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Abstract

We study a canonical spanning surface obtained from a knot or link diagram, depending on a given
Kauffman state. We give a sufficient condition for the surface to be essential. By using the essential
surface, we can deduce the triviality and splittability of a knot or link from its diagrams. This has been
done on the extended knot or link class that includes all semiadequate, homogeneous knots and links, and
most algebraic knots and links. In order to prove the main theorem, we extend Gabai’s Murasugi sum
theorem to the case of nonorientable spanning surfaces.
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1. Introduction

In 1930, Frankl and Pontrjagin [9] proved the existence of a Seifert surface for any
knot. In 1934, Seifert [28] gave an algorithm for constructing a Seifert surface from a
knot diagram. Seifert’s algorithm allows us to construct a spanning surface from a knot
diagram, depending on a given Kauffman state [15]. In this paper, we give a sufficient
condition for the spanning surface to be essential. By using the essential surface, we
show that a knot or link is trivial or split if and only if the diagram is trivial or split
respectively under our sufficient condition.

Throughout this paper we work in the piecewise linear category. For knot theory,
graph theory and 3-manifold theory terminology, we refer to [5, 7, 17].

In Section 2 we define and give examples of state surfaces and state our main results.
We prove some lemmas in Section 3, one of which extends Gabai’s Murasugi sum
theorem [11], and prove our main theorems in Section 4. In Section 5 we list some
problems that are of interest for further study. Finally, in Section 6, we summarize
some of the recent progress that has been made since the first draft of this paper.
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392 M. Ozawa [2]

F 1. Two smoothings of a crossing.

F 2. Recovering a crossing by a half twisted band.

2. Definitions, examples and results

Let K be a knot or link in the 3-sphere S 3 and let D be a connected diagram of K on
the 2-sphere S 2 that separates S 3 into two 3-balls, say B+ and B−. Let C = {c1, . . . , cn}

be the set of crossings of D. A map σ : C→ {+, −} is called a state for D. For each
crossing ci ∈ C, we take a +-smoothing or −-smoothing of D, according to whether
σ(ci) = + or − (see Figure 1).

Historically, in most papers, +-smoothing and −-smoothing are called A-splicing
and B-splicing. The terminology +-smoothing and −-smoothing seems reasonable
since, if we orient a crossing locally so that it has a ±-sign, then a smoothing along the
orientation coincides with a ±-smoothing. After ±-smoothing, we have a collection
l1, . . . , lm of loops on S 2 that we call state loops. Let Lσ = {l1, . . . , lm} be the set of
state loops.

Each state loop li bounds a unique disk di in B−. We may assume that these disks
are mutually disjoint. For each crossing c j and state loops li and lk whose subarcs
replace c j by σ(c j)-smoothing, we attach a half twisted band b j to di and dk so that
it recovers c j. See Figure 2 for the case where σ(c j) = +. In this way, we obtain a
spanning surface that consists of disks d1, . . . , dm and half twisted bands b1, . . . , bn.
We call this surface a σ-state surface Fσ.

R 2.1. The following historical remarks were suggested by Przytycki.
First, the state surfaces corresponding to the positive state σ+ (that is, σ+(c j) = +

for all j) and the negative state σ− (that is, σ−(c j) = − for all j) were considered for
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[3] Essential state surfaces for knots and links 393

alternating links in the nineteenth century by Tait. They were originally called Tait
surfaces, but nowadays are called checkerboard surfaces.

Next, the state surface corresponding to the Seifert state ~σ (that is, the state
determined by an orientation of the knot) that gives the Seifert surface was introduced
by Seifert in [28].

Finally, independently, Przytycki has already considered using a surface for any
Kauffman state. See [26, Footnote 2].

We may assume that Fσ intersects N(K) in its collar N(∂Fσ; Fσ) and write Fσ

instead of Fσ ∩ E(K), where N(K) denotes the regular neighbourhood of K in S 3 and
E(K) denotes the exterior of K. We take a (twisted) I-bundle Fσ ×̃ I over Fσ in E(K)
and call the associated ∂I-bundle Fσ ×̃ ∂I over Fσ the interpolating surface obtained
from Fσ. We denote this surface by (Fσ)˜ since it is a double cover of Fσ. Note that
any interpolating surface (Fσ)˜ is orientable, and it is connected if and only if Fσ is
nonorientable.

We use Fσ to construct a graph Gσ, with signs on its edges, by regarding a disk di

as a vertex vi and a band b j as an edge e j that has the same sign as σ(c j). We call the
graph Gσ a σ-state graph. In general, a graph is called a block if it is connected and
has no cut vertex. It is well known that any graph has a unique decomposition into
maximal blocks.

Following [4, 16], we say that a diagram D is σ-adequate if Gσ has no loops, and
that D is σ-homogeneous if, in each block of Gσ, all edges have the same sign. We
remark that any diagram of any link is σ-adequate for some state σ (for example, the
Seifert state), and σ′-homogeneous for some state σ′ (for example, the positive state),
where the states σ and σ′ do not generally coincide.

R 2.2. As was pointed out in [8], the definition of ‘adequate’ given here seems
to differ slightly from the original definition. See Example 2.6 for a discussion of its
consistency with the original definition.

E 2.3. Let D be a diagram of the figure-of-eight knot, which has four crossings,
c1, c2, c3 and c4, as shown at the top of Figure 3. To make a σ-state surface, let
σ(c1) = σ(c2) = − and σ(c3) = σ(c4) = +, for example. Since the σ-state graph Gσ

has no loop and all edges in each block have the same sign as in the second part of
Figure 3, D is σ-adequate and σ-homogeneous. Moreover, the block decomposition of
Gσ corresponds to a Murasugi decomposition of Fσ (see the bottom part of Figure 3).

E 2.4. A diagram D with an orientation is said to be positive if all crossings
have a positive sign. For any positive diagram D, there exists a state σ such that D is
σ-adequate and σ-homogeneous. Indeed, we can take σ so that σ(c j) = + for all c j,
namely, the positive state σ+. Also, we can take σ so that it yields a canonical Seifert
surface Fσ, namely, the Seifert state ~σ. Note that the states σ+ and ~σ coincide only on
a positive diagram.

E 2.5. For any alternating diagram D without nugatory crossings, there exist
two states σ1 and σ2 such that D is σi-adequate and σi-homogeneous for i = 1, 2.
Indeed, we can take σ1 = σ+ (or σ1 = σ−) and σ2 = ~σ.
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F 3. A state surface, σ-state graph and block decomposition, and Murasugi decomposition.
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[5] Essential state surfaces for knots and links 395

E 2.6. We say that a diagram D is homogeneous [4] if D is ~σ-homogeneous for
the Seifert state ~σ. Note that D is automatically ~σ-adequate since the ~σ-state surface
F~σ is orientable and thus G~σ has no loop.

We say that a diagram D is semiadequate [16] if D is σ-adequate for the positive
state σ+ or the negative state σ−. Note that D is automatically σ±-homogeneous since
σ±(c j) = ± for all j.

We say that a diagram D is adequate [29] if D is σ-adequate for both the positive
state σ+ and the negative state σ−. Note also that D is automatically σ±-homogeneous
since σ±(c j) = ± for all j.

E 2.7. We say that an arborescent link L is strictly arborescent if the absolute
value of each weight is greater than 1. Note that there exist a diagram D of L and a
state σ such that D is σ-adequate and σ-homogeneous. Indeed, a strictly arborescent
link L is the boundary of a σ-state surface that is a Murasugi sum of twisted annuli
or Möbius bands with one or more full twists. See [3] or [12] for the definition and
construction of surfaces for arborescent links.

We now review the definition of essential surfaces. Let M be an orientable compact
3-manifold and let F be a compact surface, but not a 2-sphere, properly embedded
in M, possibly with boundary. Let i denote the inclusion map F→ M. We say that F
is π1-injective if the induced map

i∗ : π1(F)→ π1(M)

is injective. We say that F is ∂-π1-injective if the induced map

i∗ : π1(F, ∂F)→ π1(M, ∂M)

is injective for every choice of two base points in ∂F. A surface F in M is π1-essential
if F is π1-injective, ∂-π1-injective and not ∂-parallel in M.

A disk D, embedded in M, is a compressing disk for F if D ∩ F = ∂D and ∂D is
an essential loop in F. A disk D, embedded in M, is a ∂-compressing disk for F if
D ∩ F ⊂ ∂D is an essential arc in F and

D ∩ ∂M = ∂D − int(D ∩ F).

We say that F is incompressible or ∂-incompressible if there exists no compressing
disk or ∂-compressing disk respectively for F. A surface F in M is essential if F
is incompressible, ∂-incompressible and not ∂-parallel in M. We remark that a σ-
state surface Fσ is π1-essential in E(K) if and only if the interpolating surface (Fσ)˜
obtained from Fσ is essential in E(K).

The following theorem gives a sufficient condition for the state surface to be π1-
essential.

T 2.8. If a diagram is both σ-adequate and σ-homogeneous for some state σ,
then the σ-state surface is π1-essential.

If Fσ is nonorientable and π1-essential, then the interpolating surface (Fσ)˜ is
connected and essential. Therefore, the knot satisfies the Neuwirth conjecture [21],
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which states that, for any nontrivial knot K, there exists a closed surface S that contains
K and is such that S ∩ E(K) is connected and essential in E(K).

C 2.9. If a diagram is σ-adequate and σ-homogeneous for a state σ , ~σ,
then the knot satisfies the Neuwirth conjecture. In particular, all adequate knots satisfy
the Neuwirth conjecture.

R 2.10. It can be confirmed that every 10-crossing knot diagram in the Rolfsen
knot table [27], except for 819, 10124, 10128, 10134, 10139 and 10142, is σ-adequate and
σ-homogeneous for a positive or negative state σ distinct from the Seifert state ~σ.
Also, every 11-crossing knot diagram in the Hoste–Thistlethwaite knot table [14],
except for K11n93, K11n95, K11n118, K11n126, K11n136, K11n169, K11n171,
K11n180 and K11n181, is σ-adequate and σ-homogeneous for a positive or negative
state σ distinct from the Seifert state ~σ. Furthermore, it can be checked that 10134,
10142, K11n93, K11n95, K11n136, K11n169, K11n171, K11n180 and K11n181 bound
π1-essential, nonorientable checkerboard surfaces. (It may be necessary to deform the
diagram by the Reidemeister move of type III.)

R 2.11. Futer et al. [10] estimated the hyperbolic volume of adequate knots by
using the guts of state surfaces.

R 2.12. We can construct a spanning surface other than Fσ from a state σ by
letting the loop li bound a disk d′i in B+. Theorem 2.8 holds for all state surfaces
obtained by such a method. Moreover, we can construct a branched surface as
in [13] that consists of disks d1, . . . , dm in B− and disks d′1, . . . , d′m in B+ bounded
by l1, . . . , lm respectively, and half twisted bands b1, . . . , bn.

R 2.13. Suppose that a diagram D is σ-adequate and σ-homogeneous for a
state σ. If Fσ is orientable, then it is a minimal genus Seifert surface by [11,
Theorem 2] or [4, Corollary 4.1].

On the other hand, as pointed out by M. Hirasawa, a similar phenomenon need not
occur in the nonorientable case. Indeed, there exist 2-bridge links with two continued
fractions −3 2 −2 3 and 2 3 2, where the notation follows Adams [1].

R 2.14. The converse of Theorem 2.8 does not hold in general. It is true that if
a σ-state surface Fσ is π1-essential, then the diagram D is σ-adequate. However, it is
not true in general that if a σ-state surface Fσ is π1-essential, then the diagram D is
σ-homogeneous.

By using a π1-essential state surface, we can prove the next theorem, which tells us
that we can deduce the triviality and splittability of a knot or link from its diagram. In
this paper, we say that a diagram D is nontrivial if it contains at least one crossing and
that D is nonsplit if it is connected.

T 2.15. Let K be a knot or link that admits a σ-adequate and σ-homogeneous
diagram D without nugatory crossings for some state σ. Then the following hold.
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Algebraically
alternating

-adequate and
-homogeneous

Algebraic
(arborescent)

Semiadequate Homogeneous

Adequate

Montesinos Alternating Positive

Pretzel 2-bridge Torus

F 4. The Hasse diagram for the set of knot diagrams partially ordered by inclusion.

F 5. An algebraic link that is neither σ-adequate nor σ-homogeneous for any state σ.

(1) D is nontrivial if and only if K is nontrivial.
(2) D is nonsplit if and only if K is nonsplit.

The determining problem for the triviality and splittability of a knot or link has
been solved for the following classes. For triviality, the determining problem has been
solved for alternating knots [19], homogeneous links [4], semiadequate links [29] and
Montesinos knots [16]. For splittability, the determining problem has been solved for
alternating links [18], homogeneous links [4], semiadequate links [29] and positive
links [22].

Figure 4 shows the Hasse diagram of the various classes of knots and links. Here,
almost all algebraic links have σ-adequate and σ-homogeneous diagrams for some
state σ (see Example 2.7), but some algebraic links seem to be neither σ-adequate nor
σ-homogeneous for any state σ (see Figure 5). Algebraically alternating knots and
links are defined in [24] so that these classes include both alternating and algebraic
knots and links. Some results on closed, incompressible surfaces are obtained in [24].
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3. Lemmas

The next lemma is stated for knots, but it also holds for links K, provided that
E(K) − F is irreducible. Note that, for a connected diagram D and a state surface Fσ,
E(K) − Fσ will be a handlebody and hence irreducible.

L 3.1 [23, Lemma 2]. Let K be a knot in S 3 and let F be an incompressible,
orientable surface properly embedded in E(K). If F is ∂-compressible in E(K), then
F is a ∂-parallel annulus.

Similarly, we have the following lemmas.

L 3.2 [25, Lemma 2.2]. Let K be a knot in S 3 and F be a π1-injective non-
orientable surface properly embedded in E(K). If F is not ∂-π1-injective, then F is
an unknotted, half-twisted Möbius band and K is trivial.

L 3.3 [2, Theorem 9.8], [20, Proposition 2.3], [23, Theorem 2, 3]. Let D be a
reduced, prime, alternating diagram. Then the checkerboard surface obtained from
D is π1-essential.

Let F be a spanning surface for a link K. Suppose that there exists a 2-sphere S that
decomposes S 3 into two 3-balls B1 and B2 such that F ∩ S is a disk. Put Fi = F ∩ Bi

for i = 1, 2. Then we say that F has a Murasugi decomposition into F1 and F2, which
we denote by F = F1 ∗ F2. Conversely, we say that F is obtained from F1 and F2 by a
Murasugi sum along a disk F ∩ S .

Put E = S − int(F ∩ S ) and let δ be a disk in B1 such that

δ ∩ (F1 ∪ E) = ∂δ ∩ (F1 ∪ E) = ∂δ

and ∂δ ∩ E consists of mutually disjoint arcs α1, . . . , αn. Then there exist mutually
disjoint arcs α′1, . . . , α

′
n in F ∩ S that form the mutually disjoint loops given by

α1 ∪ α
′
1, . . . , αn ∪ α

′
n in S . Moreover, there exist mutually disjoint disks δ′1, . . . , δ

′
n

in B2 that are bounded by α1 ∪ α
′
1, . . . , αn ∪ α

′
n respectively.

We call the disk δ ∪ (δ′1 ∪ · · · ∪ δ
′
n) the extended disk of δ towards B2. We remark

that the extended disk of δ is uniquely determined by δ and that in general it intersects
the interior of F2.

The following key lemma extends [11, Theorem 1] to nonorientable surfaces.

L 3.4. If F1 and F2 are π1-essential, then F = F1 ∗ F2 is also π1-essential.

P. Suppose that F1 and F2 are π1-essential. We will show that the interpolating
surface (F)˜ = F ×̃ ∂I is essential. By [23, Claim 9], (F)˜, (F1)˜ and (F2)˜ are
incompressible and ∂-incompressible in F ×̃ I, F1 ×̃ I and F2 ×̃ I respectively.

Suppose that (F)˜ is compressible. Let C be a compressing disk for (F)˜ in the
outside of F ×̃ I. Put E = S − int(F ∩ S ). Without loss of generality, we may assume
that C and E are in general position, and that the number of components of C ∩ E is
minimal over all compressing disks C.
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[9] Essential state surfaces for knots and links 399

F 6. Marking a±k with an arrow and an orientation induced by αk.

If C ∩ E = ∅, then C is a compressing disk for (F1)˜ or (F2)˜. Otherwise, C ∩ E
consists of arcs, say α1, . . . , αp. Let δ1, . . . , δq be subdisks on C, separated by
α1 ∪ · · · ∪ αp. For each arc αk, put ∂αk = a+

k ∪ a−k . A subarc N(a±k ; ∂C) runs over
the disk F ∩ S and F − S . Then we mark a±k with an arrow so that it runs from F ∩ S
to F − S (see Figure 6).

Suppose now that F is not π1-essential. We derive a contradiction by constructing
a graph G that possesses an impossible property. The following claim is needed to
establish some properties of C ∩ E that will be useful in our construction.

Claim. For an outermost arc αk and the corresponding outermost disk δl, both
arrows at a±k turn out from δl (as in the right-hand side of Figure 6).

To prove the claim, we may assume without loss of generality that δl ⊂ B1. First,
suppose that both arrows at a±k turn into δl (see Figure 7). There exists an arc α′k that
connects a+

k and a−k on F ∩ S . Also, the loop αk ∪ α
′
k bounds a disk δ′l in B2. We may

now deduce that the extended disk δl ∪ δ
′
l towards B2 is a compressing disk for (F1)˜,

since we have assumed that the number of components of C ∩ E is minimal. This
contradicts our assumption that F1 is π1-essential.

Next, suppose that one arrow at a±k turns into δl and another turns out from δl (see
Figure 8). Similarly, there exists an arc α′k that connects a+

k and a−k on F ∩ S , and the
loop αk ∪ α

′
k bounds a disk δ′l in B2. Then the extended disk δl ∪ δ

′
l towards B2 is a

∂-compressing disk for (F1)˜ since we have assumed that the number of components of
C ∩ E is minimal. In either case, we have a contradiction and our claim is established.

We construct our graph G on C as follows. We assign a vertex vl to each subdisk δl,
and connect two vertices by an edge ek if the two corresponding subdisks have a
common arc αk of C ∩ E. Note that G is a tree, since any arc αk separates δ. Since,
by our first claim, both arrows at the boundary of an outermost arc turn out from the
corresponding outermost disk, we can assign a natural orientation to the corresponding
outermost edge. We call this orientation of the edge ek the orientation induced by αk

(see Figure 6).
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F 7. Both arrows at a±k turn into δl.

F 8. One arrow at a+
k turns into δl and another arrow at a−k turns out from δl.

We say that a vertex of G has depth x if it becomes a vertex of degree one or zero
after removing all vertices of depth less than x, where x is a natural number. We define
vertices corresponding to the outermost subdisks of C as of depth 1. See Figure 9,
where the depth of each vertex is indicated.

Our second claim will help us contradict our assumption that (F)˜ is compressible.

Claim. Every edge of G has an induced orientation and every vertex has an edge
oriented outwards.
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F 9. An example of C ∩ E on C and the corresponding graph G.

We prove this claim by induction on the depth of vl. If vl has depth 1, then this is
nothing but our previous claim.

Next, suppose that this claim holds for all vertices of depth less than x, and that vl

has depth x. Let N<x(vl) be the set of vertices that are adjacent to vl and have depth less
than x. Since G has no cycles, any vertex in N<x(vl) has an edge oriented outwards to
vl. Without loss of generality, we may assume that δl ⊂ B1.

If vl becomes a degree-zero vertex after all vertices of depth less than x are removed,
then the extended disk δ′l of δl towards B2 is a compressing disk for (F1)˜. If vl becomes
a degree-one vertex after all vertices of depth less than x are removed, then let ek be
the edge connecting vl to a vertex that is not contained in N<x(vl), and let αk be the
corresponding arc. First, suppose that both arrows at a±k turn into δl. Then the extended
disk δ′l of δl towards B2 is a compressing disk for (F1)˜. Next, suppose that one of the
arrows at a±k turns into δl and another turns out from δl. Then the extended disk δ′l of δl

towards B2 is a ∂-compressing disk for (F1)˜. In either case, we have a contradiction.
Hence ek has an orientation induced by αk, and vl has an edge oriented outwards.

Our claim follows by induction.
This second claim leads us to a contradiction since G is a tree. Hence (F)˜ is

incompressible. It follows, by an elementary cutting-and-pasting argument, that K is
nonsplit. If (F)˜ is ∂-compressible, then it is ∂-parallel annulus by Lemma 3.1. Thus
F is not a ∂-π1-injective Möbius band. Hence one of F1 and F2 is also not a ∂-π1-
injective Möbius band. This contradicts our assumption that both of F1 and F2 are
π1-essential. Therefore F must be essential. �

4. Proofs

P  T 2.8. Suppose that a diagram D is σ-adequate and σ-homogeneous
for some state σ. Then the σ-state graph Gσ may be decomposed into maximal blocks
G1, . . . ,Gn, each of which has no loop and has all of its edges of the same sign.
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Let F1, . . . , Fn be the σ-state surfaces corresponding to G1, . . . ,Gn. Then for
each i, the boundary ∂Fi represents an alternating diagram that is reduced and prime
since Gi has no loop and the block decomposition is maximal. By Lemma 3.3, Fi is
π1-essential for each i. It follows by Lemma 3.4 that F is also π1-essential. �

P  T 2.15. Let K be a knot or link that admits a σ-adequate and
σ-homogeneous diagram D without nugatory crossings. By Theorem 2.8, a σ-state
surface Fσ is π1-essential.

Suppose first that K is nontrivial. Then any diagram of K has at least one crossing.
Hence D is nontrivial. Conversely, suppose that D is nontrivial. Since D has at least
one crossing and does not have nugatory crossings, there exists a component of Fσ

that is not a disk. This shows that K is nontrivial.
Suppose now that K is nonsplit. Then any diagram of K is connected. Hence D

is nonsplit. Conversely, suppose that D is nonsplit. Since D is connected, Fσ is also
connected. By a cutting-and-pasting argument on a splitting sphere, K is nonsplit.

5. Problems

Here, we list four problems that we would like to solve in the future.

(1) Show that there exists a knot that has no σ-adequate and σ-homogeneous
diagram. Furthermore, characterize the nature of knots and links that have
σ-adequate and σ-homogeneous diagrams.

(2) Determine primeness, satelliteness, fibredness, smallness and tangle decompos-
ability from a given σ-adequate and σ-homogeneous diagram.

(3) Show that, for a given knot, the number of all σ-adequate and σ-homogeneous
diagrams without nugatory crossings is finite.

(4) Classify knots and links that have σ-adequate and σ-homogeneous diagrams.

We believe that essential state surfaces will be useful for solving these problems.

6. Addendum

Since our initial version of this paper, written in 2006, some progress has been made
on related matters. We summarize some of those results here.

In [10, Theorem 3], Futer et al. used our main Theorem 2.8 to verify the
Garoufalidis conjecture on a relation between the boundary slopes of a knot and its
colored Jones polynomials.

In [6], Curtis and Taylor used an unpublished result of Adams and Kindred, which
is based on the work here, to show that, for an alternating knot, the minimal integral
boundary slope is given by the signature plus twice the minimum degree of the Jones
polynomial. They also showed that the maximal integral boundary slope is given by
the signature plus twice the maximum degree of the Jones polynomial.
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