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Abstract

Large truss structures have many potential applications in space, such as antennas, telescopes and space solar power
plants. In this scenario, a natural concern is the susceptibility of these lightweight structures to be damaged dur-
ing their operational life, due to impacts, transient thermal states and fatigue phenomena. The inclusion of active
elements, equipped with sensor/actuator systems capable of modulating their shape and strength, makes it possible
to transform the truss into a smart structure capable of remedying the damage, once it is detected. In this paper,
a procedure is described that is capable of restoring at least the basic functionality of a composite truss for space
applications, starting with the observation that damage has occurred, regardless of its specific location. The system
eigenstructure is used as a benchmark for damage detection, as well as a target characteristic for the subsequent
restoration activity. The observer/Kalman filter identification algorithm (OKID), in cascade with the eigensystem
realization algorithm (ERA), is adopted to reconstruct, from sensor recordings, the dynamic response of the truss
in terms of system state-space representation and eigen-characteristics. Finally, a static output feedback control is
developed to recover the low-frequency dynamic behaviour of the truss. The entire procedure is tested using finite
element analysis. All activities are coordinated in an innovative procedure that, within a unique Python language
code, automatically generates finite element (FE) models, launches finite element analysis (FEA), extracts output
data, implements OKID-ERA, processes the control law and applies it to the final FE simulation.

Nomenclature

state matrix

input matrix

output matrix
feedforward matrix
identity matrix

constant feedback gain matrix
n—r>0

auxiliary matrix
dimension of u
dimension of x
dimension of y

time

input (or control) vector
auxiliary matrix
auxiliary matrix

state vector

output vector
transformed state vector
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Greek Symbol

Ai generic eigenvalue

v generic eigenvector
Subscripts

a augmented

Cl closed loop

l of dimension equal to ¢

of dimension equal to r

Superscripts

a achievable

d desired

K Moore-Penrose inverse
~ transformed

time derivative

1.0 Introduction

The already-widespread use of large flexible structures in space applications is set to grow further in the
future due to the advantageous combination of low weight and high packing efficiency they offer. The
introduction of carbon fibre composite materials, with their high stiffness and low thermal expansion,
has made their use in the space environment even more attractive. In recent years, thanks to advances in
smart materials and robotic manufacturing techniques, interest has extended to deployment procedures
[1] and to the construction and assembly of trusses directly in space [2]. The increased time in space
also increases the probability that various combinations of events, both mechanical and thermal, will
damage these very slender structures, compromising their proper functioning. The problem of detecting
damage and maintaining the performance of structural systems is of general interest, but becomes of
primary importance for space components due to the high cost of missions. For this reason, the problem
of health monitoring and maintenance procedures has received a great deal of interest since the 1990s,
both in the field of system identification and in that of control design, giving rise to a series of studies
related to this problem. Some of these works relate the change in the physical properties of the system to
a change in the stiffness and mass matrices [3—5] or to an alteration in the curvature of the mode shape
induced by damage [6]. Other authors focus their attention on the variation of state-space representation
parameters [7, 8]. The use of neural networks has also been emphasised in the past [9, 10] and continues
to be of interest [11]. More recent work considers machine learning as a powerful tool for ‘novelty
detection’ [12—14]. Another approach that has been widely developed in recent years involves the use of
probabilistic methodologies to determine structural damage and identify the damaged structure taking
into account model uncertainties [15—17]. In particular, the use of Bayesian system identification has
received considerable interest to obtain reliable structural models based on the dynamic response of the
system [18-20]. The most recent trend is to exploit the close link between machine learning and system
identification [21].

In the specific case of a truss, the problem was addressed by taking advantage of the discrete nature
of skeleton structures, which typically suffer damage limited to a few elements, with the rest still intact.
The current level of technology has made active members, equipped with complex systems of sensors,
processors and actuators, feasible tools for both health monitoring and maintenance activities [22]. The
crucial aspect of this strategy remains the difficulty of remotely and promptly detecting the onset of
damage and, even more so, determining its exact location and extent. In fact, in the case where alter-
ations in vibrational response are the main cause of loss of function in space applications, efforts should
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be directed at recovering the low-frequency dynamic response after damage detection, regardless of its
specific allocation. In this scenario, this paper discusses a procedure to ensure that the main operational
requirements of a composite truss for use in space are again met through the recovery of vibrational
behaviour under damage-free conditions. The control, as conceived in this work, aims to allow the sys-
tem to maintain its operational functions, possibly with degraded capabilities, until a repair operation is
possible. For the sake of generality, approaches to restoring space mission requirements depend strictly
on the specific objective and may be different in nature. For example, if accurate pointing of an on-
board mounted antenna is paramount, it may be necessary to constrain maximum displacements and/or
rotations between specific points on the structure. In this paper, the focus is on another fundamental
aspect common to many missions, namely, avoiding interference between structural and instrumen-
tation modes, so keeping the structure’s natural frequencies within prescribed limits is critical. The
eigenstructure of the system is used as a comparison term to detect the damage and as a target property
for the recovery activity. In fact, a control law is developed to reestablish the pristine values of the first
eigenvalues and eigenvectors. The OKID procedure, in cascade with the ERA, is adopted to reconstruct
the dynamic response of the truss from measurements taken by sensors, placed at strategic locations
(more details will be given in Section 3). Once the state-space representation and eigen-characteristics
of both health and damaged structure are available, a static output feedback control is established to
recover the low-frequency dynamic behaviour. A FEA is used to test the effectiveness of the approach
by developing numerical models of intact and damaged structures, with damage introduced in the form
of passive rod removal. Since the exact location of the damage is not known a priori, both the number
and the arrangement of the removed rods are free parameters, with the only constraint being to ensure
the controllability of the system. The finite element analysis provides the input data for the OKID-ERA
algorithm, as well as to provide reference eigenstructure and vibrational response to external loads, to
be compared with those predicted by the identified systems. Finally, the control law is implemented in
the FE model, in the form of displacements imposed on the active members, to add information about its
effects on the stress-strain field of the entire truss. All activities are successfully coordinated by develop-
ing an innovative procedure that, within a single script in Python language, automatically generates the
FE models, launches the FEAs, extracts the output data, implements OKID-ERA, processes the control
law and applies it to the final FE simulation.

The paper is organised as follows. Section 2 outlines the problem and describes the general architec-
ture of the procedure used. System identification, control law and FEA are discussed in Sections 3, 4
and 5, respectively. Section 6 presents some numerical examples to demonstrate the effectiveness of the
proposed procedure and, finally, Section 7 draws our conclusions.

2.0 Problem statement and procedure architecture

A flat truss structure, entirely made of high-stiffness composite material for typical aerospace use, is
considered as a test sample and is shown in Fig. 1. Three of the 46 rods are active and equipped with
sensors (to monitor the outputs) and actuators (to apply the input forces). Although an in-depth study
of the properties of the sensor/actuator system is beyond the scope of this paper, piezoelectric elements
of ‘1-3 rod composite’ [23] are considered optimal for the present purpose. Indeed, like all piezoelec-
tric devices [24], they can act simultaneously as sensors and actuators due to their ability to translate
mechanical force into electrical energy and vice versa. In addition, their constituent material is a high-
stiffness composite, with properties very similar to those of passive rods, so as to authorise their full
assimilation with the remaining members when in the passive phase. Actuators, strategically located,
are supposed to excite only the structural modes of interest, while sensors are supposed to measure the
corresponding modes.

An external random excitation is considered to simulate the action of a thruster, in the hypothesis of
measuring its force by sensors.

The various phases of the procedure are accomplished by means of a combined and integrated use
of FEM, Python scripting and Fortran programming. Indeed, the Python language is used to develop
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Figure 1. Schematic view of a space truss with three piezoelectric sensors/actuators.

a unique code, divided into several scripts, both to perform pre- and post-processing tasks within the
Abaqus 2022 FE software and to implement system identification and feedback control algorithms;
see the block diagram in Fig. 2. In addition, a dedicated subroutine was created in Fortran language
to process the control law in FEA. This specific approach is made possible by the well-established
FE modeling technique through Python scripting [25], the communication between FE processing and
Fortran subroutines [26], the use of specific Python modules for scientific [27] and array [28] calculation,
and for control system development [29-31].

Two different versions of Python are used, namely the older Python 2.7, which is the only one sup-
ported by the Abaqus software, and the newer Python 3.11, due to the integration of its libraries with
control system techniques. The use of Pickle files enables total communication between scripts written
in different Python versions. Indeed, a Pickle file can serialises Python object structures, by converting
an object in memory into a stream of bytes to be stored as a binary file on disk. Once re-loaded into a
Python program, this binary file can be de-serialised into a Python object.

3.0 System identification

Over the years, many system identification techniques have been developed for space structure appli-
cations to cope with their extremely low damping [32]. In this context, Markov parameters [33] arise
in a realisation theory that finds a state-space representation of a linear time-invariant system from its
pulse response. The disadvantage of solving the Markov parameters of the system directly in the time
domain from the input and output data is the need to invert an input matrix that becomes very large
for slightly damped systems. In this respect, one possible solution to this problem is to obtain, again
from input-output data of the system to be identified, the Markov parameters of an asymptotically stable
observer. This method, chosen in the present work, is called the OKID [34] and consists of a procedure
in which the state-space model and the corresponding observer are determined simultaneously.

Using a Kalman filter as an observer overcomes the problem of signals disturbed by noise. In the
matrix formulation developed by Phan et al. [34], the Markov parameters of the system can be uniquely
obtained from those of the observer/Kalman filter. Once observer and system Markov parameters are
determined, the ERA [35] is used to realize the state-space model. Thus, the method referred to as
OKID/ERA provides an identification of the undamaged structure (before) and of the damaged structure
(after) with a state-space model in the following form

x=Ax+Bu W
y=Cx+Du

where x € R” denotes the system state, u € R™ is the input (or control) variable, and y € R" is the output
variable. Note that x, u, and y are all functions of time ¢. Moreover, without loss of generality, it is
assumed that m < r < n, that is, the number of measured outputs exceeds the number of inputs. The
physical nature of the identified state is not known a priori because OKID algorithm selects only the set
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Pyhton 2.7 Script to generate two distinct Abaqus INP files for FE model of intact and damaged truss. l—

Processing of two steps FEA, in order to:
. evaluate, with a FREQUENCY analysis, the first three natural frequencies and modes of

vibrations;
. calculate, through a DYNAMIC IMPLICIT analysis, the output to the input signals selected for

the system identification.

Processing of FEA to
Pyhton 2.7 script to extract, from the Abaqus ODB files, the calculate, with
to be done for necessary input and output data, to be stored in form of two distinct | _ DYNAMIC IMPLICIT
both intact and Python PICKLE files: one to save data for system identification and | analysis, the output to a
damaged truss the other to contain the output to the reference external disturbance. external reference
disturbance.

Pyhton 3.11 script to read the data from the pickle file relevant to the identification process and
apply the OKID/ERA algorithm for system identification.
The state-space matrices are saved in TXT files.
A
Pyhton 3.11 script to:
. recover the identified matrices and generate the state-space system;
. compare the predicted eigenvalues and outputs with those from FEM;
. perform a balanced reduction of the system with a new check on output reliability;
[ . calculate the gain matrix to assign, with an output feedback control, the first three
eigenvalues and right eigenvectors of the integer structures to the damaged one;
. compare the output to the external disturbance of the intact truss with that of the damaged
controlled structure;
. save the gain matrix in a TXT file.
A

Fortran Subroutine that reads the gain matrix and, to reproduce the behaviour of
piezoelectric elements, generates the force on the actuators by multiplying the
displacements from sensors by the gain matrix.

to be done
only for
damaged

truss

A

Pyhton 2.7 script lo generate the Abaqus INP file for FE model of controlled damaged truss.

v

Processing of FEA to calculate, with DYNAMIC IMPLICIT analysis, the output to a reference
external disturbance in the presence of control.

v

Pyhton 2.7 script to extract, from the Abaqus ODB file, the stress/strain field of the whole structure.
Processing of FEA to calculate, with DYNAMIC IMPLICIT analysis, the output to an external
reference disturbance.

Figure 2. Block diagram of the proposed procedure.

of matrices {A, B, C, D} that best correlate input with output data. A state transformation can anyway
help in giving a clear meaning to x. In particular, if the system order is equal to the number of outputs
(i.e. if r = n), the matrix C is square and can be inverted. Thus, by introducing the transformation

z=Cx 2
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the following state-space system is obtained

z=Az+Bu
. 3)
y==Cz
where
A=CAC"', B=CB, C=I “)

According to this transformation, the state variables acquire a clear physical meaning: system outputs
and state variables are all coincident with nodal displacements.

However, in the case where the order of the system is greater than that of the measured outputs
(n > r), it turns out that C is rectangular, thus not invertible. To proceed as above, firstly the state vector

is partitioned as
x,
X =
X

with x, € R", x, € R® and £ = n — r in such a way that

o ]

Xy

Then, an augmented output vector is introduced as

Yo = [y }=Ca [x} 5)
Xy Xy

c,—|¢ & (©6)
a — 0 IK

and I, € R™* is the identity matrix. After this artificial extension of the outputs, the state-space model
can be transformed as follows:

where

z=Cx (N
which now plays the role of Equation (2). Following the above procedure, the system representation
becomes

z=Ax+ Bu ®)
y=Cz )
where
A=CAC;" (10)
B=C,B (11)
C=[1, 0] (12)

The transformation of the state variables of Equation (7) provides clear physical meaning to the iden-
tified state space systems because the same type of transformation gives identical meaning to the state
variables of the undamaged and damaged structure models, allowing them to be compared. Because of
this comparability, system identification techniques enable health monitoring of the structure through-
out its life. This can be done by applying independent, time-varying forces through the piezoelectric
actuators as well as a disturbance external to the structure. The first identification, in undamaged con-
ditions, represents a reference for those subsequently done: changes in the truss low frequency modes
may indicate that damages have crept in the structure and would lead to its replace or refurbish.
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4.0 Control law

Once the presence of damage is detected, the problem is how to restore, at least partially, the dynamic
behaviour of the structure. In this work, the damaged truss is forced to behave like the intact one by
means of a static output feedback controller. Moreover, due to the state transformation in Equation
(12), the output feedback behaves as a state feedback designed to match the identifiable eigenvalues
and corresponding right eigenvectors of the intact with those of the damaged structure. Accordingly, the
control law is in the form

u=Ky (13)
where K is the constant feedback gain matrix and the state matrix in closed loop becomes
A,=A+BKC (14)

As shown by Srinathkumar [36], max (m, r) closed loop eigenvalues can be arbitrarily assigned with
min (m, r) components of the corresponding right eigenvectors, provided the system is controllable and
observable. The gain matrix can be calculated according to the method developed by Andry et al. [37],
which accounts for the concept of achievable eigenvectors. Indeed, as explained in Ref. (36), it is not pos-
sible to completely assign the right eigenvectors of the controlled system, but it is possible to guarantee
that the desired eigenvectors are “best” approximated in a least square sense.

According to this procedure, if A; is a generic eigenvalue and v¢ is the desired right eigenvector, the
corresponding achievable eigenvector is

vi=L L v (15)
where
Liz()\.i[_A)ilB (16)

and L] is the Moore-Penrose inverse of L;. The final expression of the gain matrix discussed in Ref. (37)
is obtained only for a special state transformation addressed to simplify the B matrix structure. In this
work, the original procedure has been modified accordingly to be compliant with the state transformation
in Equation (3). The obtained expression of the feedback matrix is

K=UCV)'=B"'Uw)™! (17)

where the columns of matrix V are the achievable eigenvectors and the columns of matrix U are related
to the achievable eigenvalues and eigenvectors. Note that, as pointed out in Ref. (37), when the number
of poles to be placed is smaller than the dimension of the state matrix the feedback control can adversely
affect some of the unconstrained eigenvalues such that system instability can result. In the problem at
hand, this phenomenon has been avoided by making » = n with a balanced reduction of the identified
systems.

5.0 Finite element models

The FE model of the nine-bay truss shown in Fig. 1 is executed entirely by Python scripting. The truss
structure is made of 46 graphite/epoxy rods with hollow circular cross section of mean radius 340 mm
and thickness 2 mm. The length of each non-diagonal element is 1.5 m. The material is assumed to be
homogeneous with density 1700 kg/m? and isotropic, according to the one-dimensional nature of rod
elements, with Young’s modulus equal to 90 GPa, coincident with the E11 value of the actual composite
material. No type of damping is assigned to this material. The 2-node linear 2-D truss elements of type
T2D2 are used for the rods, while axial connectors elements are adopted to model the piezoelectric
sensor/actuators. Each connector, which has the same elastic stiffness as the rods, behaves as a generic
truss element if no axial displacements or forces are externally imposed to promote its function as an
actuator. The structure is clamped at the left end, while an external excitation normal to the longitudinal
axis of the truss is applied to the right upper end node. A Gaussian white noise is added to the excitation
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Figure 3. Scheme of the inputs for system identification.
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Figure 4. Time history of the external force.

to simulate the presence of an external disturbance. Three actuators are supposed to be located in the
horizontal, vertical and diagonal direction as shown in Fig. 1. The location of the actuators is based upon
simplified controllability considerations (singular values analysis).

The FE model of the undamaged truss originates three different types of analysis: (i) to calculate the
lowest three natural frequencies and modes of vibrations of the structure; (ii) to enable system identi-
fication; (iii) and to record the response to external excitation. The first two analyses are grouped and
cascaded as a frequency step followed by one of dynamic implicit type. In the last analysis, a single
dynamic implicit step is processed. In each case, the simulation lasts 5 seconds and is based on the
implicit operator defined by Hilber et al. [38] for the temporal integration of the dynamic problem. The
set of input data used to identify the system is shown in Fig. 3: axial forces are applied to the actuators
and a transversal force at the upper left node of the truss, all following a time history based on white
noise. The white noise amplitude is generated with zero mean value, unitary standard deviation, and
2 x 10? frequency. The vertical component of displacement and velocity are recorded at the ends of the
actuators and at the upper right node as output data, as shown in Fig. 3. The system to be identified has 4
inputs and 14 outputs. The last analysis is addressed to record the vertical displacement of the left upper
node when the external transversal force with double-step amplitude shown in Fig. 4 acts on it.

The FE model of the damaged structure is obtained by simply removing some passive members:
in the example shown in Fig. 5, two horizontal rods are removed from the top of the truss. All FEAs
performed on the undamaged truss are repeated for the damaged structure. A final analysis is then added
to simulate the control law developed to restore the dynamic behaviour of the truss. This analysis exploits
the possibility of defining a load history through an external subroutine written in Fortran.
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Figure 5. Introduction of damage as member removal.
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Figure 6. Comparison between FEM and predicted outputs for undamaged truss with white noise input.

In addition, the Abaqus software allows sensors to be placed at strategic nodal points that can trans-
mit the desired output variables to the subroutine at each time increment. Once the control gain matrix
is defined according to the procedure described in Section 4, its coefficients are copied into the subrou-
tine and used to define the loads on the actuators as a linear combination of their end displacements,
continuously updated by the sensors. In the latter analysis, a dynamic implicit step is implemented, in
which the external load and the control forces act simultaneously.

6.0 Numerican results

6.1 System identification

The Python script that implements the OKID/ERA algorithm, according to the procedure described in
Section 3, provides the four matrices {A, B, C, D} necessary to define the discrete space-state model of
the truss. The identified 14th-order model with a time interval of 0.005 seconds is assembled and then
transformed into continuous form in a dedicated Python script. The response of the system is simulated
to both input loads used for its identification and to the external double step force. All these results are
obtained for both undamaged and damaged structure. In view of the control strategy development, for
the damaged truss, a balanced reduction is applied to the system, in order to decrease its order from 14
to 6, which is double the number of complex poles to be allocated.

The proposed methodology depends heavily on the effectiveness of the OKID/ERA algorithm in
identifying a dynamic system with realistic behaviour. Because of the importance of an experimental
reference, the results provided by FEA are used, in this paper, as reference values. As an example, for
the undamaged structure, Fig. 6 shows the displacement in vertical direction of the upper right node of
the truss in case of white noise input used for identification. A perfect superposition between the two
data sets is clearly visible.
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Figure 7. Comparison between FEM and predicted outputs for damaged truss with external double
step force.
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Figure 8. Comparison between FEM and predicted eigenvalues for undamaged truss.

For the damaged truss, the FE results are compared with the responses predicted by both the full
and reduced order system. As an example, Fig. 7 shows the displacement in vertical direction of the
upper left node of the truss for the case of external double step force. The graph in figure highlights the
excellent ability of the identified system, even in its reduced form, to capture the structural response.

In Fig. 8, the eigenvalues extracted from FEAs are compared with the 14 of the identified systems for
the undamaged truss case. The frequency step implemented in Abaqus allows to calculate the eigenval-
ues of the symmetrised system, that is, neglecting damping or any source of asymmetry in the stiffness
matrix. The symmetrised system has real squared eigenvalues A and real eigenvectors only: if the stiff-
ness matrix is positive semidefinite there are only pairs of conjugate imaginary eigenvalues A, where
A is the circular frequency [39]. The eigenvalues identified by FEAs are accordingly aligned on the
imaginary axis, symmetrically distributed with respect to the real axis. In contrast, the eigenvalues of
the identified system depend on the input/output data of the dynamic implicit step and can capture any
source of damping.

Despite the absence of intrinsic material damping, the operator adopted to integrate the dynamic
equations is characterised by user-defined numerical damping, which varies from a minimum in transient
fidelity analyses to a maximum in steady-state ones. The nature of artificial numerical damping is to
damp out unwanted high-frequency modes to reduce the simulation time up to steady state conditions.
When performing transient fidelity analysis, as in the present study, lower frequencies are not altered
by artificial damping, while the higher the frequencies, the more they are damped. This phenomenon is
evident in Fig. 8, where the predicted poles lie on a pseudo-ellipse arc tangent to the imaginary axis:
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Figure 9. Comparison between FEM and predicted eigenvalues for damaged truss.

the three lowest frequencies of FEAs, related to the poles highlighted in red, are totally coincident with
the predicted ones. In Fig. 9, a similar comparison between the predicted and FE eigenvalues is made
for the undamaged truss case. The predicted poles, compared with the previous case, are slightly more
damped, consistently with the dynamic behaviour of artificial damping, which varies according to the
convergence performance of the specific FE model.

6.2 Control strategy

In the control strategy outlined in Section 4, the application of an output-feedback control law was simu-
lated in such a way that the first three complex eigenvalues and the components of the right eigenvectors
of the healthy structure can be assigned to the damaged structure to restore, at least in part, the dynamic
behaviour of the truss.

In Fig. 10, it is possible to directly compare the first eigenvalues of the two systems and observe the
effect of the controller. As is evident from the figure, only the imaginary part of the poles was considered
in the control strategy. The vertical displacement of the upper right node due to the double step force is
shown in Fig. 11 for the undamaged, damaged and controlled structure. From the figure, a substantial
overlap between the structural response of the undamaged truss and the controlled truss can be seen: the
controller, designed to simply recover the healthy eigenstructure, also shows good trajectory tracking
capability in the presence of an external force.

The effects of control on the structure is finally studied by simulating it in a dedicated FEA, as
explained in Section 5. The overlay plot tool, available in Abaqus, allows to superimpose the deformation
of the whole truss in undamaged and damaged-controlled conditions. In particular, Fig. 12 shows the
displacement field at an instant of maximum vibration amplitude. From this figure, it is possible to
detect the substantial effectiveness of the controller in recovering the healthy structural behaviour along
the whole truss axis and not only at the point of external force application.

Another important aspect is the possibility of designing the controller not only to recover but also to
improve the dynamic response of the structure. In fact, it is possible to add damping to the vibrations
simply by placing poles with negative real part. For example, looking at Fig. 13, the control restores
frequencies to their original values and, at the same time, adds damping by placing poles with negative
real part of 0.25.

7.0 Conclusions

The procedure adopted for damage detection and eigenstructure recovering of a composite truss for
space application equipped with active members has shown great promise. The salient aspects are the
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Figure 10. Comparison between eigenvalues of undamaged and damaged truss.
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Figure 11. Comparison between structural response of undamaged, damaged and controlled truss.
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Figure 13. Comparison between structural response of undamaged, damaged and controlled truss with
added damping.

possibility of ignoring the exact location of damage, the total automation of the procedure, the versatil-
ity in adding damping, and the final verification of the whole structure. The application of the proposed
methodology relies on the availability of experimental sensor records, but FEM is a valuable tool for
setting up and testing the various steps. In addition, the combined use of FEM and programming lan-
guages such as Python and Fortran lends robustness to the control strategy, representing an essential
tool to verify the stress/strain state of the structure at each material point. In a scenario of increasing use
of large composite trusses in expensive space missions, this work is likely to contribute to improving
the management and exploitation of these lightweight structures.
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