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Abstract. We find generalized conformal measures and equilibrium states for random
dynamics generated by Ruelle expanding maps, under which the dynamics exhibits
exponential decay of correlations. This extends results by Baladi [Correlation spectrum
of quenched and annealed equilibrium states for random expanding maps. Comm. Math.
Phys. 186 (1997), 671-700] and Carvalho et al [Semigroup actions of expanding maps.
J. Stat. Phys. 116(1) (2017), 114-136], where the randomness is driven by an independent
and identically distributed process and the phase space is assumed to be compact. We
give applications in the context of weighted non-autonomous iterated function systems,
free semigroup actions and introduce a boundary of equilibria for not necessarily free
semigroup actions.
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1. Introduction

In this paper, we contribute to the thermodynamic formalism of sequential and random
dynamical systems, whose notions we now recall. Given a compact metric space X, a
probability space (€2, P), a measurable map 6 : 2 — Q2 and a family (7,),ecq of maps
acting on X, one is interested in describing typical points according to the random orbit

T .= T@”*l(w) o---0Tyw oT,. (1.1

[0

For each fixed w € 2, the previous expression consists of the iteration of the sequential
dynamical system (7},),, with T, := Tyny. The random transformation associated to the
family (7,,)»eq and randomness (€2, 6, P) can be modelled by the skew-product

F:QxX—>QxX
(@, x) = (0(w), Ty (x)).

The space of F-invariant probability measures whose marginal on 2 is given by P is
non-empty and every such probability u is characterized by the disintegration

du(w, x) = duy(x) dP(w), (1.2)

where u,, are called the sample measures of . The previous expression encloses the
information of the sequential dynamics arising from the random dynamical system. Indeed,
a description of the dynamics as in equation (1.1) for P-typical points w allows for the
description of the probabilities i, and the reconstruction of the whole random dynamics
through equation (1.2). The previous formalism has proved to be very useful to code
the dynamics of finitely generated semigroup actions, in which case one obtains a step
skew-product F (see e.g. [6, 7, 20, 33, 34] and references therein).

In view of the previous discussion, it is natural that one of the central questions
in the thermodynamic formalism for random dynamics is how to effectively construct
conformal-like (and equilibrium state-like) measures, as it might allow one to establish, for
example, limit laws or stability under perturbations. This goal has been attained in several
variations of the setting above. If 6 is an ergodic automorphism and the 7, are expanding
maps, then there are several known versions of a quenched Ruelle-Perron—Frobenius
theorem, a line of research which was initiated by works of Bogenschiitz—Gundlach and
Kifer [4, 21]. That is, the classical statement of the theorem holds for P-almost every
sequence of transfer operators dual to (7)}). By combining the result with a random version
of the variational principle, this then gives rise to the notion of equilibrium states as well

https://doi.org/10.1017/etds.2022.60 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.60

3152 M. Stadlbauer et al

as their uniqueness (see [26] and references therein, or e.g. the recent contributions in
[1]). In a purely topological context of fibred systems with Ruelle expanding fibres and a
homeomorphism as factor, Denker, Gordin and Heinemann [11, 12] obtained a quenched
version of Ruelle’s theorem and a construction of relative equilibrium states. However,
these questions have also been studied for arbitrary sequences of expanding maps on the
unit interval [9, 19] or general non-autonomous dynamical systems (we refer the reader to
[8, 18] and references therein).

Alternatively, the annealed setting approaches these notions in average with respect
to P. If the base is an independent and identically distributed stochastic process, it was
shown by Baladi [2] that the annealed equilibria are the averages of the quenched ones
with respect to P. The restriction to independent and identically distributed processes in
there is a consequence of the simple observation that the independence implies that taking
averages with respect to P and the iterations of the quenched transfer operators commute.

A further, related approach to these questions is to consider the semigroup generated
by the maps {T;,}. However, even though semigroups and random iterations of these maps
are intrinsically different, the results in [6, 7] indicate that the associated thermodynamic
formalism might bridge this gap and should give rise to an important field of applications.

A motivation for our work is the attempt to unify the above settings for the case of a
finite family of distance expanding maps on Polish spaces. Starting from a technical result
on geometric convergence of a family of quenched operators, we deduce two quenched
versions of Ruelle’s theorem and a description of the fluctuations of the quenched ergodic
sums through a central limit theorem for the quenched setting. Moreover, in the random
regime, these results imply geometric convergence of the averaged operators with respect
to a Y¥-mixing, non-invertible transformation 6 in the base and a formula for the almost
sure Hausdorff dimension of the limit sets of a random conformal iterated function system.
Finally, it follows from these quenched results that one may identify a topological boundary
of the semigroup with the set of quenched equilibrium states, and that this identification is
Lipschitz continuous.

2. Statement of the main results
In what follows, we introduce the setting and state the main results of this paper.
However, for the sake of simplicity, we postpone several technical definitions to the next
sections. Throughout, we assume that (X, d) is a complete and separable metric space,
and that 71, ... Ty : X — X are continuous, surjective and Ruelle expanding maps (cf.
Definition 3.2). Moreover, we always assume that the semigroup S generated by these
maps is jointly topologically mixing and finitely aperiodic (cf. Definitions 3.3 and 3.4).
Moreover, as we are interested in thermodynamic quantities, we fix Holder continuous
functions ¢, . . ., ¢r : X — R and define, for a finite word v =iy . . . iy,

T, =T,

o"'OTII1 and Py = @iy +§0i20Ti1 + - '+‘Pi,, 0Ti1i2...i,,,1~

This then gives rise to a family of Ruelle operators {L,} and a further family of operators
{P}}, defined by

Ly = Y eV fG), Puf) =

Ty (y)=x

Lv(f : Lu (1))
Luv(l) ’
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for f in a suitable function space and with 1 referring to the constant function of value 1.
Moreover, to guarantee that L, (1) is well defined, we also assume that the functions
¢; are summable (cf. Definition 4.1). As it will turn out below, the analysis of this
family of operators allows us to ignore the problem of the non-existence of invariant
densities due to purely functorial reason and was, according to the authors’ knowledge,
first employed in [3].

The two main features of these quotients are that P}, (1) = 1 and that the iteration rule
P? oP! = P-" holds. It follows from the first that the dual operators {(P})*} act on the
space of probability measures M (X), and from the second that it is possible to adapt
methods for Markov operators as in [5, 17, 23, 31] to obtain geometric convergence. Our
first principal result now establishes this kind of convergence. In here, W refers to the
Wasserstein metric and D to the Holder coefficient with respect to the equivalent metric
d* (cf. equation (5.1)). We refer the reader to §4 for the necessary definitions and notation.

THEOREM A. Suppose the Ruelle expanding semigroup S is jointly topologically mixing
and finitely aperiodic, and that every potential ¢; is a-Holder and summable. Then there
exist ko € N and s € (0, 1) such that for all finite words u, v with length |v| > ko and
V1, va € M (X) and every Holder continuous observable f : X — R with B(f) < 00,

WP (1), Py (1)) < sTW (w1, ),
DPL(f) < s"'D(p).

This theorem implies that for any infinite word @ = i;is . . . and measure v € M (X)),
the limit

o 2= lim () (v)

exists, is independent of v and the speed of convergence is exponential. This means that,
under some mild assumptions on the set of Ruelle expanding maps, any non-autonomous
sequence of dynamics admits a probability measure that rules its dynamics and that this
measure is a non-autonomous conformal measure in the following sense: there exists
Auw > 0 such that L (1) = Ay witue (see Proposition 6.1). Furthermore, for any left
infinite word @ = . . . i_7i_1, the limit

Mo = ll_lfg)(ﬂpilfl”hl)*(v)

exists, varies Holder continuously with , is independent of v, and the speed of
convergence is exponential. As shown in Proposition 6.3, this measure is invariant in the
non-autonomous setting, and if @ and w are periodic extensions of the finite word w, that is,
®=...wwand w=ww ... then gz, is the unique equilibrium state of (T, ¢,,) (cf.
Proposition 6.5). In fact, the set of all measures {uz ,}, Where @, w run through all infinite
words is the closure of these equilibrium states and can be used to define a compactification
of the semigroup (Proposition 9.4).

A further application of Theorem A is related to an invariance principle as the
contraction allows us to apply the general invariance principle in [10] and gives rise to
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the following result (for a similar result for continued fractions with restricted entries, see
[32]). Here, [w], stands for the initial n-word of an infinite word w.

THEOREM B. Suppose the finitely Ruelle expanding semigroup S is jointly topologically
mixing and finitely aperiodic, and that every potential ¢; is a-Holder and summable.
Suppose w € £, f € Hq. Let f = f — [ f o Tjw), dite for every n € Ny, and let s,% =
Euw(ZZ;é fi o Tiwy)? for n > 1 and assume that Y, s;* < oo. Then there exists a
sequence (Z,) of independent centred Gaussian random variables such that

sup ‘ o By Z — su| < 00
n
k k
sup fioTiw), — Z Zi| = o(,/s,% log log s,%) almost surely.
Osk=n—11"j 9 i=0

We then relate and apply these results to random dynamical systems, that is, we assume
that the 7; are chosen with respect to a given probability measure p. So, it is sufficient
to fix a measure p either on the shift spaces ¥ := {1, ..., kKNor=z:={1,...,k}% and
consider the almost sure behaviour, referred to as quenched, and the behaviour in average,
referred to as annealed behaviour. In this setting, Proposition 6.1 provides existence and
exponential decay towards the quenched random conformal measure p,, whereas the
bilateral result in Proposition 6.3 implies the same statement for the quenched equilibrium
state g -

To relate these quenched results to their annealed counterparts, we consider in here as
in [2] the annealed operators

A=) p({w: [0ly = whLy.

lw|=n

A fundamental problem of these operators is that, in general, A+, # A, o Ay, which
makes it impossible to apply methods from spectral theory. However, if we assume that p
is supported on a topologically mixing, one-sided subshift of finite type, it is possible to
control the asymptotic behaviour of {4, }, which is our third main result. In here, 6 refers
to the one-sided shift map.

THEOREM C. Suppose the Ruelle expanding semigroup S is jointly topologically mixing
and finitely aperiodic, and that every potential ¢; is a-Holder and summable. Moreover,
suppose that p is supported on a topologically mixing, one-sided subshift of finite type
and that dp /dp o 0 is Holder continuous. Then there exist r € (0, 1), a positive function
h € Hy and B > 0 such that for all f € Hy and every large n > 1,

‘Anm(x) _/fdn

Bh(x) L "D+ fllm)-

Now assume that p is a Bernoulli measure, so that the maps 7; are chosen independently.
Then, by independence, it follows that A,, = (A;)". Hence, as an immediate corollary, one
obtains that
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(AD"(hf)(x)/B"h(x) —>/f(X)h(X) dm(x)

exponentially fast, which is a well-known version of Ruelle’s operator theorem for
independently chosen maps 7; (cf. Proposition 3.1 in [2]). As this is the key step for
existence and uniqueness of the annealed equilibrium state (cf. Proposition 3.3 in [2]),
one obtains Theorem 1 in [2] for independent and identically distributed Ruelle expanding
maps as a corollary.

We now return to the general case of a one-sided subshift of finite type with exponential
decay of correlations and now assume, in addition, that p is 6-invariant. In this setting, we
obtain an annealed version of decay of correlations.

THEOREM D. Suppose that the assumptions of Theorem C hold and that p is 6-invariant.
Then there exist a probability measure v, r € (0, 1) and k| € N such that

‘ / D 1p1(@) f(Ty(x))g(x) dp (x) dp (@) — / fadn f g i dp‘

lv|=n

<" / |/ dpe dp<5(g) +/ gl dite dp)
forall g € Hy and f : X — Rintegrable with respect to d i, (x) dp(w).

The latter reveals an unexpected connection between quenched and annealed dynamics.
Indeed, it is noticeable that despite the fact that quenched and annealed random dynamical
systems often measure different complexities of the dynamics (see e.g. [6, Proposition 8.3]
for an explicit formula in the context of free semigroup actions), in Theorem D, we
obtain an annealed decay of correlations with respect to a probability d ., dp obtained via
quenched asymptotics. These results for both quenched and annealed dynamical systems
will appear as Theorems 5.1, 7.3, 7.4 and 8.3 below. Moreover, the authors would like
to point out that, according to their knowledge, Theorems C and D are the first annealed
results for a dependent choice of the maps {7;}. Finally, in §9, we discuss applications to
non-autonomous conformal iterated function systems, the thermodynamic formalism of
semigroup actions and a boundary construction through equilibrium states.

3. Semigroups of Ruelle expanding maps on non-compact spaces
We always assume that (X,d) is a complete and separable metric space and that
W is a finite alphabet. For every i € W, let T; : X — X be a continuous, surjective
transformation and let S be the semigroup generated by {7;};<)y, that is,
S={T; 0T 00T keN, iy i ..., ix € W}
For every k € N and every finite word v = i1i> . .. g € Wk set
T, =T,o0- - 0oT,.

Then each element of S is equal to T, for some finite word v, but v might not be uniquely
determined (e.g. if two generators T, T, commute, then 7,, = Tp,). Observe that, with
the usual concatenation of words, we have that Ty,, = T,, o T, and, in particular, that the
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map from (-, Wk — S given by v > T, is a semigroup anti-homomorphism, referred
to as the codin_g of S. This coding naturally defines a free semigroup action S x X — X,
(Ty, x) — T,(x) determined by S.

For every finite word v € W¥, denote its length by |v| = k. For x € X and A C X, let
B,(x)={yeX:dx,y) <r}and B,(A) ={y € X :d(x,y) <r forsome x € A}. For
a finite word v = ij. . . ik, define dynamical distance

dv(-x’ y) = Sup{d(xa Y), d(Til...ij(x)a Til...ij()’)), 1 = ,] < |U|}
and dynamical ball
B/(x) :={yeX:dy(x,y) <r}

Later, we will also consider infinite words. The transformations 7;, i € WV in this paper
are always Ruelle expanding maps as introduced in [29]. However, here, we do not require
that the base space is compact and, in particular, the set of preimages of a point might be
countably infinite. Recall that this notion of expanding map is defined as follows.

Definition 3.1. T is said to be (a, A)-Ruelle expanding, for some a > 0 and A € (0, 1),
if for any x, y, ¥ € X with d(x, y) < a and T (x) = x, there exists a unique y € X with
T(y) = yand d(X, ¥) < a, and such that this y satisfies

d(x,y) = rd(x, y).

Examples of Ruelle expanding maps include C! expanding maps on compact Rie-
mannian manifolds, distance expanding maps on compact metric spaces and one-sided
subshifts of countable type. In particular, our setting includes distance expanding maps on
non-compact metric spaces. Observe that as we only consider a finite alphabet VW, we may
choose the same parameters a and A for all 7;,i € W.

Definition 3.2. The semigroup S generated by {7;};c)y is said to be a (a, X)-Ruelle
expanding semigroup if every T;,i € W is (a, A)-Ruelle expanding.

We extend to the semigroup S the notions of topological mixing and finite aperiodicity,
which are usually defined for the iteration of a single map. They are known from graph
directed Markov systems [25] or from the big images and preimages property for shift
spaces [30].

Definition 3.3. S is said to be jointly topologically mixing if for all open sets U, V C X,
there exists m € N such that T, Y(U) NV # @ for all finite words w with |w| > m.

Definition 3.4. An (a, A)-Ruelle expanding semigroup S is said to be n-finitely aperiodic
(see Figure 1) if there exist n € N, a finite subset K C X and r > O such that forall x € X
and w € W", one can find &, n € K satisfying:

(1) thereis &* € T 1 (&) with d (x, £%) < a;

(2) thereis x* € T, ! (x) with d(x*, n) < a and d,,(x*, ) < r.

The first condition is modelled after the big image condition, the second after the big
preimage condition.
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FIGURE 1. Finite aperiodicity.

Remark 3.1. Any Ruelle expanding semigroup defined on a compact space X is n-finitely
aperiodic for every n € N, which can be seen by the following argument. Let K be a finite
set such that X C UZeK B /2(z) and let r = diam(X). Choose § € K N B, (T, (x)), then
the Ruelle expanding property assures the existence of £* and hence condition (1). Choose
any x* € Tujl (x) and n € K N B,(x™*), then condition (2) follows.

We now present two classes of examples of jointly topologically mixing and finitely
aperiodic semigroups.

Example 3.2. Assume that (X, d) is a compact and pathwise-connected metric space such
that there exists some C > 0 such that for any pair (x, y) € X, there exists a rectifiable
curve from x to y of length smaller than C. Furthermore, assume that {7;};c)y is a finite
family of Ruelle expanding maps on X.

PROPOSITION 3.3. {T;};c\y is jointly topologically mixing and finitely aperiodic.

Proof. By Remark 3.1, it remains to show that the semigroup is jointly topologically
mixing. To do so, we show that for any open set U C X, there exists m € N such that
Ty (U) = X for all finite words w with |w| > m.

So assume that x, y € X are connected by a curve yy of length £(yp) < C and that
i € W. By covering y with finitely many open balls of radius a and by choosing for each
of these open balls an inverse branch of 7; such that the inverse branches coincide in the
overlapping regions of the covering, one obtains a new curve y; such that 7;(y1) = yp.
Furthermore, as 7; is a local homeomorphism whose inverse branches contract distances
by A, it follows that y; is rectifiable and that £(y1) < A€(yp). It hence follows by
iteration that for any w with |w| = n, there exists a curve y, with T, (y,) = Yo and
L(yn) < CA".

So assume that U contains an open ball with centre z of radius r, that r < CA",
that |w| = n and that x € X. Then, for a curve yg of length £(yy) < C from T, (z) to
x € X, there exists a curve y, which starts in z such that Ty, (y,) = yp and £(y;) <
CA" < r. Hence, the endpoint of y,, is an element of U. As x is arbitrary, it follows that
Ty(U)=X. O

Example 3.4. We now construct a class of semigroups generated by a finite number of
skew products over the same topological Markov chain and provide sufficient conditions
for joint topological mixing and finite aperiodicity.
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To do so, we recall the notion of a topological Markov chain with the big images and
preimages property. So assume that A = (a;;);, j>0 is a matrix with values in {0, 1} without
rows or columns equal to 0. We then refer to

Yi={(x:i e NU{0}D : x; e NU {0}, ay, = 1foralli > 0}

Xit1
as a fopological Markov chain with transition matrix A. Furthermore, we say that A is
aperiodic if for any pair (i, j), there exists ng € N such that the coordinate (i, j) of the nth
power A" is strictly positive for all n > ng. Moreover, we say that X has the big images
and preimages property if there exits a finite subset L C N U {0} such that for each n €
N U {0}, there exist k, [ € L such that ax, = 1 and a,; = 1. It is worth noting here that the
non-triviality of rows and columns imply that X is non-compact with respect to the product
of the discrete topology on N U {0}. In combination with the big images and preimages
property, this then implies that X is even locally non-compact.

We now show that the left shift 0 : ¥ — ¥ is a topologically mixing 1-aperiodic
Ruelle expanding map with respect to the metric dyy ((x;), (y;)) := 2~ ™nlExi#yi} which is
compatible with the product topology on X. First, note that d, (x, y) < 3/4 implies that x
and y share the same first coordinate. In particular, the restriction of o on balls of radius 3/4
is a homeomorphism and expands distances by 2. That is, o is (3’—1, %)-Ruelle expanding.
Moreover, it follows from aperiodicity of A and finiteness of L that there exists mg such
that for any pair (i, j) in L, c™([i]) C [j], where [a] C X refers to those elements in X,
whose first coordinate is equal to a. Hence, it follows from big images and preimages that
0™0%2([a]) = T for any a € N U {0}. This then implies that o is topologically mixing.
To see that o is l-aperiodic in the sense of Definition 3.4, it remains to choose for
each i € L an element x; € [i] and check that {x; : i € L} satisfies the conditions of
Definition 3.4.

Now fix (X, d) is as in Example 3.2, A € (0, 1), a > 0 and a finite set V. Furthermore,
assume that the set of (a, A)-Ruelle expanding maps on X is non-empty and that for any
w € W, Ky, associates to each N U {0} a Ruelle expanding map, that is,

ky : NU{0} = {T : X — X | T is (a, A)-Ruelle expanding}.
In particular, «, gives rise to the skew product
Ty : X x X = X xX, ((xi),y) = (0((x), T,y (x0)(¥)
and the semigroup S generated by {7, : w € W}. With respect to ds((x, y), (X, ¥)) :=
dy (x,X) +d(y, y), one then obtains the following.

PROPOSITION 3.5. S is jointly topologically mixing and I-aperiodic.

Proof. Assume without loss of generality that a < 1/2. Then, ds((x, y), (x,y)) :=
dy(x,x)+d(y,y) < a implies that the first coordinate of x and x coincide and that
d(y, y) < a. Hence, it follows that the restriction of T,, to a ball of radius a is a home-
omorphism and that the inverse branches of T, contract at least with rate max{1/2, A}.
Now assume that U is open. Then there exist k € N, xq, . . . x;y € NU {0} and r > 0 such
that [xo, . .. xx] X B,(2) C U, where [xp, . . . xi] refers to those elements in X starting
with xp, . . . xx and B, (z) to the ball of radius r with centre z in X. It now follows from
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the above that o¥+"0+2([x¢, . . . x;]) = ¥ and from Example 3.2 that T,, (B, (z)) = X for
any w with CAI"! < r._In particular, there exists n with T,,(U) = £ x X forany w € W".
In particular, S is jointly topologically mixing. The remaining statement that is the finite
aperiodicity of S, then follows immediately by considering the set {x; : i € L} x K, where
K is constructed as in Remark 3.1. O

Without specifying, S is always (a, A)-Ruelle expanding in this paper. We use the
notation x < y, x > y, x < y to indicate that there exists a positive constant C such that
x <Cy,x > Cy, C_ly < x < Cy, respectively.

4. Quotients of Ruelle operators
In this section, we introduce a family of quotients of Ruelle operators, which will
act as strict contractions on the set of probability measures. It provides an effective
construction of the relevant measures, whereas a normalization of the Ruelle opera-
tors through invariant functions has no dynamical significance in the setting of semi-
groups or sequential dynamics due to purely functorial reasons, as noted in Remark 6.6
below.

To begin with, let ¢; : X — R, i € YW be a continuous function. We also call ¢; a
potential. Define for a finite word v = iji . .. ix € Wk,

QDU()C) = @il(x) + (piz(Til (x)) +---+ §0ik(Ti1.‘.ik,1(x))-
Then the Ruelle operator L, is defined by
Ly(f)x) = Y eV f(y)
Ty(y)=x

for f in a suitable function space. Note that it follows from 7,07, = T,, that
LyoL, = L,, for any two finite words u, v. We now define the adequate function space.
Fora € (0, 1]and f : X — R, the Holder coefficient Dy (f) is

Do) sup MR SO

x,yeX x#y d(x, y)*
and the space of a-Holder functions H is
Hy = {f : Do(f) < 00}.

Let H, denote the subspace of bounded functions in . It is well known that H, is a
Banach space with respect to the norm || - || := || - |lco + Dq(+). We are now in position to
specify the class of potentials considered here.

Definition 4.1. We refer to ¢; as a a-Holder potential if ¢; € H],. Moreover, for any finite
word v, we say that ¢, is a summable potential if |L,(1)||cc < 00.

Suppose ¢; is o-Holder for every i € VWW. We shall estimate distortion of ¢,. Due
to the (a, A)-Ruelle expanding property, for v =i ...ix € WK and x, y, ¥ € X with
d(x,y) < aand T,(X) = x, there exists a unique point y € Tv’1 (y) N B2 (X). Moreover,

dF 5) < dx,y), AT, T, < dx,y), 1<) <k
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Hence, the inverse branch
(T):': Ba(x) > BY(E), y+> (4.1)

is well defined and contracts the distance at every intermediate step by A. It follows that
for any pair x, y with d(x, y) < a, there is a bijection from Tv_1 (x) to Tv_l (y) given by

F e 3= (1)F ' O), 4.2)
Now Holder continuity implies that whenever d(x, y) < a,

max; ey Do (¢;)

|‘Pv(f) - Wv(i’i)' =< 1 _ @

d(x, y)¥ =: Cpd(x, y)*. (4.3)

It follows from a simple argument that L, maps H,, to H, if ¢, is also summable.
As we are interested in operators that leave invariant the constant function 1, define for
finite words u, v

Ly(f - L,(1)) _ Lyy(f oTy)

L= T L

It is clear from the definition that
Py1) =1

The motivation to consider these families of operators stems from the simple observation
that for finite words u, v, w,

Ly@®,(f) - Luw@) _ Lu(Ly(f - Lu(D)))

P, o Ph(f) = L@ Lo =B
Hence, with
PY(f) == Lu(f)/Lw (),
for a sequence of finite words vy, . . . v,
PU-% =PY% 0Pyl so---oPB oP2oP (4.4)

As a first result, we obtain H-invariance of these quenched operators.

LEMMA 4.1. P} is a bounded operator on H,. Furthermore, for f € Hy and x, y with
dx,y) <a,

IPL()(x) = Po(SYD] < Cp @Il flloo + AT Do () (x, y)°. (4.5

Proof. Following verbatim the proof of Lemma 2.1 in [3], one obtains that for x, y with
dx,y) <a,

1Ly (f Lu(D)(x) = Ly (f L D)(P)] < Cp L M@ flloo + 2 Da () (x, )*.

The estimate (4.5) follows from this as in [3]. It remains to show that the operators are
bounded and leave invariant H,. As P}, maps positive functions to positive functions
and P;(1) =1, we have ||P}(f)llcc < Il flloo. Furthermore, by considering the cases
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gx— (E K A% Tq(n)

Twq

FIGURE 2. Selection of preimages.

d(x,y) <aandd(x,y) > a separately, we obtain

Do (P2(f)) < max{Cy 2| flloo + A" Do (1)), 247 f I},

which proves that P} : 1, — #, is a well-defined and bounded operator. O

We observe that Lemma 4.1, which requires Holder continuity of the potentials and no
further assumption on topological irreducibility, is one of the principal ingredients to prove
that the duals of the previous operators act as contractions on the space of probabilities.
The other ingredient is the following result for which finite aperiodicity is essential.

LEMMA 4.2. Suppose that S is jointly topologically mixing and finitely aperiodic, and
that every ; is a-Holder and summable. Then L,(1)(x) =< L,(1)(y), that is, there exists
C > Osuchthat 1/C < L,(1)(x)/L,(1)(y) < C for all finite words vand x, y € X.

Proof. First, note that for any x, y € X with d(x,y) < a and any finite word v, the
bijection of equation (4.2) and the estimate (4.3) imply that L, (1)(x) < L,(1)(y).

Suppose S is n-finitely aperiodic. Let K be a finite set and » > 0 be given by finite
aperiodicity. It follows from the Ruelle expanding property and joint topological mixing
that there exists m € N such that for all £, n € K and |w| > m, there exists n* € X with
T,(n*) =nandd(n*, &) < a.

We now show the lemma for any x, y € X and all finite words v with |v| > 2n 4 m.
Take such a finite word v, we will select preimages of x as follows, illustrated in Figure 2.

Decompose v = upwq, where u, w, p, g are finite words and |p| = |q| = n, |[w| = m.
Note that

L,(1)(x) = qu(Lup(l))(x) =< sup ”Li(l)”gjm sup Lup(l)(x/)-

iew X' €Tod (1)

Fixx' € T, ql (x).Forany X € Tu;l (x), let x = T, (%). There exist by condition (1) of finite
aperiodicity, £ € K and £* € Tp_l(é‘) such that d,, (%, £*) < a. Let £* = (Tu));l(g*), the
inverse branch defined in equation (4.1). Then using equation (4.3),

P = 9 ®) g 0p®) < (Coa®+puE) na+epE*) — ,Coa®+na® youp(E")
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Because d, (%, £*) < a and T, (€*) = &, one has ¥ = (Tu,,)g*l (') and £* = (T,,); " (&).
Therefore, different X is associated to different é*, so that
LM = Y er® « 3 e <31, 1))
TeT,' () feT, (x) g€k
Hence,

Ly()(x) < D LupM)(©).

tekK

However, there exist by condition (2) of finite aperiodicity, a preimage x* € Tq_l(x)
and 1 € K such that d(x*, n) <a and n € B! (x*). As d(x*, 1) <a, we know that
Lupw(l)(x*) = Lupw (1)(n). Then,

Ly(D)(x) = %07 Ly (1D(6*) 3> 0D Ly (1)) 3> Lugpan (D ().
The last estimate holds because ¢ € W” and n € K both range over finite sets. Now for

any & € K, one can find n* € Tujl (1) such that d(n*, &) < a, then find such a n; for &
that achieves maxg_x Lyp(1)(). Then, L,,(1)(80) < Lyp(1)(ng) and

LipwMm) = Y e Ly, ()(%) = e ) Ly (1) (1)
n*eTy ' (n)
> 000 L, (1) (&) > Lup (1) (o).

The last estimate holds because ¢y, is continuous, 15 € B, (£0), &0 € K and w € W™ range
over finite sets. Therefore,

Ly(1)(x) > max L,,(1)(§).
EeK

All the constants absorbed into < or > are determined by S, ¢, K, m, n (essentially
by S and ¢), in particular independent of v, x, y. It follows from the above estimates that
L,(1)(x) < Ly(1)(y) forany x, y € X.

Lastly, when |v| < 2n + m, take any finite word |v’| > 2n + m, then for any x € X,

Lyy(x) = Ly(LyM)x) = Y !DL,m@E = Y DLy
el (x) FeTy ' ()
= Ly(D(x)Ly(D)(x)
by the already-proven case. So L,(1)(x) < Ly,(1)(x)/Ly(1)(x), and hence for any
x,y € X, Ly(D)(x) < Ly(D)(y). O

5. Contraction in the Wasserstein distance
Let M(X) refer to the space of Borel probability measures on X. Recall that the
Wasserstein distance W of u, v € M (X) defined by

W (i, v) := inf {/ d(x,y)dP : P e Il(u, v)}
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is a compatible metric with weak convergence, where IT(u, v) refers to the couplings of
w and v, that is, the set of probability measures on X x X with marginal distributions u
and v. Moreover, by Kantorovich’s duality,

W(u,v)zsup{‘/fd(u—v)

s sup L =IO 1}.
xX#y d(x,y)

Let PY* denote the dual operator of P! on M;(X). To obtain a contraction of
W(PL*(-), PL*(-)), the estimates of Lemma 4.1 indicate that for a-close measures, one
should consider (d(x, y))* instead of d(x, y). However, for distant measures, the method
of proof below based on an idea in [17] (see also [3, 23, 31, 32]) requires a truncated
distance. We consider

d*(x,y) :=min{l, Ad(x, y)*}, A:=max{4Cy,a *}. (5.1)

Observe that, by construction, d(x, y) < a whenever d*(x, y) < 1. To see that d* is a
metric, observe that the triangle inequality follows from x* + y* > (x + y)* forx, y > 0
and 0 < o < 1, which is an inequality that easily can be deduced from the concavity of
x > x%. The remaining assertion that d*(x, y) = 0 if and only if x = y is trivial.

We now introduce the space of d*-Lipschitz functions. To do so, recall that the Lipschitz
coefficient is defined by Dy« (f) := sup{| f(x) — f(y)|/d*(x, y) : x # y} and that f is a
bounded Lipschitz continuous function with respect to d* if and only if || f|| := || flleo +
Dg+(f) < oo. To identify these functions in terms of the metric d, set

D(f) :=max{ sup |f(x)— fWI, DX(f)/A},

x,yeX
where
D¢ (f) := sup {—lf(x) — SO ix,y€eX,0<d(x,y) < A‘l/‘”}.
d(x, y)*

Now observe that it follows from the construction that D(f) = Dg«(f), D(f) <
2l fllee + ATV Do (f) and Do (f) < AD(f). Hence, the norms || - |loo + D(IXOC(-) and
Il - lloo + Dgx(-) are equivalent. In particular, by Kantorovich’s duality, the Wasserstein
metric W with respect to d* is characterized through local Holder continuous functions
with respect to d by

W, v)=sup{‘ffd(u—v)

:B(f)fl}.

THEOREM 5.1. Suppose that S is jointly topologically mixing and a finitely aperiodic
Ruelle expanding semigroup, and that every potential ¢; is a-Holder and summable. Then
there exist ko € N and s € (0, 1) such that for all finite words u, v with |v| > ko and
vi, 12 € M (X) and fwith D(f) < 00,
W, (1), By (12)) < s"W (w1, 1),
D(®,(f)) = s"D(f).

Remark 5.2. Under the additional hypothesis that X is compact, the condition of finite
aperiodicity is automatically satisfied.
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u H/Z /“
\ ,, '7/ \ /

FIGURE 3. The map x > x*.

Proof. As in [17], we first prove the assertions for Dirac measures and then extend the
partial result by optimal transport to arbitrary probability measures.

(1) Local contraction. Assume that d*(x, y) < 1 and that f is d*-Lipschitz continuous.
Since d(x, y) < a as soon as d*(x, y) < 1, Lemma 4.1 gives that

IP2(f)(x) = PUAHDI < QCyll flloo + APIDLC ()@ (x, y))°.

Furthermore, as P}, (1) = 1, one may suppose without loss of generality that inf f = 0, and
therefore, || flloo < D(f). Dividing by A and choosing kg such that Ak < 1/4, it follows
that for v with |v| > ko,

o Dloc 35 .
BL(F) () — BU() ()] < (”fz” + “4A(f))d*<x, y) < T(f)d (x. ).

Hence, by Kantorovich’s duality,
WP 30, Py (8))) < 3d*(x, y) = W (s, 8y)-

(2) Global contraction. If d*(x, y) = 1, an upper bound for W can be obtained by
construction of a coupling based on finite aperiodicity. To do so, fix an open set U
of diameter smaller than a/2. Suppose S is nj-finitely aperiodic and K, r are given
by finite aperiodicity. As S is jointly topologically mixing, one can find ny such that
Ty(U)N By(§) # @ for all w e W™ and & € K and that A"2 < 1/8. Choose n3 large
such that Cy,; := A(aA™)* < 1/2. Let kg = n1 + nz +n3.

Let n > kg. For v € W", write v = v3vpv1, Where |[vi| = ni1, |[v2] = no and |v3| > n3.
vzv . ! (x) as below, illustrated in Figure 3.

Let n € K and x* € X be given by condition (2) of finite aperiodicity so that
Ty, (x*) =x,d(x*, n) <aand x* € B!'(n). Now the choice of 1, and Ruelle expanding
property allow us to find a preimage 7" € ij (n) such that " € B,/3(U). Use the Ruelle
expanding property again to find a preimage x* ¢ Tvzl(x* ) such that x* € B, () C
Bg/4(U). One has |¢y, (x*) — @y, (7')| < Cpa® by equation (4.3), so that

For any x € X, we will select a preimage x* in T,

|(ﬂv2v1 (x#) — Qv (’7/)| = C(paa +nyr HelaWX Dy (¢i),
i

and hence

ePurv1 @) o Puyu () — 00y (1) o0y ()
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Since 1’ lies in a fixed bounded region B, ,8(U) and ¢ is continuous and € K, vy €
W' v, € W' range over finite sets, one concludes that for all x € X, v; € W™,
vy € W2,

e¥vav %) = 1. 5.2)

For any pair (x, y) € X2, find as before x*, y* € Ba/a(U). Then d(x*, y%) < a. As
stated in equation (4.2), there is a bijection X > y from Tvgl(x#) to Tvgl(y#). Pair (x, y)
together by this bijection and set a subprobability measure on X2,

e DL, (1)(X) DL, (1))
Qx, :=min{ —(S;C’”, —(Sjﬁ }
Al (Z LM Y Z LMy Y
X,9) (x,y)

Note that Q(X,},)(Xz) = 0uyU(z1,22) 1 d(z1,22) < ax!¥l}). Forany A C X,

e”O1, - L,(1)(2)  Ly(14 - L,(1)

Quy@AxX) < ) Luy(D)(x) Lyy()

Ty (z)=x

() =P (8:)(A)

and similarly Q,)(X x A) < ]PZ*((S_V)(A). Hence, there exists a further subprobability
measure R such that P := Q) + R € TI(P,*(8x), P, *(8y)) (see, e.g. [17]). Therefore,
due to the choice of n3,

WP (5,), PL*(5,)) < / d* (21, 22)d P
<A@ P{d(z1. 22) < ad™') + P({d(z1. 22) = ar™l})
<1—Cpy P{d(z1.22) < ar!™l}) <1 = Cpy Qryy (X?).
To get a lower bound for Q x ) (X 2), use equation (5.2) to see
e DL, (1)(F) eI L, (D))
T?_ LoyM) T()X):_y Ly (1)(y) }

i {Luv3(1)(x#> Luv3(1)(y#>}
Lypy(D)(x) ' Lyy(D(y) .

Applying Lemma 4.2, we get that for any & € K,

Q(x,y)(Xz) = min {

Q. (X?) min{(L, (&))" : & € K, w e W2} > 0.

= — >
ngvl(l)(EO) -

Hence, there is a lower bound N < Q(y y)(X 2), independent of x, y € X and v € W".
Therefore, increasing n3 so that C,,; N < 1 if needed,

W(PL*(8x), PL*(8y)) < 1= CpyN = (1 — CpyN)d*(x, y) = (1 — Cpy NYW (8, 8y).

Combining part (1) with part (2) of the proof and letting ¢ := max{3/4,1 — C;; N} < 1,
we obtain that there exists ko such that for all finite words u, v with |[v| > kg and x, y € X,

WP, (8:), By (8y)) < tW(Sx, 8y).
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Using Kantorovich’s duality, for f with 5( f) <1, it follows that

<1

[Py (S)x) =P (N = ‘ / fdPZ*(Sx)—ffdPZ*(Sy)

(3) Contraction for arbitrary probability measures. The extension to arbitrary probabil-
ity measures is a standard application of optimal transport and omitted as the proof is a
straightforward adaption of [17], [31] or [23]. We obtain that for any finite words u, v with
|v| > ko and any probability measures vy, vy,

WEPL*(v1), P (1)) < tW (v, 12).

(4) Iteration. By the iteration rules given in equation (4.4), the theorem follows for
_ +1/2ko
s =1 . O

6. Conformal measures, quenched exponential decay and continuity

From now on, we always assume that S is jointly topologically mixing and finitely
aperiodic and every potential ¢; is ¢-Holder and summable, so that Theorem 5.1 holds.
It has immediate consequences for the existence and regularity of two types of compact
sets of probability measures, which are canonical generalizations of conformal measures
and equilibrium states to the context of semigroups.

6.1. One-sided dynamics. Denote by ¥ = {ijip ... :1i1,i2,... € W} the set of infinite
words and by 0(i1iz . . .) = i2i3 . . . the shift map. For an infinite word w = ijiz ... € X
and k € N, let

ol :==i1...0x € wk.

The first family of measures is constructed as follows, which generalizes the notion of
conformal measures.

PROPOSITION 6.1. For any finite word u, infinite word w and measure v € M{(X), the
limit
My = lim PL“’]’*(V)
[—o00

exists and is independent of v. Furthermore, with ko and s given by Theorem 5.1, the
following statements hold.

(1) Fork > kg and any w, ® € T with [w]x = [@]k, W(Mu,w, Hup) < sk,
(2) Fork =koand f € Hy,

< 25*D(f).

Pt[Aw]k(f) _/fd:uu,w

(3) Let ey := U then

Muw = Pu*(“u,w% Mu,w = Huw © Tu_l~

If v is a finite word,

Muvew = ]P)Z*(Muv,w)-
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(4)  Let hyg = [ Ly(1) djiy, then
Ly (1) = Moo,
and if v is a finite word,
Auv,w = Auporvo
(5) The measures (1, 4, and |1y are absolutely continuous to each other and

duy, _
d::’ = Ay Lu (D).

hu,a) =

Proof. For probability measures v, v on X and [ > k > kg, Theorem 5.1 implies
WELR W), BV (5)) = WELE" ), Bk o Bl (@) < st
[w]* : NN (@] * : :
Hence, {P, ™ (v)}k>k, is a Cauchy sequence and p, o = limg P, (v) exists and is

independent of v. This, in particular, implies the estimate in item (1). To show item (2), it
suffices to consider v = §,. If k > kg, we have that

D(f)sk.

IP’L‘”]k(f)(X)—/fdMu,w <

The estimate in item (2) then follows from this combined with Theorem 5.1.
The second part of item (3) follows from

[ B ditins = fim B 0 B0 = fim B = [ f it

The first part of item (3) follows from this and

/ Fdyy = tim KL - Loy (f 0 T) ()
w Lufo), D (x) k=00 Lyfe (1)(x)

Z/fOTudﬂuwZ/fdMquTu_l-

Item (4) holds because

/Lu(f) iy = fim Fen@aNO - Lo (D) Lujoy (D)
k—oo  Ligy (1)(x) k—>00 Lyjel,(1)(x)  Lig, (D (x)

— [ f b [ Law an,

)&uv,a),uuvw = sz(ﬂw) = LZL;(MQ,) = L:()‘v,wﬂvw) = kv,w)"u,vwﬂuvw~

and

Item (5) follows from

L M() Ly (f L)) @)
d o = 1k I3 _
/ Fdtwo =l 7 D® T Lip (D)

https://doi.org/10.1017/etds.2022.60 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.60

3168 M. Stadlbauer et al

Remark 6.2. Recall that a probability measure v is (T, ¢y, )-conformal, where w is a finite

word, if there exists ¢ > 0 such that LY (v) = cv. Consider w := ww ... € ¥ and uy =
Wy given by Proposition 6.1. By item (4) of the same pr0p051t10n L (,uw) = Awwlw
hence wy is conformal. Moreover, item (1) and w3 © TM = Uuw 1mply

{hyew:oe X} = uuonu_l Tw € U Wk}.
k>1
As X is compact and o+ p,, is Lipschitz continuous by statement (1) of
Proposition 6.1, {it,, : @ € X} is compact. It is also worth mentioning that item (1)
ensures that for any finite word u, the family ¥ > w — u,, is Holder continuous. Finally,
the fact that any two asymptotic limits are equivalent (recall item (5)) will be useful to
provide an application to characterize the boundary of a semigroup action in §9.

6.2. Two-sided compositions. We shall find a second family of probabilities which
generalizes the notions of invariant measures and equilibrium states. To attain that goal,
despite the fact that the underlying dynamics is not invertible, we need to consider
forward iterations of maps determined by two-sided sequences. Let £~ refer to the
set of left-infinite words, that is, ¥~ = {... iz : i1,i2,... € W}, and for k € N and
o =...I0 € X, define

Wlol =ik ... i € Wk
PROPOSITION 6.3. Foranyo € ¥~, w € X and v € M (X), the limit

How = Jim Bl )

exists and is independent of v. Furthermore, with ko and s given by Theorem 5.1, the

following statements hold.

(1) Fork,l withkANl>kyand 0,6 € X7, w,w € X with y[o] =[], [w]; = [®];,
Wito s 6.5) < 55,

(2) Fork,lwithk ANl > koand f € Hy,

(3) For a finite word u, oy w = Mo uw © T,;l.
(4) The measures [Ly o and (i, are absolutely continuous to each other and hgy 4 1=
dig w/d e satisfies

< 25"M'D().

P{T);I](f) _/fdl/va,w

17010 — howll < 55,

where (, and h, |5 ., are as given in the previous proposition.

Proof. As a consequence of Proposition 6.1(2), Lemmas 4.1 and 4.2, for any finite word u,
infinite word w € % and [ > kg, we have that

I Lo, D/ Lo, (D) = Aol < s' DL, (1) < Cs' Ay, (6.1)
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for some C > 0. Hence, for finite words v € WX, w e W', k > ko and f Holder continu-
ous,

Py (f) = Py (N
Ly(fLy())  Ly(fLu(1)) ‘Lw(fLuv(l)) _ Ly(fLiw@)

- va(l) Au,vaw(l) )Lu,Wva(l) Luvw(l)
~ Lu(fILyT = LM /AuzwLo DD n Ly ([ flLuw@) | Lupw@) 1‘
- va(l) Luvw(l) )\u,Wva(l)

< C@®Y(IfDs* + P2 (1 fDs*T),

where we used the notation # := (uu ...) to denote the periodic word formed by u
blocks. Now assume that v and v are probability measures and f is Holder continu-
ous with D(f) <1 and infyex f(x) =0. In particular, || f|lcc < 1. By the above and
Proposition 6.1, for 0,6 € ¥~ and w, ® € ¥ such that ¢[o] = ¢[5], [0]; = [®]; and
kAL > ko,

'/P/ET);]J(f) d"_/P;[ﬁl](f) dv
< [ |Blsen - | v | [ B av— [k as

< CRIPEE P loos® + IPH (P loos™ T+ 1P () los* ) + 26
S 2C(Sk +Sk+l) +2Sl << SkAl.

Hence, by Kantorovich’s duality and completeness of the space of probability measures,
limg 10 P]E?;l]*(\}) exists, is independent of v and the estimate in part (1) holds. Part
(2) is an immediate consequence of part (1), and the proof of part (3) follows as in
Proposition 6.1. Proposition 6.1(5) indicates that &, 4 is the limit of £, (4], and by the
first argument in Proposition 2.2 in [3], it follows that ||/, (61,0 — A0 ]0llcc K sK7 Then
the argument in there can be easily adapted to obtain exponential convergence with respect

to || - ||g* in part (4). O]

Remark 6.4. The first part of the above proposition implies that the map (o, w) = g w
is Lipschitz continuous with respect to the metric

kAL

d((o, w), (6, ®)) :=min{s"" : ([o] = ([5], [w]; = [®];}.

In particular, the image of each compact subset of ¥~ x X is a compact subset of the
space of probability measures.

Moreover, by fixing an order on W, the associated adic flow z; on £~ x X is uniquely
ergodic (see [15]) and, in particular, for any Holder continuous f : X — R, the continuity
of (o, w) = [ f dpe o implies that

1 (7 Soo
7/0 /f(x) dith, (o,w) (X) dtT—>f/ f(x) dvs o (x) dm(o, )

uniformly, where m refers to the Parry measure (or measure of maximal entropy). The
analogue of this statement holds for ® — [ f d i and Birkhoff sums with respect to
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the odometer on X, or with respect to uniformly ergodic adic flows or adic transformations
acting on compact subsets of ¥~ x X or X, respectively.

The result provides the following link to invariant measures and equilibrium states.
A finite word w generates a periodic infinite word w := (ww ...) € ¥ and a periodic
left-infinite word w := (... ww) € ¥ . Then, by Proposition 6.3, the measure py 7w is
Ty-invariant, d iy 7 = hyw d g and

Lw(hy,ﬁ) = )\w,ﬁhy,w~
Here, Ay, 3 is given as in Proposition 6.1.

The following result identifies (3 as the unique equilibrium state of T,, with respect
to the Holder potential ¢,,. Note that the statement avoids the notion of pressure as X might
be non-compact. However, if X is compact, then log A,, 3 is equal to the pressure [28] and
one obtains the usual notion of equilibrium state. In the proposition, H, (T,,) refers to
Kolmogorov’s entropy.

PROPOSITION 6.5.
l0g hun i =Hyy o (T) + / ou diiws
= sup {HU(Tw) +/<pw dv:ve Mi(X),v= voTw_l}.
Furthermore, [y 55 is the unique measure which realizes the supremum.

Proof. As T, is Ruelle expanding, the restriction T, |y to a ball U of radius a is
bimeasurable. Hence, A — 1ty o Ty (A) defines a measure on U which is, as a conse-
quence of Propositions 6.1 and 6.3, absolutely continuous with respect to uy w|y. Hence,
Jpps = dpww o Ty/diyw is a well-defined function on X, sometimes referred to as the
Jacobian of T, with respect to fiy 5. In fact, it follows from the construction of pi, 3 that
Jupw = €xp(—@y), where

Gw = @uw +1og hyw —log hyw o Ty, —log Ay w.

By construction, J,,, ; = exp(—¢y,) and, as T, is Ruelle expanding, Rokhlin’s formula
for entropy (see, e.g. Theorem 9.7.3 in [35]) implies that

Huw,w(Tw) = / log Jl@’w dpww
— log s — / (¢ +10g hyzs — 10g by 0 To) it
=log Aww — / Ow dily s

This proves the first identity. Now suppose that v is an invariant probability measure with
H,(Ty) + f @y dv > log Ay, . Then, by Rokhlin’s formula, the invariance of v and the
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definition of the transfer operator of T, with respect to v, denoting by J,, = dv o T, /dv,
0<H,(Ty) + / @y dv — log AT

= /(log Jy + @y +loghym —log hy o Ty —log Ay ) dv

:/10g dv_/ Z (y) log —*9_ 4yx),

Ty (y)=x T ()
As v is invariant, it follows that ZTw(y)zx 1/J,(y) = 1 for all x € X. Hence, by Jensens’s

inequality,
* I L)
OfH(T)—i—/(p dv —log Ay w _/10 dv(x) =0.
v(Lw w g Aw,w gT(z): Jv()’)JMu;w( )
Moreover, equality holds in (x) if and only if J,(y)/Jy, 5 (y) = 1 almost surely. O

Remark 6.6. By usual normalization procedure, replacing the potential ¢,, with @,
one then obtains a new operator Zw with Zw(l) =1, that is, iw is normalized and
L* o (Mww) = Uy w. In particular part (2) of Proposition 6.1 applied to the semigroup
generated by T, implies that L, has a spectral gap. However, the construction depends
on the specific periodic word W and is in general not functorial, that is, Ly, % Ly, o L.

7. Annealed exponential decay

So far, we have considered only quenched operators, which are determined by iterations in
S tracked by certain finite words and their limiting behaviour. As stated in the introduction,
another objective is to study annealed operators, which are averages of all the quenched
operators tracked by finite words of given lengths. To be more precise, suppose that the
one-sided full shift of finite alphabet (%, ) is endowed with a non-singular probability
measure p. For every k € N, define the averaged transfer operator

Ar(f)(x) :=LL[w]k(f)(X) dp(w)

for f € Hy. One can do so for more general shifts, but we keep ¥ to be a topological
mixing subshift of finite type for simplicity. Naturally, one would need some properties of
the shift space (X, 0, p) to study the operator 4. We summarize them below.

Since p is non-singular, for a finite word u, let p, : ¥ — R be defined by

dp
pu(w) = |(ua)), w€E X.

dp o Olt

With the usual distance given on the shift, denote by H(X) the space of Holder continuous
functions on ¥ and by C(X) the space of continuous functions on X. Recall that A, ,, =
J Ly(1) dpiy, as in Proposition 6.1. Note that log ;. € H(X) by Proposition 6.1. Suppose
that log p; € H(X) as well. Define a linear operator ¢ acting on C(X) by

(@) ==Y hiwpi(@)gli), geCl(D).
ieWw
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As u — p, and u — A, are multiplicative cocycles with respect to 6, it can be shown
that for every k € N,

K@@ = ) hiwpu(@)guo).
ueWk

In view of the duality with 6, we have that for any g1, g» € C(%),

/ *(g1) - g2 dp = / Molote - 81 - 82005 dp. (7.1)

Since log A;,, and log p; are both Holder continuous, Ruelle’s Perron—Frobenius
theorem implies that there are 8 > 0, m € M (X) and g, € C(X), g, > 0 such that

Um=pm, 1(g) =PBg» m(go) =1. (7.2)

Furthermore, there exists ¢ € (0, 1) such that for any g € H(X) and k € N,

< Mlglls, (13)

>

H B*H(g) — g0 / gdm

where || - ||s = Ds(-) + || - |loo» the sum of the Holder norm and the supremum norm over
the shift. Note that g, is uniformly bounded from above and away from O as ¥ is compact.

Remark 7.1. 1f (i, w) — X, is constant, then m = p. Moreover, if p is invariant, then
go = 1. If p is a Bernoulli measure, then Ay = (A;)* for every k > 1. In this case,
annealed transfer operators were studied in [2]. Note that A; o Ay = A;44 if and only
if p is Bernoulli. Averaged transfer operators were also considered in [6] in the special
case that p is a Bernoulli measure and all potentials ¢; are equal.

Remark 7.2. The associated skew product
F:Xx¥—>XxX, (xi..) (T;x),i3z...)

reflects the time evolution along a given path in ¥ with a distribution on the space of
possible paths, that is, the probability of the event of applying 7' € S in time n is given by
p{w € Z: F'(-,w) = (T(-), 0" (@)}).

We proceed to prove that the family {.A,} has exponential decay of correlations. Fix
ko € N and s € (0, 1), as given in Theorem 5.1. With m defined as in equation (7.2), let
7w € M (X) be given by

dr ==dpydm(w).
For f € H,, let

I Ml == N (L Dlloo

be the supremum norm with respect to m of the map w — (] f|) over the shift.

THEOREM 7.3. Suppose the Ruelle expanding semigroup S is jointly topologically mixing
and finitely aperiodic, and that every potential ¢; is «-Holder and summable. Suppose that
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every log p;, i € W is Holder continuous on . Then there exists r € (0, 1) such that for
all f € Hy and n > 2k,

An(f) () o
m—/fdﬂ L")+ 1 )

Moreover, there exists a positive function h € Hy such that for all f € Hy and n > 2k,

An(f)(x) n—
W‘/fdn L "D+ 1f lm)-
with B > 0 given by equation (7.2).

Proof. In the first step of the proof, we derive the first decay. Proposition 6.1 implies that
forany n > 2kg, w € L andx € X, f € Hyq,

ILiwl, (/) X) = () Lo, D@)] K 8" D(f)Liw), (D).

After integration, it yields that
’An(f)(x) —fuw(f)L[w]n(l)(x) dp(@)| < s"D(f)A, (D) (x). (7.4)

It remains to analyse f Mo (f)Liw), 1) dp(w) as n — oo. To do so, write n = k + [ with
[ = [n/2] + 1. Observe that by equation (6.1),

Lot ) = Mgy oko Lighon, D] <K 8" A1, 000 Lighe, (D- (71.5)

Note that it follows from Proposition 6.1 that w +— ., (f) is Holder continuous on ¥ and
its Holder coefficient is bounded by a constant times D( f). Hence,

‘/Mw(f)L[w]n(l) dp(w)—/Mw(f))»[w]k,gkwlz[ekw],(l) dp(w)
< Sl / /'Lw(|f|))‘[a)]k,9ka)l‘[9kw]1(1) d,O(a))
equation (7). / F(o(1£1) - Lioy, (1) dp(@)

= / B " (o (LfD) = (LD + 7 FD) - 4 (80) Liw), (1) dp (@)

equation (7.3) /

< S AED) F 1) + 7 AFD) / *(g0) Liwy, (1) dp(w)

e D 1k DY + 1 ) + 7 F1) / 8o - Map ot Ligten D) dp(@)

equation (7.5) /

< S AED) F Nl + 7 AFD) / Liw), (1) - g0 dp(w)
< sS' D) + 1 F ) An(D).

Observe that in the previous estimate, we have also shown that

/ E(go) Lioyy (1) dp (@) < An(1). (76)
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Then one can extract 7w ( f) by

‘ / Mw(f))h[w]bgkwld[@kw]l 1) dp(w) — 7 (f) / )\[w]k,gkwL[ekw]l ™ dp(a))‘

equatigl (7.1)

f K () Ly, (1) dp(@) — 7(f) f K L (1) dp(w)‘
= ‘ / (B g Wk (o () — (1)) — (B Fgo 1k (1) — D ())* (g0) Liw), (1) dp(w)‘

equation (7.3) k= X ko~
< t (D(f)+||f||m)/t (o) L), () dp(w) L t“(D(f) + Il fllm) An (D).

Finally, equation (7.5) induces that

7(f) f Mototo Ligtoy (1) dp(w)—n(f)Ana)‘ < s () A (D).

Combining the above estimates, one obtains that
‘ / 1o (f)Liw), (1) dp (@) — n(f)An(l)' L D) + MU fllm + 51 ) A (D).

The first statement now follows from equation (7.4) with » = max{./s, v/¢}.
We now proceed with proving the existence of 4. To do so, let

A (x) == / Lo}, D (x) - go(w) dp(w).

We first show that I, (x) := 8" A, (x) converges uniformly and exponentially fast to a
positive function h(x) € H,.
It follows from equation (7.5) that for any n = k + [ with [ > ko,

L[w],, (1) = )‘[a)]kﬁkwl’[ekw][ (1)’
so that

~ tion (7.1) ~
An = / k[w]k,ekwL[ka]l (1) - godp i / Lk(g”)L[w]J(l) dp = ﬁkAl’

and hence, fn = iz especially in = fko for all n > kg. Since equation (7.5) also implies
that

|A, — XAl < s'BF A,
one has
|in - il| < Slil-

Hence, {fn(-)} is a Cauchy sequence. Denote the limit of fn(x) by h(x). Then fn (x)
converges uniformly to i (x) since forn > [ > ko,

I — I < s' Iy < s

Then because I, are all Holder, 4 is Holder as well. That A is positive and |4« s finite
can be seen from & < Ii,. To see that the rate of convergence is exponential, for n > ko,
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choose j € N such that |ijn — h| < s", then
Lo — bl < Iy — Dal + -+ + Ug—iyn — Ljnl + 1Ljn — b < 5.

Moreover, Lemma 4.2 infers that inf, c x iko (x) > 0, and so are I, for n > kg and so is A.
It follows that I,/ h converges to 1 uniformly and exponentially fast.

Next we show that I, (x) := 87" A, (1)(x) also tends to £ (x). Forn = k + [ with [ > ko,
because

‘An(l)—/tk(l)L[w],(l) dp‘ < SI/Lk(l)L[w],(l) dp

obtained from integrating equation (7.5) and because

’ / (5 (1) = *(g0)) Liwy, (1) dp

= ’ / (B g, ' * (1) = DF(go) Liwy, dp
MLV [ kgL do = 144 A
one can deduce that
A, (1) = BEAI < (s + 1B A,

and hence

L — ) < (' + D,
so that

I, — h| < (s" + ).
Lastly, applying Theorem 7.3, one has that for all f € H, and n > 2k,

1B An(f) = (R < B A — () AD] + (OB A (D) — h|
L " (D) + Wl In + 7 ()0 = hl
L " (D) + 1 f ).

The second assertion on the decay follows from this. [

The next result reveals an annealed version of the decay of correlations.

THEOREM 7.4. Now suppose that the assumptions of the above theorem hold and that, in
addition, p is O-invariant. Then there exist a probability measure 7 on ¥ x X, r € (0, 1)
and k1 € N such that

‘f D (@) f(Ty(0))g(x) dte(x) dp(w)—/fdﬁ/gdum dp‘
veyyn

Sr"flflduw dp<5(g)+f gl dite dp)

foralln > ki, g € Hy and f : X — R integrable with respect to d i, (x) dp(w).
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Proof. For w = (wjwy...) €X, set Ayy = Awp.w0m0 A hye = he w000
where A. and h. are given by Proposition 6.1. Moreover, Proposition 6.1 and Lemma 4.2
imply for n sufficiently large that

/ 3 1v]foTvgduwdp—f S 1f

vewn veWn n’
( )
o dp £25"D(g) / Z 1[v]|f|

d Home dp

1)
dpgne dp

n,w

f Z 11 0@ dpir dp £ €' D) [ 5 10011 dites do
IS4 veWw”

= / f1o(@)hnw ditgne, dp £ Cs"D(g) / | fldure dp, (7.7

where C/2 is given by Lemma 4.2, and the last equality follows from 6-invariance of p.
Now assume that n is even and n = 2m. Then, by item (4) of Proposition 6.3, there exists
C such that

f fﬂw(g)hn,a) dpgne, dp

:/fﬂw(g)hmﬁ”’w dﬂ@"w dpicsm/M@"w(|f|)|/"vw(g)|dp-

However, as w — 44 (g) is Lipschitz continuous by Proposition 6.1, the exponential decay
of correlations, say with rate ¢ € (0, 1) and the same constant C > 0, applied to the error
term implies that

/ Flto(@hmame djign dp + Cs™ / poro(lfDlia(2)] dp

Z/fuw(g)hm,emw dpgne dpiczsm/Mw(lfl)dp/Mw(lgl)dp~ (7.8)

A further application of invariance and the exponential decay of correlations of 6 to the
main term and Lemma 4.2 gives that

f Flto(@)lmeo ditare dp = / o (&) ttgomyy (f ) dp
_ f Ho(g) dp / Fhome dptgne dp £ C™ f o(fD) dpD(g)  (19)

Hence, it remains to analyse [ fhu o dpone. To do so, let (2,8, p) refer to natural
extension of 6. Then, again by item (4) of Proposition 6.3, it follows that

[ S dbims dp@) = [ o diiona a5,
= [ b0 ditoitp @) = [ S di dp@.0) £ 5™ [ i do

= [ Fausw b0 £ ¢ [ s ap. (7.10)
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Let d7t (x) := dug o, (x)d p(@, ). The theorem now follows by combining equations (7.7),
(7.8), (7.9) and (7.10). O

Remark 7.5. As a corollary of the proof, we also obtain an explicit representation of
7. That is, d7 (x) := dpg.,(x)dp(®, w), where p is the natural extension of p (which
is assumed invariant). In particular, d7 and du, dp(w) are equivalent measures, even
though d7n /du,, dp(w) might be a function depending on w. However, it is not clear if
7 and 7 coincide. Furthermore, this representation reveals that in our sequential setting,
the measure arising in the annealed version of the decay of correlations is an integral of
the pathwise equilibrium measures, as known for the special case where p is a Bernoulli
measure.

8. An almost sure invariance principle

Exponential decay of correlations has many implications on the statistical behaviour of the
dynamical system. A large deviation principle, a relativized central limit theorem and laws
of iterated logarithm for random dynamical systems generated by expanding dynamics
follow from the works by Kifer [21, 22]. For sequential dynamical systems of expanding
maps of the interval, first versions of central limit theorems were obtained by Heinrich [19]
and Conze and Raugi [9]. We now show an almost sure invariance principle in the setting
of Ruelle expanding maps. It is worth mentioning that almost sure invariance principles
have been obtained in the context of quenched random dynamical systems (see e.g. [13]
and references therein). Let B be the Borel o-algebra on X. With respect to the measure
Muvew, Where u, v are finite words and w is an infinite word, P, can be seen as a conditional
expectation in the following way.

LEMMA 8.1. Forany f € Hy,
By (f © Tul T, B) = PU(f) 0 Ty

Proof. For any A € B, using item (3) of Proposition 6.1,

/ ) fOTudMuvwzfIAOTv'fdMuvaTu_lZflAOTv'de«u,vw
T A

uv

= / 1g0T,- f dIP)Lv,*(Muv,w) = / IP)Z(lA oTy - f) dﬂuv,w

= / 14 - ]P)Z(f) d/“uv,w = /‘; PZ(f) diyvew © TM;I
= Ps(f) o Tyy dityve- 0
Tn' A

The almost sure invariance principle we are going to show is similar to the one in [32]
for non-stationary shift. Both are based on the almost sure invariance principle for reverse
martingale differences by Cuny and Merlevede.

THEOREM 8.2. [10, Theorem 2.3] Let (U, ),eN be a sequence of square integrable reverse
martingale differences with respect to a non-increasing filtration (Gp)neN. Assume that

https://doi.org/10.1017/etds.2022.60 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.60

3178 M. Stadlbauer et al

a,% = i E(Ukz) — oo and that sup,, E(Unz) < 00. Assume that

n
Z(E(Uk2|gk+1) - IE(Ukz)) = o(anz) almost surely,
k=1

Z o, HE(Uy*) < 00 forsome 1 <1t <2.

n>1

Then, enlarging our probability space if necessary, it is possible to find a sequence (Zj)k>1
of independent centred Gaussian variables with IE(Z,%) =EU, ,{2) such that

k

sup Z U; — Z Zi' =o(,/o2 loglog 02) almost surely.

l<k=n i=1 i=1

We need to make another assumption.

Definition 8.1. An (a, A)-Ruelle expanding map T is finitely expanding if

dT®).TM) _

x,yeX d(x, y)
0<d(x,y)<a

We refer to S as finitely Ruelle expanding if every T;, i € WV satisfies this property.
THEOREM 8.3. Suppose the finitely Ruelle expanding semigroup S is jointly topologically
mixing and finitely aperiodic, and that every potential ¢; is a-Holder and summable.

Suppose w € £, f € Hy. Let f = f — [ f o Tiw), dite for every n € Ny and let s,% =
B, (X020 fi o Tiwy)? forn > 1. Assume that

> st < o0 (8.1)

Then, enlarging our probability space if necessary, there exists a sequence (Z,) of
independent centred Gaussian random variables such that

sup ’\/ ZIJZ;& ]E/mZ/% — Sn
n

< o0,
k k
sup fi o Tiw), — Z Zi| = o(,/s,% log log s,%) Wew-almost surely.
Osk=n—11_9 i=0

Proof. Denote B, = T[;)]IHB for n € N and let By = B, then B, is a non-increasing
filtration. Let 7y = 0 and define h, € H, recursively by h,4+1 = Pl el (fn + hy). Then

@],
[0k w

(0] LS Jfx € Hgy. It follows from Proposition 6.1

equation (4.4) implies that &,, = Z;(l) P

—1
that Mo © T[w]k = /L[w]k’ekw, then

[0 wl,— (0% wly— L
Ploy " fe =Py, kf_/fOT[wlk dite = Pl kf—/fdﬂ[w]k,ekw
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and that, with kp € N and s € (0, 1) given by Theorem 5.1,

n—ko n—1
k= 0% w],—
Ihall < 3" 2% D+ S 1P el
k=0 k=n—ko+1
n—ko n—1
<> 2" DO+ Y Clfl ISl
k=0 k=n—ko+1

where C is a uniform bound for all | P}, || (Lemma 4.1).
Let

Up := fuoTiw), +hnoTw), —hnt10 Tiwly s -
Here, U, is B;,-measurable and square integrable. Moreover, apply Lemma 8.1 to get that
o" "
Epu, (UnlBas1) = P01 £ 0 Ty, + Pl @iy 0 T,y = hust © T, = 0.
So (Un)nen, 18 a sequence of square integrable reverse martingale differences. Let

n—1 n—1 2
02 = Z ]E,lek2 = Euw< Z Uk> .
k=0

k=0

We check the conditions of Theorem 8.2. Note that [E in the rest of the proof stands for £, .

First we show 02 — oo and sup, EU? < oo. It follows from

n—1 2 n—1 2
|lon — snl = ‘]Em( > Uk) - El/z( Y fio T[Lu]k)
k=0

k=0

n—1 n—1 2

<2 (S u- 5 seont) =0 n
k=0 k=0

<L £l

that |0, — s,| is uniformly bounded. So s> — oo implies that o> — oc. Since ||Uy || oo is
uniformly bounded, sup, EU? < oc.
Next we show that

n—1

> EWUB1) —EUD) = 0(0)))  jup-almost surely.
k=0

Letu, = fu + hy — hys1 © Tigng), and let i, = u2 — BUZ2. Then ||iiy |00 < | f|I>. More-
over, the Holder coefficient of i, is also uniformly bounded because, denoting (0" o], =
ieW,

|y o Ti(x) — hy o T (y)|

Dy(hy o T;) = sup

x#yeX d(x, y)*
d(T;(x), T; o _
< Dy (hy) - sup <M> +2a" | hy o,
0<d(x,y)<a d(x,y)
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which is uniformly bounded by assumption. Let

n—1
Fy =0, EULIBis1),
k=0
then
n—1
Y EWBr1) — EB(WUY) = Z P Mg o Ty, = 02 (Fy — 1).
k=0 k=0
Applying Proposition 6.1, we have
n—1 2
E( Z P%S)I;Z)h’zk ° leJk+1>
k=0

7]
< Z E(P%w]w]luk ° Tiwly - P[ w]lul o Tiw] 1+1)

[w];
0<k<l<n—1

0 o)k 17 (6!
= Z / [o]k ! ]P)[w]l u d“[w]1+1,9’“w

0<k<i<n-—1

< Y SDi BUP+ Y ikl - EUF

I—k+1>ko [—k+1<ko
ko—2 n—1

<ko- ) EU+ (G +ko)- ) EUZ
1=0 I=ko—1

where in the last inequality, we have used that ||ig || is uniformly bounded. Therefore,

n—1

2
E(F, — 1)> = 0_4IE< Z P[Z]Z’huk o Tw]k+1> <o 43 EUE =0,
=0

As o, — 00, E(F, — 1)2 — 0. We need to show that it is almost sure convergence. Let
C = sup, EU,% and let k,, = inf{k : ak2 > nZC}. Then k, < o0, k, — oo and

n*C < O'k2n < (n2 + 1)C.

Since
Y E(F, -1 Y o <o,
n n

Fy, — 1 almost surely by the Borel-Cantelli lemma. Let m = m(n) — oo be such that

n

ki <n < kpy1, then

2 2 2 2

m o Ok (m+ )"+ 1

Fk"’l S ka = < F < Fk”l m + S Fk77'l T,
(m+1)2+1 U/€2m+1 H O’k2m H m?

Hence, F,, — 1 almost surely. Lastly, Z o, 2IEU 2 < 0o because ||Up,|loo is uniformly
bounded, |0, — s,| < [ flland D", s, s, < ocoby assumption.
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Now we can use Theorem 8.2 to find a sequence of independent centred Gaussian
variables {Z;} with EZ? = EU? such that

k k
Z Ui — Z Zi| = ()(,/crn2 log log o,%) almost surely.
i=0

i=
Since | Z?:o fioTiw,; — Zi'(:o U;| and |oy, — s| are both uniformly bounded, the state-
ment of the theorem follows. O]

sup
0<k<n—1

Remark 8.4. One can verify condition (8.1) on total variance s, by verifying the inequality

1 n—1 k+m
liminf = > " B, (ff 0 Tiwp) > 2 sup | Y By, (fk 0 Ty - fi 0 Tiay)|.
TS0 kme&No 1 j—j 11

Assuming that the Ruelle expanding semigroup S and the potentials ¢; satisfy the
conditions of Theorem 5.1, a priori the left-hand side of this inequality is positive and
the right-hand side is finite for every f € H,. A more explicit sufficient condition for f
under which this inequality (and equation (8.1)) holds is yet unknown to us.

In that regard, it is also worth noting that the applications of Theorem 2.3 in [10]
(cf. Theorem 8.2) by Cuny and Merlevede to the iteration of a single, weakly expanding
map give rise to explicit function spaces and stronger rates of approximation. However,
their results rely on a moderate deviation result for stationary Markov chains by Wu
and Zhao in [36], which seems not to be available for inhomogeneous Markov chains.
Moreover, Dragicevi¢ and Hafouta [14] and Hafouta [16] obtained a vector valued almost
sure invariance principle for the sequential iteration of non-uniformly expanding maps.
There, the authors obtain a better rate of approximation by assuming an abstract condition
on the characteristic functions of the associated process. Finally, we also would like to
mention the almost sure invariance principle in [32]. There, it was possible to determine
an explicit class of functions and sometimes their asymptotic variance such that the almost
sure invariance principle holds with respect to sequential systems associated with the
continued fraction expansion.

9. Applications

In this section, we illustrate some possible applications of our main results, both for
conformal iterated function systems and the thermodynamic formalism of free semigroup
actions by expanding maps.

9.1. Non-autonomous conformal iterated function systems. The class of non-autonomous
conformal iterated function system was introduced and studied in [27], and is defined as
follows.

Definition 9.1. We refer to {X, (®; : 1 <i < k)} as a non-autonomous conformal iterated

function system if X is a convex, compact subset of R? for some d € N with int(X) = X
and (®;) is a collection {¢; 1, . . . , ¢; x(;)} of maps from X to X such that:
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(1) the following conformality condition holds—there exists an open connected set
V D X such that each ¢; ; extends to a continuously differentiable conformal
diffeomorphism from V into V;

(2) the open set condition holds—; ;(int(X)) N (pl.’](int(X)) =@, foralll <j < f <
k(iandi =1,...k;

(3) the following conditions on bounded distortion and uniform contraction hold—there
exist constants K > 1 and 5 € (0, 1) such that for any n € N and any choice
@1, J1)y -« (ny jn), with iy € {1,...,k} and 1 < j; <k(l) and all x, y € X, for
@ = @i, j, OO j, We have that

IDe)| < KIDeWI,  1De)] < Kn™.

As X is assumed to be compact and‘k(i ) <ooforalli =1,...k, it follows for any
compact set A C K that ®;(A) := U];-(:l)l @;,j(A) is compact. Hence, for a given w € X,
where £ = {(wjwy...) 11 < w; <k}, (Py, 0 - 0P, (X)), is a decreasing sequence
of compact sets which then implies that the limit set J,,, defined by

Jp = lim &, o Py, 0 0P, (X),
—00

n

is non-empty and compact.

We now derive an averaged version of Bowen’s formula to have access to the Hausdorff
dimension of these limit sets. To do so, we have to adapt the semigroup setting to the
intuitionistic fuzzy set (IFS). First observe that equation (1) in Definition 9.1 implies that
@ =@, j, 0 -o@j is a well-defined conformal diffeomorphism for any n € N and
@15 j1)s - -5 (ny jn), with i; € {1, ..., k} and 1 < j; < k(I). Furthermore, by equation
(3), ¢ is a contraction with rate Kn" and, by a standard argument, x — log || D¢(x)]| is
Lipschitz continuous with respect to a uniform constant.

For § > 0, we now consider the operators, for w = (w1 . . . @),

k(w;)

LY,(f) =Y 1Dguj (I f © Puyjs
j=1

LY(f) = Y 1D@orjy* Pon) I f 0 Porjy *** Gony
./1 ----- jn

8 3 8
=L(DI OLw20~~~OLwn(f)

for f in a suitable function space (the last equality follows from conformality). Now assume
that p is a probability measure on ¥ which satisfies the conditions of Theorem 7.3, that
is, log dp/dp o o is Holder continuous and the support of p is a topological mixing SFT,
and, forn e N,

A= > p(wDL,
wel{l,...k}"

Here [w] represents the cylinder set {w € ¥ : [w], = w}. Observe that the arguments
in the proofs of Theorems A and C apply straightforwardly in this context through an
interpretation of @y, j; - - - ¢Yw,,j, as an inverse branch of an expanding map. Hence, we
obtain uniform and exponential convergence of L3, as |w| — oo and of A2 as n — oc.
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In particular, for each § > 0, there exists As such that Afl 1) < Ag’. Thus, the annealed
pressure function P : [0, co) — R given by

1
P(5) := lim —log A%(1) = log As
n—-oo n
is well defined.

LEMMA 9.1. The function P is continuous and strictly decreasing. Furthermore,
limg_, 4 5 P(8) = —oo0 and Py = log Lo > log(min; k(i)), where Ag is the spectral radius
of the operator defined by

dp
dpoo

k
HEDNIO) ) fG).
i=1

Proof. It follows from the definition and the finiteness of the generating IFS that there
exist ny, n— € (0, 1) such that n" K [|D(@w,,j; - * * Pw,.j) | K 1’} Hence, for € > 0, we
have that

MALD) < A < 0 A,
which implies that € log n— < P(6 4+ €) — P(8) < € log n+. Hence, P is continuous and

strictly decreasing. To determine lims_, ;oo P(§) = —00, observe that

A < Y Y p(ow)LY o L, (1)(x)

lv|=m |w|=n

5 p([vw]) 5
=27 ([UDL"< 2 Stunpted’ “wDLw(D)(x)

< CA o A1) (x), forallm,n=>1

lv|=m lw|=n

as there is a uniform bound C for p([v])p([w])/p([vw]) by bounded distortion of p.
Hence, for every fixedn > 1,

§—+o00

hs =lim {4, = A D] =2 0.

To determine P(0), we employ Theorem 7.3 as follows. For § =0, L;(1) = k(i)1.
Hence, by the proof of Theorem 7.3, Ag is the spectral radius of ¢ which is bigger than
or equal to log(min; k(i)). O]

As an immediate corollary, it follows that there exists a unique §y > O such that
P(89) = 0, provided that P(0) > 0, e.g. if min; k(i) > 1.

THEOREM 9.2. Assume that P(0) > 0. Then, for p-almost every w, the Hausdorff
dimension dimpy (J,,) of J,, is equal to the unique root ¢ of P.

Proof. Fix x € X. In analogy to the above pressure function, for v = (w;), set

P,,(8) := lim sup 1 log L (1)(x).

1.0,
n—oo N Lo @n

https://doi.org/10.1017/etds.2022.60 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.60

3184 M. Stadlbauer et al

To prove almost sure convergence, we employ Kingman’s subadditive ergodic theorem.
To do so, observe that the shift is p-ergodic, and that there exists an equivalent invariant
probability measure. Set

gn(@) ;== supflog L®  (1)(x):x € X}.

w]...0p

By construction, g4+, (@) < gn(w) + gn (06" (w)). As g,(w) < log Lil---wn (D) (x), it now
follows from Kingman’s subadditive ergodic theorem that P, (§) exists almost everywhere
and in L! (p), that P, () is almost surely constant and that the lim sup in the definition in
fact is a limit. It follows from these observations that P,,(6) = P (8) almost surely, but for §
fixed. However, by the same argument for Lipschitz continuity of P in the proof above, one
obtains that the maps P, are equi-Lipschitz continuous. Hence, by choosing a countable
and dense set {§;}, one obtains a set of full measure 2 such that P,(§) = P () for all
we Qand§ > 0.

We now show that dimg (J,) = &g for each w = (w;) € Q. To do so, we first recall
some consequences of conformality. As ¢ := @u,,j; - * * Pw,,j, 1 conformal, it follows that
the diameter diam(¢ (X)) satisfies diam(¢ (X)) =< || D¢| - diam(X). Furthermore, covers
by sets of type ¢(X) are optimal in the following sense. By Lemma 2.7 in [24], or from
the proof of Theorem 3.2 in [27], there exists M € N such that for each ball B of radius
r > 0, there exist a subset W(B) of {((w1, j1), - -+ (@n, Jn)) :n € N, 1 < j; <k(i)} of at
most M elements such that:

(1) the elements of {@u, j - * Qw,,j, Ant(X)) : (@1, J1), . .. (@u, ju)) € W(B)} are
pairwise disjoint;

@) diam(@o, j, - - - Pu,.j, (X)) = diam(B) for (@1, j1). . - - (@n, jn)) € W(B);

3 BN Jo CU@rj)en@ninewd) Pori =« Ponjy (X)-

The result now provides access to the §-Hausdorff measure of J, as follows.
Assume that U/ is a finite cover of J, by closed balls. By replacing each B € U by
{or,j1 *** Paon,ju (X) 1 (@1, j1), . . . (@n, ju)) € W(B)}, we obtain a further cover V
which satisfies

Z diam(B)® = Z diam(A)°.
BeU AeY

Hence, to estimate the right-hand side, we may assume without loss of generality
that for each B € U, there exist (w;, j;) such that B = ¢4, j, - - - Qu,.j, (X). However,
Proposition 6.1 implies that for an arbitrary x € int(X),

Ho(B) = lim Lg}”“"‘wnﬂ oqul.‘.w,, (1p)(x)
w =
[—00 Lfm...wnﬂ(l)(x)
Lo (@)
e WP lim =2 L diam(B)°A)! .
| Dye, .y Py ji l—lglo L?ol...wn+,(1)()€) iam(B) o o

Setting | B| = n, this implies that

> diam(B)’ =< Y Ay g0l (B).

BeU BelUd
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Now assume that the interiors of the elements of { are disjoint. Then >_ u,(B) = 1 and
the asymptotics of ) diam(B)? as max diam(B) — 0 are determined by the asymptotics
of Ay, ...0,,0"0 @S 1 — 00. Hence, if 6 > &, then the §-Hausdorff measure of J,, is 0 and if
8 < 8, then the 6-Hausdorff measure of J,, is co. This implies that dimg (J,) = §. O

9.2. Thermodynamic formalism of semigroup actions. In this subsection, we will
provide some applications of our results to the setting of finitely generated free semigroup
actions.

Let X be a compact metric space, ¢ : X — R be a continuous potential and let
G1 ={g1, &, - .., &gk} be a finite set of continuous self maps on X, for some k > 2. The
semigroup S generated by G induces a continuous semigroup action given by

S:SxX—=X
(g, x) — gx),

meaning that for any g, & € S and every x € X, we have S(g &, x) = S(g, S(h, x)). The
thermodynamic formalism of semigroup actions faces several difficulties. On one hand,
while probability measures which are invariant by all generators may fail to exist, in
opposition to the case of group actions, there are evidences that the stationary measures
seem not sufficient to describe the dynamics. On the other hand, the existence of some
distinct concepts of topological pressure for group and semigroup actions makes it
necessary to test their effectiveness to describe the dynamics. In the case of free semigroup
actions, the coding of the dynamics by the full shift suggests to consider the skew-product

F:{1,2,.... kN x X —>{1,2,..., kN x X

1
(@, %) > (@), g, (1) ©-D

Moreover, a random walk on the semigroup S can be modelled by a Bernoulli probability
measure P on {1, 2, ..., k}N. The pressure Pmp(S, ¢, P) of the semigroup action deter-
mined by that random walk coincides with the annealed topological pressure PIE)';,) (F,¢,P)
of the random dynamical system determined by F, associated to the potential ¢ :
{,2,...,kfNxX >R given by d(w, x) = ¢ (x) (cf. Proposition 4.1 in [7]). In par-
ticular, Ptop(S, ¢, P) coincides with the logarithm of the spectral radius of the averaged
transfer operator

An(f) = / L, (f) dP().

Furthermore, if Pp (S, 0, P) < oo, then entropy and invariant measures can be defined
through a functional analytic approach, which culminates in the variational principle

Piop(S, ¢, P) = sup {hv(S, P) 4 f ¢ dv} 9.2)
{fve M(X) : M(v,0)#0}

(we refer the reader to [7] for the definitions and more details). If all generators are Ruelle

expanding maps and ¢ is Holder continuous, then there exists a unique equilibrium state

for the semigroup action S with respect to ¢ and this can be characterized either as a

marginal of the unique equilibrium state for the annealed random dynamics or as the
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unique probability on X obtained as the limit of the equidistribution along pre-orbits
associated to the semigroup dynamics by

¢ Pon 0B grns o= PapE.HP) /
W)‘l

[ > 5 } dP(w)

8w(y)=x

(we refer the reader to [6, §9] and [7, Theorem B] for more details). A more general
formulation, considering more general probabilities on semigroup actions rather than
random walks, was not available up to now as the thermodynamic formalism of the
associated annealed dynamics needed to be described through a sequence of transfer
operators instead of a single averaged operator.

Our results allow not only to consider the thermodynamic formalism of semigroup
actions with respect to more general probabilities in the base, but also to provide important
asymptotic information on the convergence to equilibrium states. Indeed, in general, if
one endows the semigroup & with a probability generated by a Markov measure PP on

{1,2,..., kN, then it is natural to define the topological pressure of the semigroup action
S by
) 1
Piop(S, ¢, P) = lim sup — log || A, (1) [loo 9.3)
n—oo N

where, as before, A,(f) = /wGW,, L oy.cn (f) dP(@) (compare to the definition of
topological pressure of a semigroup action in [7, §2.6]). Our main results have the

following immediate consequences.

COROLLARY 9.3. Given x € X, the sequence of probability measures on X defined as
*
v; = ﬂ’ n Z
An (1) (x)
is weak™ convergent to some probability v = hdw on X (independently of x). Moreover, the
convergence is exponentially fast with respect to the Wasserstein distance.

9.3. A boundary of equilibria. As in the section before, we now assume that X is
compact and that there is only one potential ¢ : X — R. However, in contrast to the
approach via the free semigroup, we are now interested in identifying elements in
the semigroup & which are dynamically close and use this information to define a
compactification of the discrete set S. However, as the topology will rely on the associated
equilibrium states, we have to extend the semigroup by considering also the potential
function. That is, for G| := {(g1, ¢), (g2, @), . . . (gk, )}, we consider

G:=1{(g, V) : thereexistsn €N, ji, ..., j, such that (g, V) =(gi,, @) *- - - * (&, ¥},
where

(g1, Y1) * (g2, ¥2) := (g1 0 g2, Y2 + Y1 0 g2)

is also the product on G.
As a first step, we begin with the definition of a metric on the countable set W* := {w :
|w| < oo} of finite words. For finite words v = (v; ... v,) and w = (wy ... w,) in W*,
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set dyy+ (v, w) = 0 for v = w and

dW* (v w) P min{k:vg Zwg OF k>min{m,n}}

+2° min{k:vy 41—k FWy+41—k O k>min{m,n}}

for v # w. Observe that dyy« is a metric, that W* is discrete with respect to this metric
and that two words are close if they have the same beginning and ending. In particular,
Cauchy sequences either have to be eventually constant or have to grow from the interior
of a word. The reason for this construction is based on the following observation. Let w
and w refer to the periodic extensions of w to the left and the right, respectively, as defined
in Remark 6.4. Then, by Proposition 6.3, the map w — fy 3 is Holder continuous with
respect to dyy«. In particular, dyy+ can be seen as a metric on the free semigroup which is
compatible with the Wasserstein distance of the associated equilibrium states.

Second, we define a metric on G which does not depend on the choice of w € W* for
the representation of (g, ¥) = (T, ¢y). To do so, define for g € S,

d(g(x), g(y)
d(x,y)
and note that as the semigroup is Ruelle expanding with parameter A € (0, 1), we have that
«(Ty) > A~!, Furthermore, for (g, ¥) € G, let gy be the unique equilibrium state for
the potential ¥ and the map g, that is, if (g, ¥) = (Tw, @), then g y = 11y 7. Now set
ﬁ , (8 ) # (h, ),

0 . (&) = (h, Y2).

The following proposition summarizes the basic topological facts. The proof is omitted as
the assertions almost immediately follow from the definitions and Proposition 6.3.

k(g) := lim inf{ 0 <d(x,y) <6},
e—0

— 1
w ) +—+
de (g, Y1), (h, )y o= ) e B + s

PROPOSITION 9.4. Assume that g1, . . ., gk are Ruelle expanding and jointly topological
mixing, and that ¢ is Holder continuous. Then, for the objects defined above, the following
hold.

(1) OWV*, dyw+) and (G, dg) are discrete, metric spaces.

(2) The map w +— (Ty, ¢y) is Holder continuous.

(3) A sequence ((gn, ¥n))n in G is a Cauchy sequence if and only if k(g,) — 0o and
(Ig,, v, ) cOnverges in the weak*-topology. Moreover, two Cauchy sequences have the
same limit if and only if their sequences of equilibrium states have the same limit.

(4)  For the boundary 0G of the completion with respect to dg, identified with limits of
Cauchy sequences ((gn, ¥n))n in G, we have that the map

3@ — {/Jag',a) 0 € E_a w € 2}7 ((grh 1pl’l))}’l i hm lugn,l//n
n—o00

is Lipschitz continuous and onto.

Observe that the result provides a description of dG as a set of equivalence classes of
Cauchy sequences, that is, two sequences are considered to be equivalent if they have the
same limit. However, it seems to be impossible to obtain an explicit description of dG in
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general. We close with two examples where this is possible. In the first example, 9G is
trivial whereas in the second example, dG is equal to X .

PROPOSITION 9.5. If G is Abelian, then 0G is a point.

Proof. Assume that (g1, V1), (g2, ¥2) € G, and denote by L; the corresponding Ruelle
operators. As G is Abelian, it immediately follows that LiL; = LyL;. Now assume
that the h; are the unique positive Holder functions (up to colinearity) and A; > 0
such that L; (h;) = A;h;, given by Ruelle’s theorem. Hence, Ly (L1(h2)) = L1(L2(h2)) =
A Li(hy). As Li(hy) is positive, it follows that L (h;) and h are colinear, that is, L1 (h2)
is a multiple of /1 and A; = X;. The same argument then shows that the L}-eigenmeasures
coincide. Hence, after normalizing, we obtain that g, v, = (g, y,. In particular, {{s o :
0 € ¥, w € X} is asingleton. O

Example 9.6. Let T : [0, 1] — [0, 1], x — 4x(mod1) and S = U~!TU, where

3x/2, 0<x<1/8,
x+1/16, 1/8 <x <3/8,
x/24+1/4, 3/8<x<1/2,

X, 1/2<x<1.

U:[0,1] — [0, 1],

PROPOSITION 9.7. The semigroup S generated by {S, T} is a free semigroup, that is, two
elements in S coincide if and only if they have the same representation as a product of
the generators. Moreover, 0G = ¥, where G is the semigroup generated by (T, 0) and
(S, 0).

Proof. The proof relies on the construction of a family of renormalization operators acting
on the set of orientation-preserving homeomorphisms f in such a way that

T" o En(f):foTn,

as this allows to associate to each element g = S™*T" ... S™IT" in § a uniquely
determined normal form 7™M+ Mkt o f, where f, is an orientation-preserving
homeomorphism. The uniqueness of the normal form is a consequence of the choice
of U as the compositions with U and U~! act as markers in the following way. For
an orientation-preserving homeomorphism f, it is shown below that |E"(f) — id|lcc =
47" f —id||o, and that the composition E,(f) o U +1 Jeaves invariant the right half of
E,(f), whereas the left half is marked by a positive or negative bump of size bigger than
I1E"(f) — idllco-

Construction and properties of E,.Let f : [0, 1] — [0, 1] be a homeomorphism which
fixes 0 and 1 and define for x € [k/4", (k + 1)/4"],

En(f)x) 1= (T" |igjan s 1yja) ™ 0 f o T"(x) = 47" (f (4" x — k) + k).

Then, as it can be easily seen, 7" o E,(f) = f o T" and E,(f)(k/4") = k/4" for all
k=0,...,4" In particular, as 8, (f)|k/4",(k+1)/47] is @ homeomorphism, E,(f) is a
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homeomorphism. Moreover, for x € [k/4", (k + 1)/4"], we have

En(Hx) —x=47"(f#"x —k) +k) —x
=47"(f@'x —k)—@'x—k)=47"(foT"(x) — T"(x)).
That is, &, contracts the distance to the identity by the factor 4~"*. We now proceed with an

analysis of the concatenations E, (f) o U and E,(f) o U ~1 where f is a homeomorphism
with || f —id|lcc < 1/12. First note that

x/2, xel0, ), —x/3, € [0, ),
13 _ 31
Ul —x = 1/16, xe [§’ élg), Uy — x — 1/16, [76 I L),
—x/24+1/4, x €3, 3), x—1/2, €l 7)s
0, xe[3.1], 0, €[5, 11,

and observe that, by construction, E,(f) — id is periodic with period 4~". However, as
[%, %), [3/16,7/16) and [%, 1] are all of length bigger than or equal to 1/4, we obtain that

xrg[gﬁ](an(f)(U(X)) —x)=_max (G (HUX)-Ux)+UK)—x)

€[1/83/8)
1 | 11
— 47}1 — _— = —_— —_
nax (fx) =2+ 10 = 7 6= 12

and, repeating the argument, || E,(f) o U/ —id|ls < 1/12, for j = £1.
In other words, the space $) of orientation-preserving homeomorphisms with || f —
id||oo < 1/12 is invariant under the operation f — &, (f) o U/. Moreover, we have that

IEa(f) o UM = U/lloo = 47" Bn(f) — idlloc = 47" f — idlloo < 75 9.4)

Coding of G. Assume that g = S™kT" ... ™ T" for some k € Nand m;, n; e NU
{0}. AsU,U —1 ¢ 9, it follows from an iterated application of E,(-) o U J that there exists
a homeomorphism f, € § such that g =T" o f,, where n = Zle m; + n;. Moreover,
as T" is a local homeomorphism, f = f, is uniquely determined.

Now assume that g = S"™kT" ... ™I T" ¢ S where, without loss of generality,
mi,...,mg—1 Z0andny, ..., ny # 0. We now show how to determine m; and n; from
f in a unique way.

Case 1.If m; =0,thenk =1,g=T"" and f =id

Case 2.1f m; # 0 and ny # 0, then k > 1 and for f := fem m..gmi, we have that f =
En, ( £). It now follows from equation (9.4) that f — id is strictly positive on [1/8, 3/8] and
has zeros in [1/2, 1]. Therefore, n; is determined by the periodicity of f — id, and f (x) =
f(@2")(x). The value of m is then determined by applying Case 3 to S"™*T" ... §™
and f.

Case 3. If m; #0 and n; =0, then k > 1 and for f := fgmpn..pmy, we have that
f =Em (foU N oU or,equivalently, f o U~! = E,,, (f). Hence, to repeat the above
argument based on periodicity, we have to show that the left half of f — id is somehow
marked. If k = 1, then f = U~ and, in particular, f is strictly negative on [3/16, 7/16]

https://doi.org/10.1017/etds.2022.60 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.60

3190 M. Stadlbauer et al

and has zeros in [1/2, 1]. Hence, m can be determined through the period of f o U -1,
However, if £k > 1, then ny > 0 and the same argument is applicable as equation (9.4)
implies that f is strictly negative on [3/16, 7/16] and has zeros in [1/2, 1].

By iterating this procedure, one then recovers my, ..., my and na, ..., n; from f.
Furthermore, as the m; and n; only depend on the period, it follows that the relation
between f and these values is one-to-one. This then implies that the map

S — {fg igesS) (wy...wy) > fwnomcw]

is a bijection, and, as an immediate corollary, S is a free semigroup.

The associated measures of maximal entropy. Now fix a Holder function %, an element
g€ S and let n € N be given by g = T" o f,. Then the Ruelle operators L, and Lt
associated to g and T, respectively, satisfy

L) = Y h()= Y h(f7'@)=Ljto f7Hx),
g()=x T"z=x
LgthLe(M) _ Lg@'h) _ 1.,
Lo() 4% = glre s .

By Proposition 6.3, the measures of maximal entropy g and w7 of g and T, respectively,
satisfy W(ug, ur o fg) K s". Hence, pg = limj_ o 1 © fgz. However, this result also
implies that for an infinite word (v;) € {S, TN, the sequence [Lg, .., is a Cauchy sequence
and therefore convergent. It remains to show that the mapping from (v;) to this limit is
injective. To do so, let (v;) # (w;) be different elements in {S, T}N. Then, by applying the
construction of the n; and m; above to infinite words, it follows that gy .o, #= TP for
all / sufficiently large. Furthermore, it can be deduced from the recursive construction of
S, that there exists an open set A and € > 0 such that fy,...,,; (x) — fu..wr; (x) > € for all
x € A and all [ sufficiently large. Hence, liny gy, = limy Mgy, - O
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