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DUAL PROBLEMS OF QUASICONVEX MAXIMISATION.
ALEXANDER M. RUBINOV AND BELGIN SIMSEK

A conjugacy operation is introduced on the set Q(X) of all quasiconvex lower
semicontinuous nonnegative functions vanishing at zero. This operation is used
in order to introduce and study a dual problem with respect to a maximisation
problem where both constraint and objective functions belong to Q(X).

1. Let X be a locally convex Hausdorff topological vector space and R, = R} U{+o}
where R, is the set of all nonnegative real numbers. Let us consider the set Q(X) of
all quasiconvex lower semicontinuous functions ¢ defined on X and mapping into R,
with the property ¢(0) = 0. Recall that a function ¢ defined on X is called quasiconvex
if the sets Sc(gq) = {z € X : ¢(z) < ¢} are convex for all ¢. Clearly, ¢ € @(X) if and
only if the set S.(q) is convex and closed and 0 € S.(g) for all ¢ > 0.

The purpose of this paper is to present a new concept of the dual problem with
respect to a maximisation problem where both constraint and objective functions be-
long to @Q(X). Duality for convex extremal problems is constructed as a rule by the
following scheme: if the primal problem is a maximisation then the dual problem is a
minimisation. As it turns out the scheme: maximisation in the primal problem and
maximisation in the dual problem is more suitable for our nonconvex case. First we
introduce a conjugacy operation on the set Q(X).

2. Let us consider the level sets:
Se(g) = {z € X : q(z) < c} and Te(q) = {z : g(z) < ¢}

of the given function ¢ € Q(X). Now we determine a conjugate function ¢* which is
defined on the space X', dual with respect to X and such that a level set S;/.(g*) is
equal to the polar of the level set Sc(gq) for all 0 < ¢ £ +00. Recall that the polar with
respect to a nonempty subset S of X is the set S° = {f € X' : {(z) <1, Vz e S}.
By definition the polar of the empty set coincides with X'.

DEFINITION 2.1: Let g € Q(X). The function ¢* defined on the space X' by the

formula
(&) = sup{% 1 {(z) > 1}
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is called the conjugate function with respect to ¢. Let us note that this definition is
close to the definition which is given by Thach [1, 2].

PROPOSITION 2.2. Let g€ Q(X) and 0 < ¢ < +oo. Then

(1) Siele’) =T2(9)
(#) Tyelg’) = U (Se(9))’°

c¢/>c

PRrRooF: We consider only the case where 0 < ¢ < +00.

(3) By definition of the conjugate function we have £ € S),.(¢*) if and only if the
inequality £(z) > 1 implies g(z) > c. Let £ € S),.(q*) and z € Tc(q). Since g(z) <c
it follows that £(z) < 1 and £ € T)(q). We have S,/.(¢*) C T (q)- Similar reasoning
shows that T2(q) C S1/.(q*).

i) If £ € Ty;.(g*) and c' > c then the inequality £(z) > 1 implies g(z) > ¢’ > c.
Let z € Su(q). By definition, ¢(z) < ¢ so {(z) < 1. Thus £ € S%(q). Hence
Le U (S5<(q))° and Ty,c(q*) € U (S2(q))°. It is easy to check that the reverse

c'>c ¢'>c

inclusion holds. 0
COROLLARY 2.3. ¢" € Q(X') forall g€ Q(X).
3. Let f, g € Q(X'). We consider an extremal problem (FP.):

f(z) — sup under condition g(z) < c,

where ¢ € (0,+00). Clearly, this problem is not convex even if f and g are convex
functions. Let us remark that the problem

f(z) — sup under condition gi(z)<e¢;(i=1,---,m)
can be rewritten as the following problem which is of type (P.) :
f(z) — sup under condition g(z) <1

where g = sup (1/ci)g:. A point Z is called a solution of the problem (P.) if g(z) =c

and f(Z) = sup{f(z) : g(z) < c}. Therefore the solution is not an admissible element.
If f is continuous and S.(g) = c£T.(g) then

sup f(z)= sup f(z)

9(z)<e 9(z)<e

and the vector Z is a solution of the problem

f(z) - max under condition g(z) < ¢

https://doi.org/10.1017/50004972700013964 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013964

[3] Quasiconvex maximisation 141

and 7 is an admissible element for this problem.
Let sup f(z)=d < +oo and consider the problem
g(z)<e

g*(€) — sup under condition f*(€) < %

This problem is called the dual with respect to the problem (P.). We denote this
problem by (D, /d) . It is not usual for the value of the primal problem to be used
in the formulation of a dual problem but we believe this approach is suitable for the
theoretical investigation of the problem (P.). Now we consider a function ¢(¢) which
coincides with value of problem (F.),

(1) ¢(c) =sup{f(z) : g(z) <c}  c€(0,+0)

THEOREM 2.4. If ¢ is a strictly increasing function then the value of the dual
problem (Dlld) coincides with 1/c, that is, if
. 1
sup f(z)=d then sup ¢°(¢) = —.
g(z)<c .t _]; c
< p

PROOF: Let d' > d. Since sup f(z) < d' we have Tc(g9) C Ty (f) and therefore
g(z)<c
by Proposition 2.2:

(Te(9))° = S1/e(97) D Syyar(f*) = (T (£))° -

If £ € Ty/4(f*) then there exists d' > d such that £ € §,,u/(f*) and thus g*(€) < 1/c.

Hence 1
sup g*(¢) < -.
fr(o<1/d ¢

Let sup g*(£) <1/c and number ¢’ > ¢ such that

e (0)<1/d

1 1

sup g*(f) < - <=

fr(0<1/d c

So, we have T),4(f*) C Ty(9*) and S4(f) D Sc(g9). This inclusion shows that

sup f(z) < d. Thus
g(z)<c!

p(c') = sup f(z) < sup f(z) <d=g(c).

g(z)<e’ s(z)<e’
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But we assumed ¢’ > ¢ therefore ¢(c’') > ¢(c) and we have a contradiction. 0

COROLLARY 2.5. Let the function ¢ be defined by formula (1) if ¢ > 0 and
¢(c) =0 if ¢ < 0. Suppose that y is strictly increasing and lower semicontinuous (that
is, continuous from the left) on (0,+00). Let

ifd<0
¥(d) = . . :
sup{g*(f): f*(€) <d} ifd>0
Then ¥ = (¢*)™" on (0,+00). (Let us note that ¢ belongs to Q(R) and therefore the

conjugate to ¢ exists. At the same time 1(d) is the value of the dual problem (D)
for positive d.)

PROOF: Since ¢ is strictly increasing and continuous from the left we have

11
ol o(z)  «(1/y)

"(y) = sup —— =
4 yz>1 ¢(z)
Let ¥(c) = d. Then by Theorem 2.4 we have #(1/d) = 1/c and ¢*(1/c) =1/(p(c)) =
1/d. Therefore o*(9(1/d)) = ¢*(1/c) =1/d for all 0 < d < 400 and % = (p*)*.

Let ¢ € Q(X) and ¢* be its conjugate function. Let g(z) > 0 and ¢*(£) > 0.
Then, using the definition, we have that the inequality #(z) > 1 implies the inequality
g*(&)g(z) < 1. A linear functional £ is called a subgradient of the function ¢ at the
point z° if ¢*(£)g(z°) = 1 and £(z°) = 1. Let £ be a subgradient at the point z°.
Then ¢*(£)q(x°) = 1 shows that

1 1

sup -
£(z)>1 g(z)  q(=z°)

Let ¢ < g(z°). It is easy to check that g(z) > ¢ if #(z) > 1. Hence the inequality
g(z) € ¢ implies £(z) < 1. Since ¢ is an arbitrary number with the property

¢ < g(z°) we have that the inequality g(z) < g(z°) implies £(z) <1 and sup £(z) <1
a(=)<d

for £(z°)=1. So

(2) sup €(z) =1 where d=gq(z°).
9(=)<d

We see that z° is a solution in our sense of the extremal problem
£(z) — sup under condition ¢(z)<d

because g(z°) = d and (z°) = 1. It is easy to check that the reverse assertion is
true, that is, if functional £ € X' and z° is a solution of the problem (2) then £ is a
subgradient at the point z°.
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Let us give a geometrical interpretation of the subgradient. We consider the level
set Ty(z0)(q) of function ¢, the hyperplane H = {z : {(z) = 1} and closed half space
~ = 851(¢) = {z : {(z) < 1}. The vector z° is a solution of problem (2) if and only
if Tyz0)(q) is a subset of H~ and z° € H. Let us assume that ¢ is a continuous
function and ¢(z°) > 0. Then the set Ty(,0)(g) is open and convex. If z° € cfTy(,0)(q)
then there exists a support hyperplane H with respect to Ty(,0)(g) at the point z°.
If H = {z : {(z) = 1} then £ is a subgradient of ¢ at the point z°. So if q is
continuous and cfTy(0)(q) = Sy(z0)(g) then a subgradient exists at every point z°
with the property ¢(z°) > 0.

THEOREM 2.6. Let f,g € Q(X). Assume that the function ¢ which is defined
by formula (1) is strictly increasing on (0,+o00) and the function f is continuous.
Let ¢ be a positive number and d € (0,400) be the value of the problem (P.) and
c€Ta(f) = Sa(f). Then the vector T is a solution of problem (P.) if and only if there
is a common subgradient £ of the functions f and g at the point T such that £ is a
solution of the dual problem (D1 /d) .

PROOF: 1. Let Z be a solution of the problem (P.). Then g(7) = ¢, f(%) =d.

Since sup f(z) = d we have T.(g) C Sa(f) = c€T4(f). Since the function f
9(z)<g(3)
is continuous, the convex set Ty(f) is open and Z is a boundary point of this set.

Therefore there exists a support hyperplane H = {z : {(z) = 1} with respect to the
set Ty(f) at the point Z. Since T.(g) C clT4(f) and £(Z) =1 we have that H is the
support hyperplane with respect to T.(g9) at the same point.

So £ is a subgradient of f at the point Z and a subgradient of g at this point. By
definition,

)

FOf(E) =1, thatis f*(f)= _%
g*(0)9(Z) =1, thatis g*(¢) = ()_%

Let us consider the dual problem
1
g°(€) — sup under condition f*(€) < 7
If function ¢(c) is strictly increasing then by Theorem 2.4 the value of this problem
coincides with 1/c. Since f*(€) = 1/d and g*(£) = 1/c the vector £ is a solution of
this problem. So we have a necessary condition for a maximum.
2. Let a point z° be such that there is a common subgradient £ at the point z° of
functions f and g which is a solution of the dual problem (Dl /d) . Equalities hold as

follows:

FOf) =1, ¢@E) =1 ¢O=1, FO=3

https://doi.org/10.1017/50004972700013964 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013964

144 A.M. Rubinov and B. §imsgek [6]

Therefore f(z°) = d and g(z°) = ¢, that is, z° is a solution of the problem (F.). So
we have a sufficient condition for a maximum.

A geometrical interpretation of duality for the minimisation of a convex function
under convex constraints is the existence of a separating hyperplane for two convex sets.
Theorem 2.6 shows that duality for the maximisation of a quasiconvex function can be
interpreted geometrically through the existence of a common supporting hyperplane for
two convex sets, one contained within the other. Note that Thach (1, 2] considers one
of these sets and the complement of the other.
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