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ON AUTOMORPHISMS OF P(�)/[�]<�

JAKOB KELLNER , SAHARON SHELAH , AND ANDA RAMONA TĂNASIE

Abstract. We investigate the statement “all automorphisms of P(�)/[�]<� are trivial.” We show that
MA implies the statement for regular uncountable � < 2ℵ0 , that the statement is false for measurable � if
2� = �+, and that for “densely trivial” it can be forced (together with 2� = �++) for inaccessible �.

§1. Introduction. We investigate automorphisms of Boolean algebras of the form

P�κ := P(�)/[�]<κ.

The instance P�� , i.e., P(�)/FIN, has been studied extensively for many years.1

One can study variants for uncountable cardinals �. Unsurprisingly, the behaviour
here tends to be quite different to the countable case. One moderately popular2 such
generalisation isP�� . Here, we study another obvious generalization of the countable
case, P�� . Some results for general P�κ can be found in [5].

The main result of the paper is:

The following is equiconsistent with an inaccessible: � is inaccessible, 2� is

�++, and all automorphisms of P�� are densely trivial.

(Theorem A, Theorem 5.2)

Here, 2� > �+ is necessary, at least for measurables:

If � is measurable and 2� = �+, then there is a nontrivial automorphism of P��.
(Theorem B, Theorem 4.1)

Remark 1.1. From [12, Lemma 3.2] it would follow that Theorem B holds even
when “measurable” is replaced by just “inaccessible.” However, the proof there
turned out to be incorrect.3

For � below the continuum we get the following result under Martin’s Axiom
(MA). More explicitly, MA=�(�-centered) is sufficient, which is the statement that
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2 JAKOB KELLNER ET AL.

for any �-centered poset P and ≤� many open dense sets in P there is a filter G
meeting all these open sets:

For ℵ0 < κ ≤ � < 2ℵ0 and κ regular, MA=�(�– centered) implies that every

automorphism of P�κ is trivial.

(Theorem C, Theorem 3.1)

Larson and McKenney [5] showed the same under MAℵ1 for the case � = 2ℵ0

and κ = ℵ1.
Contrast this to the case � = κ = �: Due to results of Veličković, Steprāns, and

the second author, “Every automorphisms of P(�)/[�]<� is trivial” is implied by
PFA [10], in fact even by MA+OCA [15], but not by MA alone [15] (not even for
“somewhere trivial” [11]).

Contents. We start by introducing some notation and basic results in Section 2
(page 2).

The following sections are independent of each other:
In Section 3 (page 3) we show Theorem C, which we state as Theorem 3.1; in

Section 4 (page 6), we show Theorem B, i.e., Theorem 4.1; and finally in the main
part, Section 5 (page 7) we develop some forcing notions to prove Theorem A, i.e.,
Theorem 5.2.

§2. Definitions. We always assume that � is a cardinal and κ ≤ � is regular.

• The case κ = ℵ0 or � = ℵ0 is included only for completeness sake in the
following definitions.

• In Section 3 we will assume that ℵ1 ≤ κ ≤ � < 2ℵ0 .
• In Section 4 we assume that � is measurable and κ = �.
• In Section 5 we assume that � is inaccessible and κ = �.

Notation:

• We investigate the Boolean algebra (BA) P�κ := P(�)/[�]<κ, i.e., the power set
of � factored by the ideal of sets of size <κ.

• For A ⊆ �, we denote the equivalence class of A with [A]. We set 0 := [∅].
• A ⊆∗ B means |B \A| < κ, analogously for A =∗ B ; and “for almost all α ∈
A” means for all but <κ many in A. In particular, A =∗ � means A ⊆ � and
|� \ A| < κ.

• We denote the BA-operations in P�κ with x ∨ y, x ∧ y and xc (for the
complement). So we have [A] ∨ [B] = [A ∪ B], [A] ∧ [B] = [A ∩ B], and
[A]c = [� \A].

• A function φ : P�κ → P�κ is a BA-automorphism (which we will just call
automorphism), if it is bijective, compatible with ∧ and the complement, and
satisfies φ(0) = 0.

• Preimages of a function f are denoted by f–1x, images by f′′x.
• We sometimes identify � ∈ 2� with �–1{1} ⊆ � without explicitly mentioning

it, by referring to � as element of 2� or of P(�).
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ON AUTOMORPHISMS OF P(�)/[�]<� 3

Let us note that P�κ is <κ-complete4 and �+-cc. Also, any automorphism φ is
closed under <κ unions: φ(

∨
i∈I [Ai ]) =

∨
i∈I φ([Ai ]).

An automorphism is trivial if it is induced by a function on �. A standard definition
to capture this concept is the following:

Definition 2.1. An automorphism φ : P�κ → P�κ is trivial, if there is a g : �→ �
such that φ([A]) = [g–1A] for all A ⊆ �.

However, we prefer to use forward images instead of inverse images, which can
easily be seen to be equivalent:

Definition 2.2.

• For f : A0 → � with A0 =∗ �, define 	f : P�κ → P�κ by 	f([B]) := [f′′(B ∩
A0)] for all B ⊆ �.

• f is an almost permutation, if there areA0 =∗ � andB0 =∗ �withf : A0 → B0
bijective.

(Such a 	f is always a well-defined function.)

Lemma 2.3. Let φ : P�κ → P�κ be a function. The following are equivalent:

(1) φ is a trivial automorphism.
(2) There is an almost permutation f such that φ = 	f .
(3) (Assuming κ > ℵ0.) There is a bijection f : �→ � such that φ = 	f .

Proof. (1) implies (2): Assume φ is a trivial automorphism, witnessed by g.
ThenX := g ′′� =∗ � (asφ([X ]) = [g–1X ] = [�]), andY := {α ∈ X : |g–1{α}| �=

1} =∗ ∅: Otherwise, pick y0
α �= y1

α for each α ∈ Y with g(y0
α) = g(y1

α) = α. So y0
α ∈

g–1C iff y1
α ∈ g–1C for any C ⊆ �. Set Bi := {yiα : α ∈ Y} for i = 0, 1 and let

[C ] = φ–1([B0]). So φ([C ]) = [g–1C ] = [B0], i.e., almost all y0
α are in g–1C , but

then almost all y1
α are in g–1C as well, i.e., [B0] = φ([C ]) ≥ [B1], a contradiction as

B0 ∩ B1 = ∅.
Set A0 := X \ Y , and B0 := g–1A0. Note that B0 =∗ �, as 0 = φ(0) = φ([Y ]) =

[g–1Y ]. So g � B0 → A0 is bijective, and we can set f : A0 → B0 the inverse. Then f
is an almost permutation, and 	 = 	f .

(2) implies (1): Let f : A0 → B0 be an almost permutation, and g : B0 → A0 the
inverse (and let g be defined arbitrarily on � \ B0). Then 	f([X ]) = [f′′(X ∩ A0)] =
[g–1(X )]. It remains to be shown that 	f is an automorphism: 	f([∅]) = [f′′∅] =
[∅]; 	f([X ∩ Y ]) = [f′′(X ∩ Y ∩ A0)] = [f′′(X ∩ A0) ∩ f′′(Y ∩ A0)]; and 	f([� \
X ]) = [f′′(A0 \ X )] = [B0 \ f′′X ].

(2) implies (3) if cf(κ) > ℵ0: This follows from the following lemma. �
Lemma 2.4 (κ > ℵ0). Let f be a κ-almost permutation. Then there is an S =∗ �

such that f � S : S → S is bijective.

Proof. Set X0 := A0 = dom(f), and Xi+1 := Xi ∩ f′′Xi ∩ f–1Xi , and S :=⋂
i∈� Xi .
The Xn are decreasing, and |� \ Xn| < κ and thus |� \ (f′′Xn)| < κ for n < �.

Accordingly, |� \ S| < κ. We claim that g := f � S is a permutation of S. Clearly

4That is, if |I | < κ then
∨
i∈I [Ai ] = [

⋃
i∈I Ai ].
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it is injective. If α ∈ S then α ∈ Xn for all n ∈ �, so f(α) ∈ Xn+1 for all n. So
g : S → S. If α ∈ S, then α ∈ Xn+1 for all n, so f–1(α) exists and is in Xn. �

Remark: For κ = � = �, there are trivial automorphisms that are not induced
by “proper” bijections f : � → �, e.g., the automorphism φ induced by the almost
permutation n �→ n + 1.5

We will investigate somewhere and densely trivial automorphisms. To simplify
notation, we assume κ = � > ℵ0:

Definition 2.5 (� > ℵ0 regular.). Let φ : P�� → P�� be an automorphism.

• φ is trivial on A ∈ [�]�, if there is an f : A→ � with φ([B]) = [f′′B] for all
B ⊆ A.

• φ is somewhere trivial, if it is trivial on some A ∈ [�]�.
• φ is densely trivial, if for all A ∈ [�]� there is a B ⊆ A of size � such that φ is

trivial on B.

Just as before it is easy to see that we can assume f to be a full permutation:

Fact 2.6 (� > ℵ0 regular.). An automorphism φ : P�� → P�� is trivial on A ∈ [�]�

iff there is a bijection f : �→ � such that φ([B]) = [f′′(B)] for all B ⊆ A.

Lemma 2.7 (� > ℵ0 regular.). If every automorphism of P�� is somewhere trivial,
then every automorphism of P�� is densely trivial.

Proof. Assume 	 is an automorphism of P�� , and fix A ∈ [�]�. If A =∗ � and if
	 is trivial on some B, then 	 is trivial on B ∩ A ⊆ A, so we are done. So assume
A �=∗ �.

Pick some representative 	∗ : P(�) → P(�) of 	 such that 	∗(A) and 	∗(� \ A)
partition �, and such that 	∗(C ) ⊆ 	∗(A) for everyC ⊆ A. Let i : � \ A→ A and j :
	∗(� \ A) → 	∗(A) both be bijective. Let 	′ map [D] to [	∗(D ∩ A) ∪ j–1	∗(i ′′(D \
A))]. This is an automorphism of P�� , so it is trivial on someD0. If |D0 ∩ A| = �, we
are done, as 	′ restricted toD0 ∩ A is the same as 	 and trivial. So assume otherwise.
Then 	′ is trivial on the large set D0 \ A. Then 	 is trivial on i ′′(D0 \ A) ⊆ A. �

§3. Under MA, every automorphism is trivial for �1 ≤ � < 2ℵ0 .

Theorem 3.1. Assume ℵ0 < κ ≤ � < 2ℵ0 , κ regular, and MA(=�)(�-centered)
holds. Then every automorphism of P�κ is trivial.

For the proof we will use that we can separate certain sets by closed sets.
A tree T is a subset of 2<� such that s ∈ T ∩ 2n andm ≤ n implies s � m ∈ T ; for

such a T we set lim(T ) = {� ∈ 2� : (∀n ∈ �) � � n ∈ T}. A subset of 2� is closed
iff it is of the form lim(T ) for some tree T.

Lemma 3.2. Assume ℵ0 < 
 ≤ � < 2ℵ0 , cf(
) > ℵ0, and MA(=�)(�-centered)
holds. Assume A0, A1 are disjoint subsets of 2� of size ≤ �; |A0| ≥ 
. Then there
is a tree T0 in 2<� such that |A0 ∩ lim(T0)| ≥ 
 and A1 ∩ lim(T0) = ∅.

If additionally |A1| ≥ 
, we get an additional tree T1 such that |A1 ∩ lim(T1)| ≥ 
,
A0 ∩ lim(T1) = ∅, and T0 ∩ T1 ⊆ 2n for some n.

5A bijection f : � → � has infinitely many n such that f(n) �= n + 1, and therefore an infinite set A
such that f′′A is disjoint to {n + 1 : n ∈ A}.

https://doi.org/10.1017/jsl.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.37


ON AUTOMORPHISMS OF P(�)/[�]<� 5

Proof of the lemma. In the following we identify an x ∈ 2� with the according
(infinite) branch b in the tree 2<� . So a branch b can be inA0 or inA1 (or in neither;
but not both, as A0 and A1 are disjoint).

We define a poset Q as follows: A condition q ∈ Q is a triple (nq, Sq, fq), where:

• nq ∈ �,
• Sq is a tree in 2<� of the following form: Sq is the union of 2≤nq and finitely

many (infinite) branches {bj : j ∈ m} for some m ∈ �, each bj ∈ A0 ∪ A1,
and bj � nq = bk � nq implies (bj ∈ Ai iff bk ∈ Ai ).

So every s ∈ Sq with |s | > nq is either “in A0-branches” (i.e., there is one or
more bj ∈ A0 with s ∈ bj), or “in A1-branches” (but not in both).

Note that an s ∈ Sq of length nq is either inA0-branches, or inA1-branches,
or in neither (but not in both).

• fq : Sq → 2 such that, for i = 0, 1, fq(s) = i whenever s ∈ Sq , |s | ≥ nq and s
is in Ai -branches.

The order on Q is the natural one: q ≤ p if nq ≥ np, Sq ⊇ Sp, and fq extends fp.
Q is �-centered witnessed by (nq, Sq, fq) �→ (nq, fq � 2≤nq ): If p, q are in Q

with np = nq =: n and fp � 2≤n = fq � 2≤n, then (n, Sp ∪ Sq, fp ∪ fq) is a valid
condition stronger than both p and q.

For x ∈ Ai , the set Dx of conditions containing x as branch is dense: Given
p ∈ Q, let nq ≥ np be such that all A1–i -branches in p split off x below nq ; set
Sq := Sp ∪ 2≤nq ∪ x; and set Fq(s) = i for s ∈ Sq \ Sp.

Similarly, for all n ∈ �, the set D∗
n of conditions q with nq ≥ n is dense as well.

By MA(=�)(�-centered) and |Ai | ≤ �, we can find a filter G which has nonempty
intersection with eachDx for x ∈ A0 ∪ A1 as well as for eachD∗

n . So F :=
⋃
p∈G fp

is a total function from 2<� to 2; and for all x ∈ Ai there is an nx ∈ � such that
m ≥ nx implies F (x � m) = i .

As |A0| ≥ 
 and cf(
) > ℵ0 we can assume that there is an n∗0 such that nx =
n∗0 for 
 many x ∈ A0. If additionally |A1| ≥ 
, we analogously get an n∗1 and
set n∗ := max(n∗0 , n

∗
1 ); otherwise we set n∗ := n∗0 . We set T ∗

i := {s ∈ 2<� : |s | ≥
n∗, (∀n∗ ≤ k ≤ |s |)F (s � k) = i} and generate a tree from it; i.e., we set Ti :=
T ∗
i ∪ {s � m : m < n∗, s ∈ T ∗

i }. As we have seen above, lim(Ti) ∩ Ai ≥ 
 for i = 0
(and, if |A1| ≥ 
, for i = 1 as well). Clearly T0 ∩ T1 ⊆ 2n

∗
; and lim(Ti) ∩ Ai–1 is

empty, as for any x ∈ Ai–1, cofinally many n satisfy F (x � n) = i – 1. �

Proof of the theorem. Fix an automorphism 	 of P�κ represented by some
	∗ : P(�) → P(�), and let 	–1∗ represent 	–1. We have to show that 	 is trivial.

Fix an injective function � : �→ 2� . Set

Cn := {x ∈ 2� : x(n) = 0} and Λn := �–1Cn = {α < � : �(α)(n) = 0}.

Define � : �→ 2� by

�(�)(n) = 0 iff � ∈ 	∗(Λn).

In the following, “large” means “of cardinality ≥κ”, and “small” means not large.
We will show:

(*1) 	∗(�–1C ) =∗ �–1C for C ⊆ 2� closed.
(*2) Y ⊆ � and |Y | ≥ κ implies |� ′′Y | ≥ κ.
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(*3) IfA0, A1 are disjoint subsets of 2� ,A0 ⊆ � ′′� large, then 	–1∗(�–1A0) \ �–1A1

is large.
(*4) If A0, A1 are disjoint subsets of 2� , A0 ⊆ �′′� large, then 	∗(�–1A0) \ �–1A1

is large.

(Note that (∗2) is the only place where we use that κ is regular.)
Proof:

(*1) 	∗(�–1Cn) = �–1Cn holds by definition of �. As 	 honors <κ-unions and
complements, and as the Cn generate the open sets, this equation (with =∗)
holds whenever C is generated by <κ-unions and complements from the
open sets, in particular, if C is closed.

(*2) Fix x ∈ 2� . Then �–1{x} has at most one element (as � is injective),
and �–1{x} =∗ 	–1∗�–1{x} by (∗1). That is, �–1{x} is small. And Y ⊆⋃
x∈�′′Y �

–1{x}, so as κ is regular we get |� ′′Y | ≥ κ.)
(*3) Using the previous lemma (with κ as 
) we get a tree T0 separating A0

and A1. That is, lim(T0) ∩ A1 = ∅ and X := lim(T0) ∩ A0 is large. As X ⊆
A0 ⊆ � ′′�, we get that �–1X is large. And �–1X = �–1 lim(T0) ∩ �–1A0 =∗

	∗(�–1 lim(T0)) ∩ �–1A0, the last equation by (∗1). This implies �–1 lim(T0) ∩
	–1∗(�–1A0) is large, and so 	–1∗(�–1A0) \ �–1A1 is large.

(*4) We get an analogous result when interchanging � and � and using 	∗ instead
of 	–1∗.

We claim that the following sets Ni are all small:

(1) N1 := {α ∈ � : (¬∃� ∈ �) �(α) = �(�)}.
(2) N2 := {α ∈ � : (∃(≥2)� ∈ �) �(α) = �(�)}.
(3) N3 := {� ∈ � : (¬∃α ∈ �) �(α) = �(�)}.

Proof.

(3) AssumeN3 is large. SetA0 := � ′′N3, which is large by (∗2); andA1 := �′′�. So
A0 and A1 are disjoint, and by (∗3) 	–1∗�–1A0 \ �–1A1 is large, but �–1A1 = �.

(1) AssumeN1 is large. SetA0 = �′′N1 (large, as
∼
� is injective) andA1 := � ′′�. So

A0 and A1 are disjoint, and by (∗4) 	∗(�–1A0) \ �–1A1 is large, but �–1A1 = �.
(2) Assume that N2 is large. For every α ∈ N2, let �0

α �= �1
α in � be such that

�(α) = �(�0
α) = �(�1

α). For i ∈ {0, 1}, set Yi := {�iα : α ∈ N2} and Xi :=
	–1∗(Yi) (without loss of generality disjoint), and Ai := �′′Xi . So the Ai are
large and disjoint, and we can find a tree T0 such that A0 ∩ lim(T0) is large,
and A1 ∩ lim(T0) is empty.

As A0 ⊆ �′′�, this implies that the inverse �-image of A0 ∩ lim(T0) is also
large. That is,
�–1(A0 ∩ lim(T0)) = �–1A0 ∩ �–1 lim(T0) =∗ X0 ∩ 	–1∗�–1 lim(T0) is large

(for the last equation we use (∗1)). Therefore also Y0 ∩ �–1 lim(T0) is large,
and so, by (∗2), � ′′(Y0 ∩ �–1 lim(T0)) = lim(T0) ∩ � ′′Y0 is large as well.

On the other hand, lim(T0) ∩ A1 is empty, so 0 =∗ 	∗�–1(lim(T0) ∩ A1) =∗

	∗�–1 lim(T0) ∩ 	∗�–1A1. Using (∗1) for lim(T0), and noting that 	∗�–1A1 =
Y1, this set is (almost) equal toY1 ∩ �–1 lim(T0) which therefore is also small,
and so lim(T0) ∩ � ′′Y1 is small.

So we know that lim(T0) ∩ � ′′Y0 is large and lim(T0) ∩ � ′′Y1 is small, but
� ′′Y0 = � ′′Y1, a contradiction.
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Note that this implies:

(*5) X ∩ Y small implies � ′′X ∩ � ′′Y small, for X,Y ⊆ �.
(*6) �–1� ′′X =∗ X for X ⊆ �.

Proof:

(*5) Assume otherwise. Without loss of generality we can assume that X and Y
are disjoint, and by (3) that � ′′X and � ′′Y both are subsets of �′′�. Then
� ′′X ∩ � ′′Y ⊆ �′′N2 is small.

(*6) SetY := �–1� ′′X \ X . Then � ′′Y ⊆ N2 ∪N3 is small, and by (∗2) Y is small.

SetD := � \ (N1 ∪N2) and define e : D → � such that e(α) is the (unique) � ∈ �
with �(α) = �(�). Clearly e is injective. We claim that e generates 	, i.e., that the
following are small (where we can assume X ⊆ D):

(4) N4 := 	∗(X ) \ e′′X .
(5) N5 := e′′X \ 	∗(X ).

Proof.

(4) Assume thatN4 is large. Set Y = 	–1∗(N4), without loss of generality Y ⊆ X
and 	∗(Y ) = N4. So 	∗(Y ) is disjoint from e′′Y (as it is even disjoint from
e′′X ). We set A0 := � ′′	∗(Y ) and A1 := � ′′e′′Y , by (∗5) we can assume they
are disjoint, and by (∗2) both are large (e is injective).

By (∗3), 	–1∗(�–1A0) \ �–1A1 is large.
�–1(A1) = Y , as �(e(α)) = �(α) for all α ∈ D. And 	–1∗(�–1A0) =∗ Y by

definition and (∗6), a contradiction.
(5) The same proof works: This time we set Y = e–1N5; see that 	∗(Y ) and e′′Y

are disjoint and large; set A0 := � ′′	∗(Y ) and A1 := � ′′e′′Y ; use (∗3) to see
that Y \ �–1� ′′e′′Y = Y \ Y is large, a contradiction. �

§4. For measurables, GCH implies a nontrivial automorphism.

Theorem 4.1. If � is measurable and 2� = �+, then there is a nontrivial
automorphism of P�� .

Proof. Let D be a normal ultrafilter on � and denote by I := [�]� \ D its dual
ideal restricted to sets of size �.

Since 2� = �+, we can list all permutations of � as {eα : α < �+}; and analogously
all elements of I as {Xα : α < �+}.

We will construct, by induction on α < �+ a set Aα ∈ I and a permutation fα of
Aα , such that for α < � :

(1) Aα ⊆∗ A� .
(2) Xα ⊆ Aα+1.
(3) fα(x) = f�(x) for almost all x ∈ Aα ∩ A� .
(4) There is some X ⊆ Aα+1 of size � such that e′′αX and f′′

α+1X are disjoint.

(Note that by x ⊆∗ y we mean |y \ x| = �, not y \ x ∈ I; and the same for ‘almost
all”.)

The construction:

• Successor stages α + 1: Fix any B ∈ I disjoint to Aα such that Aα ∪ B ⊇ Xα .
Set C := e′′αB ∩ Aα .

https://doi.org/10.1017/jsl.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.37


8 JAKOB KELLNER ET AL.

First assume that |C | = �. Then set Aα+1 = Aα ∪ B and let fα+1 extend
fα by the identity on B. Then (4) is witnessed by X := e–1

α C .So we assume
|C | < �. Partition B into large sets B0, B1, B2 such that e′′αBi is disjoint to Aα
for i = 0, 1. Set Aα+1 := Aα ∪ B ∪ e′′αB , and define fα+1 on B such that the
restriction to Bi is a bijection op e′′αB1–i for i = 0, 1, and the restriction to B2
a bijection to e′′B2 \A. Then (4) is witnessed by X := B0.

• Limit stages  of cofinality <�: Let � := cf() and choose 〈αi : i < �〉 a
cofinal increasing sequence converging to . The union

⋃
i<� Aαi is, by <�

completeness, in I. Remove < � many points to get a subset A such that:
– For all i < j < �, fi and fj agree on Aαi ∩ A .
– For all i < �, fi � (Aαi ∩ A) is a full permutation (we can do this as in

Lemma 2.4).
Then f , defined as the union of the fαi , is a permutation of A and almost
extends each fαi .

• Limit stages  of cofinality �: We choose an increasing cofinal sequence 〈αi :
i < �〉 converging to . By induction on i ∈ � we construct A′i =∗ Aαi , such
that:

– A′i ∩ i = ∅.
– The fαi ’s fully extend each other on the A′i ’s, i.e., if x ∈ A′i ∩ A′j then
fαi (x) = fαj (x).

– fαi : A′i → A′i is a “full” permutation.
We can do this by removing from Aαi : the points less than i, the points where
fαi disagrees with some previousfαj for any j < i ; and by removing<�many
points to get a full permutation.

Now we can set A and f to be the unions of A′i and fαi , respectively, for
i < . Note that A is in I (as it is a subset of the diagonal union); and f is a
permutation of A satisfying (3).

Note that for all X ⊆ �, either X ∈ I or � \ X ∈ I (but not both), i.e., either X
or � \ X is ⊆∗ Aα for coboundedly many α < �.

This allows us to define the automorphism 	 as follows: For X ∈ [�]�,

	([X ]) :=

{
[f′′
αX ], if X ∈ I, X ⊆∗ Aα for some α < �+ (Case 1),

[� \ f′′
α (� \ X )], if X /∈ I, � \ X ⊆∗ Aα for some α < �+ (Case 2).

Note that in Case 2, 	([X ]) = [(� \ Aα) ∪ (Aα \ f′′
α (Aα \ X ))] = [(� \ Aα) ∪

f′′
α (X ∩ Aα)], as f′′

αAα =∗ Aα .
	 is well defined on [�]�, as exactly one of X or � \ X will eventually be ⊆∗ Aα .
	 is an automorphism: 	([∅]) = ∅. 	 honors complements: If X is Case 1, then

	([� \ X ]) is by definition (Case 2) [� \ f′′
α (X )]. 	 honors intersectionsX ∩ Y : This

is clear if both sets are the same Case. Assume that X is Case 1 and Y Case 2. Then
X ∩ Y ⊆ X is Case 1, and for any α suitable for both X and Y we have

	([X ]) ∧ 	([Y ]) = [f′′
αX ∩ ((� \ Aα) ∪ f′′

α (Y ∩ Aα))]

= [f′′
αX ∩ f′′

α (Y ∩ Aα)] = [f′′
α (X ∩ Y ))].
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	 is not trivial: Every automorphism e is an eα for some α ∈ �+; and according to
(4) there is some Xα ⊆ Aα+1 (and therefore in I) of size � such that e′′αXα is disjoint
to f′′

α+1Xα , a representative of 	([Xα]). �

§5. For inaccessible �, all automorphisms can be densely trivial. In this section,
we always assume the following (in the ground model):

Assumption 5.1. � is inaccessible and 2� = �+. We set � := �++.

In the rest of the paper, we will show the following:

Theorem 5.2. (� is inaccessible and 2� = �+.) There is a �-proper,<�-closed, �++-
cc poset P (in particular, preserving all cofinalities) that forces: 2� = �++, and every
automorphism of P�� is densely trivial.

By Lemma 2.7, it is enough to show that every automorphism is somewhere
trivial.

5.1. The single forcing Q .

Definition 5.3. We fix a strictly increasing sequence (
∗� )�<� with 
∗� < � regular
and 
∗� > 2|�|.

• Let (I ∗� )�∈� be an increasing interval partition of � such that I ∗� has size 2

∗
� ;

and fix a bijection of I ∗� and 2

∗
� . Using this (unnamed) bijection, we set

[s] := {� ∈ I ∗� : � > s} for s ∈ 2<

∗
� .

So the [s] are cones, i.e., the set of all branches in I ∗� extending s.
For � < �, we set I ∗(<�) :=

⋃
�<� I

∗
� , and analogously I ∗(≤�) := I ∗(<� +

1), I ∗(≥�) := � \ I ∗(<�), and I ∗(≥�,<�) := I ∗(≥�) ∩ I ∗(<�).
• A condition q of the forcing notion Q is a function with domain � such that,

for all � ∈ �, q(�) is a partial function from I ∗� to 2, and such that for a club-set
Cq ⊆ �:

– if � /∈ Cq , then q(�) is total,
– otherwise, the domain of q(�) is I ∗� \ [sq

�
] for some sq

�
∈ 2<


∗
� .

Cq and sq
�

are uniquely determined by q; and q is uniquely determined by
the partial function �q : �→ 2 defined as

⋃
�∈� q(�).

• q is stronger than p if �q extends �p.
(This implies that Cq ⊆ Cp, and that sq

�
extends sp

�
for all � ∈ Cq .)

The following is straightforward:

Lemma 5.4. Q has size 2�, is<�-closed, and adds a generic real
∼
� :=

⋃
q∈G �

q in 2�.

Proof. <�-closure is obvious, but for later reference we would like to point out
the “problematic cases”:

Let (pi)i< be decreasing for a limit ordinal  < �.
As a first approximation, set �∗ :=

⋃
i< �

pi (a partial function) and C ∗ :=⋂
i< C

pi (a club set) and s∗� :=
⋃
i< s

pi
� ∈ 2≤


∗
� for s ∈ C ∗. For � /∈ C ∗, �∗ is

indeed total on I ∗� , and for � ∈ C ∗ the domain in I ∗� is I ∗� \ [s∗� ].
The problematic case is when s∗� is unbounded in 
∗� . (This can only happen

if cf() = 
∗� , in particular for at most one � .) In this case we can just pick any
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extension �q of �∗ by filling all values in I ∗≤� . This gives the desired q, with Cq =
C ∗ \ � + 1. �

Remarks.

• The limits of <�-sequences of conditions are not “canonical” if there are
problematic �’s, as we have to fill in arbitrary values.

•
∼
� determines the generic filter, by G = {p ∈ Q : �p ⊆

∼
�}. This follows from

the following facts:
– p and q are compatible (as conditions in Q) iff �p and �q are compatible

as partial functions and Xp,q := {� ∈ Cp : sp
�

and sq
�

are incomparable}
is non-stationary.

– If p, q are such that Xp,q is stationary, then the set of conditions r such
that �r and �q are incompatible (as partial functions) is dense below p.

5.2. Properness of Q : Fusion and pure decision.

Definition 5.5. We say q ≤� p, if q ≤ p, � ∈ Cq , and q � � = p � �.
q ≤+

� p means q ≤� p and q(�) = p(�).

(Note the difference between q ≤+
� p and q ≤�+1 p: The former does not require

� + 1 ∈ Cq .)
Lemma 5.6. Let  ≤ � be a limit ordinal, � ∈ �, and (qi)i< a sequence in Q.
(1) If  < � and qj <+

� qi for all i < j < , then there is a q∞ such that q∞ <+
� qi

for all i.
(2) If qj <�i qi for i < j < , where (�i)i∈ is a strictly increasing6 sequence in �,

then there is a (canonical ) limit q∞ such that q∞ <�i qi for all i.

Proof. (1): We perform the same construction as in the proof of Lemma 5.4.
If there is a problematic case � , then � > � (as for � ′ ≤ � the conditions qi(� ′) are
constant). We can then make �∗ total on I ∗(> �,≤ �). (It may not be enough to
make it total on I ∗� , as C ∗ \ {�} might not be club.)

(2): Define q∞(�) :=
⋃
i∈ qi(�) for � ∈ �.

This is a non-total function (on I ∗� ) iff � ∈ Cq∞ :=
⋂
i< C

qi , which is closed as
intersection of closed sets, and also unbounded: If  < � because we have a small
intersections of clubs, if  = � as it contains each �i .

There are no problematic cases: If � is below some �i , then qj(�) is eventually
constant. If � is above all �i , which can only happen if  < �, then cf() ≤  ≤
sup(�i) ≤ � < 
∗� . �

So Q satisfies fusion; and we will now show that it also satisfies “pure decision”;
standard arguments then imply that Q is �-proper and ��-bounding.

Definition 5.7. Let � ∈ �, q ∈ Q.
• POSSQ(�) := 2I

∗(<�). So in the extensionV [G ], for each � there will be exactly
one x ∈ POSSQ(�) compatible with (or equivalently: an initial segment of) the
generic real

∼
�. We write “x ⊆

∼
�” or “G chooses x” for this x.

6For  = �, it is enough that the �i converge to �. For  < �, we use that the �i are increasing and that
sup(�i ) ≥ cf().
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• poss(q, �) is the set of x ∈ POSSQ(�) compatible with �q (as partial functions),
or equivalently: x ∈ poss(q, �) iff ¬q � x �

∼
�. So q forces that exactly one

x ∈ poss(q, �) is chosen by G.
• Let ∼� be a name for an ordinal. We say that q�-decides ∼�, if there is for all
x ∈ poss(q, �) an ordinal �x such that q forces x ⊆

∼
� →∼� = �x .

Note that for p ∈ Q and � ∈ Cp, q ≤+
� p is equivalent to poss(q, � + 1) =

poss(p, � + 1), while q ≤� p is equivalent to � ∈ Cq and poss(q, �) = poss(p, �).

Lemma 5.8. Assume p ∈ Q, � ∈ Cp, x ∈ poss(p, � + 1), and r ≤ p extends7 x.
Then there is a q ≤+

� p forcing: x ⊆
∼
� → r ∈ G . This condition is denoted by r ∨ (p �

� + 1).

Proof. We set q(�) to be p(�) for � ≤ � , and r(�) otherwise. If q′ ≤ q forces
x ⊆

∼
� then q′ extends x and thus q′ ≤ r. �

Corollary 5.9. (“Pure decision”) Let ∼� be a name for an ordinal, p ∈ Q, and
� ∈ Cp. Then there is a q ≤+

� p which (� + 1)-decides ∼�.

Proof. Let (xi)i∈ enumerate poss(p, � + 1), for some  < �. Set p0 = p, and
define a ≤+

� -decreasing sequence pj by induction on j ≤ : For limits use Lemma
5.6(1), and for successors choose some r ≤ pi deciding ∼� with a stem extending xi
and set pi+1 to r ∨ pi � (� + 1). �

From fusion and pure decision we get bounding and �-proper, via “continuous
reading of names.” This is a standard argument, and we will not give it here; we will
anyway prove a more “general” variant (for an iteration of Q’s), in Lemmas 5.25
and 5.27.

Fact 5.10.

• Q has continuous reading of names: If ∼� is a Q-name for a �-sequence of ordinals,
and p ∈ Q, then there is a q ≤ p and there are �i ∈ � such that q�i -decides ∼�(i)
for all i ∈ �.

• Q is ��-bounding. That is, for every name ∼� ∈ �� and p ∈ Q there is an f ∈ ��
and q ≤ p such that q forces f(i) > ∼�(i) for all i ∈ �.

• Q is �-proper. This means: If N is a <�-closed elementary submodel of H (�) of
size � containing Q, with � sufficiently large and regular, and if p ∈ Q ∩N , then
there is a q ≤ pN -generic (i.e., forcing that each name of an ordinal which is in
N is evaluated to an ordinal in N).

For completeness, we also mention the following well-known fact (the proof is
straightforward):

Fact 5.11. Assume κ is regular, and that the forcing notion R is κκ-bounding. Then
R preserves the regularity of κ, and every club-subset of κ in the extension contains a
ground model club-set.

7By which we mean x ⊆ �r .
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5.3. The iteration P . Let us first recall some well-known facts:

Facts 5.12. A <�-closed forcing preserves cofinalities ≤� and also the inaccessi-
bility of �. The ≤�-support iteration of <�-closed forcings is <�-closed.

We will iterate the forcings Q from the previous section in a<�-closed ≤�-support
iteration of length � := �++:

Definition 5.13. Let (Pα,Qα)α<� be the ≤�-support iteration such that eachQα
is the forcing Q (evaluated in the Pα-extension). We will write P to denote the limit.

Remark. One way to see that P is proper is to use the framework of [6]. However,
we will need an explicit form of continuous reading for P anyway, which in turn
gives properness for free.

Definition 5.14. Assume that w ∈ [�]<� and � ∈ �.
•

∼̄
� = (

∼
�
α

)α∈� is the sequence of Qα-generic reals added by P.

• POSS(w, �) := 2w×I
∗(<�). Exactly one x ∈ POSS(w, �) is extended by

∼̄
�, we

write “x is selected by G,” or “x � G .”
• poss(p,w, �) := {x ∈ POSS(w, �) : ¬p � ¬x � G}.
• Let ∼� be a name of an ordinal. ∼� is (w, �)-decided by q, if there are

(�x)x∈poss(q,w,�) such that q forces x � G →∼� = �x .

Clearly, if ∼� is (w, �)-decided by q, and if q′ ≤ q, w′ ⊇ w and �′ ≥ �, then ∼� is
(w′, �′)-decided by q′.

Remark. If q ∈ P(w, �)-decides some Pα-name∼�, then the same q will generally
not (w ∩ α, �)-decide ∼� for any �.8

In the following, whenever we say that q(w, �)-decides something, we implicitly
assume that w ∈ [�]<� and � ∈ �.

Definition 5.15. Let ∼� be a P-name for a �-sequence of ordinals.

• q continuously reads ∼�, if there are (wi , �i )i∈� such that q(wi , �i )-decides ∼�(i)
for each i ∈ �.

• P has continuous reading, if for each such ∼� and p ∈ P there is some q ≤ p
continuously reading ∼�.

The following is a straightforward standard argument:

Fact 5.16. If P has continuous reading, then it is ��-bounding.

As a first step towards pure decision, let us generalize the ≤� -notation we defined
for Q:

8For example: For a p-condition Q, let odd
p be the set of odd elements ofCp (or any other unbounded

subset X of Cp such that Cp \ X is still club), and set odd
p
? :=

⋃
�∈odd

p I ∗� \ dom(�p). Note that for

any x : odd
p
? → 2, �p ∪ x defines a condition in Q (stronger than p). So if we fix any p(0) ∈ P1, and

define the P1-name ∼� ∈ {0, 1} to be 0 iff
∼
�

0
� odd

p(0)
? is eventually constant to 0, then ∼� cannot be

({0}, �)-decided by p(0) for any �. And if p(1) is any condition with p(0) � �p(1)(0) =∼�, then ∼� is
({1}, 1)-decided by q := (p(0), p(1)).
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Definition 5.17. Let p ∈ P, w ∈ [�]<�, and � ∈ �.
• p fits (w, �), if w ⊆ dom(p) and p � α � � ∈ Cp(α) for all α ∈ w.
• q ≤w,� p means: q ≤ p, and for all α ∈ w, q � α forces q(α) <� p(α).
• q ≤+

w,�
p is defined analogously using <+

�
instead of <� .

Obviously q ≤+
w,� p implies q ≤w,� p; and q ≤w,� p implies that both p and q fit

(w, �).

Remark. In contrast to the single forcing (or a product of such forcings), q ≤w,�
p (or q ≤+

w,� p) does not imply poss(q,w, �) = poss(p,w, �).9 More explicitly, setting
w = {0, 1}, it is possible that x ∈ poss(p,w, �) but p does not force that x(0) ⊆

∼
�

0
implies x(1) ∈ poss(p(1), �). (But see Section 5.5.)

5.4. Continuous reading and properness of P .

Lemma 5.18. If qi is a ≤+
w,� -decreasing sequence of length  < �, then there is an

r ≤+
w,� qi for all i < .

Proof. Set dom(r) :=
⋃
i∈ dom(qi), without loss of generality closed under

limits. By induction on α ∈ dom(r) we know that r � α ≤ qi � α for all i, and define
r(α) as follows: If α ∈ w, we know that the qi(α) are ≤+

� -increasing. Using Lemma
5.6(1), we pick some r(α) such that r(α) ≤+

� qi(α) for all i. If α /∈ w, we just pick
any r(α) ≤ qi(α) for all i. �

It is easy to see that P satisfies a version of fusion:

Lemma 5.19. Assume (pi)i< is a sequence of length  ≤ �, such that pj ≤wi ,�i pi
for i ≤ j < , wi ∈ [�]<� increasing, �i ∈ � strictly increasing. Set w∞ :=

⋃
i< wi ,

dom∞ :=
⋃
i< dom(pi), and �∞ := supi< �i . If  = �, we additionally assume

w∞ = dom∞.
Then there is a limit q∞ with dom(q∞) = dom∞ such that q∞ ≤wi ,�i pi for all

i < .
If  < �, then q∞ fits (w∞, �∞).

(If w∞ = dom∞, then the limit q∞ is “canonical”.)

Proof. We define q∞(α) by induction on dom∞. We assume that we already
have q′ := q∞ � α which satisfies q′ ≤wi∩α,�i pi for all i < .

Case 1: α /∈ w∞ (this can only happen if  < �): We know that q′ forces that
(pi(α))i< is a decreasing sequence, and we just pick some q∞(α) stronger then all
of them.

Case 2: α ∈ w∞: Let i∗ be minimal such that α ∈ wi∗ . We know that q′ forces
for all i∗ ≤ i < j <  that pj(α) <�i pi(α), so according to Lemma 5.6(2) there is
a limit q∞(α) <�i pi(α) (so in particular q′ � �i ∈ Cq∞(α) for all i ≥ i∗).

9An example: dom(p) = dom(q) = w = {0, 1}, min(Cp(0)) = min(Cq(0)) = �, and both p(0) and
q(0) have trunk a ∈ POSSQ(�). p(0) forces that p(1) = q(1), that min(Cp(1)) = � and that the trunk
of p(1) is either b or c (elements of POSSQ(�)); both are possible with p(0). Now q(0) ≤+

�
p(0) decides

that the trunk of p(1) is b. Then q ≤+
w,�
p, and (a, c) is in poss(p, w, �) \ poss(q, w, �). In particular

(a, c) ∈ poss(p, w, �) but p does not force that a ⊆
∼
�

0
implies c ∈ poss(p(1), �).
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Now assume  < �. If α ∈ w∞, then it is in wi for coboundedly many i < . In
other words, pj � α � �i ∈ Cpj (α) for coboundedly many i ∈  and all j > i , which
implies q∞ � α � �∞ ∈ Cq∞(α). �

Preliminary Lemma 5.20. Let p fit (w, �), x ∈ poss(p,w, � + 1), and let r ≤ p
extend x, i.e., r � x � G . Then there is a q ≤+

w,� p forcing that x � G implies r ∈ G .

Proof. Set dom(q) := dom(r). We define q(α) by induction on α ∈ dom(q) and
show inductively:

• q � α ≤+
w∩α,� p � α.

• q � α � (x � α � Gα → r � α ∈ Gα).

For notational convenience, we assume dom(p) = dom(r) (by setting p(α) = 1Q
for any α outside the original domain of p).

Assume we already have constructed q0 = q � α. Work in thePα-extensionV [Gα]
with q0 ∈ G .

Case 1: r � α /∈ Gα . Set q(α) := p(α).
Case 2: r � α ∈ Gα . Then r(α) ≤ p(α). If α /∈ w, we set q(α) := r(α); otherwise

we set q(α) to be r(α) ∨ (p(α) � � + 1) as in Lemma 5.8.
If α ∈ w, then in both cases we get q � α � q(α) ≤+

� p(α). Also, if Gα+1 selects
x � (α + 1), then at stage α we used, by induction, Case 2; so then r(α) ∈ G(α) as
x(α) ⊆

∼
�
α

. �

We can iterate the construction for all elements of poss(w, � + 1), which gives us:

Lemma 5.21. If p fits (w, �) and∼� is a name for an ordinal, then there is a q ≤+
w,� p

which (w, � + 1)-decides ∼�.

Proof. We enumerate poss(p,w, � + 1) as (xi)i∈ . We start with p0 := p.
Inductively we construct p� : If at step �, if x� is not in poss(p�, w, � + 1) any more,
then we set p�+1 := p� . Otherwise, pick an r ≤ p� that decides∼� to be some �x� and
extends x� . Then apply 5.20 to get p�+1 ≤+

w,� p� which forces that x� � G implies

∼� = �x� . At limits use Lemma 5.18. �
For the proof of Lemma 5.23 we will need a variant where the “height” � is not

the same for all elements of w, more specifically:

Preliminary Lemma 5.22. Assume that p fits (w, �) and p � α∗ � �∗ ∈ Cp(α∗),
and that ∼� is a name for an ordinal. Then there is a q ≤+

w,� p such that q � α∗ �
q(α∗) ≤+

�∗ p(α∗) and there is a (ground model ) set A of size<� such that q �∼� ∈ A.

Proof. This is just a notational variation of the previous proof. For notational
simplicity we assume α∗ /∈ w.

First we have to modify Preliminary Lemma 5.20: A candidate is a pair (x, a)
where x ∈ POSS(w, �) and a∗ ∈ POSSQ(�∗). Assume that (x, a) is a candidate, that
p ∈ P fits (w, �), and that p � α∗ � �∗ ∈ Cp(α∗), and assume that r ≤ p extends
(x, a), i.e., r � (x � G & a∗ ⊆

∼
�
α∗

). Then there is a q such that

q ≤+
w,� p, q � α

∗ � q(α∗) ≤+
�∗ p(α∗), and q �

(
(x � G & a∗ ⊆

∼
�
α∗

) → r ∈ G
)
.

(∗)
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The same proof works, with the obvious modifications:
When defining q(α), we inductively show:

• q � α ≤+
w∩α,� p � α and if α > α∗ then q � α∗ � q(α∗) ≤+

�∗ p(α∗),

• q � α �
(
(x � α � Gα & a∗ ⊆

∼
�
α∗

) → r � α ∈ Gα
)
, unless α ≤ α∗ in which

case we omit the clause about α∗.

Again, in the Pα-extension we have:
Case 1: r � α /∈ Gα . Set q(α) := p(α).
Case 2: r � α ∈ Gα . Then r(α) ≤ p(α). If α /∈ w ∪ {α∗}, we set q(α) := r(α);

otherwise we set q(α) to be r(α) ∨ (p(α) � � + 1) as in Lemma 5.8.
Then we can show (∗) as before.
We then enumerate all candidates (there are <� many) as (x�, a�), and at step �,

if (x�, a�) is compatible with p� , use (∗) to decide ∼� to be some ∼�
� . �

We will now show that P is ��-bounding and proper. We first give two preliminary
lemmas that assume this is already the case for all P�′ with � ′ < � .

Preliminary Lemma 5.23. Let � ≤ �, and assume that P�′ is ��-bounding for all
� ′ < � .

Assume p ∈ P� fits (w, �), C̃ ⊆ � is club, and α∗ < � .
Then there is a q ≤+

w,� p and a � ∈ C̃ such that q fits (w ∪ {α∗}, �).

If additionally α∗ ∈ dom(p) and p � α∗ � �∗ ∈ Cp(α∗) for some �∗ ∈ �, then we
can additionally get q � α∗ � q(α∗) ≤+

�∗ p(α∗).

Proof. For notational simplicity assume α∗ /∈ w and min(C̃ ) > max(�, �∗). By
induction on α ≤ � we show that the result holds for all w,α∗ with w ∪ {α∗} ⊆ α.

Successor case α + 1: Set w0 := w ∩ α.
By our assumption Pα is ��-bounding, so every club-set in the Pα-extension

contains a ground-model club (see Fact 5.11). In particular, Cp(α) contains some
ground-modelC ∗. By Lemma 5.21 (or Preliminary Lemma 5.22, if α∗ < α) there is
a p′ ≤+

w0,�
p � α (also dealing with α∗, if α∗ < α) leaving only<�many possibilities

for C ∗. So we can intersect them all, resulting in C ′. Set C ′′ := C ′ ∩ C̃ . Apply the
induction hypothesis in Pα to get q′ ≤+

w0,�
p′ and � in C ′′ such that q′ fits (w0, �)

(and also ({α∗}, �), ifα∗ < α). Set q := q′ ∪ {(α, p(α))}, so trivially q ≤+
w,� p (and,

if α = α∗, then q � α � q(α) ≤+
�∗ p(α)), and q fits (w ∪ {α}, �).

Limit case: If w is bounded in α there is nothing to do. So assume w is cofinal.
Set α0 := min(w \ α∗) and w0 := (w ∩ α0) ∪ {α∗}. Use the induction hypothesis

in Pα0 using (p � α0, w0, �, α
∗, �∗) as (p,w, �, α∗, �∗). This gives us some p′0 ≤+

w∩α0,�

p � α0 fitting (w0, �0) and dealing with α∗, for some �0 ∈ C̃ . Set p0 := p′ ∧ p.
Enumerate w \ w0 increasingly as (αi)i< , and set wj := w0 ∪ {αi : i < j} for

j ≤ .
We will construct p′i in Pαi and (�i)i< a strictly increasing sequence in C̃ , and we

set pj := p′j ∧ p and will get: p� fits (w�, ��),and p� ≤+
wi ,�i
pi for all i < � ≤ j.

For successors � = i + 1, we use the induction hypothesis in Pαi+1 , using (pi �
αi+1, wi , �i , αi , �) as (p,w, �, α∗, �∗). This gives us p′i+1 ≤+

wi ,�i
pi � αi+1 and some

�i+1 > �i in C̃ such that pi+1 fits (wi+1, �i+1) and pi+1 � αi � pi+1(αi) ≤+
� pi(αi).
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For j limit, we set �j := supi<j �i (which is in C̃ ), and let pj be a limit of the
(pi)i<j . That is, dom(pj) =

⋃
i<j dom(pi), and for � ∈ dom(pj) let pj(�) be as

follows: If � /∈ w, fix some condition pj(�) stronger than all pi(�). Otherwise, there
is a minimal i0 < j such that � ∈ wi0 , and p�(�) <+

�i
pi(�) for all i0 ≤ i < � < j.

In that case let pj(�) be the (canonical) limit of the (pi(�))i0≤i<j , and note that
�j ∈ Cpj (�). �

Preliminary Lemma 5.24. Let � ≤ �, and assume that P�′ is ��-bounding for all
� ′ < � .

Assume that p ∈ P� fits (w, �), and ∼� is a P� -name for a �-sequence of ordinals.
Then there is a q ≤+

w,� p continuously reading ∼�.

Proof. Set p0 := p, �0 := � , w0 := w. We construct by induction on i < �p′i , pi ,
�i , αi , and wi as follows:

• Given pj , wj , and �j , pick αj ∈ dom(pj) \ wj by bookkeeping (so that in the
end the domains of all conditions will be covered).

• Successor j = i + 1: Set wi+1 := wi ∪ {αi}. Find p′i+1 ≤+
wi ,�i
pi and �i+1 > �i

such that p′i+1 fits (wi+1, �i+1) (using the previous preliminary lemma).
• Limit j: Let p′j be the canonical limit of the (pi )i<j , �j := supi<j(�i ), and
wj :=

⋃
i<j wi . Note that p′j fits (wj, �j).

• In any case, given p′j we pick some pj ≤+
wj,�j

p′j which (wj, �j + 1)-decides

∼�(�j).

Then the limit q of the pi continuously reads ∼�. �

Lemma 5.25. P has continuous reading (and in particular is ��-bounding).

Proof. Assume by induction that P�′ is ��-bounding for all � < � ′. Then the
previous lemma gives us that P� has continuous reading of names, and thus is
��-bounding. �

The same construction shows �-properness:

Definition 5.26. Let � � � be sufficiently large and regular. An “elementary
model” is an M � H (�) of size � which is <�-closed and contains � and � (and
thus P).

Lemma 5.27. If M is an elementary model containing p ∈ P, then there is a q ≤ p
which is strongly M-generic in the following sense: For each P-name ∼� in M for an
ordinal, q(w, �)-decides ∼� via a decision function in M (so in particular q �∼� ∈M ).

(The decision function being in M is equivalent to w ⊆M , as M is <� closed.)

Proof. Let ∼� be a sequence of all P-names for ordinals that are in M. Starting
with p0 ∈M , perform the successor step of the previous construction within M; as
M is closed the limits at steps<� are in M as well. Then the �-limit is M-generic. �

5.5. Canonical conditions. We will use conditions that “continuously read
themselves.”
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Definition 5.28. p ∈ P is (w, �)-canonical if p fits (w, �) and p(α) � (� + 1) is
(w ∩ α, � + 1)-decided by p � α for all α ∈ w.

Facts 5.29. Let p be canonical for (w, �).
(1) If q ≤+

w,� p, then q is canonical for (w, �) and poss(p,w, � + 1) =
poss(q,w, � + 1).

(2) Let x ∈ poss(p,w, � + 1). There is a naturally defined p ∧ x ≤ p such that
p � (p ∧ x ∈ G ↔ x � G). {p ∧ x : x ∈ poss(p,w, � + 1)} is a maximal
antichain below p.

(3) Let x ∈ poss(p,w, � + 1). In an intermediate Pα-extension V [Gα] with x �
α � Gα the rest of x, i.e., x � [α, �], is compatible with p/Gα in the quotient
forcing.

Or equivalently: If r0 ≤ p � α in Pα extends x � α, then there is an r ≤ r0
extending x.

Definition 5.30. Assume p ∈ P, and ∼� is a P-name for a �-sequence of ordinals.
Let E ⊆ � be a club-set and w̄ = (w�)�∈E an increasing sequence in [�]<�.

p canonically reads ∼� as witnessed by w̄ if the following holds:
• dom(p) =

⋃
�∈E w� .

• p is (w�, �)-canonical for all � ∈ E.
• p � α � Cp(α) = E \ (� ′α) for some (ground model) � ′α .
• ∼� � I ∗(≤� + 1) is (w�, � + 1)-decided by p for all � ∈ E.

If � is the constant 0 sequence (or any sequence in V), we just say “p is canonical”
(as witnessed by w̄).

Lemma 5.31. For p, ∼� as above, there is a q ≤ p canonically reading ∼�.
If p ∈ Pα and ∼� is a Pα-name for some α < �, then q ∈ Pα .

Proof. We just have to slightly modify the proof of Lemma 5.24.
We will construct pj , �j , andαj by induction on j ∈ �, settingwj := {αi : i < j},

such that for 0 < j < k the following holds:
• pk ≤+

wj,�j
pj .

• pj is (wj, �j)-canonical.
• pj(wj, �j + 1)-decides ∼� � I ∗(≤�j + 1).
• In pk , for αj ∈ wk , {�i : j < i < k} is (forced to be) an initial segment of
Cpk(αj ).

• The αj are chosen (by some book-keeping) so that {αi : i ∈ �} =⋃
i∈� dom(pi ).

Then the limit of the pj is as required, with E = {�i : i ∈ �} and, for � = �j in E,
we use wj as w� .

Set p0 ≤ p such that | dom(p0)| = �, and set �0 := 0. Assume we already have
pi , αi for i < j (so we also have wj).

• For j limit, let s be a limit of (pi )i<j , and set �j := supi<j �i . Note that s fits
(wj, �).

• Successor case j = i + 1: Find s0 ≤+
wi ,�i

pi and �j > �i such that s fits (wj, �j).

(As in Lemma 5.23. Recall that wj = wi ∪ {αi}.)Strengthen s0 to s ≤+
wi ,�i

so
that:
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– s still fits (wj, �j),
– the trunk at αi has length �j , i.e., s � αi � min(Cs(αi )) = �j),
– for αi ′ , i ′ < i , there are no elements in Cs(αi′ ) between �i and �j .

• Construct s∗ � α by recursion on α ∈ wj , such that s∗ � α ≤+
wj∩α,�j s � α and

s∗ � α(wj ∩ α, �j + 1)-decides s(α) � (�j + 1) (which is the same as s∗(α) �
(�j + 1)). This gives s∗ ≤+

wj,�j
s .

• Find pj ≤+
wj,�j

s∗ which (wj, �j + 1) decides ∼� � I ∗(≤� + 1).

• Choose αj ∈ dom(pj) \ wj by bookkeeping. �
Facts 5.32.

(1) If aP� -name ∼x ⊆ � is continuously read (by someP� -condition p), and cf(�) >
�, then there is an α < � such that: p ∈ Pα , and ∼x is already a Pα-name
( formally: there is a Pα-name

∼
y such that p � ∼x =

∼
y).

(2) There are at most |α|� ≤ �+ many pairs10 (p,∼x) such that p canonically reads

∼x in Pα .

5.6. Δ systems. In this section we define Δ-systems and show that such systems
exist, which we will in the indirect proofs of Lemmas 5.39 and 5.54.

In Section 5.10 we will then fix a specific Δ-system for the rest of the paper.
From now on, we assume that p∗ forces

∼	 : P(�) → P(�) represents the automorphism
∼
φ : P�� → P��, (5.33)

and we set, for � ∈ �,

∼a� := ∼	(
∼
�
�
),

where, as usual, we identify
∼
�
�
∈ 2� with

∼
�–1
�
{1} ⊆ �.

Note that, other than
∼
�
�
, ∼a� is a priori not a P�+1-name (but see Section 5.9).

We also fix a P-name for a representation of the inverse automorphism
∼
φ–1.

Abusing notation, we call it ∼	
–1.

WithS�
�+

we denote the stationary subset of� consisting of ordinals with cofinality
�+.

Definition 5.34. LetS ⊆ S�
�+

be stationary,� � � sufficiently large, and regular,
and z ∈ H (�). “An elementary S-system” (using parameter z) is a sequence
(M�, p�)�∈S such that, for each � ∈ S,M� is an elementary model (as in Definition
5.26) and contains z, � , p∗,

∼
φ, ∼	 and ∼	

–1, and p� ∈ P ∩M� canonically reads ∼a�

witnessed by some (w
p�
� )
�∈Ep� , which Ep� ⊆ � club (cf. Definition 5.30).

By a simple Δ-system argument we can make an S-system homogeneous:

10Depending on the formal definition, we could/should add “modulo equivalence,” i.e., there is a
≤|α|�-sized set Z of such pairs such that whenever p canonically reads

∼
y in Pα then there is a ∼x such

that (p,∼x) ∈ Z and p � ∼x =
∼
y.
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Definition 5.35. (M�, p�)�∈S forms a “Δ-system,” if M̄, p̄ is an elementary
S-system with parameter z, and is homogeneous in the following sense: For �
and �1 < �2 in S, we get:

(1) M�1 ∩M�2 ∩ � is constant. We call this set the “heart” and, abusing notation,
denote it with Δ. Obviously Δ ⊇ �, Δ ⊇ dom(p∗), �+ ∈ Δ, etc.

(2) M� ∩ � = Δ. So in particular � is the minimal element of M� above Δ.
All the non-heart elements of M�2 are above all elements of M�1 . That is,
sup(M�1 ∩ �) < �2.

(3) There is an ∈-isomorphism h∗�1,�2
:M�1 →M�2 , mapping �1 to �2, p�1 to p�2 ,

∼a�1 to ∼a�2 and fixing �, �,
∼
φ,∼	 as well as each α in Δ.

Note that this implies that the continuous reading of∼a� works the same way for all

� . In particular the Ep� are that same E for all � ; and if F �� is the function mapping

POSS(w
p�
� , � + 1) to the value of ∼a� � I ∗(≤� + 1) (for � ∈ E), then h∗�1,�2

(F �1
� ) =

F
�2
� and in particular h∗�1,�2

(w
p�1
� ) = w

p�2
� ; i.e., they are the same apart from shifting

coordinates above Δ.

Lemma 5.36. Assume S ⊆ S�
�+

is stationary.

• For every z ∈ H (�) and (p′�)�∈S there are M� and p� ≤ p′� such that M̄, p̄ is
an S-system with parameter z.

• If M̄, p̄ is an S-system then there is an S ′ ⊆ S stationary such that (M�, p�)�∈S′
is a Δ-system on S ′.

Proof. The first item is trivial, using the fact that everything can be read
canonically.

Using 2� = �+, a standard Δ-system argument (or: Fodor’s Lemma argument)
lets us thin out S to some S2 so that (M� ∩ �)�∈S2 satisfies (1–3). For � ∈ S2 let
�� :M� ∪ {M�} → H (�+) be the transitive collapse, and assign to � the tuple of the
�� -images of the following objects:

• M� , p� , ∼a� , �,
∼
φ, ∼	, and Ep� .

• For � ∈ Ep� , the object w
p�
�

.

• For � ∈ Ep� and � ∈ wp�
�

, the object F
p�
� .

Again, there are |H (�+)|� < � many possibilities, so the objects are constant on a
stationary S ′ ⊆ S2.

For α < � in S ′, we define h∗�1,�2
:= �–1

�2
◦ ��1 . (Note that ��1(α) = ��2(α) for α ∈

Δ.) �
So in particular if we have a Δ-system on S, then p� � sup(Δ) = p� � � ∈M� is

the same for all � ∈ S, and outside of Δ the domains of the p� are disjoint for � ∈ S.
In particular we get:

Fact 5.37. For a Δ-system with domain S, and A ⊆ S of size ≤�, the union of the
(p�)�∈A is a condition in P (and stronger than each p�).

Whenever r ∈ P� ∩M� (as is the case for r = p� � �), we know that r ∈ Pα for
α ∈ Δ (asM� knows that � has cofinality �+).
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Instead of “r ∈ Pα for some α ∈ Δ” we will sometimes just state the weaker but
shorter r ∈ Psup(Δ).

Remark. This is an important effect also for some names. Generally, a P� -name
inM� is of course not a Pα-name for any α < � (just take the P� -generic filter G�).
However, as we will explicitly state in Lemma 5.42, such names for subsets of � are,
modulo some condition, Pα-names for some α ∈ Δ and independent of � . In the
specific case of the P� -name p�(�) we do not have to increase the condition:

Definition and Lemma 5.38. p̃ := p�(�) is aPsup(Δ)-name independent of� ∈ S.

Proof. p�(�) � � + 1 is (w
p�
� , � + 1)-determined for cofinally many � ∈ E, where

w
p�
� ∈ [�]<� is a subset ofM� . So w

p�
� ⊆ Δ, and the isomorphisms between theM�

guarantee that eachw
p�
� is the same, and that p�(�) � � + 1 is decided the same way.

So p̃ is a P� -name for � = sup(w
p�
� )�∈E . This � is independent of � ∈ S, and is in

Δ. So p̃ is actually a Pα-name for some α ∈ Δ; and certainly a Psup(Δ)-name. �
For later reference we note:

Lemma 5.39. For all but non-stationary many � , p∗ forces ∼a� /∈ V� .

(Here, V� denotes the P� -extension of the ground model.)

Proof. Assume that p� ≤ p∗ forces that∼a� = ∼x� for aP� -name ∼x� for all � ∈ S∗

stationary. We can also assume that p� canonically reads ∼aα . PickM� containing p�
and S ⊆ S∗ such that (M�, p�)�∈S is a Δ-system, where we can assume (or get from
homogeneity) that h∗�0,�1

(∼x�0) = ∼x�1 . So the ∼x� are P� -names in M� and therefore
Psup(Δ)-names, and are the same for all� . Choose�1 > �0 in S. Sop�0 ∧ p�1 force that

∼a�0 = ∼x = ∼a�1 , which contradicts the injectivity of
∼
φ and the fact that

∼
�
�0

�=
∼
�
�1

. �

5.7. Preservation of cofinalities, catching canonical names.

Corollary 5.40. P is �++-cc and preserves all cofinalities.

Proof. Cofinalities ≤� are preserved as P is <�-closed.
Cofinality �+ is preserved by properness: Assume that it is forced by p that κ has a

cofinal �-sequence ∼̄α := (∼αi)i∈�. Then there is an elementary model M containing p
and ∼̄α. If q ≤ p is M-generic, and G a P-generic filter containing q, then ∼αi [G ] ∈M
for all i < �, soM ∩ κ is a cofinal subset of κ of size � in the ground model.

Cofinality ≥ �++ is preserved as P has the �++-cc, which we have shown in a very
roundabout way with the fact about Δ-systems: If (p′α)α∈� are arbitrary conditions,
then (M�, p�) form a Δ-system from some p� < p′� and stationary S, and any two
(in fact, ≤� many) p� are compatible for � ∈ S. �

Remark 5.41. This shows that P is (�, �)-Knaster, i.e., for every A ∈ [P]� there
is a B ∈ [A]� which is �-linked.

The �++-cc also implies: For every name ∼x for a subset of � (or of �+) there is a
� < � and a P� -name

∼
y such that the empty condition forces that ∼x =

∼
y.

Given α < �, there are <� many pairs (p,∼x) where p canonically reads ∼x ⊆ � in
Pα (see Fact 5.32(2)). So there is a g(α) < � such that for each such p,∼x, both ∼	(∼x)
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and ∼	
–1(∼x) are equivalent (modulo the empty condition) to some Pg(α)-name. Let

C ∗ ⊆ � be the club set with (� ∈ C ∗ &α < �) → g(α) < � .
Given a Δ-system on S we can restrict it to a Δ-system on S ∩ C ∗; so we will

assume from now on that each Δ-system we consider satisfies S ⊆ C ∗.
To summarize:

Lemma 5.42.

(1) If � ∈ S, p ∈ P� , and ∼x a P� -name for a subset of �, then there is an α < �
and a q ≤ p canonically reading ∼x, ∼�(∼x), ∼�

–1(∼x) as Pα-names.
More explicitly: There is a Pα-name

∼
y which is canonically read by q such

that q �
∼
y = ∼x. (And analogously for ∼�(∼x) and ∼�

–1(∼x) instead of ∼x.)
(2) If additionally p ≤ p� � � in P� and (p,∼x) ∈M� , then we can additionally get:

∼x, ∼	(∼x) and ∼	
–1(∼x) are Pα-names inM� independent of � ∈ S.

More explicitly: Let
∼
y be as above ( for ∼x). Then α ∈ Δ, q and

∼
y are inM� ,

and if � ′ ∈ S and h := h∗
�,�′ , then h acts as identity on α, q, and

∼
y, and (M�′

knows that) q �
∼
y = h(∼x). (And analogously for∼�(∼x) and∼�

–1(∼x) instead of ∼x.)

Proof. (1): Use Lemma 5.31 to get a q1 ∈ P� canonically reading ∼x. And if
� ∈ S then cf(�) = �+, so dom(p) is bounded by some α′ < � and, by Fact 5.32(1),
q1 ∈ Pα1 for someα′ ≤ α1 < � . As� ∈ C ∗,∼	(∼x) and∼	

–1(∼x) areP� -names. So repeat
the same argument to get q ≤ q1 in Pα canonically reading all three subsets of �.

(2): Apply (1) insideM� . As α ∈ � ∩M� , we get α ∈ Δ. As q canonically reads
itself as well as

∼
y, we know that h does not change q and

∼
y. As h is an isomorphism,

we know that h(q) = q forces that h(∼x) = h(
∼
y) =

∼
y. �

5.8. Majority decisions. For any (a1, a2, a3) with ai ∈ {0, 1} there is a b ∈ {0, 1}
such that b = ai for at least two i ∈ {1, 2, 3}. We write b = majori=1,2,3(ai).

Similarly, if f1, f2, f3 are functions A→ 2 we write majori=1,2,3(fi) for the
function A→ 2 that maps � to majori=1,2,3(fi(�)).

The following is a central point of the whole construction:

Lemma 5.43. Let (Mα, pα)α∈S be a Δ-system. Pick �0 < �1 < �2 < �3 in S.

(1) p∗ forces: If
∼
�
�0

=∗ majori=1,2,3(
∼
�
�i

), then ∼a�0 =∗ majori=1,2,3(∼a�i ).

(2) Let s =
∧
i<4 p�i . Recall that s(�i) is the same Psup(Δ)-name called p̃ for all i.

We can strengthen s by strengthening, for i = 1, 2, 3, the condition s(�i) = p̃
to some P�0+1-names ri ≤ p̃ (without changing C p̃) such that the resulting
condition forces

∼
�
�0

= majori=1,2,3(
∼
�
�i

).

(We do not have to strengthen s(�0) for this, i.e., we can use r0 := p̃.)

We describe this by “(ri)i<4 honors majority.”
Recall that �1 =∗ �2 denotes that �1(�) = �2(�) for all but <� many � ∈ �.

Proof. (1) Identifying 2� withP(�), we have majori=1,2,3 fi = (f1 ∩ f2) ∪ (f2 ∩
f3) ∪ (f1 ∩ f3) for any tuple (fi)i=1,2,3. As ∼	 represents an automorphism, we get

∼	(majori=1,2,3(fi)) =∗ majori=1,2,3(∼	(fi)). Apply this to fi :=
∼
�
�i

.
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(2) Work in the P�0+1-extension. Recall p̃ := p�0(�0). So both p̃ and
∼
�
�0

are

already determined, and
∼
�
�0

extends �p̃. Set r0 := p̃.

Set s1 := (0, 0), s2 := (0, 1), s3 := (1, 0). For � ∈ C p̃ and i = 1, 2, 3, we define
ri(�) ⊇ p̃(�) as follows:

Extend sp̃� by si , i.e., sri� := (sp̃� )�si ; and set ri(�)(�) :=
∼
�
�
(�) for � ∈ [sp̃� ] \ [sri� ].

(5.44)

So �ri agrees on its domain with
∼
�
�0

, and each � ∈ � is in dom(�ri ) for at least two

i ∈ {1, 2, 3}. Accordingly, an extension by a generic filter G with ri ∈ G(�i) for all
i < 4 will satisfy

∼
�
�0

= majori=1,2,3(
∼
�
�i

). (We do not even have to assume that any

p� ∈ G .) �
Remark 5.45. Let p′�1

be the condition where we strengthen p�1(�1) to r1. Note
thatp′�1

is not inM�1 , as �0 /∈M�1 and r1 is defined using
∼
�
�0

. Similarly (basically the

same): r1[G�1 ] /∈M�1 [G�1 ], even if we assume thatG�1 isM�1 -generic. But generally
we will not be interested inM� -generic conditions or extensions (we needed generic
conditions only in Lemma 5.27, which in turn is needed for Corollary 5.40). And
while usually most conditions we consider can be constructed within (and therefore
will be elements of) someM� , this is generally not required (an example are the si ’s
in the following lemma).

The same proof works if we do not start with the p� but with any stronger
conditions, as long as they still “cohere” in the way that the p�i cohere:

Lemma 5.46. Let (Mα, pα)α∈S be a Δ-system, �0 < �1 < �2 < �3 in S, and si ≤
p�i for i = 0, 1, 2, 3 such that:

• dom(si ) ⊆M�i .
• s∗ := si � �i is the same for all i.
• s∗ forces that the si (�i ) are the same for all i.

(In the usual sense: The si (�i ) are continuously read from generics below �0 in
the same way for each i < 4.)

Then there is condition stronger than all si forcing that
∼
�
�0

= majori=1,2,3(
∼
�
�i

) and

thus ∼a�0 =∗ majori=1,2,3(∼a�i ).

5.9. ∼a� is in the � + 1extension. We now show that ∼a� can be assumed to be a
P� -name.

The following definitions, in particular everything concerning the notion of
coherence, is used only in this section. In the rest of the paper, we will use from
this section only Lemma 5.54, i.e., the fact that ∼a� ∈ V�+1.

Remark. Why do we introduce this (rather annoying) notion of coherence? Well,
we would like to simultaneously construct something like si ≤ p�i where each si ends
up inM�i . We cannot directly do this inM�0 , asM�0 does not know about, e.g., �1.
So instead, we construct four different s ′i ≤ p�0 inM�0 in such a way (a “coherent”
way) and use si := h∗�0,�i

(s ′i ).
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Let us for now (until Lemma 5.54) fix an arbitrary Δ-system (M�, p�)�∈S as well
as �0 < �1 < �2 < �3 in S. For notational convenience, set

� := �0.

Definition 5.47.

• q̄ = (qi )i<4 in M� is called coherent, if each qi is stronger than p� and qi �
(� + 1) is the same for all i < 4.

• If q̄ is coherent, then
∧
i<4 h

∗
�,�i

(qi ) is a valid condition in P, and we call it q∗.
I.e., q∗ is the union of the copies of qi inM�i ; and the copy for q0 is just q0.
r ∈ P is called coherent, if r = q∗ for some coherent q̄ ∈M� .

Facts.

• The p�i are coherent, more correctly:
The condition

∧
i∈4 p�i is coherent; equivalently: The tuple

(
h∗–1
�,�i

(p�i )
)
i<4 is

coherent.
• Any coherent r is stronger than

∧
i<4 p�i .

• If q̄ is coherent, ri ≤ qi inM� for i < 4, and ri � �i is the same for all i < 4, then∧
i<4 h

∗
�,�i

(ri ) is (a valid condition and ) compatible with q∗.
• r ∈ P is coherent iff : dom(r) ⊆

⋃
i<4M�i , r � (� ∩M�i ) ∈M�i is stronger than

p�i , and each r(�i ) is forced to be the same condition.
In that case, r = q∗ for qi := h∗–1

�,�i
(ri ) and ri := r � (� ∩M�i ).

Lemma 5.48. If r is coherent, then it can be strengthened11 to force12
∼a�0 =

majori=1,2,3 ∼a�i .

Proof. This follows from Lemma 5.46, using si := r � (� ∩M�i ). �
Definition 5.49.

• w̄ = (wi )i<4 is coherent, ifwi ∈ [�]<� is inM� andwi ∩ (� + 1) is independent
of i.

In the following we always assume that q̄ and w̄ are coherent.
• q̄ fits (w̄, �), if each qi fits (wi , �).
• q̄ is (w̄, �)-canonical, if each qi is (wi , �)-canonical.
• r̄ ≤+

w̄,�
q̄ means: r̄ is coherent, and ri ≤+

wi ,�
qi for all i < 4.

• x̄ = (xi )i<4 is defined to be in poss(q̄, w̄, �) if xi ∈ poss(qi , wi , �) and xi � � is
independent of i. Such a x̄ will be called coherent possibility.

(Note that the xi (�) in a coherent possibility can be different for different
i < 4. Also note that such an x̄ is automatically inM� , which is <�-closed.)

Note that if r̄ ≤+
w̄,� q̄ and q̄ is (w̄, �)-canonical, then r̄ and q̄ have the same coherent

(w̄, � + 1)-possibilities (see Fact 5.29(1)).
Several of the previous constructions result in coherent 4-tuples when applied to

coherent 4-tuples. In particular:

11To a condition that will generally not be coherent.
12Here we write �0 instead of � to stress the interaction with �1, ... , �3, but recall that � := �0.
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Lemma 5.50.

(1) Assume (q̄j)j∈ is a sequence of coherent 4-tuples such that, for each i < 4, the
i-part (qji )j∈ satisfies the assumptions of Lemma 5.18.

Then for each i, the lemma (inM�) gives us a limit r, which we call qi .
We can choose the qi so that they form a coherent 4-tuple.

(2) The same applies to Lemma 5.19. That is, we can get a coherent fusion limit
from a �-sequence of coherent tuples.

(3) Assume p̄ fits (w̄, �), and αi ∈ � such that w′
i := wi ∪ {αi} is coherent. Then

there is a � > � and a q̄ ≤+
w̄,� p̄ which fits (w̄′, �) and is (w̄′, �)-canonical.

(4) Assume q̄ is coherent and ( for simplicity) (w̄, �)-canonical with � ∈ wi (which
is independent of i < 4), and∼�i are names of ordinals. Then there is an r̄ ≤+

w̄,� q̄

such that ∼̄� is (w̄, � + 1)-decided by r̄.
By this we mean that ∼�i is (wi , � + 1)-decided by ri for all i < 4.

Proof. For the first items, we just have to look at the proofs of the according
lemmas (For (3) this is Preliminary Lemmas 5.23 and 5.24) and note that coherent
input gives us coherent output. In the following we will prove (4). We work inM� .

Enumerate all coherent possibilities as (x̄k)k∈K . Set r̄0 := q̄. We now construct
r̄k+1 from r̄ := r̄k where we assume r̄k ≤+

w̄,� q̄.
• Find s0 stronger than r0 and extending x0, deciding ∼�0.
• s∗ := (s0 � �) ∧ r1 is stronger than r1, as r̄ is coherent. Strengthen s∗(�) =
r1(�) = r0(�) to s0(�), but replace the trunk withx1(�). Then s∗ � � forces that
s∗(�) ≤ r1(�), as x1 � � = x0 � � and as x1(�) is guaranteed to be possible,
because r1 is canonical. Further strengthen s∗ (above �) to extend (the rest of)
x1; and then strengthen the whole condition once more to decide ∼�1. Call the
result s1.

• Do the same for i = 2, starting with s1, resulting in s2, and then for i = 3,
starting with s2, resulting in some s3.So si ≤ ri extends xi and decides ∼�i , and
s3 � � ≤ si � � and s3(�) is stronger than si (�) “above � + 1.”

• We define r′i ≤ ri as follows: dom(r′i ) = (dom(s3) ∩ �) ∪ dom(si ). We define
r′i (α) inductively such that r′i � α ≤+

wi∩α,� ri forces that xi � α � G implies
si � α ∈ G .

– For α ≤ � :
If s3 � α /∈ Gα , set r′i (α) = ri (α). Assume otherwise. So s3(α) is defined

and stronger than ri (α) = r3(α). If α /∈ wi (which implies α < �), set
r′i (α) = s3(α). Otherwise, use s3(α) ∨ (r3(α) � � + 1), as in Lemma 5.8.

– For α > � , we do the same but we use si instead of s3. In more detail:
If si � α /∈ Gα , set r′i (α) = ri (α). Assume otherwise. If α /∈ wi , set
r′i (α) = si (α). Otherwise, use si (α) ∨ (ri (α) � � + 1).

We can use this r̄′ as r̄k+1: It is coherent, r̄′ ≤+
w̄,�
r̄k , and r′i decides ∼�i

assuming xi � G . �
Coherent tuples q̄ naturally define a P-condition q∗. However, we have to assume

that q̄ is canonical to guarantee that coherent q̄ possibilities correspond to q∗-
possibilities:

Lemma 5.51. Assume q̄ and w̄ coherent. We set w∗ :=
⋃
i<4 h

∗
�,�i

(wi). Let x̄ be in
poss(q̄, w̄, � + 1).
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(1) q̄ fits (w̄, �) iff q∗ fits (w∗, �).
(2) r̄ ≤+

w̄,� q̄ iff r∗ ≤+
w∗,� q

∗.
(3) Assume q̄ fits (w̄, �). Then q̄ is (w̄, �)-canonical iff q∗ is (w∗, �)-canonical.
(4) Assume that q̄ is (w̄, �)-canonical. Let x∗ be the union of the h∗�,�i (xi). Then
x∗ ∈ poss(q∗, w∗, � + 1); and every element of poss(q∗, w∗, � + 1) is such an
x∗ for some x̄ ∈ poss(q̄, w̄, � + 1).

(5) Assume that q̄ is (w̄, �)-canonical. Then q̄(w̄, � + 1)-decides (∼�i)i<4 iff
q∗(w∗, � + 1)-decides all h∗�,�i (∼�i).

Proof. Assume α ∈ wi . Set α′ := h∗�,�i (α) ∈ w∗ and q′ := h∗�,�i (qi).

(1) Assume qi , α satisfy qi � α � � ∈ Cqi (α). By absoluteness they satisfy it in
M� , so the h∗�,�i -images q′, α′ satisfy it in M�i , which again is absolute; and q∗ �
α′ ≤ q′ � α′ forces that q∗(α′) = q′(α′). For the other direction, assume (in M�)
some s ≤ qi � α forces � /∈ Cqi (α). Then h∗�,�i (s) is compatible with q∗ and forces

� /∈ Cq′i (α′) = Cq
∗(α′).

In the same way we can show (2), as well as (5) and the trivial directions of
(3) and (4). For example, if q̄ is (w̄, �)-canonical, then q∗ is (w∗, �)-canonical. For
this, use the fact that every element y∗ ∈ poss(q∗, w∗, � + 1) “induces” a coherent
possibility ȳ (which is true whether q̄ is canonical or not). And if additionally x̄ ∈
poss(q̄, w̄, � + 1), then x∗ ∈ poss(q∗, w∗, � + 1); and if each qi forces that xi � G
implies ∼�i = xi , then q∗ forces that x∗ �G implies h∗�,�1

(∼�i) = h∗�,�1
(xi).

We omit the (also straightforward) proofs of the other directions of (3) and (4)
(which we do not need in this paper). �

In the following, whenever we mention q∗ or w∗, we assume w̄, q̄ to be coherent
and inM� . We will (and can) use x∗ only if q̄ additionally is canonical (otherwise
x∗ will generally not be a possibility for q∗). In this case, every P-generic filter
containing q∗ will select an x∗ for some coherent possibility x̄.

Lemma 5.52. Assume q̄ is coherent, ∼�i are P-names inM� for elements of 2�, and13

q0 � ∼�0 /∈ V�+1. Then there is a coherent r̄ ≤ q̄, and sequences (�j)j∈� and (w̄j)j∈�
such that r̄ is (w̄j , �j)-canonical for all j, and for all x̄ ∈ poss(r̄, w̄j , �j + 1) there is
some � ∈ I ∗(>�j,<�j+1) and b̄ = (bi)i<4, with bi ∈ 2, violating majority14 such that
for all i < 4

ri � xi � G → ∼�i(�) = bi .

As the p�i are coherent, we can apply the lemma to ∼�i := ∼a� (for all i) and get:

Corollary 5.53. Ifp� � ∼a� /∈ V�+1, then there is a coherent r∗ ≤
∧
i<4 p�i forcing

that

¬
(
∼a�0 =∗ majori=1,2,3(∼a�i )

)
.

Proof of the lemma. We will construct (inM�), by induction on j ∈ �, �j , w̄j
and r̄j with r0i = qi , such that the following holds:

13As usual, V�+1 denoted the P�+1-extension.
14That is, b0 = 1 – majori=1,2,3(bi ).
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(1) r̄j is coherent.
(2) w̄j is coherent, for each i < 4 the wji are increasing with j, and their union

covers
⋃
j∈� dom(rji ).

(3) r̄j is (w̄j , �j)-canonical.
(4) r̄k ≤+

w̄j ,�j
r̄j for j < k.

(5) If x̄ ∈ poss(r̄j , w̄j , �j + 1), then there is an � ∈ I ∗(>�j,<�j+1) and a b ∈ 2
such that for at least two i1, i2 in {1, 2, 3}, rj+1

i forces that xi � G implies

∼�0(�) = 1 – b, ∼�i1(�) = b, ∼�i2 (�) = b. (∗)

Then we take the usual fusion limits, as in Lemma 5.50(2), and are done.
For limits j, let r̄′ be a (coherent) limit of (r̄j

′
)j′<j , and set �∗ := supj′<j(�

j′) and

w∗
i :=

⋃
j′<j w

j′

i for each i < 4. Note that r̄′ fits (w̄∗, �∗). Then we can find coherent
r̄∗ ≤+

w̄∗,�∗ r̄
′ which is (w̄∗, �∗)-canonical, as in Lemma 5.50(3).

In successor cases j = j′ + 1 set (r̄∗, w̄∗, �∗) := (r̄j
′
, w̄j

′
, �j

′
).

In any case we want to construct r̄j , w̄j , and �j .
Enumerate poss(r̄∗, w̄∗, �∗ + 1) as (x̄k)k∈K .
We define s̄k for k ≤ K , with s̄0 := r̄∗ and, as usual, taking (coherent) limits at

limits, such that:

• s̄k is coherent.
• s̄ � ≤+

w̄∗,�∗ s̄
k for k < � < K . (This implies that s̄k is (w̄∗, �∗)-canonical.)

• There is a �k and an � ∈ I ∗(>�∗, <�k) and a b ∈ 2 such that

sk+1
0 � xk0 �G →∼�0(�) = 1 – b and (∃≥2i ∈ {1, 2, 3}) sk+1

i � xki
� G →∼�i (�) = b. (∗∗)

Assume we can construct these s̄k , �k for all k ∈ K , then let s̄K be again a
(coherent) limit. We set wji := w∗

i ∪ {αj} such that w̄j is coherent (and such that,
by bookkeeping, all elements of dom(pji ) will be eventually covered), and find some
�j > supk∈K (�k) and r̄j ≤+

w̄∗,�∗ r
∗ which is (w̄j , �j)-canonical, again as in Lemma

5.50(3). Then r̄j , w̄j and �j are as required.
So it remains to construct, for k ∈ K , s̄k+1 and �k , which we will do in the rest

of the proof. Set s̄ := s̄k , x̄ := x̄k , w̄ := w̄∗, and � := �∗. Recall that s̄ is (w̄, �)-
canonical, x̄ ∈ poss(s̄, w̄, �), and we are looking for s̄k+1 ≤+

w̄,� s̄ which satisfies (∗∗)
for x̄.

Set s ′i := si ∧ xi . It is enough to construct ti ≤ s ′i such that:

• Both ti � � and ti (�) � (� \ � + 1) are independent of i.
• t0 �∼�0(�) = 1 – b and (∃≥2i ∈ {1, 2, 3}) ti �∼�i (�) = b.

Then we can define s̄k+1 in the usual way: dom(sk+1
i ) = dom(ti) (and we can assume

dom(si) = dom(ti), by using trivial conditions). For α ∈ dom(ti), if ti � α /∈ Gα
then set sk+1

i (α) to be si(α), otherwise ti(α) ∨ (si(α) � � + 1) if α ∈ wi and ti(α)
otherwise. The resulting s̄k+1 ≤+

w̄,� s̄ is coherent and sk+1
i forces that xi � G implies

ti ∈ G .
We have to introduce more notation: Fix j �= i , and a ≤ s ′j and b ≤ s ′i � � + 1 (in

P�+1) such that b � � ≤ a and b � � forces that b(�) is stronger than a(�) above �
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(i.e., b � � � (∀� > �) b(�)(�) ⊇ a(�)(�)). Then we define b[j] ∧ a by

(b[j] ∧ a)(α)(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b(α)(�), if α < �,
xj(�)(�), if α = � and � ≤ �,
b(�)(�), if α = � and � > �,
a(α)(�), otherwise.

Note that b[j] ∧ a is stronger than a, but generally not stronger than b.
By our assumption, q0 and therefore s ′0 forces ∼�0 /∈ V�+1. So in an intermediate

model V [G�+1], there is some � ∈ I ∗(>�) such that s ′0/G�+1 does not decide ∼�0(�).
Back in V, fix some b0 ≤ s ′0 � (� + 1) in P�+1 which determines this �.

Find r′1 ≤ b[1]
0 ∧ s ′1 which determines ∼�1(�) to be j1 for some j1 ∈ 2. Find r′2 ≤

(r′1 � � + 1)[2] ∧ s ′2 which determines ∼�2(�) to be j2; analogously find r′3 ≤ (r′2 � � +
1)[3] ∧ s ′3 which determines ∼a(�) to be some j3. Let j ∈ 2 be equal to at least two of
j1, j2, j3.

Set p := (r′3 � � + 1)[0] ∧ s ′0. In any P�+1-extension honoring p � � + 1,
∼∼
�0(�) is

not determined by p/G�+1, i.e., there is a t0 ≤ p forcing that ∼a(�) = 1 – j.
We now set and ti := (t0 � � + 1)[i ] ∧ r′i for i = 1, 2, 3. Note that ti ≤ r′i ≤ s ′i

extends xi and forces ∼�i(�) to be 1 – j if i = 0 and to be j for at least two i in
{1, 2, 3}. �

We can now easily show:

Lemma 5.54. For all but non-stationary many � ∈ S�
�+

p∗ � ∼a� ∈ V�+1.

Proof. We started in this section with an arbitrary Δ-system and showed that
Corollary 5.53 and Lemma 5.48 hold for this system.

We now use a specific Δ-system:
Assume towards a contradiction that on a non-stationary set S ′ there are p� ≤ p∗

forcing ∼a� /∈ V�+1. By strengthening we can assume that p� canonically reads ∼a� .
Let M� contain p� and let S ⊆ S ′ be such that (M�, p�)�∈S is a Δ-system. Fix
�0 < �1 < �2 < �3 in S. By Corollary 5.53 we get a coherent r̄ stronger than p̄ such
that r∗ � ¬

(
∼a�0 =∗ majori=1,2,3(∼a�i )

)
. This contradicts Lemma 5.48. �

5.10. Fixing the Δ-system. We now know that there is a stationary set S0 ⊆ S�
�+

such that for all � ∈ S0,∼a� is forced (by p∗) to be inV�+1 but not inV� (see Lemmas
5.39 and 5.54).

For each � ∈ S0 there is a p′� ≤ p∗ in P forcing that ∼a� is equal to some P�+1-
name, call it ∼a

∗
� , and we choose p� ≤ p′� (we only have to strengthen the part below

� + 1) which canonically reads ∼a
∗
� .15

We now fix, as usual, for each � ∈ S0, some elementary modelM� containing p� ,
and fix S ⊆ S0 such that (M�, p�)�∈S is a Δ-system.

15So p� � � + 1 reads ∼a
∗
�

, but generally the whole p� may be required to force ∼a� = ∼a
∗
�

.
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So p∗∗ := p� � � ≤ p∗ is independent of � ∈ S (it is a Pα-condition for some α ∈
Δ, independent of � ∈ S); and∼a

∗
� is read continuously byp� � � + 1 via (w′

�)�∈E′ for
someE ′ ⊆ � club, withw′

� ⊆ � + 1. As usual, due to homogeneityE ′ is independent
of � ∈ S, and the w′

� are independent of � apart from the shifting of the final
coordinate � via the mapping h∗�0,�1

; the same holds for the decision functions that
map poss(p�, w′

� , � + 1) to ∼a� � I ∗(<� + 1).
Let E be the limit points of E ′, and set w� :=

⋃
�<� w

′
� . Then ∼a� � I ∗(<�) is

(w�, �)-determined by p� for all � ∈ E.
In the P� -extension, only

∼
�
�

remains undetermined, i.e., there are f� for � ∈ E
such that p�/G� forces ∼a� � I ∗(<�) = f�(∼��

� I ∗(<�)). The f� are canonically

read from p� � � in a way independent of � (due to homogeneity).
Recall that x ∈ poss(p̃, �) is equivalent to: x ∈ 2I

∗(<�) and x extends �p̃ � I ∗(<�).
So the domain of f� is poss(p̃, �).

To summarize:

Fact 5.55. (M�, p�)�∈S satisfies:

• p� � � =: p∗∗ ≤ p∗ is a Psup(Δ)-condition independent of � ∈ S.
• p�(�) =: p̃ is a Psup(Δ)-name independent of � ∈ S.
• There is a club-set E ⊆ � and, for � ∈ E, Psup(Δ)-names

∼
f� : poss(p̃, �) →

2I
∗(<�) such that for all � ∈ S and � ∈ E

p� � ∼a� � I
∗(<�) =

∼
f�(∼��

� I ∗(<�)).

• If � ∈ S, ∼x ⊆ � is a P� -name, q ≤ p∗∗ in P� , and q,∼x are in M� , then we can
find α ∈ Δ and p′∗∗ ≤ q in Pα which continuously reads ∼x, ∼�(∼x), and ∼�

–1(∼x)
independently16 of � .

The last item follows from Lemma 5.42; and we will use it several times: Before
Corollary 5.59 we find p2

∗∗ ≤ p∗∗ to get names for U, F� etc. that are independent of
� ; before Lemma 5.63 we get p3

∗∗ ≤ p2
∗∗ to get independent names for some unions,

intersections, and ∼	-images; and finally after Corollary 5.70 we choose q ≤ p3
∗∗ to

get an independent name for the generator fgen.

5.11. Local reading. So we know that we can determine initial segments of ∼a�
from initial segments of

∼
�
�
, more specifically, we can determine

∼
�
�
� I from ∼a� � I

for I := I ∗(<�).
In this section we show that on unboundedly many disjoint intervals of the form

A := I ∗(≥ �,< �), we can read ∼a� � A from just
∼
�
�
� A (without having to use the

∼
�
�
-values below A).

The following definition (the notion of candidate) is only used in this section. In
the rest of the paper we only need Corollary 5.59.

16This means: p′∗∗ ∈M� for all � ∈ S, and there is a way (independent of � ∈ S) to continuously
read

∼
y1,∼
y2,∼
y3 modulo p′∗∗ from the generics below α, and for all � ∈ S we have that p′∗∗ ∧ p� forces

∼
y1 = ∼x

′,
∼
y2 =∼�(∼x

′) and
∼
y3 =∼�

–1(∼x
′), where ∼x

′ := h∗
�,�

(∼x).
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In the following, we work in V� , the P� -extension V [G� ] where we assume � ∈ S
and p∗∗ ∈ G� .

Definition 5.56. (In V�)
• For A ⊆ � and x̄ = (xi )i<4, xi : A→ 2, we say x̄ honors majority above �, if

x0(�) = majori=1,2,3 xi (�) for all � ∈ A ∩ I ∗(≥�).

We say x̄ honors p̃, if each xi is compatible with �p̃ (as partial functions).
• x̄ = (xi )i<4 is a (�0, �1)-candidate, (for �0 ≤ �1 both in E) if thexi ∈ poss(p̃, �1)

honor majority above �0.
(As elements of poss(p̃, �1) they automatically honor p̃.)

• If x̄ is a (�0, �1)-candidate, we say “ȳ extends x̄” if ȳ is a (�1, �2)-candidate17

for some �2 ≥ �1 and each yi extends xi .
Equivalently, ȳ = x̄�b̄ for some b̄, with bi : I ∗(≥�1, <�2) → 2, which

honors both majority and p̃.
• A (�0, �1)-candidate ȳ is “good,” if for every candidate z̄ of height � > �1 that

extends ȳ we have:

f�(z0)(�) = majori=1,2,3 f�(zi )(�) for all � ∈ I ∗(≥�1, <�). (*1)

Preliminary Lemma 5.57. (In V� .) Every candidate can be extended to a good
candidate.

Proof. Assume otherwise, i.e., there is a (� ′, �0)-candidate x̄ which is a
counterexample, which means:

Whenever ȳ is a (�0, �1)-candidate extending x̄ then there is a

� > �1 and a (�1, �)-candidate z̄ extending ȳ which violates (∗1).

We now construct r0 ≤ p̃ and, for i = 1, 2, 3, Q� -names ri ≤ p̃. All these
conditions live on the same C ∗ ⊆ E with min(C ∗) = �0. The trunk of ri is xi .

We now construct inductively C ∗ � � and ri � � .
Assume we have determined that � ∈ C ∗ and we have constructed each ri below

� . Set r0(�) := p̃(�) and pick ri(�) as in (5.44), i.e., they have majority
∼
�
�

and leave

enough freedom to form a valid condition.
We will now construct the C ∗-successor � of � , together with ri on I ∗(>�,<�).
Enumerate all (�0, � + 1)-candidates extending x̄ as (ȳk)k∈K .
Let ā0 be the empty 4-tuple and set �0 := � + 1. We will construct, for k ∈ K , �k

and some āk that honors majority and p̃, where aki has domain I ∗(≥� + 1, <�k)
and extends aji if j < k.

If k is a limit, let āx be the (pointwise) union of āj with j < k, and set �k :=
supj<k(�j).

Assume we already have āj . Extend ȳj
�
āj to some candidate ȳj

�
āj+1 of some

height �j+1 in E such that

ȳj
�
āj+1 violates (∗1) for some � ∈ I ∗(≥�j,<�j+1). (*3)

We can do this due to (*2).

17Or equivalently, a (�0, �2)-candidate.
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So in the end we get some � > � in E and b̄� with domain I ∗(>�,<�) honoring
majority and p̃ such that

for every (�0, � + 1) – candidate ȳ extending x̄, ȳ�b̄� is a (�0, �) – candidate

violating (∗1) for some � ∈ I ∗(>�,<�). (*4)

We then define C ∗ below � + 1 by adding only �, i.e., � is the C ∗-successor of � . We
extend the conditions ri by b�i for i < 4. That is, we have �ri (�) = b�i (�). This ends
the construction of ri ≤ p̃.

Back in V, assume that (*2) is forced by some q′ ≤ p� � � . Pick an increasing
sequence �i (i < 4) in S. We take the union of q′ and the p�i , call it s, and strengthen
s(�i) = p̃ to ri . The resulting condition s ′ forces the following:

• ∼a�i � I ∗(<�) = f�(∼��i
� I ∗(<�)) for all � ∈ C ∗. This is because s ′ ≤ p�i (cf.

Fact 5.55).
• The

∼
�
�i

honor majority above �0. This is because for all � ∈ C ∗, the ri (�) are

chosen as in (5.44) and therefore honor majority; and for � ∈ � \ (C ∗ ∪ �0) we
use values b̄ which honor majority.

• Accordingly, the ∼a�i honor majority above some � < � (cf. Lemma 5.43(1)).
Pick �1 such that sup(I ∗(<�1)) > �.

• So for all � > �1 the f�(∼��i
� I ∗(<�)) honor majority above �1.

• Pick some � > �0, �1 inC ∗ withC ∗-successor �. By construction of the ri ,∼��i
�

I ∗(≥� + 1, < �) is b�i . As ri extends xi , ȳ :=
∼
�
�i

� I ∗(<� + 1) is a (�0, � + 1)-

candidate extending x̄. So by (*4), the
∼
�
�i

� I ∗(<�) violate (*1) at some � ∈
I ∗(> �,< �), a contradiction. �

Let U ⊆ � be club. Set U odd to be the odd elements18 of U. For � ∈ U odd with
U-successor �, set

AU� := I ∗(≥�,<�)

Lemma 5.58. (InV� .) There is an r0 ≤ p̃, a clubU ⊆ Cr0 ⊆ E, and, for � ∈ U odd,

an F� : 2A
U
� → 2A

U
� such that:

• r0 ∧ p�/G� forces that F�(∼��
� AU
�

) = ∼a� � AU� .

• F� is not constant: There are, for k = 0, 1, zk� in poss(r0, I ∗(<�)) and �� ∈ AU�
such that F�(zk� � AU

�
)(��) = k. (Again, � is the U-successor of �.)

(Note: Only those elements of 2A
U
� that are compatible with r0 are relevant as

arguments for F� .)

Proof. We construct ri for i < 4 and U iteratively; Cri will be independent of i,
call it C.

18That is, if (uα)α<� is the canonical enumeration of U, then � ∈ U is in U odd if � = u+2n+1 for  a
limit (or 0) and n ∈ �.
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All ri have the same trunk as p̃; i.e., min(C ) = min(C p̃) =: �0 and ri � �0 := p̃ �
�0. We also set min(U ) = �0.

For all � ∈ C , we choose some r∗i (�) as in (5.44), i.e., r∗0 (�) = p̃(�), and the r∗i (�)
for i = 1, 2, 3 are such that the majority of their generics would be the r∗0 (�)-generic.

Assume that we already know that some � is in U (which is a subset of C), and
that we know ri � � for i < 4.

We now construct the U-successor � of � , C � [�, �], and ri(�) for i < 4 and
� ∈ [�, �).

• Even case: If � is an even element of U, we start with ri (�) := r∗i (�), but then
add a “shield,” or “isolator” above �: As in the previous proof, we iterate over
all � + 1-candidates ȳj , but but in (*3), instead of violating (*1) for some �, we
demand that ȳj�z̄j+1 is good. (We already know that every candidate can be
extended to a good one.) Accordingly, we get some � > � and b̄� with domain
I ∗(>�,<�) (and honoring majority and p̃) such that ȳ�b̄� is good for every
candidate ȳ of height � + 1; i.e.:

If z̄ is a (� + 1, �)-candidate whose restriction to I ∗(>�,<�) is b̄� , then the

f�(zi ) honor majority above �. (∗′4)

We now let this � be the successor of � in both C and U (and extend each pi (�)
by bi ).

• Odd case: Now assume � is odd in U. Then we choose some � > � in C p̃ large
enough such that there are, for k = 0, 1, zk� in poss(p̃, �) compatible with all

the r0 constructed so far, such that the f�(zk� )(�) = k for some � > I ∗(<�).
(Such � and � have to exist as ∼a� is not in V� .)

We let C restricted to [�, �] be the same as C p̃, and set ri (�) := r∗i (�) for
� ∈ C ∩ [�, �). (For � ∈ [�, �) \ C there is no freedom left, i.e., p̃(�) is already
completely determined, so the only choice for any r ≤ p̃ is r(�) = p̃(�).)

This ends the construction of U and of ri (for i < 4).
Pick � ∈ U odd, let � be the U-predecessor and � the U-successor. We have to show

that we can determine (modulo p�) ∼a� � I ∗(≥ �,< �) from
∼
�
�
� I ∗(≥ �,< �) alone.

(We already know that we can determine it from
∼
�
�
� I ∗(< �).)

Fix any z�∗ ∈ poss(r0, � + 1). Let x0 ∈ poss(r0, �). In particular x0 extends b�0 . For
i = 1, 2, 3, let xi be the copy of x0 with the initial segment x0 � � replaced by z�∗�b

�
i .

Note that x̄ is a candidate extending b̄� . Accordingly the f�(xi) honor majority
above �. So we can define

F�(x0 � AU� ) := majori=1,2,3 f�(xi) � AU� = f�(x0) � AU� .

This is well-defined,19 and r0 ∧ p�/G� forces that F�(x0 � AU� ) = ∼a� � AU� . �
We now summarize this lemma, which was shown inV� for some � ∈ S, from the

point of view of the ground model. The lemma only uses the parameters
∼
�
�

and ∼a�

19Assume y and x in poss(r0, �) are the identical restricted to AU
�

. Then y defines the same (xi )i=1,2,3
and thus the same F� .
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(and p̃, which is just
∼
�
�
(�)), so by absolutenessM� knows that the Lemma is forced

by p∗∗. Accordingly, we can find P� -names for U, F� , etc. inM� . Using the last item
of Fact 5.55, we can strengthen p∗∗ to p2

∗∗ to canonically read these names:

Corollary 5.59. There is an α ∈ Δ, a p2
∗∗ ≤ p∗∗ in Pα and Pα-names for: A

condition r0 ≤ p̃, a set U, and a sequence (F�, z0
� , z

1
� , �

0
� , �

1
� )�∈U , such that the following

holds for all � ∈ S, where we set

p+
� to be the condition p2

∗∗ ∧ p� where we strengthen p�(�) to r0.

(1) α, the condition p2
∗∗ and all the names are inM� .

(2) p2
∗∗ � U ⊆ Cr0 ⊆ � club.

(3) For k = 0, 1: p2
∗∗ � ∀� ∈ U odd

(
zk� ∈ poss(r0, I ∗(<�)) & �� ∈ AU� &F�(zk� �

AU� )(��) = k
)

.

(4) p+
� � (∀� ∈ U odd)F�(∼��

� AU� ) = ∼a� � A� , where we define

A� to be I ∗(≥�,<�) with � the U -successor of �.

5.12. Finding the generator. In this section we use these p2
∗∗, r0, (F�, z0

� , z
1
� , �

0
� ,

�1
� )�∈U .

We start working in V� = V [G� ], where we assume p2
∗∗ ∈ G� .

Let � ∈ U odd and � its U-successor. Set

A� := I ∗(≥�,<�), A?
� := A� \ dom(�r0 ),

odd :=
⋃

�∈Uodd

A�, odd
? :=

⋃
�∈Uodd

A?
� = odd \ dom(�r0 ). (5.60)

For F� it is enough to use
∼
�
�
� A?

� as input (the part in A� \ A?
� is determined

anyway by r0), and every element of 2A
?
� is compatible with r0 (and thus a possible

input for F�). Identifying 2B and P(B) as usual, we get

F� : P(A?
�) → P(A�)

is such that p+
� /G� forces

F�(∼��
∩ A?

�) = ∼a� ∩ A�.

We now define

F : P(odd
?) → P(odd) by x �→

⋃
�∈Uodd

F�(x ∩ A?
�).

So in particular p+
� /G� forces that

F (
∼
�
�
∩ odd

?) = ∼a� ∩ odd. (5.61)
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Note that for every z ⊆ odd
? (in V� that is) there is an r′ ≤ r0 forcing that

∼
�
�
∩ odd

? = z. (C ′ := U \U odd is club, so it is enough to leave freedom at C ′ and

we may assign arbitrary values everywhere else.)
Back in the ground model V, using the last item of Fact 5.55 again, we can

strengthen p2
∗∗ to p3

∗∗ so that20

p3
∗∗ canonically reads each of the following (countably many) sets: (5.62)

• (A�)�∈U odd , odd, r0, (A?
�)�∈U odd , odd

? (actually, these are already read by r2∗∗).

• The closure of these sets under ∼	, ∼	
–1, finite unions, and finite intersections.

In particular, the (names for) all these sets are independent of � ∈ S, modulo
p3
∗∗.21

Lemma 5.63. (In V) p3
∗∗ � |∼	(odd

?) ∩ odd| = �.

Proof. Let q ≤ p3
∗∗ in P� be arbitrary. We have to show that q does not force (in

P�) |∼	(odd
?) ∩ odd| < �.

For � ∈ U odd and k = 0, 1, use r0, p+
� , zk� and �� as in Corollary 5.59 and set

bk� := zk� ∩ A?
� .

For k = 0, 1, set Bk :=
⋃
�∈Uodd(bk� ). Note that F (B1) \ F (B0) contains {�� :

� ∈ U odd}, a set of size �.
Pick increasing (�i)i<4 in S with �0 = � . Set s := q ∧

∧
i<4 p

+
�i
∈ P.

Now for each i < 4, strengthen s(�i) (i.e., r0) as follows: At the even intervals in
some way that together they honor majority; and at the odd intervals (where we do
not have to leave freedom) to the value B sgn(i) (where sgn(k) = 0 for k = 0 and 1
for k = 1, 2, 3).

Accordingly, we have

∼	(
∼
�
�i

) ∩ odd = F (
∼
�
�i
∩ odd

?) = F (B sgn(i)),

or, when we split ∼	(
∼
�
�i

) into the parts in and out of ∼	(odd
?):

((
∼	(

∼
�
�i

) \∼	(odd
?)

)
∩ odd

)
∪

(
∼	(

∼
�
�i

) ∩∼	(odd
?) ∩ odd

)
=∗ F (B sgn(i)).

Now assume towards a contradiction that ∼	(odd
?) ∩ odd =∗ ∅. Then we get(

∼	(
∼
�
�i

) \∼	(odd
?)

)
∩ odd =∗ F (B sgn(i)). (5.64)

But on the other hand we have

∼
�
�0

\ odd
? = majori=1,2,3(

∼
�
�i
\ odd

?), so

∼	(
∼
�
�0

) \∼	(odd
?) =∗

∼	
(
∼
�
�0

\ odd
?) = ∼	

(
majori=1,2,3(

∼
�
�i
\ odd

?)
)

=∗

20We can do this for �many sets, of course; but we cannot assume, e.g., that∼	(z) ∈ V� for all z ∈ V� ,
let alone that each such ∼	(z) is canonically read by p3

∗∗.
21But we need p+

�
to force that these names have anything to do with ∼a� .
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=∗ majori=1,2,3

(
∼	(

∼
�
�i
\ odd

?)
)

=∗ majori=1,2,3

(
∼	(

∼
�
�i

)
\∼	(odd

?), and

(
∼	(

∼
�
�0

) \∼	(odd
?)

)
∩ odd =∗ majori=1,2,3

((
∼	(

∼
�
�i

) \∼	(odd
?)

)
∩ odd

)
.

Applying (5.64) to both sides of the last line, we getF (B0) =∗ majori=1,2,3 F (B sgn(i))
= F (B1), a contradiction. �

Set

∼X := odd
? ∩∼	

–1(odd). (5.65)

By choice of p3
∗∗, ∼X and ∼	(∼X ) are canonically read by p3

∗∗ (and independent of �).
We now show that F (z) ∩∼	(∼X ) = ∼	(z) for z ⊆ ∼X . Again, here we are talking

about z ∈ V� . To make that more explicit, let us formulate in the ground model V :

Lemma 5.66. For � ∈ S, p3
∗∗ �P�

(
|∼X | = �, and for all z ⊆ ∼X, p

+
� /G� �

∼	(z) =∗ F (z) ∩∼	(∼X )
)
.

(Note that, other than F (z), ∼	(z) will generally not be inV� , and we have to force
with p+

� /G� .)

Proof. Work in V� . |∼X | = � follows from Lemma 5.63, as ∼	(∼X ) =∗
∼	(odd

?) ∩
odd.

Set y :=
∼
�
�
∩ odd

?. So by (5.61), p+
� /G� ≤ r0 forces: F (y) = ∼	(

∼
�
�
) ∩ odd.

As ∼	(∼X ) ⊆∗
odd, we get F (y) ∩∼	(∼X ) =∗

∼	(
∼
�
�
) ∩∼	(∼X ). Then y ⊆∗

∼	
–1(odd)

(or equivalently, y ⊆∗
∼X ) implies y =∗ y ∩∼	

–1(odd) =
∼
�
�
∩ ∼X and thus ∼	(y) =∗

∼	(
∼
�
�
) ∩∼	(∼X ). To summarize:

p+
� /G� �

(
y ⊆∗

∼X → ∼	(y) =∗ F (y) ∩∼	(∼X ), for y :=
∼
�
�
∩ odd

?
)
. (∗)

Now back in V assume towards a contradiction that some q ≤ p+
� forces that the

lemma fails, i.e., that ∼z ⊆ ∼X in V� is a counterexample (in the final extension). By
absoluteness, we can assume that q and ∼z are in M� , in particular ∼z is a P� -name
inM� . Strengthen q � � to canonically read ∼z. So for every � ′ ∈ S, h∗

�,�′(∼z) will be
evaluated in V�′ to the same z ⊆ � as ∼z in V� .

Chose a � ′ above supp(q). Then we can strengthen q ∧ p�′ at index � ′, i.e., r0, to
some r1 that forces

∼
�
�
∩ odd

? = h∗
�,�′(∼z). (Recall that we can fix the values in the

odd intervals, as the even intervals still form a club). Let G be P-generic containing
q ∧ p+

�′ ∧ r1. Then we have:

• The evaluation of h∗
�,� ′(∼z) in V� ′ , is the same as the evaluation of ∼z in V� , call

it z.
• Also the evaluation of ∼X and F are the same � and � ′ (cf. (5.62)).
• z ⊆ ∼X is a counterexample (as this is forced by q).

In particular, z ⊆ ∼X and ∼	(z) �=∗ F (z) ∩∼	(X ) in the final extension.
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• p� ′ ∧ r1 forces in V� ′+1 that
∼
�
�
∩ odd

? = z; also we have just seen that z ⊆ ∼X ;

and so ∼	(z) =∗ F (z) ∩∼	(X ) by (∗), a contradiction. �
For � ∈ U odd, we define the following P� -names (independent of �):22

∼x� := A?
� ∩ ∼X ∼

y
�

:= A� ∩∼	(∼X ),

so
⋃

�∈Uodd

∼x� = ∼X
⋃

�∈Uodd

∼
y
�

= odd ∩∼	(∼X ) =∗
∼	(∼X ),

as well as

F ′
� : P(∼x�) → P(

∼
y
�
) by a �→ F�(a) ∩∼	(∼X ),

and F ′ : P(∼X ) → P(∼	(∼X )) by z �→
⋃
�∈Uodd F ′

�(z � ∼x�) = F (z) ∩∼	(∼X ).

So the p3
∗∗ forces that for all z ∈ V� the following is forced by p+

� /G� :

z ⊆ ∼X → F ′(z) =∗
∼	(z), in particular F ′(∼X ) =∗

∼	(∼X ),

also F ′(z) ⊆ ∼	(∼X ) for all z. (5.67)

Lemma 5.68. p3
∗∗ forces: For almost all � ∈ U odd, F ′

� is a Boolean algebra
isomorphism from P(∼x�) to P(

∼
y
�
).

Proof. All and nothing: We claim that for almost all � , F ′
� (∼x�) =

∼
y
�
. Assume

that � ∈
∼
y
�
\ F ′
� (∼x�) ⊆ ∼	(∼X ). Then � ∈ ∼	(∼X ), and � is not in F ′(∼X ) =∗

∼	(∼X ), so

there cannot be many such �. Similarly F ′
� (∅) = ∅ for almost all � .

Unions: We claim that for almost all � , F ′
� (a) ∪ F ′

� (b) = F ′
� (a ∪ b) for all subsets

a, b of ∼x� . Let A ⊆ � be the set of counterexamples, i.e., for � ∈ A there are �� ∈ ∼
y
�
,

and a� , b� subsets of ∼x� such that �� ∈
(
F ′
�(a�) ∪ F ′

�(b�)
)
ΔF ′
�(a� ∪ b�). Set x :=⋃

�∈A a� and y :=
⋃
�∈A b� . Then �� is in

(
F ′(x) ∪ F ′(y)

)
ΔF ′(x ∪ y) =∗ ∅, so A

cannot be large.
Complements: We claim that for almost all �, F ′

�(a) ∩ F ′
�(∼x� \ a) = ∅. Let A be

the set of counterexamples, i.e., for � ∈ A there is an a� ⊆ ∼x� and � ∈
∼
y
�

such that

�� ∈ F ′
�(a�) ∩ F ′

�(∼x� \ a�). Then �� is in F ′(
⋃
�∈A a�) ∩ F ′(

⋃
�∈A ∼x� \ a�) =∗ ∅, so

A cannot be large.
Injectivity: We already know that union and complements (and thus disjointness)

are preserved, so it is enough to show that a nonempty set is mapped to a nonempty
set.

Assume this fails often, then we get an x ⊆ ∼X of size � such that ∅ = F ′(x) =∗

∼	(x), a contradiction.
Surjectivity: Assume surjectivity fails often; i.e., there are many b� ⊆ ∼	(∼X ) ∩

odd not in the range of F ′
� . Let y be the union of those b� . Pick x ⊆ � such that

∼	(x) =∗ y ⊆ ∼	(∼X ). So we can assume x ⊆ ∼X and so F ′(x) =∗ y, which implies that
F�(x ∩ ∼x�) = y ∩ A� = b� for almost all � , a contradiction. �

22More concretely, canonically read by p3
∗∗, see (5.62).
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Lemma 5.69. For each � ∈ S: p3
∗∗ forces (in P�): There is a fgen : ∼X → ∼	(∼X )

bijective such that for all z ⊆ ∼X (in V�), p+
� /G� forces ∼	(z) =∗ f′′

genz.

Proof. Every Boolean algebra isomorphism from P(A) to P(B) is generated by
a bijection from A to B (the restriction to the atoms). So there is a U ′ ⊆ U odd with
|U odd \U ′| < � such that � ∈ U ′ implies that F ′

� is generated by some bijection
g� : ∼x� → ∼

y
�
. So F ′ is generated by g :=

⋃
�∈U ′ g� ; and we can change g into a

bijection from ∼X to ∼	(∼X ) by changing less than � many values. �

We now strengthen p3
∗∗ to some q to continuously readfgen (independently of �),

again using Fact 5.55.
So to summarize, we have the following (where we start with the Δ-system

(M�, p�)�∈S of Section 5.10):

Corollary 5.70. There is α ∈ Δ, q ∈ Pα stronger than all p� � � and canonically
reading r0 ≤ p̃, ∼X , fgen, and ∼	(∼X ), such that the following holds for all � ∈ S:

• q ∧ p� with the condition23 at index � strengthened to r0 is a valid condition,
called p++

�
.

• α, p++
�

and the names are inM� .
• q forces in P� : |∼X | = �, fgen : ∼X → ∼	(∼X ) is a bijection, and if z ⊆ ∼X is in V� ,

then p++
�
/G� � ∼	(z) =∗ f′′

genz.

5.13. Putting everything together.

Corollary 5.71. (Assuming � is inaccessible and 2� = �+.) P forces that every
automorphism of P�� is somewhere trivial.

Proof. Assume towards a contradiction that some p∗ forces that
∼
φ is a nowhere

trivial automorphism represented by ∼	.
As described in Section 5.10 we find a Δ-system (M�, p�)�∈S with p� � � ≤ p∗ for

all � ∈ S, and we find q, ∼X , fgen as in Corollary 5.70, so in particular: q ≤ p� � �
for all S; and q forces that |∼X | = � and that fgen : ∼X → ∼	(∼X ) is a bijection.

As ∼	 is nowhere trivial, fgen cannot be a generator, i.e., there is some z ⊆ ∼X with

∼	(z) �=∗ f′′
genz. Fix a name for this z and let q∗ ≤ q canonically read z.

Pick � ∈ S above dom(q∗). So q∗ ∧ p++
� is a valid condition, which forces that in

the final extension V [G ] the following holds:

• z ⊆ ∼X with ∼	(z) �=∗ f′′
genz, as this is forced by q∗.

• z ∈ V� , as q∗ canonically reads z.
• By Corollary 5.70 and as p++

�
∈G , we get ∼	(z) =∗f′′

genz, a contradiction. �
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