to address this computationally intensive problem effectively (Khowaja
et al., 2019).

In this paper, a 2.5D FEM—SBM numerical method is employed to develop a surrogate model for
longitudinally invariant SSI problems. In the 2.5D FEM—SBM approach, the structure is modeled using
the 2.5D FEM, while a 2.5D SBM approach is adopted to represent the surrounding soil. The novelty of
the present study lies in two key aspects. First, the combination of the versatility of the 2.5D FEM with the
accuracy of the 2.5D SBM, along with the use of the Latin hypercube sampling (LHS) technique, ensures
that the developed regression ensemble model is both accurate and well suited for optimization tasks. This
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makes it a valuable alternative for the rapid assessment of underground railway tunnel-soil interaction
problems in elastodynamics, specifically for cases with invariant longitudinal cross-sections. Second, the
optimization algorithm takes into account both material and geometrical aspects of the underground
railway tunnel structure. The integration of these two key elements makes this study the first to develop a
surrogate for the optimization of underground railway tunnels from both material and geometrical
perspectives, with the objective of minimizing the elastic waves propagated from the tunnel into the
surrounding soil.

The remainder of this paper is structured as follows: Section 2 introduces the governing equations of
the problem and the mathematical formulation of the 2D FEM—-SBM approach. Section 3 describes the
surrogate model used in this study and presents two examples to validate the developed surrogate model.
Section 4 focuses on the optimization of underground railway tunnels with circular and rectangular cross-
sections. Section 5 evaluates the performance of the optimized cases across the entire frequency range.
Finally, the key findings of this study are summarized in Section 6.

2. Numerical formulation

The general description of the 2.5D FEM—-SBM approach, which will be replaced by the surrogate model,
is illustrated in Figure 2. The structure is modeled using FEM, while the unbounded domain representing
the soil is modeled using SBM. The SBM method approximates the solution for the displacement and
traction fields in the soil by employing a set of virtual sources placed along the boundary, which satisfy the
boundary conditions evaluated at the collocation points, also distributed along the boundary. Further
details of the method can be found in Liravi (2022).

2.1. Governing equations

The governing equations of elastodynamics are presented in this section. Consider the motion of a
homogeneous, isotropic elastic solid occupying a three-dimensional region €, enclosed by the boundary
I'. Assuming the absence of body forces, the governing equation in Cartesian coordinates in the frequency
domain for the solid is given by (Kausel, 2006)

i

o ®
®
) Y ®

Collocation points (2.5D SBM) ®

FEM boundary points (2.5D FEM) \© o
~ e @ Structure (2.5D FEM)
L O]
&_/J/@ ®

Virtual sources (2.5D SBM) @ ®
. . \
e \
Physical boundary

Soil

Figure 2. General description of the proposed 2.5D FEM—SBM methodology. Collocation and FEM
boundary nodes are represented by black solid points, while virtual forces are indicated by red circles.
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uV U+ (A+p)V(V-U) +po’*U=0, xEQ, 2.1

where U= [Ux, U,,U J T denotes the displacement vector at a position x=]x,y, z]T,
T

V= [0%, %, ‘%} represents the gradient operator, and p is the mass density. The angular frequency is defined

as = 2f, where f is the frequency in Hertz. The Lamé constants are given by 2 = +V)V5 —yandp= 2<1bjw)’

with E being Young’s modulus and v the Poisson ratio.
For this boundary value problem, Dirichlet or Neumann boundary conditions are typically imposed as
follows:

U=0U,, xeT, (2.2a)
T=06-n=T,, x€eT, (2.2b)

where n= [nx,ny,nz}T represents the outward unit normal vector to the boundary, T is the vector
containing the three components of the traction field, & is the stress tensor, and the prescribed values
for the displacement and traction boundary conditions are denoted by the vectors U, and T}, respectively.
The components of the stress tensor for an isotropic medium are defined as

oU; au,-)

_|_

23
())Cj ax,» ( )

where the indices i and j can take values 1, 2, or 3, representing the coordinates x, y, and z, respectively,
and where J;; is the Kronecker delta.

When the system under study satisfies the condition of longitudinal invariance of its mechanical and
geometrical parameters, it is often convenient to formulate the problem in the wavenumber—frequency
domain, referred to as the 2.5D domain. The method presented in this paper is specifically designed for
such problems. Assuming x as the direction of invariance, the governing equation and boundary
conditions are transformed into the wavenumber domain using a Fourier transform of the form:

+o0 .
F(ky,y,z,0) = / F(x,y,z,w)e'k*xdx, 2.4)

[c)

where k, is the wavenumber associated with the longitudinal direction x, F represents displacements U or
tractions T in the spatial-frequency domain, and F denotes the corresponding quantities in the wave-
number—frequency domain. The detailed derivation is provided in Tadeu et al. (2001). For the sake of
brevity, it is not included in the present paper.

2.2. 2.5D FEM-SBM methodology

Using radial basis function interpolation, the displacement and traction of the soil are approximated by the
following linear combinations of fundamental solutions corresponding to N distinct source points:

U(y)=>_ H(y.x")S,, 2.5)
n=1

N
T()=) H(px")S, 2.6)
n=1

Here, U(y) and T(y) represent the soil displacements and tractions, respectively, at an arbitrary field
point y. The vector S, denotes the unknown strengths of the nth virtual source located at x", while
H(y,x") and H'(y,x") are the soil’s dynamic Green’s functions for displacement and traction,
respectively.
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The SBM method assumes that these equations can be reformulated as follows (Liravi, 2022):

N
U= > HE".X")S,+HumSy, 2.7)
n=l,n#m
— N — -_ — —
T(") = Z H (y",x")S,+H., S, (2.8)
n=1,n#m

where y" refers to the position of the mth collocation point, and H,,,,, H, are known as origin intensity
factors (OIFs) in the SBM literature. The term “OIF” for the Neumann boundary conditions is defined in

Eq. (2.8):
_ 1 N
H’T"’":L_ I+A,— Z LH (") |, (2.9)
m n=l,n#m
where L is the identity matrix and L, is the half-length of the curve between the source points x'~! and x'*!.

In the case of the OIF associated with the Dirichlet boundary condition, the OIF corresponding to the mth
collocation point can be directly computed as the average value of the fundamental solution over the
physical boundary, which represents the small portion of the boundary containing the singular point.
Detailed equations on the 2.5D FEM and the coupling equations between soil and structure can be found
in Liravi et al. (2021, 2022).

3. Validation of the surrogate model

Surrogate models, serving as efficient predictive tools, bridge the gap between computationally intensive
numerical simulations and demanding multi-objective optimization processes. In this study, the density
and Young’s modulus of the tunnel, along with the tunnel lining thickness, concrete slab height, and the
radius or side length of the tunnel, are included in the learning database to account for both geometrical
and material properties of the tunnel within the surrogate model. A schematic representation of the
geometrical parameters associated with both tunnel types is provided in Figure 3.

The range for the variation of each parameter in the parametric study is provided in Table 1. It is
important to note that the selected parameter ranges fall within the realistic geometrical and mechanical
properties of underground railway tunnels (Gupta et al., 2009; Ruiz et al., 2019; He et al., 2020). It is

B A I

l

: & | ]

\ " | £ 2

A y 5 ! | =
o |l & - =

Side length

(a) (b)

Figure 3. Schematic representation of underground railway tunnel with circular (a) and rectangular
(b) cross-sections.
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Table 1. Ranges of variation of each parameter for the surrogate model

Variable Description
Tunnel lining’s density (kg/m?) 2,000-3,000
Tunnel lining’s Young’s modulus (MPa) 25,000-35,000
Tunnel lining’s thickness (m) 0.2-0.5
Concrete slab height (m) 0.5-1
Radius of the circular tunnel (m) 3-6

Side length of the rectangular tunnel (m) 4-7

crucial to represent these parameters in the learning database in a balanced and systematic manner to
prevent misleading results, such as overestimations or underestimations. To achieve this balance, the LHS
technique is employed to generate input parameters. The primary aim of utilizing LHS is to reduce the
number of simulations required while ensuring that the results remain reasonable and reliable (Iordanis
et al., 2025). In this investigation, 300 samples are utilized for training, as increasing the sample size
beyond this point did not result in a significant improvement in the model’s accuracy. It should be noted
that 80% of the samples are used for training, while the remaining 20% are allocated to validation.
Preprocessing the data ensures that all variables are given equal importance during the training process, as
discrepancies in the distributions of input parameters can lead to biases in the model, favoring features
with larger values or variances. Furthermore, preprocessing enhances the speed and efficiency of the
learning process. In this study, input parameters have been preprocessed using normalization, whereby the

data are scaled to fall within a range of 0—1 using the following equation:
X = ﬂ , 3.

Ximax — Xmin

where X i, and X, represent the minimum and maximum values of the input parameters, respectively.
In this study, a random forest (RF) model is employed to develop the surrogate method based on the
dataset generated using the 2.5D FEM—-SBM approach (Liravi, 2022, 2023) for predicting displacement
and traction fields. RF is a regression machine learning model, primarily composed of an ensemble of

randomized decision trees, denoted as { f (x; G)@,Rn) }1 - The sequence {G),(i> }1 , encapsulates
<i< <i<

the random variables ® that govern the probabilistic mechanism underlying the construction of each tree.
For a finite number of trees, T, the RF estimate can be expressed as follows:

1 N
fr(X:0,,0,, ...,G)TIR,,):?; F(X:0,R,). (3.2)

The RF model uses a least-squares boosting algorithm with 300 boosting iterations and a learning rate of
0.05. Additionally, the minimum number of samples required in a leaf node of the tree is set to 10, and the
maximum number of splits allowed in a tree is set to 30. The least-squares algorithm selects several
bootstrap samples, (Rg", ...,R,C?”" ), and applies the previous tree-based decision algorithm to these
samples to construct a collection of T prediction trees. It should be noted that the 2.5D FEM-SBM
approach has been thoroughly validated in a previous study, which ensures the reliability of the synthetic
datasets (Liravi, 2022). The framework for using RF regression for prediction is illustrated in Figure 4.

The developed surrogate model is validated through two examples: a circular and a rectangular railway
tunnel, both embedded in a homogeneous full space. Two sets of evaluation points, designated as point A
and point B, are defined in the ground, as shown in Figures 5a and 9a. The geometrical and material
properties of the tunnel structure are randomly selected from the validation datasets. The target outputs of
the surrogate model are the displacement and traction values at the evaluation points, while the
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Figure 4. lllustration of Random forest regression construction.
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Figure 5. Schematic view of the example (a) and the FEM mesh for the circular tunnel (b). The FEM
nodes, the collocation/source nodes, and the position of the applied forces used in the case study are also
included.
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receptances and traction transfer function (TTF) values are subsequently calculated using Eq. (2.4). The
results obtained by the surrogate model are compared to the 2.5D FEM—SBM approach. The comparison
is made up to 80 Hz, as railway-induced ground-borne vibrations within the frequency range of 1-80 Hz
can be perceived by the human body (He et al., 2022). In all simulations, the number of collocation or
boundary points along the tunnel boundary is chosen to ensure a minimum of 10 nodes per shear
wavelength, based on the maximum frequency of interest, thereby ensuring accurate results (Liravi,
2022). In all calculations conducted in this study, receptance and TTF have been computed numerically
with a total of 257 sampling points, consisting of k, =0 and a logarithmically spaced vector of
wavenumbers ranging from 10~ to 10 rad/m. Due to the symmetries of the displacements and tractions
in the wavenumber—frequency domain caused by a vertical load, the x components of the receptances and
TTF for this direction are null at x =0 (Liravi, 2022). The results of the receptances and the TTFs are
presented in decibels (dB), with references of 1072 m/N and 1 (N/m?)/N, respectively.

The accuracy of the surrogate model is evaluated by calculating the relative root-mean-square error
(rRMSE) with respect to a reference solution. The relative error is computed using the following
expression:

rRMSE = (3.3)

where j is the index representing the evaluation points and N is the total number of evaluation points
considered in the calculation. Here, U/ and U’ denote the receptances at the jth evaluation point,
calculated using the assessed method and the reference method, respectively. It should be noted that
the rRMSE plots are only presented for receptance values, as these will later be utilized in the optimization
algorithm in the application example.

3.1. Underground railway tunnel with circular cross-section

Circular cross-section tunnels are commonly used in deep tunneling due to their uniform structural force
distribution, effective load-bearing capacity, and ease of shield construction. In this section, the perform-
ance of the developed surrogate model is assessed in the context of a circular tunnel embedded in a
homogeneous full space. The mechanical and geometrical parameters of the tunnel and soil are presented
in Table 2. The FEM mesh associated with this particular example is shown in Figure 5b.

As illustrated in Figure 6, there is good agreement between the receptances obtained by the developed
model and those from the reference, 2.5D FEM—SBM approach, both in the y- and z-directions and at two
evaluation points, with differences of up to 1 dB. However, slightly larger discrepancies are observed at
point A responses in the y-direction, with differences reaching up to 2 dB. This good agreement is also
evident in the TTF responses as indicated in Figure 7. The comparison against the 2.5D FEM-SBM
results indicates that the surrogate model is an accurate tool for predicting both receptances and TTFs.

The rRMSE of the receptance values is plotted in Figure 8. As shown in this figure, the rRMSE values
are generally low, with an average error of approximately 3% within the considered frequency range,
reaching as low as 0.2% at lower frequencies. However, at some specific frequencies, slightly higher

Table 2. Mechanical parameters of the circular tunnel and the soil

Type Radius (m)  Slab height (m)  Thickness (m) E (MPa) p (kg/m?) v Damping

Tunnel 3.1 0.9 0.3 30,589 2,754 0.2 0.001
Soil — — — 108 1,800 0.3 0.05
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Figure 6. Receptances at points A (a) and B (b) for the y- (ii) and z- (iii) directions. Methods: 2.5D FEM—
SBM (dashed red line) and surrogate model (solid black line).
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Figure 7. Traction transfer functions at points A (a) and B (b) for the y- (ii) and z- (iii) directions.
Methods: 2.5D FEM-SBM (dashed red line) and surrogate model (solid black line).

https://doi.org/10.1017/dce.2025.10011 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2025.10011

e32-12 Hassan Liravi et al.

(a-ii)

(a-iii)

0 0
=y [
%2} w
= =
= =
= &
g ®

-2.5 . . . . . : : -3 . . - . . : -
1 10 20 30 40 50 60 70 80 1 10 20 30 40 50 60 70 80
Frequency [Hz] Frequency [Hz]
(b-ii) (b-iii)
0 T 0 '

Log10o(rRMSE)
Log1o(rRMSE)

1 10 20 30 40 50 60 70 80 1 10 20 30 40 50 60 70 80
Frequency [Hz] Frequency [Hz]

Figure 8. yRMSE of Receptances at points A (a) and B (b) for the y- (ii) and z- (iii) directions for the
underground tunnel with a circular cross-section.

rRMSE values are observed, particularly at the positions of the resonant/anti-resonant frequencies.
Nevertheless, as mentioned earlier, the average maximum error, when compared to the 2.5D FEM—
SBM approach used as the reference solution, is approximately 2 dB.

3.2. Underground railway tunnel with rectangular cross-section

In this section, the accuracy of the developed model is compared to the reference method, in the
framework of a rectangular underground tunnel embedded in a homogenous full space. The FEM mesh
used for the numerical calculations of this example and the evaluation points in the soil are presented in
Figure 9. The mechanical and geometrical properties of the tunnel and soil are presented in Table 3.

As demonstrated in Figure 10, the receptances obtained by the developed surrogate model are in good
agreement when compared to the reference. A maximum of 3 dB differences can be observed, particularly
at the location of the trough in the receptance trend. This good accuracy is also observed in the TTF
responses, where, as shown in Figure 11, errors of up to 2 dB can be seen at specific locations on the trend.
Overall, the proposed method demonstrates accurate results for the case of a railway tunnel with a
rectangular cross-section.

For this example, the rRMSE plot of the receptance values is presented in Figure 12. As indicated, the
rRMSE values are generally low, with an average error of approximately 3.5% within the considered
frequency range, reaching as low as 1%, particularly at lower frequencies. However, similar to the
previous example, at some specific frequencies, slightly higher rRMSE values are observed. As men-
tioned earlier, the maximum error does not exceed 2 dB.

4. Optimization

This study employs a Bayesian optimization method to optimize underground railway tunnels from
specific geometrical and material perspectives. As previously mentioned, the optimization is conducted
within the logical ranges of the considered parameters, as indicated in Table 1. The optimization process is
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Figure 9. Schematic view of the example (a) and the FEM mesh for rectangular tunnel (b). The FEM nodes,
the collocation/source nodes, and the position of the applied forces used in the case study are also included.

Table 3. Mechanical parameters of the rectangular tunnel and the soil

Type  Side length (Z,/L.) (m) Slab height (m) Thickness (m) E (MPa) p (kg/m*) v Damping

Tunnel 5.1/5 0.57 0.22 29,475 2,675 0.2 0.001
Soil — — — 108 1,800 03  0.05

illustrated through two case studies involving underground railway tunnels with circular and rectangular
cross-sections. It should be noted that the optimization process is conducted at a single frequency. In this
study, the frequencies of 20 and 80 Hz are considered, representing low and high frequencies, respect-
ively. In this section, the objective of the optimization is to minimize the vertical receptance values at the
target point (point A, as illustrated in earlier examples) while simultaneously optimizing the considered
geometrical and material parameters of the underground tunnel. Specifically, the five parameters used for
training the surrogate model, including Young’s modulus, density, and thickness of the tunnel lining, as
well as the concrete slab height and radius/side length of the tunnel, are the parameters to be optimized.
Optimization iterations continue until the results converge and show no further changes. To ensure the
accuracy of the optimization, each example has been run five times, and the optimal values presented are
the average of these five repetitions. The optimization problem for an embedded structure in an elastic
medium is defined as a classical optimization problem of the form:

minimize ®(x) = Receptance/TTF,
optimize g(x) = [Ly(x)&L.(x)/r(x),hs(x),1(x),E(x),p(x)],
subject to xedk, 4.1

g:,(x)<0, i=1,...,m,
hi(x)=0, j=1,....p.

where @ represents the objective function for the optimization algorithm (in this study, receptances or the
TTF), L, and L, are the side lengths of the rectangular tunnel,  denotes the radius of the circular tunnel, A,
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Figure 10. Receptances at points A (a) and B (b) for the y- (ii) and z- (iii) directions. Methods: 2.5D FEM—
SBM (dashed red line) and surrogate model (solid black line).
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Figure 11. Traction transfer functions at points A (a) and B (b) for the y- (ii) and z- (iii) directions.
Methods: 2.5D FEM-SBM (dashed red line) and surrogate model (solid black line).
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Figure 12. rRMSE of Receptances at points A (a) and B (b) for the y- (ii) and z- (iii) directions for the
underground tunnel with a rectangular cross-section.

represents the slab height, # denotes the thickness of the tunnel lining, and x is the vector of design
parameters. Meanwhile, g;(x) and 4;(x) correspond to the inequality and equality constraints, respect-
ively. These constraints are established based on the imposed limits on the design parameters and the
elastic wave equation, as defined earlier in Eq. (2.1).

4.1. Underground railway tunnel with circular cross-section

The first optimization example considers an underground railway tunnel with a circular cross-
section embedded in a homogeneous full-space medium. The optimization is visualized in Figures 13
and 14 for the frequencies of 20 and 80 Hz, respectively. As shown, the geometrical parameters, including
the slab height and the thickness of the tunnel, are presented in one figure, while the material parameters,

(®) (©) »
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Figure 13. Optimization plot for a railway tunnel with a circular cross-section at a frequency of 20 Hz,
illustrating the variations in performance across different considered parameters.
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Figure 14. Optimization plot for a railway tunnel with a circular cross-section at a frequency of 80 Hz,
illustrating the variations in performance across different considered parameters.

Table 4. Results of the optimization algorithm for the case of underground tunnel with circular cross-

section
Frequency Radius () Lining’s thickness Slab height E p Receptance
Point  (Hz) (m) (t) (m) (h)(m)  (MPa) (kgm®)  (dB)
A 20 5.9 0.21 0.6 31,808 2,990 18.4
80 59 0.23 0.95 25,889 2,112 -3.1

such as Young’s modulus and density, are depicted together. In both figures, the minimum objective
function is observed when the tunnel thickness is set between 0.2 and 0.3 m, and the slab height is greater
than 0.6 m. At a frequency of 20 Hz, the minimum objective function is observed for material densities
greater than 2,800 kg/m? and Young’s modulus between 28,000 and 33,000 MPa. For a frequency of
80 Hz, these ranges shift to 2,000-2,200 kg/ m? for material density and 23,000-27,000 MPa for Young’s
modulus, respectively.

Additionally, Figures 13c and 14c¢ show the optimization iterations between a geometrical design
parameter and a mechanical property, in particular, the radius of the tunnel is plotted against its density
for the frequencies of 20 and 80 Hz, respectively. At both frequencies, the minimum receptance value
is observed when the largest tunnel radius is selected. The lining thickness in both cases is optimized
to its minimum value. The optimal values of the parameters under consideration are provided in
Table 4.

When comparing the vertical receptances at point A for the optimized case against a random validation
example presented in Figure 6b(iii), an attenuation of approximately 8 dB in vertical receptance can be
observed at both considered frequencies.

4.2. Underground railway tunnel with rectangular cross-section

The second optimization case involves an underground railway tunnel with a rectangular cross-section,
similar to the previous example, embedded in a homogeneous full-space medium. In this case, as
illustrated in Figures 15 and 16, the visualization of the optimization process for the side lengths of the
tunnel is presented together, while the thickness of the tunnel and the slab height are displayed in a
separate plot. Additionally, the material properties of the tunnel, specifically the density and Young’s
modulus, are presented together. The optimal values reveal that, at a frequency of 20 Hz, the side lengths
of the tunnel should be set to 6.9 and 6.5 m, with the minimum thickness within the considered range
selected to minimize the vertical receptance at point A. Similarly, at a frequency of 80 Hz, L, and L, should
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Figure 15. Optimization plot for a railway tunnel with a rectangular cross-section at a frequency of 20 Hz,
illustrating the variations in performance across different considered parameters.
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Figure 16. Optimization plot for a railway tunnel with a rectangular cross-section at a frequency of 80 Hz,
illustrating the variations in performance across different considered parameters.

Table 5. Results of the optimization algorithm for the case of underground tunnel with rectangular
cross-section

Frequency  L,/L.  Lining’s thickness Slab height E p Receptance
Point (Hz) (m) (f) (m) (hy) (m) (MPa) (kg/m®) (dB)
A 20 6.9/6.5 0.2 0.92 30,955 2,553 16.7
80 6.9/6.4 0.2 0.95 30,598 2,219 0.2

be set to 6.9 and 6.4 m, respectively, again with the minimum thickness within the considered range
achieving the same goal. Furthermore, the optimal concrete slab height is approximately 0.9 m at both
frequencies, while the density at 80 Hz is approximately 300 kg/m? lower than that at 20 Hz. The optimal
values of the considered parameters across all optimization cases associated with this example are
summarized in Table 5.

It is noteworthy that, when comparing the vertical receptance values presented in Figure 10b(iii) for a
random validation case of an underground tunnel with a rectangular cross-section, an approximate
reduction of 6 and 5 dB can be achieved by optimizing the tunnel from both geometrical and material
perspectives, at the frequencies of 20 and 80 Hz, respectively.
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5. Assessment of the performance of the optimized cases

To further highlight the differences between the optimized cases and the random validation case presented in
Figures 6 and 10 across the entire frequency range, bar plots are provided in Figures 17 and 18 for the circular
and rectangular tunnel cases, respectively. These plots show the receptance differences between the optimized
cases and the validation case at 10-Hz intervals. The comparison considers both optimized cases at 20 and
80 Hz. In these plots, negative values indicate the extent of improvement achieved in the optimized case
relative to the non-optimized case, while positive values represent a deterioration in the optimization outcomes.

For the case of an underground tunnel with a circular cross-section, a significant improvement is observed
across the entire frequency range. Similarly, for the underground tunnel with a rectangular cross-section, the
bar plots clearly demonstrate that the optimized cases result in improvements in vertical receptance throughout
the frequency range. However, minor negative impacts of up to 2 dB are observed around 3040 Hz.

Since the optimization process results in different design parameters for the tunnel at different frequen-
cies, as shown in Tables 4 and 5, the design parameters can be selected based on the required target
frequency, considering the problem under study. As demonstrated in this section, optimization at a specific
frequency results in an improvement in the system’s performance over a wider range of frequencies.

Overall, the results indicate that the proposed optimization approach is highly effective in enhancing
elastic wave propagation performance at the entire frequency range. In summary, this optimization
method offers a promising tool for improving the design of buried structures, making it suitable for
practical applications where mitigating elastic wave propagation is a key concern.

6. Conclusion

This study presents a surrogate model for the optimization of underground railway tunnels with respect to
specific geometrical and material aspects, developed in the wavenumber—frequency domain. The
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Figure 17. Comparison of vertical receptances computed at evaluation point A between the non-
optimized case and optimized cases at 20 Hz (a) and 80 Hz (b), along with bar plots showing the
differences between the cases in decibels for an underground tunnel with a circular cross-section.
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Figure 18. Comparison of vertical receptances computed at evaluation point A between the non-
optimized case and optimized cases at 20 Hz (a) and 80 Hz (b), along with bar plots showing the
differences between the cases in decibels for an underground tunnel with a rectangular cross-section.

validation and optimization processes are conducted in the context of underground railway tunnels with
circular and rectangular cross-sections. The primary objective of the optimization algorithm is to
minimize elastic wave propagation in the surrounding soil. The key findings of this research are as
follows:

* The 2.5D FEM-SBM approach is an accurate, efficient, and robust numerical method for generating
datasets for training the surrogate model. Furthermore, it effectively handles geometries that are
more complex than circular tunnels, such as railway tunnels with rectangular cross-sections.

» The developed surrogate model demonstrates a high degree of accuracy in responses obtained at
evaluation points when compared to the reference method, with an average rRMSE of receptances of
approximately 3% and 3.5% observed within the considered frequency range for the examples of
underground railway tunnels with circular and rectangular cross-sections, respectively. This preci-
sion is also evident in the TTF responses when compared to the reference method.

 The optimization case of an underground railway tunnel with a circular cross-section indicates that
by optimizing specific geometrical and material perspectives of the underground tunnel structure,
the vertical receptances at an arbitrary evaluation point in the soil, approximately near the tunnel, can
be significantly mitigated. For the specific example presented in this study, an average reduction of
10 dB is observed in the target frequencies.

» The optimization example of an underground railway tunnel with a rectangular cross-section also
provides promising results. For the specific case presented in this study, an average attenuation of
6 dB in vertical receptances can be achieved by optimizing the tunnel shape and material properties
at target frequencies.

As a limitation, the optimization algorithm must be carried out based on the target frequency, although it
may also demonstrate improvements at other frequencies, as evidenced by the results presented in this
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paper. Furthermore, the model could be improved and extended in future work to incorporate both
frequency and wavenumber as inputs for the surrogate model. This enhancement would lead to a
significantly faster training process and reduced storage requirements. Overall, the optimization algo-
rithm, combined with the surrogate model, proves to be a suitable prediction and optimization toolbox for
addressing tunnel-soil interaction problems in elastodynamics. However, it should be noted that the
current study has been implemented and developed exclusively for a homogeneous full-space soil
medium. To achieve greater realism, the model should also consider a horizontally layered half-space
medium.
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