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On the local structure of Dirac manifolds

Jean-Paul Dufour and Aı̈ssa Wade

Abstract

We give a local normal form for Dirac structures. As a consequence, we show that the
dimensions of the pre-symplectic leaves of a Dirac manifold have the same parity. We
also show that, given a point m of a Dirac manifold M , there is a well-defined transverse
Poisson structure to the pre-symplectic leaf P through m. Finally, we describe the neigh-
borhood of a pre-symplectic leaf in terms of geometric data. This description agrees with
that given by Vorobjev for the Poisson case.

1. Introduction

A Dirac manifold is a smooth manifold M equipped with a vector sub-bundle L of the Whitney
sum TM ⊕T ∗M which is maximal isotropic with respect to the natural pairing on TM ⊕T ∗M and
integrable in the sense that the smooth sections of L are closed under the Courant bracket (see § 2).
The vector bundle L is then called a Dirac structure on M .

Dirac structures on manifolds were first introduced by Courant and Weinstein in the mid-
1980s [CW86]. A few years later, further investigations were undertaken in [Cou90]. Recently, the
theory of Dirac structures has been extensively developed in connection with various topics in
mathematics and physics (see, for instance, [BC97, Gua04, LWX97, BW04]). Specific examples of
Dirac manifolds include pre-symplectic and Poisson manifolds. Thus, it is important to understand
the local structure of a Dirac manifold. The main goal of this paper is to provide a description
of the local structure of such a manifold.

Every Dirac manifold admits a foliation by pre-symplectic leaves. The local structure of general
Dirac manifolds was only studied in neighborhoods of regular points [Cou90] (see also [Gua04] for
the case of complex Dirac structures). By a regular point, we mean a point for which there is an open
neighborhood where the foliation is regular. It is natural to ask about the local structure around
non-regular points. In [AB06], the special case of generalized complex manifolds is considered.

In § 3, we give a normal form for a Dirac structure L on a smooth manifold M near an arbitrary
point m ∈ M (see Theorem 3.2). This normal form allows us to conclude that the dimensions of
the pre-symplectic leaves have the same parity.

We show in § 4 that, given a point m in a Dirac manifold M , there is a well-defined transverse
Poisson structure whose rank at m is zero. This extends facts from the classical case of Poisson
structures (see [Wei83]). In § 5, we describe the neighborhood of a pre-symplectic leaf of a Dirac
manifold using the concept of geometric data (see [Vor00]). Dirac structures on manifolds are con-
structed from given geometric data. We prove that, conversely, one can construct geometric data
from a Dirac manifold M with a fixed tubular neighborhood of a symplectic leaf P .

This paper is divided into five sections. Section 2 contains some basic definitions and results.
Our main theorems are given in §§ 3–5 (see Theorems 3.2, 4.5, 5.1, and 5.4).
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On the local structure of Dirac manifolds

2. Preliminaries

Let M be a smooth n-dimensional manifold. We denote by 〈·, ·〉 the canonical symmetric bilinear
operation on the vector bundle TM ⊕T ∗M → M . This induces a symmetric C∞-bilinear operation
on the space of smooth sections of TM ⊕ T ∗M given by:

〈(X1, α1), (X2, α2)〉 = 1
2(iX2α1 + iX1α2), for all (X1, α1), (X2, α2) ∈ Γ(TM ⊕ T ∗M).

An almost Dirac structure on M is a sub-bundle of TM ⊕T ∗M → M which is maximal isotropic
with respect to 〈·, ·〉.

The non-skew symmetric Courant bracket on Γ(TM ⊕ T ∗M) is defined by

[(X1, α1), (X2, α2)]C = ([X1,X2],LX1α2 − iX2dα1),

where LX = d ◦ iX + iX ◦ d is the Lie derivation by X. It is sometimes called the Dorfman bracket.
A Dirac structure L on M is an almost Dirac structure which is integrable (i.e. Γ(L) is closed

under the Courant bracket). In this case, the pair (M,L) is called a Dirac manifold.

Examples. We give the following examples.

(i) Let Ω be a 2-form on M . Consider the graph

LΩ = {(X, iXΩ) | X ∈ TM}.

Then LΩ is a Dirac structure if and only if dΩ = 0. Furthermore, a Dirac structure is the graph
of a 2-form if and only if L ∩ ({0} ⊕ T ∗M) = {0} at every point.

(ii) Let π be a bivector field on M . We use the notation

Lπ = {(π�α,α) | α ∈ T ∗M}.

Then Lπ is Dirac if and only if π is a Poisson tensor. Furthermore, a Dirac structure is the
graph of a bivector field if and only if L ∩ (TM ⊕ {0}) = {0} at every point.

Let L be an almost Dirac structure on M . Consider the distribution

(DL)x = pr1(Lx) for all x ∈ M,

where pr 1 is the canonical projection of Lx onto TxM . The distribution DL is involutive when
L is integrable. Hence, in this case, L gives rise to a singular foliation. Furthermore, there is a
skew-symmetric bilinear map Ω

L
: DL ×DL → C∞(M) given by

Ω
L
(X,Y ) = α(Y ), for any (X,α), (Y, β) ∈ Γ(L). (1)

We have the following proposition.

Proposition 2.1 (Courant [Cou90]). If L is a Dirac structure on M then dΩL = 0.

Remark. As an immediate consequence of this proposition, one sees that a Dirac structure on M
gives rise to a singular foliation by pre-symplectic leaves (i.e. on each leaf, there is a closed 2-form).

3. A local normal form for Dirac manifolds

3.1 Proposition
Let L be a Dirac structure on a smooth manifold M of dimension n, and let m0 ∈ M . If the pre-
symplectic leaf through m0 is a single point then there is a neighborhood U of m0 such that L|U is
the graph of a Poisson structure Π.
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Proof. Assume that the pre-symplectic leaf through m0 is P = {m0}. There are vector fields
X1, . . . ,Xn, and 1-forms α1, . . . , αn defined in an open neighborhood U of m0 such that L|U is
determined by the local sections ei = (Xi, αi), where Xi(m0) = 0. In local coordinates (y1, . . . , yn)
such that yi(m0) = 0, we have the expressions

Xi =
n∑

j=1

Xij (y)
∂

∂yj
, αi =

n∑
j=1

αij dyj.

The sections ei(m) give the following matrix


X11 . . . X1n α11 . . . α1n
...

Xn1 . . . Xnn αn1 . . . αnn


 with Xij (m0) = 0.

The sub-matrix (αij (m0)) is invertible since dim(Lm0) = n. Therefore, (αij (m)) remains invertible
at all points in a small neighborhood of m0. Let (αij (m)) be the inverse of (αij (m)). Define

e′i =
n∑

j=1

αij ej, for all i = 1, . . . , n.

This can be written as

e′i =
( n∑

i=1

X ′
ij

∂

∂yj
, dy i

)
with X ′

ij = −X ′
ji .

Define

Π =
∑
i<j

X ′
ij

∂

∂yi
∧ ∂

∂yj
.

Then, the Schouten bracket [Π,Π] is zero (this is due to the fact that Γ(L) is closed under the
Courant bracket). Furthermore, L|U is the graph of Π.

Now, we assume that the pre-symplectic leaf P through m0 ∈ M is not a single point. Let U be
a neighborhood of m0 with local coordinates (x1, . . . , xr, y1, . . . , ys) such that xi(m0) = yj(m0) = 0,
for all i ∈ {1, . . . , r}, j ∈ {1, . . . , s}, and such that the pre-symplectic leaf through m0 has equations
y1 = 0, . . . , ys = 0. In what follows, we use the notation

x = (x1, . . . , xr), y = (y1, . . . , ys).

Without loss of generality, we can assume that there are vector fields Yi(x, y), Zj(x, y) defined on
U and 1-forms αi(x, y), βj(x, y) such that Γ(L|U ) is spanned by

Si =
(

∂

∂xi
+ Yi(x, y), αi(x, y)

)
, Tj = (Zj(x, y), βj(x, y)),

with Yi(x, 0) = 0, Zj(x, 0) = 0, for all i = 1, . . . , r, j = 1, . . . , s. We want to find a new spanning set
of local sections {S ′

i,T ′
j } defined around m0 which have very simple expressions. In other words, we

want to find a normal form of L at m0. We use the notation

Xi =
∂

∂xi
+ Yi(x, y) =

∂

∂xi
+

r∑
j=1

Ŷij (x, y)
∂

∂xj
+

s∑
j=1

Ỹij (x, y)
∂

∂yj
.

One can note that there are smooth functions fij (x, y) such that

∑
fij (x, y)Xj =

∂

∂xi
+

s∑
j=1

Y ′
ij (x, y)

∂

∂yj
.
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Equivalently, there is a matrix (fij (x, y)) whose coefficients are smooth functions and such that

(I + (Ŷij ))(fij ) = I.

Indeed, (I + (Ŷij )) is invertible at all points in U (up to a shrinking of U). Hence, there are smooth
functions fij (x, y) satisfying the above matrix equation. It follows that Γ(L|U ) is spanned by
smooth sections of the form

S ′
i =

(
∂

∂xi
+

s∑
j=1

Y ′
ij (x, y)

∂

∂yj
, α′

i(x, y)
)

, Tj = (Zj(x, y), βj(x, y)),

for i = 1, . . . , r and j = 1, . . . , s. We write

Zi =
r∑

j=1

Ẑij (x, y)
∂

∂xj
+

s∑
j=1

Z̃ij (x, y)
∂

∂yj
.

Define

T ′
i = Ti −

r∑
j=1

Ẑij (x, y)S ′
j .

Then, we see that Γ(L|U ) is spanned by smooth sections of the form

S ′
i =

(
∂

∂xi
+

s∑
j=1

Y ′
ij (x, y)

∂

∂yj
, α′

i(x, y)
)

, T ′
j =

( s∑
k=1

Z ′
jk (x, y)

∂

∂yk
, β′

j(x, y)
)

,

where Y ′
i (x, 0) = Zj(x, 0) = 0, for all i = 1, . . . , r and j = 1, . . . , s. Using the fact that L is isotropic,

we obtain

α′
i

(
∂

∂xj

)
+ α′

j

(
∂

∂xi

)
= 0 and β′

j

(
∂

∂xi

)
= 0 at every point p ∈ P .

Moreover, a basis for the fiber Lm0 is given by the elements

S ′
i(m0) =

(
∂

∂xi
, α′

i

)
, T ′

j (m0) =
(

0,
s∑

k=1

β′
jk

∂

∂yk

)
,

for i = 1, . . . , r and j = 1, . . . , s. Using matrix notation, we can put the S ′
i(m0) and T ′

j (m0) into
row vectors which give the following rectangular matrix:

I 0 ∗ ∗

0 0 0 (β′
ij )


 .

The sub-matrix (β′
ij (m0)) is invertible since dim(Lm0) = r + s = dim M . Hence, (β′

ij (x, y)) is
invertible at all points m = (x, y) in a small neighborhood of m0. Let (gij (x, y)) be the inverse of
the matrix (β′

ij (x, y)). We use the notation

T ′′
i =

s∑
j=1

gij (x, y)T ′
j .

Hence, T ′′
i has the form

T ′′
i =

( s∑
k=1

Z ′′
ik (x, y)

∂

∂yk
, dy i +

r∑
k=1

β′′
ik (x, y) dxk

)
.
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Now, we replace

S ′
i =

(
∂

∂xi
+

s∑
j=1

Y ′
ij (x, y)

∂

∂yj
,

r∑
j=1

α′
ij (x, y) dxj +

s∑
k=1

α̃′
ik (x, y) dyk

)

by the following

S ′′
i = S ′

i −
s∑

k=1

α̃′
ik (x, y)T ′′

k .

We then obtain a new spanning set {S ′′
i ,T ′′

j } of local sections of L|U . We summarize the above
discussion in the following theorem.

Theorem 3.2. Let L be a Dirac structure on a smooth manifold M . Given any point m0 ∈ M ,
there is a coordinate system (x1, . . . , xr, y1, . . . , ys) defined on an open neighborhood U of m0 such
that the intersection of U with the pre-symplectic leaf through m0 is the set {y1 = · · · = ys = 0},
and Γ(L|U) is spanned by sections of the form

Hi =
(

∂

∂xi
+

s∑
k=1

Xik (x, y)
∂

∂yk
,

r∑
k=1

αik (x, y) dxk

)

and

Vj =
( s∑

k=1

Zjk (x, y)
∂

∂yk
, dyj +

r∑
k=1

βjk (x, y) dxk

)
,

where Xik (m0) = 0, Zjk (m0) = 0, for all i ∈ {1, . . . , r} and j ∈ {1, . . . , s}.

We use the following notation:

Xi =
∂

∂xi
+

s∑
k=1

Xik (x, y)
∂

∂yk
, αi =

r∑
k=1

αik (x, y) dxk,

Zj =
s∑

k=1

Zjk (x, y)
∂

∂yk
, βj = dyj +

r∑
k=1

βjk (x, y) dxk.

Remarks.

(a) The normal form (Hi,Vj) persists when a change of coordinates of the type Φ(x, y) =
(x,Φ2(x, y)) is performed.

(b) Using the fact that L is isotropic, one obtains

2〈Hi,Vj〉 = Xij + βji = 0,

for all i ∈ {1, . . . , r} and j ∈ {1, . . . , s}. Hence, Xij = −βji . Furthermore,

2〈Vi,Vj〉 = Zij + Zji = 0.

This shows that the matrix (Zij (x, y)) is skew-symmetric. An analogous calculation shows that
the matrix (αij (x, y)) is also skew-symmetric.

(c) If ΩL is the 2-form associated with the Dirac structure L (it is defined as in (1)) then we have

ΩL(Xi,Xj) = αij , ΩL(Xi, Zj) = 0, ΩL(Zi, Zj) = Zij .

Corollary 3.3. Given a Dirac structure L on a smooth manifold M , the dimensions of the leaves
of its associated pre-symplectic foliation have the same parity.

Proof. It is sufficient to work in a small neighborhood of an arbitrary point m0 ∈ M .
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Case 1. Suppose that the leaf through m0 is a single point. By Proposition 3.1, L is the graph of a
Poisson structure in a neighborhood of m0. Hence, the dimensions of the pre-symplectic leaves are
even.

Case 2. Suppose that the leaf through m0 is not a single point. Then, Theorem 3.2 provides a
coordinate system (x1, . . . , xr, y1, . . . , ys) defined on an open neighborhood U of m0 and a spanning
set {Hi,Vj} of local sections of L|U such that

pr1(Hi) = Xi =
∂

∂xi
+

s∑
k=1

Xik (x, y)
∂

∂yk
, pr 1(Vj) = Zj =

s∑
k=1

Zjk (x, y)
∂

∂yk
,

where the functions Xik , Zik vanish at m0. Let (DL)m be the tangent space to the leaf through
m = (x, y). It is spanned by the set of vectors {Xi(x, y), Zj(x, y) | i = 1, . . . , rj = 1, . . . , s} which
corresponds to the matrix (

I ∗
0 (Zjk (x, y))

)
.

The sub-matrix (Zjk (x, y)) is skew-symmetric, hence its rank is even. Since

dim(DL)m = r + rank(Zjk (x, y)),

we conclude that dim(DL)m and dim(DL)m0 = r have the same parity.

We should mention this phenomenon of jumping dimensions that appeared in the study of
generalized complex structures on even-dimensional manifolds (see [Gua04]). Moreover, as Weinstein
pointed out in a private communication, this corollary can be obtained from [TW03, Lemma 2.2].

4. Transverse Poisson structures

4.1 Induced Dirac structures on submanifolds
Let L be a Dirac structure on a manifold M . Let Q be a submanifold of M . In this section, we
review a result established in [Cou90] which says that, under certain regularity conditions, L induces
a Dirac structure on Q. At every point q ∈ Q, we obtain a maximal isotropic vector space

(LQ)q =
Lq ∩ (TqQ ⊕ T ∗

q M)
Lq ∩ ({0} ⊕ TqQ◦)

,

where TqQ
◦ = {v ∈ T ∗

q M | v|TqQ = 0}. Using the map (LQ)q → TqQ ⊕ T ∗
q Q given by

(u, v) 
→ (u, v|TqQ),

one can identify (LQ)q with a subspace of TqQ ⊕ T ∗
q Q. In fact, LQ defines a smooth sub-bundle of

TQ⊕T ∗Q if and only if Lq ∩ (TqQ⊕T ∗
q M) has constant dimension. Moreover, one has the following

result.

Proposition 4.1 (Courant [Cou90]). If Lq ∩ (TqQ ⊕ T ∗
q M) has constant dimension, then LQ is a

Dirac structure on Q.

4.2 Existence of a transverse Dirac structure
Let L be a Dirac structure on M , m0 a point of M , and Q a submanifold of M which contains m0

and is transversal to the pre-symplectic leaf of m0 in the sense that the tangent space of M at
m0 is the direct sum of the tangent spaces of Q and of the pre-symplectic leaf P . Choose coordinates
(xi, yj) defined on an open neighborhood U of m0 as in Theorem 3.2, but with the additional
condition that Q is given by equations x1 = 0, . . . , xr = 0. We adopt the notation of the previous
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section, i.e. Γ(L|U ) is spanned by sections of the form

Hi =
(

∂

∂xi
+

s∑
k=1

Xik (x, y)
∂

∂yk
,

r∑
k=1

αik (x, y) dxk

)

and

Vj =
( s∑

k=1

Zjk (x, y)
∂

∂yk
, dy j +

r∑
k=1

βjk (x, y) dxk

)
,

where Xik (m0) = 0, Zjk (m0) = 0, for all i ∈ {1, . . . , r} and j ∈ {1, . . . , s}.

Lemma 4.2. The vector spaces Lq ∩ (TqQ ⊕ T ∗
q M) have the same dimension for all q ∈ Q.

Proof. Suppose that (u(q), v(q)) is a vector in Lq ∩ (TqQ ⊕ T ∗
q M). We write

(u(q), v(q)) =
r∑

i=1

λiHi(q) +
s∑

j=1

µjVj(q).

Then,

dxk

( r∑
i=1

λi

(
∂

∂xi
+ Yi

)
+

s∑
j=1

µjZjk
∂

∂yk

)
= λk = 0.

Consequently, dim(Lq ∩ (TqQ ⊕ T ∗
q M)) � s. However, the vectors (V(q))j=1,...,s are linearly inde-

pendent at q = m0. Therefore, they are linearly independent for all q ∈ Q (we can suppose that
the open neighborhood U of m0 is small enough). This shows that Lq ∩ (Vertq ⊕T ∗

q M) has constant
dimension.

Now, applying Proposition 4.1, one can conclude that LQ is a Dirac structure on Q. In fact, LQ

is spanned by the sections

Vj(q) = (Zj , dyj)(q), for all q ∈ Q, j ∈ {1, . . . , s},
where we use here the notation of the previous section.

Since the pre-symplectic leaf of LQ at m0 reduces to a point, Proposition 3.1 shows that LQ is
the graph of a Poisson structure. The corresponding Poisson tensor is given by

ΠQ(dy i, dy j) = −Zj(0, y) · yi,

where Zj · yi is the directional derivative of yi along Zi. We have then proved the following result.

Theorem 4.3. Let Q be a submanifold transversal to a pre-symplectic leaf P of the Dirac manifold
M at a point m0 (Tm0M = Tm0P ⊕ Tm0Q). Then the Dirac structure induces a Poisson structure
ΠQ on a neighborhood of m0 in Q, with ΠQ(m0) = 0.

The above calculations also show that there is an induced Poisson structure on each submanifold
given by equations x = constant. These Poisson structures fit together to give a Poisson tensor ΠV

defined on a whole neighborhood of m0 in M by

ΠV (dyi, dyj) = −Zj(x, y) · yi,

where y = (y1, . . . , ys) (respectively x = (x1, . . . , xr)) are local coordinates of Q (respectively P )
around m0.

Lemma 4.4. For any i = 1, . . . , r, we have

[Xi,ΠV ] = 0,

where Xi = p1(Hi).
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Proof. Recall that Vj = (Zj , βj). For simplicity, we write βj in the form dy j + βV
j . Then, we have

[Hi,Vj ] = ([Xi, Zj ], d(Xi · yj) + LXiβ
V
j − iZj dαi).

The fact that L|U is isotropic implies

0 = 2〈[Hi,Vj ],Vk〉
= [Xi, Zj ] · yk + Zk · (Xi · yj) + Zk · (βV

j (Xi)) + dβV
j (Xi, Zk) − dαi(Zj , Zk).

However, dαi(Zj , Zk) = 0 because Zj and Zk have only terms in ∂/∂y. Moreover, if we use the
notation

βV
j =

r∑
k=1

βjk (x, y) dxk,

then

Zk · (βV
j (Xi)) + dβV

j (Xi, Zk) =
s∑

�=1

Z�
k

∂βji

∂y�
−

s∑
�=1

Z�
k

∂βji

∂y�
= 0.

There follows

2〈[Hi,Vj ],Vk〉 = [Xi, Zj ] · yk + Zk · (Xi · yj) = 0.

This equation can be written as

Xi · (Zj · yk) − Zj · (Xi · yk) + Zk · (Xi · yj) = 0.

This is equivalent to the equation

[Xi,ΠV ](dyj , dyk) = 0,

for all indexes i ∈ {1, . . . , r} and j ∈ {1, . . . , s}. This completes the proof of the lemma.

Theorem 4.5. Let Q and Q′ be two submanifolds transversal to the same pre-symplectic leaf P of
a Dirac structure L. The Poisson structures induced by L on Q and Q′ (near Q ∩ P and Q′ ∩ P
respectively) are locally isomorphic.

Proof. By connexity of P , it is sufficient to construct the isomorphism in the case where Q and Q′ are
near enough. First of all, if Q∩P = Q′∩P then one can conclude that the induced Poisson structures
is the same. This follows from the above expressions for ΠQ(dyi, dyj) and similar expressions for Q′.
Now suppose that Q ∩ P and Q′ ∩ P are different. Hence, it is enough to work in a domain with
coordinates (x, y) as above, that is, P has equation y = 0, Q has equation x = 0, and, moreover, Q′

has equation x = x0 where x0 is some constant different from zero. Now we use Lemma 4.4: because
Xi has a component ∂/∂xi we can go from zero to x0 in P using a sequence of trajectories of the
different fields Xi, moreover the flows of these fields preserve vertical directions x = constant and
Lemma 4.4 says that they preserve also ΠV , so they exchange the Poisson structures on the vertical
directions.

Remark. It follows from Theorem 4.5 that each pre-symplectic leaf of a Dirac structure has a well-
defined, up to isomorphism, Poisson transversal structure. This extends a well-known result in the
Poisson case.

We can also remark that, in the classical case of Poisson structures, the above method used to
prove the uniqueness of the transverse Poisson structure is simpler than those in literature (see, for
instance, [Wei83]).
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5. Geometric data

In [Vor00], Vorobjev considered what he called geometric data. Here we use the same terminology
for a slightly different situation.

Definition. Let p : E → P be a vector bundle and let Vert = ker dp ⊂ TE . Geometric data on
the vector bundle (E, p, P ) consist of the following.

• A connection γ : TE → Vert.
• A vertical bivector field ΠV .
• A 2-form F ∈ Ω2(P ) ⊗ C∞(E) such that:

(i) [ΠV ,ΠV ] = 0;
(ii) [hor(u),ΠV ] = 0, for all u ∈ χ(P );
(iii) ∂γF = 0;
(iv) Curvγ(u, v) = (ΠV )�(dF(u, v)), for all u, v ∈ χ(P ).

Unlike in [Vor00], we include the conditions (i)–(iv) in the definition of geometric data since we
will consider only triples (γ,ΠV , F) satisfying those conditions. In fact, the main difference between
Vorobjev’s definition of geometric data and that given above is that the 2-form F is not necessarily
nondegenerate. Now, let us explain the above notation. Here γ is an Ehresmann connection: at each
point e ∈ E, γe : TeE → Verte is a projection map. So Hor := ker γ gives a horizontal distribution.
We have the splitting

TeE = Hore ⊕Verte, for all e ∈ E.

Consequently, for every vector field u on the base manifold P , there is an horizontal vector field
hor(u) (tangent to Hor) which is obtained by lifting u. A 2-vector is ‘vertical’ if it is a section
of Λ2 Vert. The curvature of γ is given by

Curvγ(u, v) = [hor(u),hor(v)] − hor[u, v], for all u, v ∈ χ(P ).

The operator ∂γ : Ωk(P ) ⊗ C∞(E) → Ωk+1(P ) ⊗ C∞(E) is defined by

∂γG(u0, . . . , uk) =
k∑

i=0

(−1)iLhor(u)(G(u0, . . . , ûi, . . . , uk))

+
∑
i<j

(−1)i+j
G([ui, uj ], u0, . . . , ûi, . . . , ûj , . . . , uk).

We have the following theorem.

Theorem 5.1. Fix a tubular neighborhood of a submanifold P of a manifold M , it defines a vector
bundle structure p : E → P on an open neighborhood E of P (P is identified to the zero section).
Any Dirac structure on M which has P as a pre-symplectic leaf determines geometric data on E,
up to a shrinking.

To prove Theorem 5.1, we need to establish a couple of lemmas. We first introduce some notation.
Consider a point m0 ∈ P and a neighborhood U of m0 in E with coordinates (xi, yj) as in Theo-
rem 3.2 but with the additional condition that x = constant are the fibers of p : E → P . Then, Vert
is generated by the vector fields ∂/∂yj . Using the notation of § 3, we have the following lemmas.

Lemma 5.2. For any i, j, k ∈ {1, . . . , r}, we have

Xi · αjk + Xj · αki + Xk · αij = 0.

Proof. We have the Courant bracket

[Hi,Hj ] = ([Xi,Xj ],LXiαj − iXj dαi).
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Since L is isotropic, we obtain
〈[Hi,Hj ],Hk〉 = 0.

This gives
0 = αk([Xi,Xj ]) + Xk · (αj(Xi)) + (iXi dαj − iXj dαi)(Xk).

However, αk([Xi,Xj ]) = 0, for all i, j, k ∈ {1, . . . , r}. Moreover,

dαj(Xi,Xk) − dαi(Xj ,Xk) = Xi · αjk − Xk · αji − Xj · αik + Xk · αij .

It follows that
0 = 〈[Hi,Hj ],Hk〉 = Xi · αjk − Xj · αik + Xk · αij .

This completes the proof of the lemma.

Lemma 5.3. For any i, j ∈ {1, . . . , r}, we have

[Xi,Xj ] = (ΠV )� dαij .

Proof. Since L is isotropic, we have

0 = 2〈[Hi,Hj ],Vk〉
= dyk([Xi,Xj ]) + Zk · αji + (iXi dαj − iXj dαi)(Zk).

However,

dαj(Xi, Zk) − dαi(Xj , Zk) = 2
s∑

�=1

Z�
k

∂αij

∂y�
= 2Zk · αij .

It follows that

2〈[Hi,Hj],Vk〉 = dyk([Xi,Xj ]) + Zk · αji + 2Zk · αij = dyk([Xi,Xj ]) + Zk · αij .

We conclude that
dyk([Xi,Xj ]) = −ΠV (dyk, dαij ).

The lemma follows.

Proof of Theorem 5.1. We first construct γ or, equivalently, the horizontal sub-bundle Hor. Define

Hore = pr1(Le ∩ (TeM ⊕ Vert◦e)),

where Vert◦e is the annihilator of Verte. In local coordinates as above, Vert is generated by the vector
fields Xi and we have

hor
(

∂

∂xi

)
= Xi.

By definition, ΠV is the bivector field given by putting together the Poisson 2-vectors we have on
each fiber of E. Its local expressions are given by

ΠV (dy i, dy j) = −Zj(x, y) · yi.

We define F by the formula
F(u, v) = ΩL(hor(u),hor(v)).

Locally, we have the components

F

(
∂

∂xi
,

∂

∂xj

)
= αi(Xj) = αij = −αji .

Note that we may have to shrink E in order for γ and ΠV to be well defined. Now, we have to
show that properties (i)–(iv) of the definition of geometric data hold. However, it is sufficient
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to work in local coordinates. Moreover, these properties are exactly equivalent to the fact that ΠV

is Poisson, Lemmas 4.4, 5.2, and 5.3, respectively. Therefore, any Dirac structure on M having P as
a pre-symplectic leaf determines geometric data on the vector bundle p : E → P (up to a shrinking
of the total space E).

Conversely, we have the following theorem.

Theorem 5.4. Any geometric data (γ,ΠV , F) on a vector bundle p : E → P induce a Dirac structure
on the total space E.

We divide the proof of Theorem 5.4 into lemmas. Let (γ,ΠV , F) be geometric data on a vector
bundle (E, p, P ). From now on, if u is a vector field on P , we simply denote by u the horizontal lift
of u (instead of hor(u)). Define

LH
x = Span{(u, αu)x | u ∈ χ(P ), αu|Vert = 0, αu(v) = F(u, v)},

LV
x = Span{((ΠV )�β, β)x | β|Hor = 0}.

Clearly, the sub-bundles LH and LV of TM ⊕ T ∗M are isotropic with respect to 〈·, ·〉. Moreover,
we have the following lemma.

Lemma 5.5. Both spaces Γ(LH) and Γ(LV ) are closed under the Courant bracket.

Proof. Let Vu = (u, αu), Vv = (v, αv), and Vw = (w,αw) be elements of Γ(LH). We have

2〈[Vu,Vv],Vw〉 = 2〈([u, v],Luαv − ivdαu),Vw〉
= (αw([u, v]) + Lu(αv(w))) + c.p.,

where the symbol c.p. stands for the two other terms obtained by cyclic permutation of the indexes.
Using the definition of αv and the fact that

[u, v] = [u, v] + (ΠV )�(dF(u, v)),

we obtain

2〈[Vu,Vv],Vw〉 = (F(w, [u, v]) + Lu(F(v,w))) + c.p. = ∂γF(u, v,w) = 0.

Similarly, one can show that the closedness of the space Γ(LV ) under the Courant bracket follows
from the fact that ΠV is a Poisson bivector field.

Lemma 5.6. For any u, v ∈ χ(M), β ∈ (Hor)◦, we have

dαv(u, (ΠV )�β) = −ΠV (dF(u, v), β).

The proof of this lemma is straightforward. It is left to the reader.

Lemma 5.7. For any H1,H2 ∈ Γ(LH), and for any V ∈ Γ(LV ), we have

〈[H1,H2],V〉 = 0.

Proof. Let

H1 = (u, αu), H2 = (v, αv) and V = ((ΠV )�β, β).

Then,

2〈[H1,H2],V〉 = β([u, v]) + ΠV (β, dF(u, v))) + dαv(u, (ΠV )�β) − dαu(v, (ΠV )�β).

Using Lemma 5.6, we obtain

2〈[H1,H2],V〉 = β([u, v]) − ΠV (dF(u, v), β) = 0.
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Lemma 5.8. For any u ∈ χ(P ), and for any 1-forms β1, β2 on M such that βi|Hor
= 0, i = 1, 2,

we have

dβ1((ΠV )�β2, u) = Lu((ΠV )�β1, β2) − ΠV (β1,Luβ2).

Proof. Indeed, we have

dβ1((ΠV )�β2, u) = −Lu(ΠV (β1, β2)) + β1([u, (ΠV )�β2]).

Using the fact that [u,ΠV ] = 0, we obtain the formula of this lemma.

Lemma 5.9. For any V1,V2 ∈ Γ(LV ), and for any H ∈ Γ(LH), we have

〈[V1,V2],H〉 = 0.

Proof. Let Vi = ((ΠV )�βi, βi), i = 1, 2, and H = (u, αu). By definition,

2〈[V1,V2],H〉 = αu([(ΠV )�β1, (ΠV )�β2]) + Lu(ΠV (β1, β2)) + dβ2((ΠV )�β1, u) − dβ1((ΠV )�β2, u).

Now, using Lemma 5.8 and the fact that αu|Vert
= 0, we obtain

2〈[V1,V2],H〉 = −Lu(ΠV (β1, β2)) + ΠV (β1,Luβ2) + ΠV (Luβ1, β2) = 0.

Lemma 5.10. For any V1,V2 ∈ Γ(LV ), and for any H1,H2 ∈ Γ(LH), we have

〈[V1,H1],V2〉 = 0 and 〈[V1,H1],H2〉 = 0.

Proof. Let Hi = (ui, αui) and Vi = ((ΠV )�βi, βi), for i = 1, 2. On the one hand,

2〈[H1,V1],H2〉 = αu2([u1, (ΠV )�β1]) + dβ1(u1, u2) − dαu1(Π
V (β1), u2).

Since [u1,ΠV ] = 0, we obtain

αu2([u1, (ΠV )�β1]) = αu2((Π
V )�Lu1β1) = 0.

It follows that

2〈[H1,V1],H2〉 = dβ1(u1, u2) − dαu1(Π
V (β1), u2)

= −β1([u1, u2]) + ΠV (dF(u1, u2), β1) by Lemma 5.6
= 0

since [u1, u2] = [u1, u2] + (ΠV )�(dF(u1, u2)). On the other hand,

2〈[H1,V1],V2〉 = β2([u1, (ΠV )�β1]) + dβ1(u1, (ΠV )�β2)

= ΠV (Lu1β1, β2) + Lu1(Π
V (β2, β1)) − ΠV (Lu1β2, β1)

= 0.

This completes the proof of the lemma.

Proof of Theorem 5.4. Let L be the vector bundle over E whose fibre at e ∈ E is Le = LH
e + LV

e .
It follows immediately from Lemmas 5.5, 5.7, 5.9, and 5.10 that L is a Dirac structure on E.

Corollary 5.11. All geometric data (γ,ΠV , F) on a vector bundle (E, p, P ) whose associated
2-form F is nondegenerate determine a Poisson structure on the total space E.

Proof. Consider the geometric data (γ,ΠV , F) on E, where F is nondegenerate. Then, on each leaf
of the foliation associated to the Dirac structure L obtained from Theorem 5.4, the pre-symplectic
2-form is nondegenerate. However, we know that all of the leaves of a Dirac manifold are symplectic
if and only if the associated Dirac structure is the graph of a Poisson bivector field. Hence, one
obtains the corollary.

Remark. This corollary was given in [Vor00] without proof. It has been established in [Bra04]
and [DW04] by methods which are different from that used here.
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