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Abstract. Given a number field K ⊂ C that is not contained in R, we prove the existence
of a dense set (with respect to the topology of local uniform convergence) of entire maps
f : C → C whose preperiodic points and multipliers all lie in K. This contrasts with the
case of rational maps. In addition, we show that there exists an escaping quadratic-like
map that is not conjugate to an affine escaping quadratic-like map and whose multipliers
all lie in Q.
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1. Introduction
This article is motivated by the study of the arithmetic properties of dynamical systems.
These have been particularly investigated in the case of iterated rational maps. As an
example, a classical result in arithmetic dynamics, due to Northcott, implies the following
theorem.

THEOREM 1.1. [Nor50, Theorem 3] Assume that K is a number field and that f ∈ K(z)

is a rational map of degree d ≥ 2. Then f has only finitely many preperiodic points in K.

Following a conjecture made by Milnor in [Mil06], questions concerning rational maps
with integer or rational multipliers have also been investigated. In particular, Ji and Xie
recently proved Milnor’s conjecture, showing that power maps, Chebyshev maps and Lattès
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2 X. Buff et al

maps are the only rational maps whose multipliers all lie in the ring of integers of a given
imaginary quadratic field (see [JX23, Theorem 1.12]). The third author later proved the
following stronger result.

THEOREM 1.2. [Hug23, Main Theorem] Assume that K ⊂ C is a number field and that
f ∈ C(z) is a rational map of degree d ≥ 2 whose multiplier at each cycle lies in K. Then
f is a power map, a Chebyshev map or a Lattès map.

In this article, we prove that Theorems 1.1 and 1.2 do not hold for transcendental
entire maps. Our method is to construct maps with the desired properties recursively, by
successive perturbations. Thus, we extend the result below, due to Green, to a dynamical
setting.

THEOREM 1.3. [Gre39, Theorem 1] There exists a transcendental entire function
f : C → C such that f (Q(i)) ⊆ Q(i).

Given a number field K ⊂ C that is not contained in R, we prove the existence of
transcendental entire maps whose preperiodic points and multipliers all lie in K. In fact,
our proof does not rely on the arithmetic properties of such number fields, but only on the
fact that these are both countable and dense in C. Thus, we show the more general result
below.

Recall that a Fréchet space is a complete, metrizable, locally convex topological vector
space. Equivalently, a Fréchet space is a real vector space F equipped with a separating
countable family of seminorms for which F is complete. For example, the set of all entire
maps endowed with the topology of local uniform convergence on C forms a Fréchet space.
Also note that every Banach space is a Fréchet space. Finally, given a set F and topologies
T1, T2 on F, recall that T1 is (not necessarily strictly) finer than T2 if each open subset of
F with respect to T2 is also open with respect to T1.

THEOREM 1.4. Assume that F is a Fréchet space of entire maps that contains all the
complex polynomial maps and whose topology is finer than the topology of local uniform
convergence on C, that E is a countable and dense subset of C and that� is a dense subset
of C. Then the set of f ∈ F such that
• f−1(E) = E,
• the periodic points of f all lie in E, and
• the multipliers of f at its cycles all lie in �
is dense in F .

Now suppose that K ⊂ C is a number field that is not contained in R. Letting F be the
usual Fréchet space of all entire maps and setting E = � = K, Theorem 1.4 shows that
there exists a non-affine entire map f : C → C that is neither a power map nor a Chebyshev
map and whose preperiodic points and multipliers all lie in K; this map f is necessarily
transcendental by Theorem 1.2. Alternatively, taking F to be a Fréchet space of entire
maps that contains all the complex polynomials as a non-dense subset and whose topology
is finer than the topology of local uniform convergence on C, one can avoid invoking
Theorem 1.2 and directly use Theorem 1.4 to prove the existence of a transcendental entire
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Entire maps with rational preperiodic points and multipliers 3

map f : C → C whose preperiodic points and multipliers all lie in K. This shows that
Theorems 1.1 and 1.2 do not hold for general entire maps.

Our proof of Theorem 1.4 consists of adjusting the dynamics of any given entire map
by a succession of small perturbations. This method can also be adapted to prove analogs
of Theorem 1.4 with various additional symmetry conditions. As an illustration, we prove
the result below, which treats the case of real and even entire maps.

THEOREM 1.5. Assume that:
• F is a Fréchet space of real and even entire maps that contains all the real and

even polynomial maps and whose topology is finer than the topology of local uniform
convergence on C;

• E is a countable and dense subset of C that is symmetric with respect to the real and
imaginary axes and such that E ∩ (R ∪ iR) is dense in R ∪ iR; and

• � is a dense subset of C that is symmetric with respect to the real axis and such that
� ∩ R is dense in R.

Then the set of f ∈ F such that
• f−1(E) = E,
• the periodic points of f all lie in E, and
• the multipliers of f at its cycles all lie in �
is dense in F .

Note that, for every number field K ⊂ C that is invariant under complex conjugation
but not contained in R, Theorem 1.5 implies the existence of real, even and transcendental
entire maps whose preperiodic points and multipliers all lie in K.

Remark 1.6. In fact, our proofs show that we can replace � in Theorems 1.4 and 1.5 by
a sequence (�n)n≥1 of subsets of C with the same properties and ask, instead, that the
multipliers of f at its cycles with period n all lie in �n for all n ∈ Z≥1.

Remark 1.7. Our proofs of Theorems 1.4 and 1.5 crucially use the assumption that the
topology of the Fréchet space F of entire maps is finer than the topology of local uniform
convergence on C. We note that there exist Fréchet spaces of entire maps that do not
have this property. One can construct such Fréchet spaces as follows. Denote by F the
vector space of all entire maps and by F0 the usual Fréchet space of all entire maps, which
has the topology of local uniform convergence. For every linear automorphism � of F,
there exists a unique Fréchet space F� whose underlying vector space is F and such that
� : F0 → F� is a homeomorphism. Choose a sequence (fn)n≥0 of elements of F that
converges to f ∈ F \ S in F0 and choose g ∈ F \ S different from f, where S denotes the
vector subspace of F spanned by {fn : n ≥ 0}. Then there exists a linear automorphism �

of F such that �(fn) = fn for all n ≥ 0 and �(f ) = g. Setting F = F�, the sequence
(fn)n≥0 converges to g in F , and, in particular, the topology of F is not finer than the
topology of local uniform convergence on C.

Finally, we apply Theorem 1.5 in order to prove the existence of a transcendental entire
map with various properties, including that of having an escaping quadratic-like map
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restriction with rational multipliers. An escaping quadratic-like map is a holomorphic
covering map f : U → V of degree two, where U , V are non-empty open subsets of C
such that U � V and V is simply connected. In this case, note that U has precisely two
connected components, which are mapped biholomorphically onto V by f. We say that
f is conjugate to an affine escaping quadratic-like map if there exists a univalent map
ϕ : V → C such that ϕ ◦ f ◦ ϕ−1 is affine on each of the two connected components of
ϕ(U). In order to present a modified version of Ji and Xie’s proof of [JX23, Theorem
1.12], which generalizes Milnor’s conjecture about rational maps with integer multipliers,
the first and third authors together with Gauthier and Raissy proved the following
theorem.

THEOREM 1.8. [BGHR23, Proposition 14] Assume that OK is the ring of integers of an
imaginary quadratic field K and that f : U → V is an escaping quadratic-like map whose
multiplier at each cycle lies in OK. Then f is conjugate to an affine escaping quadratic-like
map.

In light of Theorem 1.8, one may ask whether every escaping quadratic-like map that
has only rational multipliers is conjugate to an affine escaping quadratic-like map. This
question was the initial motivation for our study. A positive answer to this question would
provide an alternative proof of Theorem 1.2. However, we prove here that the answer is
negative. More precisely, as an application of Theorem 1.5 and Remark 1.6, we obtain the
result below. Here, D ⊂ C denotes the unit disk.

THEOREM 1.9. There exists a real, even and transcendental entire map f : C → C such
that:
• f : R → R is convex;
• f (Q) ⊂ Q;
• the periodic points of f : f−1(D) ∩ D → D and f : R → R coincide and all lie in Q,

and the multipliers of f at these periodic points all lie in Q; and
• f : f−1(D) ∩ D → D is an escaping quadratic-like map that is not conjugate to an

affine escaping quadratic-like map.

Remark 1.10. Assume, here, that K ⊂ C is a number field that is not contained in R.
Then one can directly make use of Theorem 1.4 to prove the existence of an escaping
quadratic-like map that is not conjugate to an affine escaping quadratic-like map and
whose multipliers all lie in K. More precisely, one may proceed as follows. As already
explained, Theorem 1.4 implies the existence of a transcendental entire map f : C → C

whose multipliers all lie in K. Then there exist open subsets U , V of C and n ∈ Z≥1

such that f ◦n : U → V is a well-defined escaping quadratic-like map, where f ◦n is the
nth iterate of f (see [Ber00, Proposition B.3], which follows from the Ahlfors five islands
theorem). Note that the multipliers of f ◦n : U → V all lie in K. Moreover, f ◦n : U → V

is not conjugate to an affine escaping quadratic-like map since f : C → C is neither a
power map nor a Chebyshev map (see [BGHR23, Lemma 12], which follows from the
results of [Rit22]).
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After writing this article, the first and third authors together with Gauthier and Raissy
realized that Theorem 1.8 also yields the analog of Milnor’s conjecture for entire maps.
Thus, they obtained the result below about entire maps with integer multipliers, which
also contrasts with Theorem 1.4.

THEOREM 1.11. [BGHR23, Theorem 2] Assume that OK is the ring of integers of an
imaginary quadratic field K ⊂ C and that f : C → C is a non-affine entire map whose
multiplier at each cycle lies in OK. Then f is a power map or a Chebyshev map.

Ji, Xie and Zhang also later generalized Theorem 1.2, showing that power maps,
Chebyshev maps and Lattès maps are the only rational maps whose multipliers all have
a modulus in a given number field (see [JXZ23, Theorem 1.4]).

In §2, we prove Theorem 1.4 by perturbative arguments. In §3, we adapt our proof of
Theorem 1.4 in order to prove Theorem 1.5. In §4, we prove Theorem 1.9 by applying
Theorem 1.5 and Remark 1.6 in a particular setting.

2. Proof of Theorem 1.4
Throughout this section, we fix a Fréchet space F of entire maps that contains all the
complex polynomial maps and whose topology is finer than the topology of local uniform
convergence on C. We denote by (‖.‖j )j≥0 a sequence of seminorms associated to F , and
we define the distance dF on F by

dF (f , g) =
+∞∑
j=0

2−j min{1, ‖f − g‖j },

which induces the topology of F and makes it a complete metric space.
Throughout this section, we also fix a countable and dense subset E of C and a dense

subset � of C. Removing 1 from � if necessary, we assume that � ⊆ C \ {1}.
We define

E = {z �→ az+ b : a, b ∈ C}
to be the set of affine maps on C, which forms a vector space of real dimension four, and
hence a closed subset of F with empty interior.

Given f ∈ F and a subset A of C, we define

F(f , A) = {g ∈ F : g|A = f |A and g′|A = f ′|A},
which is closed in F because the topology of F is finer than the topology of local uniform
convergence. Given f ∈ F and subsets A, C of C, we define

F(f , A, C) = {g ∈ F : g|A∪C = f |A∪C and g′|C = f ′|C},
which is also closed in F for the same reason.

We now show Theorem 1.4. Our proof proceeds roughly as follows. We note that an
entire map f : C → C satisfies the conditions of Theorem 1.4 if and only if it satisfies
countably many conditions, each one referring to values and derivatives of f at finitely
many points. Now, suppose that g ∈ F satisfies finitely many of these conditions. Then
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there exist finite subsets A, C of C such that each h ∈ F(g, A, C) sufficiently close to
g satisfies the same conditions as g. Adding well-chosen small polynomials to g, we
prove that one can find h ∈ F(g, A, C) arbitrarily close to g that also satisfy additional
conditions from the aforementioned countable list. We use this process as a recursive
step. Thus, given any f0 ∈ F and any ε ∈ R>0, we construct a Cauchy sequence (fn)n≥0

of elements of F whose limit f ∈ F satisfies the conditions of Theorem 1.4 and also
dF (f0, f ) < ε. This will complete our proof of Theorem 1.4.

2.1. Polynomial interpolation. Here, we exhibit families of complex polynomial maps
that satisfy certain conditions on their values and derivatives. We will use them to adjust
the dynamics of an entire map by perturbation.

Givenw ∈ C and r ∈ R>0, we denote byD(w, r) the open disk of center w and radius r.

LEMMA 2.1. For every finite subset A of C, every b ∈ C \ A and every ζ ∈ C, there exists
a complex polynomial map PA,b,ζ : C → C of degree at most 2|A| such that

PA,b,ζ |A = 0, P ′
A,b,ζ |A = 0 and PA,b,ζ (b) = ζ .

Furthermore,

lim
ζ→0

sup{‖PA,b,ζ ‖ : |A| = N , dist(b, A) ≥ r , A ⊂ D(0, R)} = 0

for all N ∈ Z≥0, all r , R ∈ R>0 and all seminorms ‖.‖ on F .

Proof. Given a finite set A ⊂ C, b ∈ C \ A and ζ ∈ C, define PA,b,ζ : C → C by

PA,b,ζ (z) = ζ
∏
a∈A

(
z− a

b − a

)2

.

Then the required conditions are satisfied.

LEMMA 2.2. For every finite subset A of C, every b ∈ C \ A and every λ ∈ C, there exists
a complex polynomial map QA,b,λ : C → C of degree at most 2|A| + 1 such that

QA,b,λ|A = 0, Q′
A,b,λ|A = 0, QA,b,λ(b) = 0 and Q′

A,b,λ(b) = λ .

Furthermore, limλ→0‖QA,b,λ‖ = 0 for all finite subsets A of C, all b ∈ C \ A and all
seminorms ‖.‖ on F .

Proof. Given a finite set A ⊂ C, b ∈ C \ A and λ ∈ C, define QA,b,λ : C → C by

QA,b,λ(z) = λ(z− b)
∏
a∈A

(
z− a

b − a

)2

.

Then the required conditions are satisfied.

2.2. Adjustment of images. Here, we use Lemma 2.1 to adjust the image of a point under
an entire map by perturbation.
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LEMMA 2.3. Suppose that f ∈ F , A is a finite subset of f−1(E) and b ∈ C. Then, for
every ε ∈ R>0, there exists g ∈ F(f , A) such that dF (f , g) < ε and g(b) ∈ E.

Proof. If b ∈ A, setting g = f , the required conditions are satisfied. Now, suppose that
b ∈ C \ A. Using the notation of Lemma 2.1, for ζ ∈ C, define

gζ = f + PA,b,ζ−f (b) ∈ F(f , A).

Then limζ→f (b) gζ = f in F . Therefore, since E is dense in C, there exists ζ ∈ E such
that dF (f , gζ ) < ε. Setting g = gζ , the required conditions are satisfied. Thus, the lemma
is proved.

2.3. Adjustment of preimages. We use Lemma 2.1 to adjust the preimages in a disk of
finitely many points under an entire map.

LEMMA 2.4. Suppose that f ∈ F \ E , that A is a finite subset of E, that B is a finite
subset of C and that R ∈ R>0. Then, for every ε ∈ R>0, there exists g ∈ F(f , A) such
that dF (f , g) < ε and g−1(B) ∩D(0, R) ⊂ E.

Proof. As f is not constant, there exists S > R such that f−1(B) ∩ ∂D(0, S) = ∅.
Denote by N ∈ Z≥0 the number of preimages in D(0, S) of the elements of B under f,
counting multiplicities. As the topology of F is finer than the topology of local uniform
convergence, reducing ε if necessary, we may assume that

for all g ∈ F , dF (f , g) < ε �⇒ sup
∂D(0,S)

|f − g| < dist(f (∂D(0, S)), B),

so that the elements of B have together exactly N preimages in D(0, S) under any g ∈ F
such that dF (f , g) < ε, counting multiplicities. Given g ∈ F , denote by:
• mg the number of preimages inD(0, R) ∩ E of the elements of B under g, not counting

multiplicities;
• ng the number of preimages in D(0, R) ∩ E of the elements of B under g, counting

multiplicities; and
• Ng the total number of preimages in D(0, R) of the elements of B under g, counting

multiplicities.
We prove that there exists g ∈ F(f , A) such that dF (f , g) < ε and ng = Ng . Now, note
that mg ≤ N for all g ∈ F such that dF (f , g) < ε. Therefore, it suffices to prove that, if
g ∈ F(f , A) satisfies dF (f , g) < ε and ng < Ng , then there exists h ∈ F(f , A) such that
dF (f , h) < ε and mh > mg . Thus, suppose that g ∈ F(f , A) is such a map. Define

A′ = g−1(B) ∩D(0, R) ∩ E .

As ng < Ng , there exists w ∈ D(0, R) \ E such that g(w) ∈ B. Using the notation of
Lemma 2.1, for ζ ∈ C \ (A ∪ A′), define

hζ = g + PA∪A′,ζ ,g(w)−g(ζ ) ∈ F(g, A ∪ A′).

Then, limζ→w hζ = g in F because w ∈ C \ (A ∪ A′). Therefore, since E is dense in C

and dF (f , g) < ε, there exists ζ ∈ (D(0, R) ∩ E) \ (A ∪ A′) such that dF (f , hζ ) < ε.
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Setting h = hζ , we have mh > mg since h(ζ ) = g(w) ∈ B and h ∈ F(g, A′). Thus, we
have shown that there exists g ∈ F(f , A) such that dF (f , g) < ε and ng = Ng , which
completes the proof of the lemma.

2.4. Adjustment of cycles. Now, we use Lemmas 2.1 and 2.2 in order to adjust the
positions and multipliers of cycles for an entire map.

Given p ∈ Z≥1 and R ∈ R>0, we say that f ∈ F has the property (	p,R) if the cycles
for f with period at most p that intersectD(0, R) are all contained in E and their multipliers
all lie in �.

LEMMA 2.5. Suppose that f ∈ F \ E , that A is a finite subset of E ∩ f−1(E), that C is
a finite union of cycles for f that are contained in E and whose multipliers lie in �, that
p ∈ Z≥1 and that R ∈ R>0. Then, for every ε ∈ R>0, there exists g ∈ F(f , A, C) that has
the property (	p,R) and satisfies dF (f , g) < ε.

Proof. As f : C → C is not injective, we have f ◦j �= idC for all j ∈ Z≥1, and hence
there exists S > R such that ∂D(0, S) contains no periodic point for f with period at
most p. Denote by N ∈ Z≥0 the number of periodic points for f in D(0, S) with period at
most p, counting multiplicities. Since the topology of F is finer than the topology of local
uniform convergence, reducing the number ε if necessary, we may assume that any g ∈ F
that satisfies dF (f , g) < ε has exactly N periodic points inD(0, S) with period at most p,
counting multiplicities. Given g ∈ F , denote by:
• ng the number of periodic points for g in D(0, R) with period at most p whose cycle

is contained in E and whose multiplier lies in �, not counting multiplicities; and
• Ng the number of periodic points for g in D(0, R) with period at most p, counting

multiplicities.
We prove that there exists g ∈ F(f , A, C) such that dF (f , g) < ε and ng = Ng . Now,
note that ng ≤ N for all g ∈ F such that dF (f , g) < ε. Therefore, it suffices to show that,
if g ∈ F(f , A, C) satisfies dF (f , g) < ε and ng < Ng , then there exists h ∈ F(f , A, C)
such that dF (f , h) < ε and nh > ng . Suppose that g ∈ F(f , A, C) is such a map. Define
C′ to be the union of the cycles for g with period at most p that intersect D(0, R), are
contained in E and whose multipliers lie in �. Because � ⊆ C \ {1}, the elements of C ′
are all simple periodic points for g. Therefore, as ng < Ng , there is a cycle 
 for g with
period at most p that intersectsD(0, R) but is not contained in C ′. Denoting by C
 the set
of all functions from 
 to C, define

Z = {ζ ∈ C
 : ζ |
∩E = id
∩E}.

For ζ ∈ Z, set
ζ = {ζ (ω) : ω ∈ 
}. SinceA ⊆ E ∩ g−1(E),
 ⊂ C \ (C ∪ C′) and
 ∩
D(0, R) �= ∅, there is a neighborhood V of id
 in Z such that, for each ζ ∈ V :
• ζ (ω) ∈ C \ A for all ω ∈ 
 \ (E ∩ g−1(E));
• 
ζ ⊂ C \ (C ∪ C′);
• ζ (ω) �= ζ (ω′) for all distinct ω, ω′ ∈ 
; and
• 
ζ ∩D(0, R) �= ∅.
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Using the notation of Lemma 2.1, for ζ ∈ V , define

gζ = g +
∑

ω∈
\(E∩g−1(E))

φζ ,ω ∈ F(g, A ∪ C ∪ C′),

where, for every ω ∈ 
 \ (E ∩ g−1(E)),

φζ ,ω = PA∪C∪C′∪(
ζ \{ζ (ω)}),ζ (ω),ζ (g(ω))−g(ζ (ω)).

For each ζ ∈ V , we have gζ (ζ (ω)) = ζ (g(ω)) for all ω ∈ 
, and hence 
ζ forms a
cycle for gζ . Now, note that limζ→id
 gζ = g in F . Therefore, as E is dense in C and
dF (f , g) < ε, there exists ζ ∈ V ∩ E
 such that dF (f , gζ ) < ε. Using the notation of
Lemma 2.2, for λ ∈ C
, define

hλ = gζ +
∑
ω∈


ψλ,ω ∈ F(gζ , A ∪
ζ , C ∪ C′),

where, for every ω ∈ 
,

ψλ,ω = QC∪C′∪((A∪
ζ )\{ζ (ω)}),ζ (ω),λ(ω).

Then 
ζ is a cycle for hλ and we have h′
λ(ζ (ω)) = g′

ζ (ζ (ω))+ λ(ω) for all ω ∈ 

and all λ ∈ C
. Moreover, limλ→0 hλ = gζ in F . Therefore, since � is dense in C and
dF (f , gζ ) < ε, there exists λ ∈ C
 such that dF (f , hλ) < ε and the multiplier of hλ at

ζ lies in �. Setting h = hλ, we have nh > ng . Thus, we have proved that there exists
g ∈ F(f , A, C) such that dF (f , g) < ε and ng = Ng , which completes the proof of the
lemma.

2.5. Proof of the theorem. Finally, we combine here Lemmas 2.3, 2.4 and 2.5 in order
to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that f0 ∈ F and that ε ∈ R>0. We show that there exists
f ∈ F such that:
• dF (f0, f ) < ε;
• f−1(E) = E; and
• the cycles for f are all contained in E and their multipliers all lie in �.
Since E is a closed subset of F with empty interior, replacing f0 and ε if necessary, we may
assume that f0 ∈ F \ E and ε ∈ (0, dist(f0, E)). Write E = {ej : j ∈ Z≥1}, with ej �= ek

for all distinct j , k ∈ Z≥1. For n ∈ Z≥1, define En = {e1, . . . , en}. We show that there
exists a sequence (fn)n≥0 of elements of F such that, for every n ≥ 1:
(1) dF (fn−1, fn) < ε/2n;
(2) fn ∈ F(fn−1, An−1, Cn−1) (see the definitions below);
(3) fn(en) ∈ E;
(4) f−1

n (En) ∩D(0, n) ⊂ E; and
(5) fn has the property (	n,n),
where, for every n ≥ 0,

An = En ∪ (f−1
n (En) ∩D(0, n))
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and Cn denotes the union of the cycles for fn with period at most n that intersect D(0, n),
with A0 = C0 = ∅ by convention. We proceed by recursion. Suppose that n ∈ Z≥0

and f1, . . . , fn ∈ F satisfy these conditions (1)–(5), and let us prove the existence of
fn+1 ∈ F that satisfies the same conditions. By conditions (2), (3) and (5), we have
An ∪ Cn ⊂ f−1

n (E). By Lemma 2.3, it follows that there exists gn ∈ F such that

gn ∈ F(fn, An ∪ Cn), dF (fn, gn) <
ε

3 · 2n+1 , gn(en+1) ∈ E.

Note that gn ∈ F \ E since dF (f0, gn) < ε by condition (1). Now, define

A′
n = An ∪ {en+1} = En+1 ∪ (f−1

n (En) ∩D(0, n)).

Then A′
n ⊆ E ∩ g−1

n (E) by conditions (2), (3) and (4). Moreover, Cn is a union of cycles
for gn that are all contained in E and whose multipliers all lie in � by condition (5).
Therefore, by Lemma 2.5, there exists hn ∈ F such that

hn ∈ F(gn, A′
n, Cn), dF (gn, hn) <

ε

3 · 2n+1 , hn has the property (	n+1,n+2).

Note that hn ∈ F \ E since dF (f0, hn) < ε by condition (1). In particular, we have
h

◦j
n �= idC for all j ∈ {1, . . . , n+ 1}, and hence there exists Rn ∈ (n+ 1, n+ 2) such

that ∂D(0, Rn) contains no periodic point for hn with period at most n+ 1. Now, denote
by Xn the union of the cycles for hn with period at most n+ 1 that intersect D(0, Rn).
Then the cycles for hn in Xn are all contained in E and their multipliers all lie in �.
Denote by Nn ∈ Z≥0 the number of periodic points for hn in D(0, Rn) with period at
most n+ 1, counting multiplicities. Since � ⊆ C \ {1}, the elements of Xn are all simple
periodic points for hn, and hence Nn equals the cardinality of Xn ∩D(0, Rn). Moreover,
since the topology of F is finer than the topology of local uniform convergence, there
exists εn ∈ (0, ε/(3 · 2n+1)) such that any kn ∈ F such that dF (hn, kn) < εn has exactly
Nn periodic points in D(0, Rn) with period at most n+ 1, counting multiplicities. Since
A′
n ∪Xn ⊂ E, it follows from Lemma 2.4 that there exists fn+1 ∈ F such that

fn+1 ∈ F(hn, A′
n ∪Xn), dF (hn, fn+1) < εn, f−1

n+1(En+1) ∩D(0, n+ 1) ⊂ E.

Then fn+1 clearly satisfies conditions (1)–(4). Moreover, Xn is also a union of cycles for
fn+1 and fn+1 has exactly Nn periodic points in D(0, Rn) with period at most n+ 1,
counting multiplicities. Therefore, as Xn ∩D(0, Rn) has cardinality Nn, the cycles for
fn+1 with period at most n+ 1 that intersect D(0, Rn) are the cycles contained in Xn.
Since these are all contained in E and their multipliers all lie in �, the map fn+1 also
satisfies condition (5) because Rn > n+ 1. Thus, we have proved the existence of such a
sequence (fn)n≥0 of elements of F .

It follows from condition (1) that (fn)n≥0 is a Cauchy sequence in (F , dF ), and its
limit f ∈ F satisfies dF (f0, f ) < ε. In particular, f ∈ F \ E . We prove that f satisfies the
required conditions. It suffices to show that, for each m ∈ Z≥1:

(i) f (em) ∈ E;
(ii) f−1(Em) ∩D(0, m) ⊂ E; and

(iii) f has the property (	m,m).
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Suppose that m ∈ Z≥1. Then fn(em) = fm(em) for all n ≥ m by condition (2), and hence
f (em) = fm(em) since (fn)n≥0 converges pointwise to f. Therefore, by condition (3),
condition (i) is satisfied. By condition (2) and as (fn)n≥0 converges pointwise to f, for
every n ≥ m,

f−1
n (Em) ∩D(0, m) ⊆ f−1

n+1(Em) ∩D(0, m) ⊆ f−1(Em) ∩D(0, m).

Therefore, as f−1(Em) ∩D(0, m) is finite since f ∈ F \ E , there exists N ∈ Z≥m such
that ⋃

n≥N
(f−1
n (Em) ∩D(0, m)) = f−1

N (Em) ∩D(0, m).

As (fn)n≥0 converges locally uniformly to f and f ∈ F \ E , it follows that

f−1(Em) ∩D(0, m) ⊆
⋃
n≥N

(f−1
n (Em) ∩D(0, m)) = f−1

N (Em) ∩D(0, m).

Therefore, by condition (4), condition (ii) is satisfied. For n ∈ Z≥m, define Yn ⊆ Cn to
be the union of the cycles for fn with period at most m that intersect D(0, m). Also,
define Y to be the union of the cycles for f with period at most m that intersect D(0, m).
By condition (2) and since (fn)n≥0 converges pointwise to f, for each n ≥ m, we have
Yn ⊆ Yn+1 ⊆ Y . Therefore, since Y is finite because f ∈ F \ E , there exists N ∈ Z≥m
such that

⋃
n≥N Yn = YN . Since (fn)n≥0 converges locally uniformly to f and f ∈ F \ E ,

it follows that

Y ⊆
⋃
n≥N

Yn = YN .

Moreover, f ∈ F(fN , YN) by condition (2) and since (fn)n≥0 converges locally uniformly
to f. Therefore, by condition (5), condition (iii) is also satisfied. This completes the proof
of the theorem.

3. Proof of Theorem 1.5
Here, we adapt our proof of Theorem 1.4 in order to prove Theorem 1.5.

We fix a Fréchet space F of real and even entire maps that contains all the real and
even polynomial maps and whose topology is finer than the topology of local uniform
convergence on C. As in §2, taking a countable family (‖.‖j )j≥0 of seminorms associated
to F , we define the distance dF on F by

dF (f , g) =
+∞∑
j=0

2−j min{1, ‖f − g‖j }.

We also fix a countable and dense subset E of C that is symmetric with respect to both
the real and imaginary axes and such that E ∩ (R ∪ iR) is dense in R ∪ iR and a dense
subset � of C that is symmetric with respect to the real axis and such that � ∩ R is dense
in R. Furthermore, removing 1 from � if necessary, we assume that � ⊆ C \ {1}.

We define

E = {z �→ a : a ∈ R}
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to be the set of real constant maps on C, which equals the set of all real and even affine
maps on C. The set E forms a real vector space of dimension one, and hence a closed
subset of F with empty interior.

As in §2, given f ∈ F and subsets A, C of C, we define

F(f , A) = {g ∈ F : g|A = f |A and g′|A = f ′|A}
and

F(f , A, C) = {g ∈ F : g|A∪C = f |A∪C and g′|C = f ′|C}.
Given a subset A of C, we define

Asym = A ∪ σ(A) ∪ (−A) ∪ (−σ(A)),
where σ : C → C is the complex conjugation, so that Asym is the smallest subset of C that
contains A and is symmetric with respect to the real and imaginary axes.

Now, to prove Theorem 1.5, we follow and adapt the strategy used in §2. The differences
from our proof of Theorem 1.4 arise from the fact that any real and even entire map has 0
as a critical point and maps R ∪ iR into R.

3.1. Polynomial interpolation. First, we adapt Lemmas 2.1 and 2.2 in order to work with
real and even polynomial maps.

LEMMA 3.1.
• For each finite setA ⊂ C such thatAsym = A, each b ∈ (R ∪ iR) \ A and each ζ ∈ R,

there exists a real and even polynomial map P axes
A,b,ζ : C → C of degree at most 2|A|

such that

P axes
A,b,ζ |A = 0, (P axes

A,b,ζ )
′|A = 0 and P axes

A,b,ζ (b) = ζ .

Moreover,

lim
ζ→0

sup{‖P axes
A,b,ζ‖ : |A| = N , dist(b, A) ≥ r , A ⊂ D(0, R)} = 0

for all N ∈ Z≥0, all r , R ∈ R>0 and all seminorms ‖.‖ on F .
• For each finite set A ⊂ C such that Asym = A, each b ∈ C \ (R ∪ iR ∪ A) and each

ζ ∈ C, there exists a real and even polynomial map P away
A,b,ζ : C → C of degree at most

2|A| + 2 such that

P
away
A,b,ζ |A = 0, (P

away
A,b,ζ )

′|A = 0 and P
away
A,b,ζ (b) = ζ .

Moreover,

lim
ζ→0

sup{‖P away
A,b,ζ‖ : |A| = N , dist(b, R ∪ iR ∪ A) ≥ r , A ⊂ D(0, R)} = 0

for all N ∈ Z≥0, all r , R ∈ R>0 and all seminorms ‖.‖ on F .
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Proof. Suppose that A ⊂ C is a finite set such that Asym = A. For b ∈ (R ∪ iR) \ A and
ζ ∈ R, define P axes

A,b,ζ : C → C by

P axes
A,b,ζ (z) = ζ

∏
a∈A

(
z− a

b − a

)2

.

For b ∈ C \ (R ∪ iR ∪ A) and ζ ∈ C, define P away
A,b,ζ : C → C by

P
away
A,b,ζ (z) = 	A,b,ζ (z)

∏
a∈A

(z− a)2,

with

	A,b,ζ (z) = �(γ )z2 + �(γ )�(b2)− �(γ )�(b2)

�(b2)
and γ = ζ∏

a∈A
(b − a)2

,

where �(w) and �(w) denote the real and imaginary parts of anyw ∈ C. Then the required
conditions are satisfied.

LEMMA 3.2.
• For each finite set A ⊂ C such that Asym = A, each b ∈ R∗ \ A and each λ ∈ R, there

exists a real and even polynomial map Qaxes
A,b,λ : C → C of degree at most 2|A| + 2

such that

Qaxes
A,b,λ|A = 0, (Qaxes

A,b,λ)
′|A = 0, Qaxes

A,b,λ(b) = 0 and (Qaxes
A,b,λ)

′(b) = λ.

Moreover, limλ→0‖Qaxes
A,b,λ‖ = 0 for all finite sets A ⊂ C such that Asym = A, all

b ∈ R∗ \ A and all seminorms ‖.‖ on F .
• For each finite set A ⊂ C such that Asym = A, each b ∈ C \ (R ∪ iR ∪ A) and each

λ ∈ C, there exists a real and even polynomial map Qaway
A,b,λ : C → C of degree at most

2|A| + 6 such that

Q
away
A,b,λ|A = 0, (Q

away
A,b,λ)

′|A = 0, Q
away
A,b,λ(b) = 0 and (Q

away
A,b,λ)

′(b) = λ.

Moreover, limλ→0‖Qaway
A,b,λ‖ = 0 for all finite sets A ⊂ C such that Asym = A, all

b ∈ C \ (R ∪ iR ∪ A) and all seminorms ‖.‖ on F .

Proof. Suppose that A ⊂ C is a finite set such that Asym = A. For b ∈ R∗ \ A and λ ∈ R,
define Qaxes

A,b,λ : C → C by

Qaxes
A,b,λ(z) = λ

(
z2 − b2

2b

) ∏
a∈A

(
z− a

b − a

)2

.

For b ∈ C \ (R ∪ iR ∪ A) and λ ∈ C, define Qaway
A,b,λ : C → C by

Q
away
A,b,λ(z) = �A,b,λ(z)(z

4 − 2�(b2)z2 + |b|4)
∏
a∈A

(z− a)2,
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where

�A,b,λ(z) = �(δ)z2 + �(δ)�(b2)− �(δ)�(b2)

�(b2)
and δ = λ

4ib�(b2)
∏
a∈A

(b − a)2
.

Then the required conditions are satisfied.

3.2. Adjustment of images. Here, we adapt Lemma 2.3 in the setting of real and even
entire maps.

LEMMA 3.3. Suppose that f ∈ F , that A is a finite subset of C and that b ∈ C.
Also, assume that A ⊂ f−1(E) or b ∈ C \ Asym. Then, for every ε ∈ R>0, there exists
g ∈ F(f , A) such that dF (f , g) < ε and g(b) ∈ E.

Proof. Because f is real and even and Esym = E, replacing A by Asym if necessary, we
may assume that Asym = A. If A ⊂ f−1(E) and b ∈ A, then g = f satisfies the required
conditions. Now, suppose that b ∈ C \ A. Define

locus =
{

axes if b ∈ R ∪ iR,

away if b ∈ C \ (R ∪ iR), Clocus =
{
R if locus = axes,

C if locus = away.

Note that f (b) ∈ Clocus. Therefore, with the notation of Lemma 3.1, for ζ ∈ Clocus, we can
define

gζ = f + P locus
A,b,ζ−f (b) ∈ F(f , A).

Then limζ→f (b) gζ = f in F . Therefore, since E ∩ Clocus is dense in Clocus, there exists
ζ ∈ E ∩ Clocus such that dF (f , gζ ) < ε. Setting g = gζ , the required conditions are
satisfied. Thus, the lemma is proved.

3.3. Adjustment of preimages. Here, we present an analog of Lemma 2.4.

LEMMA 3.4. Suppose that f ∈ F \ E , that A is a finite subset of E, that B is a finite
subset of C and that R ∈ R>0. Then, for every ε ∈ R>0, there exists g ∈ F(f , A) such
that dF (f , g) < ε and g−1(B) ∩D(0, R) ⊂ E.

Proof. Since Esym = E, replacing A by Asym and B by Bsym if necessary, we may assume
that Asym = A and Bsym = B. Given g ∈ F , denote by:
• mg the number of preimages inD(0, R) ∩ E of the elements of B under g, not counting

multiplicities;
• ng the number of preimages in D(0, R) ∩ E of the elements of B under g, counting

multiplicities; and
• Ng the total number of preimages in D(0, R) of the elements of B under g, counting

multiplicities.
We prove that there exists g ∈ F(f , A) such that dF (f , g) < ε and ng = Ng . Using the
same preliminary arguments as in the proof of Lemma 2.4, reducing ε if necessary, we may
assume that mg ≤ N for each g ∈ F such that dF (f , g) < ε, for some bound N ∈ Z≥0

independent of g ∈ F . Therefore, it suffices to show that, if g ∈ F(f , A) satisfies
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dF (f , g) < ε and ng < Ng , then there exists h ∈ F(f , A) such that dF (f , h) < ε and
mh > mg . Suppose that g ∈ F(f , A) is such a map. Define

A′ = g−1(B) ∩D(0, R) ∩ E,

which is finite of cardinality mg and such that (A′)sym = A′. Since ng < Ng , there exists
w ∈ D(0, R) \ E such that g(w) ∈ B. Now, define

locus =
{

axes if w ∈ R ∪ iR,

away if w ∈ C \ (R ∪ iR), Clocus =
{
R ∪ iR if locus = axes,

C \ (R ∪ iR) if locus = away.

Using the notation of Lemma 3.1, for ζ ∈ Clocus \ (A ∪ A′), define

hζ = g + P locus
A∪A′,ζ ,g(w)−g(ζ ) ∈ F(g, A ∪ A′).

Then limζ→w hζ = g in F because w ∈ Clocus \ (A ∪ A′). Therefore, since E ∩ Clocus

is dense in Clocus and dF (f , g) < ε, there exists ζ ∈ (D(0, R) ∩ E ∩ Clocus) \ (A ∪ A′)
such that dF (f , hζ ) < ε. Setting h = hζ , we have mh > mg since h(ζ ) = g(w) ∈ B and
h ∈ F(g, A′). This completes the proof of the lemma.

3.4. Adjustment of cycles. Now, let us adapt Lemma 2.5 in the current setting. Note that,
if f ∈ F has 0 as a periodic point, then the multiplier of f at 0 equals 0 since f is even.
Thus, as 0 need not lie in � by assumption, the point 0 requires special treatment.

As in §2, for p ∈ Z≥1 and R ∈ R>0, we say that f ∈ F has the property (	p,R) if
its cycles with period at most p that intersect D(0, R) are all contained in E and their
multipliers all lie in �.

LEMMA 3.5. Suppose that f ∈ F \ E , A is a finite subset of E ∩ f−1(E), C is a finite
union of cycles for f that are contained in E and whose multipliers lie in �, p ∈ Z≥1 and
R ∈ R>0. Also assume that 0 ∈ C \ E or 0 is not periodic for f with period at most p. Then,
for every ε ∈ R>0, there exists g ∈ F(f , A, C) that has the property (	p,R) and satisfies
dF (f , g) < ε.

Proof. As f is real and even and Esym = E, replacing A by Asym if necessary, we may
assume that Asym = A. Since the topology of F is finer than the topology of local uniform
convergence, reducing the number ε if necessary, we may also assume that 0 ∈ C \ E or 0
is not periodic with period at most p for any g ∈ F such that dF (f , g) < ε. Given g ∈ F ,
denote by:
• ng the number of periodic points for g in D(0, R) with period at most p whose cycle

is contained in E and whose multiplier lies in �, not counting multiplicities; and
• Ng the number of periodic points for g in D(0, R) with period at most p, counting

multiplicities.
We prove that there exists g ∈ F(f , A, C) such that dF (f , g) < ε and ng = Ng . Using the
same preliminary arguments as in the proof of Lemma 2.5, reducing ε if necessary, we may
assume that ng ≤ N for each g ∈ F such that dF (f , g) < ε, for some bound N ∈ Z≥0

independent of g ∈ F . Therefore, it suffices to show that, if g ∈ F(f , A, C) satisfies
dF (f , g) < ε and ng < Ng , then there exists h ∈ F(f , A, C) such that dF (f , h) < ε and
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nh > ng . Thus, suppose that g ∈ F(f , A, C) is such a map. Now, denote by C ′ the union
of the cycles for g with period at most p that intersect D(0, R), are contained in E and
whose multipliers lie in �. The elements of C′ are all simple periodic points for g since
� ⊆ C \ {1}. Therefore, as ng < Ng , there exists a cycle
 for g with period at most p that
intersects D(0, R) but not C′. We have g(R ∪ iR) ⊆ R because g is real and even, and
hence either 
 ⊂ R or 
 ⊂ C \ (R ∪ iR). Now, define

locus =
{

axes if 
 ⊂ R,

away if 
 ⊂ C \ (R ∪ iR), Clocus =
{
R if locus = axes,

C \ (R ∪ iR) if locus = away.

Denote by σ : C → C the complex conjugation. Since g is real, σ(
) is also a cycle for g,
and in particular either 
 = σ(
) or 
 ∩ σ(
) = ∅. Define

Z = {ζ ∈ (Clocus)
 : ζ |
∩E = id
∩E and ζ ◦ σ |
∩σ(
) = σ ◦ ζ |
∩σ(
)}.
For ζ ∈ Z, set 
ζ = {ζ (ω) : ω ∈ 
}. As g is even and 
 and σ(
) are cycles for
g, for each ω ∈ 
, the points in {ω}sym \ {ω, σ(ω)} are strictly preperiodic for g, and
hence the set {ω}sym ∩
 equals {ω, σ(ω)} or {ω} according to whether 
 = σ(
) or

 ∩ σ(
) = ∅. Similarly, as g is real and even and E and� are symmetric with respect to
the real axis, each point in (C ∪ C′)sym is either strictly preperiodic for g or it is periodic
for g, its cycle is contained in E and its multiplier lies in �, and hence 
 ⊂ Clocus \
(C ∪ C′)sym. Moreover, A ⊆ E ∩ g−1(E) and 
 ∩D(0, R) �= ∅. Therefore, there exists
a neighborhood V of id
 in Z such that, for each ζ ∈ V :
• ζ (ω) ∈ Clocus \ A for all ω ∈ 
 \ (E ∩ g−1(E));
• 
ζ ⊂ Clocus \ (C ∪ C′)sym;

• {ζ (ω)}sym ∩
ζ =
{

{ζ (ω), ζ (σ (ω))} if 
 = σ(
)

{ζ (ω)} if 
 ∩ σ(
) = ∅
for all ω ∈ 
;

• ζ (ω) �= ζ (ω′) for all distinct ω, ω′ ∈ 
; and
• 
ζ ∩D(0, R) �= ∅.
Using the notation of Lemma 3.1, for ζ ∈ V , define

gζ = g + α ·
∑

ω∈
\(E∩g−1(E))

φζ ,ω ∈ F(g, A ∪ C ∪ C′),

where

α =
{

1
2 if 
 ⊂ C \ (R ∪ iR) and 
 = σ(
),

1 if 
 ⊂ R or 
 ∩ σ(
) = ∅,

and, for every ω ∈ 
 \ (E ∩ g−1(E)),

φζ ,ω = P locus
A∪(C∪C′)sym∪(
sym

ζ \{ζ (ω)}sym),ζ (ω),ζ (g(ω))−g(ζ (ω)).

For each ζ ∈ V , we have gζ (ζ (ω)) = ζ (g(ω)) for all ω ∈ 
, and hence 
ζ is a cycle for
gζ . Note that limζ→id
 gζ = g in F . Therefore, since E ∩ Clocus is dense in Clocus and
dF (f , g) < ε, there exists ζ ∈ V ∩ E
 such that dF (f , gζ ) < ε. Now, define

L = {λ ∈ (Clocus)
 : λ ◦ σ |
∩σ(
) = σ ◦ λ|
∩σ(
)}.
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Note that 0 ∈ C \
ζ by the second sentence of the proof. Consequently, with the notation
of Lemma 3.2, for λ ∈ L, we can define

hλ = gζ + α ·
∑
ω∈


ψλ,ω ∈ F(gζ , A ∪
ζ , C ∪ C′),

where, for every ω ∈ 
,

ψλ,ω = Qlocus
(C∪C′)sym∪((A∪
sym

ζ )\{ζ (ω)}sym),ζ (ω),λ(ω)
.

Then 
ζ is a cycle for hλ and we have h′
λ(ζ (ω)) = g′

ζ (ζ (ω))+ λ(ω) for all ω ∈ 
 and all
λ ∈ L. Moreover, we have limλ→0 hλ = gζ in F . Therefore, since � ∩ Clocus is dense in
Clocus and dF (f , gζ ) < ε, there exists λ ∈ L such that dF (f , hλ) < ε and the multiplier
of hλ at 
ζ lies in �. Setting h = hλ, we have nh > ng . Thus, the lemma is proved.

3.5. Proof of the theorem. Finally, we combine here Lemmas 3.3, 3.4 and 3.5 in order
to prove Theorem 1.5. Our proof only differs from that of Theorem 1.4 when 0 ∈ E. In this
case, we also control the orbit of 0 to apply Lemma 3.5.

Proof of Theorem 1.5. In the case where 0 ∈ C \ E, the proof is identical to that of
Theorem 1.4, by using Lemmas 3.3, 3.4 and 3.5 instead of Lemmas 2.3, 2.4 and 2.5.

Thus, from now on, assume that 0 ∈ E. Suppose that f0 ∈ F and ε ∈ R>0. We show
that there exists f ∈ F such that:
• dF (f0, f ) < ε;
• f−1(E) = E; and
• the cycles for f are all contained in E and their multipliers all lie in �.
Since E is a closed subset of F with empty interior, replacing f0 and ε if necessary, we may
assume that f0 ∈ F \ E and ε ∈ (0, dist(f0, E)). Write E = {ej : j ∈ Z≥1}, with ej �= ek

for all distinct j , k ∈ Z≥1. For n ∈ Z≥1, define En = {e1, . . . , en}. We show that there
exists a sequence (fn)n≥0 of elements of F such that, for every n ≥ 1:
(1) dF (fn−1, fn) < ε/2n;
(2) fn ∈ F(fn−1, An−1, Cn−1) (see the definitions below);
(3) f ◦n

n (0) ∈ E \ (An ∪ Cn)sym;
(4) fn(en) ∈ E;
(5) f−1

n (En) ∩D(0, n) ⊂ E; and
(6) fn has the property (	n,n),
where, for every n ≥ 0,

An = En ∪ (f−1
n (En) ∩D(0, n)) ∪ {0, fn(0), . . . , f ◦(n−1)

n (0)}
and Cn denotes the union of the cycles for fn with period at most n that intersect D(0, n),
with A0 = C0 = ∅ by convention. We proceed by recursion. Suppose that n ∈ Z≥0

and f1, . . . , fn ∈ F satisfy these conditions (1)–(6), and let us prove the existence of
fn+1 ∈ F that satisfies the same conditions. Define

Bn,0 = An ∪ Cn, gn,0 = fn and Bn,1 = An ∪ Cn ∪ {en+1, f ◦n
n (0)}.
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We have f ◦n
n (0) ∈ C \ Bsym

n,0 by condition (3). Therefore, by Lemma 3.3 applied succes-
sively with different dense subsets of C, there exist gn,1, . . . , gn,n+2 ∈ F such that, for
every j ∈ {1, . . . , n+ 2},

gn,j ∈ F(gn,j−1, Bn,j−1), dF (gn,j−1, gn,j ) <
ε

(n+ 2) · 2n+3

and

gn,j ◦ · · · ◦ gn,1(f
◦n
n (0)) ∈ E \ Bsym

n,j ,

where, for every j ∈ {2, . . . , n+ 2},
Bn,j = Bn,j−1 ∪ {gn,j−1 ◦ · · · ◦ gn,1(f

◦n
n (0))}.

Set gn = gn,n+2. Note that, for every j ∈ {1, . . . , n+ 2},
g

◦(n+j)
n (0) = gn,j ◦ · · · ◦ gn,1(f

◦n
n (0))

and

Bn,j = An ∪ Cn ∪ {en+1} ∪ {g◦n
n (0), . . . , g◦(n+j−1)

n (0)}.
In particular:

(i) dF (fn, gn) < ε/2n+3;
(ii) gn ∈ F(fn, An ∪ Cn);
(iii) g

◦(n+j)
n (0) ∈ E for all j ∈ {1, . . . , n+ 2};

(iv) g
◦(n+1)
n (0) ∈ E \ (An ∪ Cn ∪ {en+1, f ◦n

n (0)})sym;
(v) g

◦(n+2)
n (0) ∈ E \ En+1; and

(vi) g
◦(n+j)
n (0) �= ±g◦(n+1)

n (0) for all j ∈ {2, . . . , n+ 2}.
Now, define

A′
n = An ∪ {g◦n

n (0), . . . , g◦(2n+1)
n (0)}.

Then we have A′
n ∪ Cn ⊂ g−1

n (E) by conditions (2), (3), (4), (6), (ii) and (iii). Therefore,
by Lemma 3.3, there exists hn ∈ F such that

hn ∈ F(gn, A′
n ∪ Cn), dF (gn, hn) <

ε

2n+3 , hn(en+1) ∈ E.

Note that hn ∈ F \ E since dF (f0, hn) < ε by conditions (1) and (i). Define

A′′
n = A′

n ∪ {en+1} = An ∪ {en+1} ∪ {g◦n
n (0), . . . , g◦(2n+1)

n (0)}.
Then A′′

n ⊆ E ∩ h−1
n (E) by conditions (2)–(5), (ii) and (iii). Moreover, Cn is a union of

cycles for hn that are all contained in E and whose multipliers all lie in� by conditions (6)
and (ii). Also note that 0 is not periodic for hn with period at most n+ 1 since h◦(n+1)

n (0) �=
h

◦j
n (0) for all j ∈ {0, . . . , n} by conditions (ii) and (iv). Therefore, by Lemma 3.5, there

exists kn ∈ F such that

kn ∈ F(hn, A′′
n, Cn), dF (hn, kn) <

ε

2n+3 , kn has the property (	n+1,n+2).

Note that kn ∈ F \ E since dF (f0, kn) < ε by conditions (1) and (i). It follows that
k
◦j
n �= idC for all j ∈ {1, . . . , n+ 1}, and hence there exists Rn ∈ (n+ 1, n+ 2) such
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that ∂D(0, Rn) contains no periodic point for kn with period at most n+ 1. Now, denote
by Xn the union of the cycles for kn with period at most n+ 1 that intersect D(0, Rn).
Then the cycles for kn in Xn are all contained in E and their multipliers all lie in �.
Denote by Nn ∈ Z≥0 the number of periodic points for kn in D(0, Rn) with period at
most n+ 1, counting multiplicities. Since � ⊆ C \ {1}, the elements of Xn are all simple
periodic points for kn, and hence Nn equals the cardinality of Xn ∩D(0, Rn). Moreover,
since the topology of F is finer than the topology of local uniform convergence, there exists
εn ∈ (0, ε/2n+3) such that every �n ∈ F such that dF (kn, �n) < εn has exactlyNn periodic
points inD(0, Rn)with period at most n+ 1, counting multiplicities. SinceA′′

n ∪Xn ⊂ E,
it follows from Lemma 3.4 that there exists fn+1 ∈ F such that

fn+1 ∈ F(kn, A′′
n ∪Xn), dF (kn, fn+1) < εn, f−1

n+1(En+1) ∩D(0, n+ 1) ⊂ E.

Then fn+1 clearly satisfies conditions (1), (2), (4) and (5). Furthermore, fn+1 also satisfies
condition (3) by conditions (ii), (iv), (v) and (vi). Now, note thatXn is also a union of cycles
for fn+1 and fn+1 has exactly Nn periodic points in D(0, Rn) with period at most n+ 1,
counting multiplicities. As Xn ∩D(0, Rn) has exactly Nn elements, it follows that Xn is
the union of all the cycles for fn+1 with period at most n+ 1 that intersect D(0, Rn).
As these are all contained in E and their multipliers all lie in �, the map fn+1 also
satisfies condition (6) since Rn > n+ 1. Thus, we have proved the existence of a sequence
(fn)n≥0 of elements of F that satisfies the desired conditions. Then the rest of the proof is
completely identical to that of Theorem 1.4. Thus, the theorem is proved.

4. Proof of Theorem 1.9
Finally, we shall apply Theorem 1.5 and Remark 1.6 in order to prove Theorem 1.9.

We define B to be the real vector space of real and even entire maps f : C → C such
that the sequence (f (j)(0))j≥0 of successive derivatives of f at 0 is bounded, and we equip
it with the norm ‖.‖B defined by

‖f ‖B = sup
j≥0

|f (j)(0)|.

Thus, B is a normed space of real and even entire maps that contains all the real and even
polynomial maps. Moreover, we have the following lemma.

LEMMA 4.1. The normed space B is a Banach space and its topology is finer than the
topology of local uniform convergence on C.

Proof. Now suppose that (fn)n≥0 is a Cauchy sequence of elements of B. Then, for
each j ∈ Z≥0, the sequence (f (j)n (0))n≥0 is Cauchy in R, and it is constant equal to 0
if j is odd. Therefore, for each j ∈ Z≥0, the sequence (f (j)n (0))n≥0 has a limit �j ∈ R,
and we have �j = 0 if j is odd. Moreover, since (fn)n≥0 is Cauchy in B, we have
limn→+∞ supj≥0|f (j)n (0)− �j | = 0. Now, note that (�j )j≥0 is bounded in R because
(fn)n≥0 is bounded in B. As a result, the map f : C → C given by f (z) = ∑+∞

j=0(�j /j !)zj

is a well-defined real and even entire map. As f (j)(0) = �j for all j ∈ Z≥0, we have f ∈ B
and limn→+∞ fn = f in B, by the discussion above. Thus, B is a Banach space.
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Finally, for every f ∈ B,

for all z ∈ C, |f (z)| =
∣∣∣∣

+∞∑
j=0

f (2j)(0)
(2j)!

z2j
∣∣∣∣ ≤ ‖f ‖B · cosh(|z|),

where cosh denotes the hyperbolic cosine, since f is an even entire map. Thus, for
every compact subset K of C, we have supz∈K |f (z)| ≤ MK · ‖f ‖B for all f ∈ B, with
MK = supz∈K cosh(|z|). Consequently, the topology of B is finer than the topology of
local uniform convergence on C. This completes the proof of the lemma.

Now, we define

f0 = 10 cosh −12 ∈ B.

We apply Theorem 1.5 to prove the existence of f ∈ B close to f0 such that f (Q) ⊆ Q

and the periodic points and multipliers of f : R → R all lie in Q. If f has been chosen
close enough to f0, then we also prove that f is transcendental, f : R → R is convex,
f : f−1(D) ∩ D → D is an escaping quadratic-like map and the latter two have the same
periodic points. Furthermore, using Remark 1.6, f can be chosen so that the multiplier of
f : f−1(D) ∩ D → D at its cycle with period 2 does not equal the product of its multipliers
at its two fixed points, which implies that f : f−1(D) ∩ D → D is not conjugate to an
affine escaping quadratic-like map.

4.1. Convexity. We prove here the following result.

LEMMA 4.2. Suppose that f ∈ B satisfies ‖f − f0‖B < 10. Then f is transcendental and
f : R → R is convex.

Proof. As f (2j)0 (0) = 10 for all j ∈ Z≥1 and ‖f − f0‖B < 10, we have f (2j)(0) > 0 for
all j ∈ Z≥1. Therefore, f is transcendental. Moreover, f : R → R is convex as

for all x ∈ R, f ′′(x) =
+∞∑
j=0

f (2j+2)(0)
(2j)!

x2j > 0.

Thus, the lemma is proved.

4.2. Quadratic-like maps. We show here that any f ∈ B sufficiently close to f0 induces
an escaping quadratic-like map f : f−1(D) ∩ D → D.

Recall that a quadratic-like map is a holomorphic proper map f : V → W of degree
two, where V � W are non-empty simply connected open subsets of C. In this situation,
it follows from the Riemann–Hurwitz formula that f : V → W has a unique critical
point γf ∈ V . Moreover, if f (γf ) ∈ W \ V , then f : f−1(V ) → V is an escaping
quadratic-like map. However, note that escaping quadratic-like maps are not quadratic-like
maps.

LEMMA 4.3. The holomorphic map f0 : 2D → f0(2D) is proper of degree two and

D(−2, 4) ⊂ f0(D) ⊂ D(−2, 7) and D(−2, 9) ⊂ f0(2D).
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Proof. The map cosh induces a proper holomorphic map of degree two from the strip

S = {z ∈ C : �(z) ∈ (−π , π)}
to the slit plane C \ (−∞, −1]. Since cosh is even and 3D ⊂ S, there is a univalent map
φ : 9D → C such that cosh(z) = φ(z2) for all z ∈ 3D. It follows that the map f0 : 2D →
f0(2D) is proper of degree two. Moreover, we have φ(0) = 1 and φ′(0) = 1

2 . Therefore, it
follows from the Koebe distortion theorem that

D(1, r) ⊂ φ(D) ⊂ D(1, R) with r = 1/2
(1 + (1/9))2

>
2
5

, R = 1/2
(1 − (1/9))2

<
7
10

,

and

D(1, s) ⊂ φ(4D) with s = 4/2
(1 + (4/9))2

>
9
10

.

Thus, the desired inclusions hold, and the lemma is proved.

LEMMA 4.4. Suppose that f ∈ B satisfies ‖f − f0‖B < 1
4 . Then f : D → f (D) is a

quadratic-like map and f (0) ∈ (−∞, −1).

Proof. Set g = f − f0. Then, for every z ∈ 2D,

|g(z)| =
∣∣∣∣

+∞∑
j=0

g(2j)(0)
(2j)!

z2j
∣∣∣∣ ≤ ‖g‖B ·

+∞∑
j=0

22j

(2j)!
<

cosh(2)
4

< 1.

In particular,

f (0) = −2 + g(0) ∈ D(−2, 1) ∩ R ⊂ (−∞, −1).

Moreover, by Lemma 4.3 and the argument principle, it follows that

D(−2, 3) ⊂ f (D) ⊂ D(−2, 8)

and every element of D(−2, 8) has exactly two preimages in 2D under f, counting
multiplicities. Therefore, D � f (D) and the map f : D → f (D) is proper of degree two.
This completes the proof of the lemma.

4.3. Same periodic points. Here, we prove the following lemma.

LEMMA 4.5. Suppose that f ∈ B is such that f : R → R is convex, f : D → f (D) is
a quadratic-like map and f (0) ∈ (−∞, −1). Then f : f−1(D) ∩ D → D is an escaping
quadratic-like map and its periodic points coincide with those of f : R → R.

Proof. Set U = f−1(D) ∩ D. As f : D → f (D) is a quadratic-like map, U � D and the
map f : U → D is proper of degree two. Moreover, the unique critical point of f in
D is 0 since f is even, and f (0) ∈ C \ D by assumption. Therefore, f : U → D is an
escaping quadratic-like map. Thus, U has two connected components U− and U+ and
these are mapped biholomorphically onto D by f. Denote by g± : D → U± the inverse of
f : U± → D. We haveU+ = −U− and g+ = −g− because f is even. A standard argument
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using the fact that the map g± is contracting with respect to the Poincaré metric on D shows
that, for every sign sequence ε = (εn)n≥0, there is a point ζ(ε) ∈ D such that⋂

n≥0

gε0 ◦ · · · ◦ gεn(D) = {ζ(ε)}.

Now, denote by σ the shift map, which sends a sign sequence (εn)n≥0 to (εn+1)n≥0. Then
the periodic points of f : U → D are precisely the points ζ(ε), where ε is a sign sequence
that is periodic for σ .

Since f : R → R is even and convex, it is increasing on R≥0. As f : D → f (D) is a
quadratic-like map, it follows that f (1) > 1. Therefore,U± ∩ R �= ∅ because we also have
f (0) < −1, by assumption. It follows that U± is symmetric with respect to the real axis
and g± commutes with complex conjugation. Therefore, for every sign sequence ε, the set
{ζ(ε)} is also symmetric with respect to the real axis, and hence ζ(ε) ∈ R. In particular,
every periodic point of f : U → D is also a periodic point of f : R → R.

Finally, note that f (x) > x for all x ∈ [1, +∞) as f : R → R is convex, f (0) < 0 and
f (1) > 1. It follows that the map f : R → R has no periodic point in [1, +∞). Therefore,
the periodic points of f : R → R all lie in (−1, 1) ⊂ D because f is even. Thus, every
periodic point of f : R → R is also a periodic point of f : U → D, and the lemma is
proved.

4.4. Proof of the theorem. Finally, we combine here Theorem 1.5, Remark 1.6 and
Lemmas 4.2, 4.4 and 4.5 in order to prove Theorem 1.9.

Proof of Theorem 1.9. Define

Q0 =
{
p

q
∈ Q : p odd, q even

}
and Q1 =

{
p

q
∈ Q : q odd

}

to be the sets of rational numbers with even and odd denominators. Also define

E = Q(i), � = Q0 ∪ (C \ R) and �′ = Q1 ∪ (C \ R).
Then E is a countable and dense subset of C such that Esym = E and E ∩ (R ∪ iR)
is dense in R ∪ iR. Moreover, � and �′ are dense subsets of C that are symmetric
with respect to the real axis, and � ∩ R and �′ ∩ R are both dense in R. Therefore, by
Theorem 1.5 and Remark 1.6, there exists f ∈ B such that:
(1) ‖f − f0‖B < 1

4 ;
(2) f−1(E) = E;
(3) the periodic points of f all lie in E;
(4) the multipliers of f at its cycles with period different from 2 all lie in �; and
(5) the multipliers of f at its cycles with period 2 all lie in �′.
By condition (1) and Lemmas 4.2, 4.4 and 4.5, the map f is transcendental, the map
f : R → R is convex and f : f−1(D) ∩ D → D is an escaping quadratic-like map whose
cycles coincide with those of f : R → R. We have f (Q) ⊂ E ∩ R = Q by condition (2).
Now, by condition (3), the periodic points of f : R → R all lie in E ∩ R = Q. Moreover,
by conditions (4) and (5), the multipliers of f : R → R all lie in � ∩ R = Q0, apart
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from that at its unique cycle with period 2 which lies in �′ ∩ R = Q1. In particular,
the multipliers of f : R → R all lie in Q. Finally, the product of the multipliers of
f : f−1(D) ∩ D → D at its two fixed points lies in Q0, as both of them lie in Q0,
and hence it differs from the multiplier at the cycle with period 2. It follows that
f : f−1(D) ∩ D → D is not conjugate to an affine escaping quadratic-like map. Thus,
the theorem is proved.
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