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1. Introduction
In this paper, we contribute to the thermodynamic formalism of sequential and random
dynamical systems, whose notions we now recall. Given a compact metric space X, a
probability space (�, P), a measurable map θ : � → � and a family (Tω)ω∈� of maps
acting on X, one is interested in describing typical points according to the random orbit

T nω := Tθn−1(ω) ◦ · · · ◦ Tθ(ω) ◦ Tω. (1.1)

For each fixed ω ∈ �, the previous expression consists of the iteration of the sequential
dynamical system (Tn)n, with Tn := Tθnω. The random transformation associated to the
family (Tω)ω∈� and randomness (�, θ , P) can be modelled by the skew-product

F : �×X → �×X

(ω, x) �→ (θ(ω), Tω(x)).

The space of F-invariant probability measures whose marginal on � is given by P is
non-empty and every such probability μ is characterized by the disintegration

dμ(ω, x) = dμω(x) dP(ω), (1.2)

where μω are called the sample measures of μ. The previous expression encloses the
information of the sequential dynamics arising from the random dynamical system. Indeed,
a description of the dynamics as in equation (1.1) for P-typical points ω allows for the
description of the probabilities μω and the reconstruction of the whole random dynamics
through equation (1.2). The previous formalism has proved to be very useful to code
the dynamics of finitely generated semigroup actions, in which case one obtains a step
skew-product F (see e.g. [6, 7, 20, 33, 34] and references therein).

In view of the previous discussion, it is natural that one of the central questions
in the thermodynamic formalism for random dynamics is how to effectively construct
conformal-like (and equilibrium state-like) measures, as it might allow one to establish, for
example, limit laws or stability under perturbations. This goal has been attained in several
variations of the setting above. If θ is an ergodic automorphism and the Tω are expanding
maps, then there are several known versions of a quenched Ruelle–Perron–Frobenius
theorem, a line of research which was initiated by works of Bogenschütz–Gundlach and
Kifer [4, 21]. That is, the classical statement of the theorem holds for P-almost every
sequence of transfer operators dual to (T nω ). By combining the result with a random version
of the variational principle, this then gives rise to the notion of equilibrium states as well
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as their uniqueness (see [26] and references therein, or e.g. the recent contributions in
[1]). In a purely topological context of fibred systems with Ruelle expanding fibres and a
homeomorphism as factor, Denker, Gordin and Heinemann [11, 12] obtained a quenched
version of Ruelle’s theorem and a construction of relative equilibrium states. However,
these questions have also been studied for arbitrary sequences of expanding maps on the
unit interval [9, 19] or general non-autonomous dynamical systems (we refer the reader to
[8, 18] and references therein).

Alternatively, the annealed setting approaches these notions in average with respect
to P. If the base is an independent and identically distributed stochastic process, it was
shown by Baladi [2] that the annealed equilibria are the averages of the quenched ones
with respect to P. The restriction to independent and identically distributed processes in
there is a consequence of the simple observation that the independence implies that taking
averages with respect to P and the iterations of the quenched transfer operators commute.

A further, related approach to these questions is to consider the semigroup generated
by the maps {Tω}. However, even though semigroups and random iterations of these maps
are intrinsically different, the results in [6, 7] indicate that the associated thermodynamic
formalism might bridge this gap and should give rise to an important field of applications.

A motivation for our work is the attempt to unify the above settings for the case of a
finite family of distance expanding maps on Polish spaces. Starting from a technical result
on geometric convergence of a family of quenched operators, we deduce two quenched
versions of Ruelle’s theorem and a description of the fluctuations of the quenched ergodic
sums through a central limit theorem for the quenched setting. Moreover, in the random
regime, these results imply geometric convergence of the averaged operators with respect
to a ψ-mixing, non-invertible transformation θ in the base and a formula for the almost
sure Hausdorff dimension of the limit sets of a random conformal iterated function system.
Finally, it follows from these quenched results that one may identify a topological boundary
of the semigroup with the set of quenched equilibrium states, and that this identification is
Lipschitz continuous.

2. Statement of the main results
In what follows, we introduce the setting and state the main results of this paper.
However, for the sake of simplicity, we postpone several technical definitions to the next
sections. Throughout, we assume that (X, d) is a complete and separable metric space,
and that T1, . . . Tk : X → X are continuous, surjective and Ruelle expanding maps (cf.
Definition 3.2). Moreover, we always assume that the semigroup S generated by these
maps is jointly topologically mixing and finitely aperiodic (cf. Definitions 3.3 and 3.4).

Moreover, as we are interested in thermodynamic quantities, we fix Hölder continuous
functions ϕ1, . . . , ϕk : X → R and define, for a finite word v = i1 . . . in,

Tv := Tin ◦ · · · ◦ Ti1 and ϕv := ϕi1 + ϕi2 ◦ Ti1 + · · · + ϕin ◦ Ti1i2...in−1 .

This then gives rise to a family of Ruelle operators {Lv} and a further family of operators
{Pvu}, defined by

Lv(f )(x) :=
∑

Tv(y)=x
eϕv(y)f (y), P

v
u(f ) = Lv(f · Lu(1))

Luv(1)
,
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for f in a suitable function space and with 1 referring to the constant function of value 1.
Moreover, to guarantee that Lv(1) is well defined, we also assume that the functions
ϕi are summable (cf. Definition 4.1). As it will turn out below, the analysis of this
family of operators allows us to ignore the problem of the non-existence of invariant
densities due to purely functorial reason and was, according to the authors’ knowledge,
first employed in [3].

The two main features of these quotients are that Pvu(1) = 1 and that the iteration rule
P
w
uv ◦ P

v
u = P

vw
u holds. It follows from the first that the dual operators {(Pvu)∗} act on the

space of probability measures M1(X), and from the second that it is possible to adapt
methods for Markov operators as in [5, 17, 23, 31] to obtain geometric convergence. Our
first principal result now establishes this kind of convergence. In here, W refers to the
Wasserstein metric and D to the Hölder coefficient with respect to the equivalent metric
d∗ (cf. equation (5.1)). We refer the reader to §4 for the necessary definitions and notation.

THEOREM A. Suppose the Ruelle expanding semigroup S is jointly topologically mixing
and finitely aperiodic, and that every potential ϕi is α-Hölder and summable. Then there
exist k0 ∈ N and s ∈ (0, 1) such that for all finite words u, v with length |v| ≥ k0 and
ν1, ν2 ∈ M1(X) and every Hölder continuous observable f : X → R with D(f ) < ∞,

W(Pvu
∗
(ν1), Pvu

∗
(ν2)) ≤ s|v|W(ν1, ν2),

D(Pvu(f )) ≤ s|v|D(f ).

This theorem implies that for any infinite word ω = i1i2 . . . and measure ν ∈ M1(X),
the limit

μω := lim
l→∞(P

i1...il
∅ )∗(ν)

exists, is independent of ν and the speed of convergence is exponential. This means that,
under some mild assumptions on the set of Ruelle expanding maps, any non-autonomous
sequence of dynamics admits a probability measure that rules its dynamics and that this
measure is a non-autonomous conformal measure in the following sense: there exists
λu,ω > 0 such that L∗

u(μω) = λu,ωμuω (see Proposition 6.1). Furthermore, for any left
infinite word ω̃ = . . . i−2i−1, the limit

μω̃,ω := lim
l→∞(P

i1...il
i−l ...i−1

)∗(ν)

exists, varies Hölder continuously with ω, is independent of ν, and the speed of
convergence is exponential. As shown in Proposition 6.3, this measure is invariant in the
non-autonomous setting, and if ω̃ and ω are periodic extensions of the finite word w, that is,
ω̃ = . . . ww and ω = ww . . ., then μω̃,ω is the unique equilibrium state of (Tw, ϕw) (cf.
Proposition 6.5). In fact, the set of all measures {μω̃,ω}, where ω̃, ω run through all infinite
words is the closure of these equilibrium states and can be used to define a compactification
of the semigroup (Proposition 9.4).

A further application of Theorem A is related to an invariance principle as the
contraction allows us to apply the general invariance principle in [10] and gives rise to
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the following result (for a similar result for continued fractions with restricted entries, see
[32]). Here, [ω]n stands for the initial n-word of an infinite word ω.

THEOREM B. Suppose the finitely Ruelle expanding semigroup S is jointly topologically
mixing and finitely aperiodic, and that every potential ϕi is α-Hölder and summable.
Suppose ω ∈ 
, f ∈ Hα . Let fn = f − ∫

f ◦ T[ω]n dμω for every n ∈ N0, and let s2
n =

Eμω(
∑n−1
k=0 fk ◦ T[ω]k )

2 for n ≥ 1 and assume that
∑
n s

−4
n < ∞. Then there exists a

sequence (Zn) of independent centred Gaussian random variables such that

sup
n

∣∣∣∣
√∑n−1

k=0 EμωZ
2
k − sn

∣∣∣∣ < ∞,

sup
0≤k≤n−1

∣∣∣∣
k∑
i=0

fi ◦ T[ω]i −
k∑
i=0

Zi

∣∣∣∣ = o

(√
s2
n log log s2

n

)
almost surely.

We then relate and apply these results to random dynamical systems, that is, we assume
that the Ti are chosen with respect to a given probability measure ρ. So, it is sufficient
to fix a measure ρ either on the shift spaces 
 := {1, . . . , k}N or 
Z := {1, . . . , k}Z and
consider the almost sure behaviour, referred to as quenched, and the behaviour in average,
referred to as annealed behaviour. In this setting, Proposition 6.1 provides existence and
exponential decay towards the quenched random conformal measure μω, whereas the
bilateral result in Proposition 6.3 implies the same statement for the quenched equilibrium
state μω̃,ω.

To relate these quenched results to their annealed counterparts, we consider in here as
in [2] the annealed operators

An :=
∑

|w|=n
ρ({ω : [ω]n = w})Lw.

A fundamental problem of these operators is that, in general, An+m �= An ◦ Am, which
makes it impossible to apply methods from spectral theory. However, if we assume that ρ
is supported on a topologically mixing, one-sided subshift of finite type, it is possible to
control the asymptotic behaviour of {An}, which is our third main result. In here, θ refers
to the one-sided shift map.

THEOREM C. Suppose the Ruelle expanding semigroup S is jointly topologically mixing
and finitely aperiodic, and that every potential ϕi is α-Hölder and summable. Moreover,
suppose that ρ is supported on a topologically mixing, one-sided subshift of finite type
and that dρ/dρ ◦ θ is Hölder continuous. Then there exist r ∈ (0, 1), a positive function
h ∈ Hα and β > 0 such that for all f ∈ Hα and every large n ≥ 1,∣∣∣∣An(f )(x)

βnh(x)
−

∫
f dπ

∣∣∣∣ � rn(D(f )+ ‖f ‖m).

Now assume that ρ is a Bernoulli measure, so that the maps Ti are chosen independently.
Then, by independence, it follows that An = (A1)

n. Hence, as an immediate corollary, one
obtains that
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(A1)
n(hf )(x)/βnh(x) −→

∫
f (x)h(x) dπ(x)

exponentially fast, which is a well-known version of Ruelle’s operator theorem for
independently chosen maps Ti (cf. Proposition 3.1 in [2]). As this is the key step for
existence and uniqueness of the annealed equilibrium state (cf. Proposition 3.3 in [2]),
one obtains Theorem 1 in [2] for independent and identically distributed Ruelle expanding
maps as a corollary.

We now return to the general case of a one-sided subshift of finite type with exponential
decay of correlations and now assume, in addition, that ρ is θ -invariant. In this setting, we
obtain an annealed version of decay of correlations.

THEOREM D. Suppose that the assumptions of Theorem C hold and that ρ is θ -invariant.
Then there exist a probability measure π̃ , r ∈ (0, 1) and k1 ∈ N such that∣∣∣∣

∫ ∑
|v|=n

1[v](ω)f (Tv(x))g(x) dμω(x) dρ(ω)−
∫
f dπ̃

∫
g dμω dρ

∣∣∣∣
≤ rn

∫
|f | dμω dρ

(
D(g)+

∫
|g| dμω dρ

)

for all g ∈ Hα and f : X → R integrable with respect to dμω(x) dρ(ω).

The latter reveals an unexpected connection between quenched and annealed dynamics.
Indeed, it is noticeable that despite the fact that quenched and annealed random dynamical
systems often measure different complexities of the dynamics (see e.g. [6, Proposition 8.3]
for an explicit formula in the context of free semigroup actions), in Theorem D, we
obtain an annealed decay of correlations with respect to a probability dμω dρ obtained via
quenched asymptotics. These results for both quenched and annealed dynamical systems
will appear as Theorems 5.1, 7.3, 7.4 and 8.3 below. Moreover, the authors would like
to point out that, according to their knowledge, Theorems C and D are the first annealed
results for a dependent choice of the maps {Ti}. Finally, in §9, we discuss applications to
non-autonomous conformal iterated function systems, the thermodynamic formalism of
semigroup actions and a boundary construction through equilibrium states.

3. Semigroups of Ruelle expanding maps on non-compact spaces
We always assume that (X, d) is a complete and separable metric space and that
W is a finite alphabet. For every i ∈ W , let Ti : X → X be a continuous, surjective
transformation and let S be the semigroup generated by {Ti}i∈W , that is,

S = {Tik ◦ Tik−1 ◦ · · · ◦ Ti1 : k ∈ N, i1, i2, . . . , ik ∈ W}.
For every k ∈ N and every finite word v = i1i2 . . . ik ∈ Wk , set

Tv := Tik ◦ · · · ◦ Ti1 .

Then each element of S is equal to Tv for some finite word v, but v might not be uniquely
determined (e.g. if two generators Ta , Tb commute, then Tab = Tba). Observe that, with
the usual concatenation of words, we have that Tvw = Tw ◦ Tv and, in particular, that the
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map from
⋃
k≥1 Wk → S given by v �→ Tv is a semigroup anti-homomorphism, referred

to as the coding of S. This coding naturally defines a free semigroup action S ×X → X,
(Tv , x) �→ Tv(x) determined by S.

For every finite word v ∈ Wk , denote its length by |v| = k. For x ∈ X and A ⊂ X, let
Br(x) = {y ∈ X : d(x, y) < r} and Br(A) = {y ∈ X : d(x, y) < r for some x ∈ A}. For
a finite word v = i1. . . ik , define dynamical distance

dv(x, y) := sup{d(x, y), d(Ti1...ij (x), Ti1...ij (y)), 1 ≤ j < |v|}
and dynamical ball

Bvr (x) := {y ∈ X : dv(x, y) < r}.
Later, we will also consider infinite words. The transformations Ti , i ∈ W in this paper

are always Ruelle expanding maps as introduced in [29]. However, here, we do not require
that the base space is compact and, in particular, the set of preimages of a point might be
countably infinite. Recall that this notion of expanding map is defined as follows.

Definition 3.1. T is said to be (a, λ)-Ruelle expanding, for some a > 0 and λ ∈ (0, 1),
if for any x, y, x̃ ∈ X with d(x, y) < a and T (x̃) = x, there exists a unique ỹ ∈ X with
T (ỹ) = y and d(x̃, ỹ) < a, and such that this ỹ satisfies

d(x̃, ỹ) ≤ λd(x, y).

Examples of Ruelle expanding maps include C1 expanding maps on compact Rie-
mannian manifolds, distance expanding maps on compact metric spaces and one-sided
subshifts of countable type. In particular, our setting includes distance expanding maps on
non-compact metric spaces. Observe that as we only consider a finite alphabet W , we may
choose the same parameters a and λ for all Ti , i ∈ W .

Definition 3.2. The semigroup S generated by {Ti}i∈W is said to be a (a, λ)-Ruelle
expanding semigroup if every Ti , i ∈ W is (a, λ)-Ruelle expanding.

We extend to the semigroup S the notions of topological mixing and finite aperiodicity,
which are usually defined for the iteration of a single map. They are known from graph
directed Markov systems [25] or from the big images and preimages property for shift
spaces [30].

Definition 3.3. S is said to be jointly topologically mixing if for all open sets U , V ⊂ X,
there exists m ∈ N such that T −1

w (U) ∩ V �= ∅ for all finite words w with |w| ≥ m.

Definition 3.4. An (a, λ)-Ruelle expanding semigroup S is said to be n-finitely aperiodic
(see Figure 1) if there exist n ∈ N, a finite subsetK ⊂ X and r > 0 such that for all x ∈ X
and w ∈ Wn, one can find ξ , η ∈ K satisfying:
(1) there is ξ∗ ∈ T −1

w (ξ) with dw(x, ξ∗) < a;
(2) there is x∗ ∈ T −1

w (x) with d(x∗, η) < a and dw(x∗, η) < r .

The first condition is modelled after the big image condition, the second after the big
preimage condition.
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FIGURE 1. Finite aperiodicity.

Remark 3.1. Any Ruelle expanding semigroup defined on a compact space X is n-finitely
aperiodic for every n ∈ N, which can be seen by the following argument. Let K be a finite
set such that X ⊂ ⋃

z∈K Ba/2(z) and let r = diam(X). Choose ξ ∈ K ∩ Ba(Tw(x)), then
the Ruelle expanding property assures the existence of ξ∗ and hence condition (1). Choose
any x∗ ∈ T −1

w (x) and η ∈ K ∩ Ba(x∗), then condition (2) follows.

We now present two classes of examples of jointly topologically mixing and finitely
aperiodic semigroups.

Example 3.2. Assume that (X, d) is a compact and pathwise-connected metric space such
that there exists some C > 0 such that for any pair (x, y) ∈ X, there exists a rectifiable
curve from x to y of length smaller than C. Furthermore, assume that {Ti}i∈W is a finite
family of Ruelle expanding maps on X.

PROPOSITION 3.3. {Ti}i∈W is jointly topologically mixing and finitely aperiodic.

Proof. By Remark 3.1, it remains to show that the semigroup is jointly topologically
mixing. To do so, we show that for any open set U ⊂ X, there exists m ∈ N such that
Tw(U) = X for all finite words w with |w| ≥ m.

So assume that x, y ∈ X are connected by a curve γ0 of length �(γ0) ≤ C and that
i ∈ W . By covering γ with finitely many open balls of radius a and by choosing for each
of these open balls an inverse branch of Ti such that the inverse branches coincide in the
overlapping regions of the covering, one obtains a new curve γ1 such that Ti(γ1) = γ0.
Furthermore, as Ti is a local homeomorphism whose inverse branches contract distances
by λ, it follows that γ1 is rectifiable and that �(γ1) ≤ λ�(γ0). It hence follows by
iteration that for any w with |w| = n, there exists a curve γn with Tw(γn) = γ0 and
�(γn) ≤ Cλn.

So assume that U contains an open ball with centre z of radius r, that r < Cλn,
that |w| = n and that x ∈ X. Then, for a curve γ0 of length �(γ0) ≤ C from Tw(z) to
x ∈ X, there exists a curve γn which starts in z such that Tw(γn) = γ0 and �(γn) ≤
Cλn < r . Hence, the endpoint of γn is an element of U. As x is arbitrary, it follows that
Tw(U) = X.

Example 3.4. We now construct a class of semigroups generated by a finite number of
skew products over the same topological Markov chain and provide sufficient conditions
for joint topological mixing and finite aperiodicity.
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To do so, we recall the notion of a topological Markov chain with the big images and
preimages property. So assume thatA = (aij )i,j≥0 is a matrix with values in {0, 1} without
rows or columns equal to 0. We then refer to


 := {(xi : i ∈ N ∪ {0}) : xi ∈ N ∪ {0}, axixi+1 = 1 for all i ≥ 0}
as a topological Markov chain with transition matrix A. Furthermore, we say that A is
aperiodic if for any pair (i, j), there exists n0 ∈ N such that the coordinate (i, j) of the nth
power An is strictly positive for all n > n0. Moreover, we say that 
 has the big images
and preimages property if there exits a finite subset L ⊂ N ∪ {0} such that for each n ∈
N ∪ {0}, there exist k, l ∈ L such that akn = 1 and anl = 1. It is worth noting here that the
non-triviality of rows and columns imply that
 is non-compact with respect to the product
of the discrete topology on N ∪ {0}. In combination with the big images and preimages
property, this then implies that 
 is even locally non-compact.

We now show that the left shift σ : 
 → 
 is a topologically mixing 1-aperiodic
Ruelle expanding map with respect to the metric dσ ((xi), (yi)) := 2− min{i:xi �=yi }, which is
compatible with the product topology on 
. First, note that dσ (x, y) ≤ 3/4 implies that x
and y share the same first coordinate. In particular, the restriction of σ on balls of radius 3/4
is a homeomorphism and expands distances by 2. That is, σ is ( 3

4 , 1
2 )-Ruelle expanding.

Moreover, it follows from aperiodicity of A and finiteness of L that there exists m0 such
that for any pair (i, j) in L, σm0([i]) ⊂ [j ], where [a] ⊂ 
 refers to those elements in 
,
whose first coordinate is equal to a. Hence, it follows from big images and preimages that
σm0+2([a]) = 
 for any a ∈ N ∪ {0}. This then implies that σ is topologically mixing.
To see that σ is 1-aperiodic in the sense of Definition 3.4, it remains to choose for
each i ∈ L an element xi ∈ [i] and check that {xi : i ∈ L} satisfies the conditions of
Definition 3.4.

Now fix (X, d) is as in Example 3.2, λ ∈ (0, 1), a > 0 and a finite set W . Furthermore,
assume that the set of (a, λ)-Ruelle expanding maps on X is non-empty and that for any
w ∈ W , κw associates to each N ∪ {0} a Ruelle expanding map, that is,

κw : N ∪ {0} → {T : X → X | T is (a, λ)-Ruelle expanding}.
In particular, κw gives rise to the skew product

Tw : 
 ×X → 
 ×X, ((xi), y) �→ (σ ((xi)), Tκw(x0)(y))

and the semigroup S generated by {Tw : w ∈ W}. With respect to dS((x, y), (x̄, ȳ)) :=
dσ (x, x̄)+ d(y, ȳ), one then obtains the following.

PROPOSITION 3.5. S is jointly topologically mixing and 1-aperiodic.

Proof. Assume without loss of generality that a ≤ 1/2. Then, dS((x, y), (x̄, ȳ)) :=
dσ (x, x̄)+ d(y, ȳ) < a implies that the first coordinate of x and x̄ coincide and that
d(y, ȳ) < a. Hence, it follows that the restriction of Tw to a ball of radius a is a home-
omorphism and that the inverse branches of Tw contract at least with rate max{1/2, λ}.
Now assume that U is open. Then there exist k ∈ N, x0, . . . xk ∈ N ∪ {0} and r > 0 such
that [x0, . . . xk] × Br(z) ⊂ U , where [x0, . . . xk] refers to those elements in 
 starting
with x0, . . . xk and Br(z) to the ball of radius r with centre z in X. It now follows from
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the above that σk+m0+2([x0, . . . xk]) = 
 and from Example 3.2 that Tw(Br(z)) = X for
any w with Cλ|w| < r . In particular, there exists n with Tw(U) = 
 ×X for any w ∈ Wn.
In particular, S is jointly topologically mixing. The remaining statement that is the finite
aperiodicity of S, then follows immediately by considering the set {xi : i ∈ L} ×K , where
K is constructed as in Remark 3.1.

Without specifying, S is always (a, λ)-Ruelle expanding in this paper. We use the
notation x � y, x � y, x � y to indicate that there exists a positive constant C such that
x ≤ Cy, x ≥ Cy, C−1y ≤ x ≤ Cy, respectively.

4. Quotients of Ruelle operators
In this section, we introduce a family of quotients of Ruelle operators, which will
act as strict contractions on the set of probability measures. It provides an effective
construction of the relevant measures, whereas a normalization of the Ruelle opera-
tors through invariant functions has no dynamical significance in the setting of semi-
groups or sequential dynamics due to purely functorial reasons, as noted in Remark 6.6
below.

To begin with, let ϕi : X → R, i ∈ W be a continuous function. We also call ϕi a
potential. Define for a finite word v = i1i2 . . . ik ∈ Wk ,

ϕv(x) := ϕi1(x)+ ϕi2(Ti1(x))+ · · · + ϕik (Ti1...ik−1(x)).

Then the Ruelle operator Lv is defined by

Lv(f )(x) :=
∑

Tv(y)=x
eϕv(y)f (y)

for f in a suitable function space. Note that it follows from Tv ◦ Tu = Tuv that
Lv ◦ Lu = Luv for any two finite words u, v. We now define the adequate function space.
For α ∈ (0, 1] and f : X → R, the Hölder coefficient Dα(f ) is

Dα(f ) := sup
x,y∈X,x �=y

|f (x)− f (y)|
d(x, y)α

and the space of α-Hölder functions H∗
α is

H∗
α := {f : Dα(f ) < ∞}.

Let Hα denote the subspace of bounded functions in H∗
α . It is well known that Hα is a

Banach space with respect to the norm ‖ · ‖ := ‖ · ‖∞ +Dα(·). We are now in position to
specify the class of potentials considered here.

Definition 4.1. We refer to ϕi as a α-Hölder potential if ϕi ∈ H∗
α . Moreover, for any finite

word v, we say that ϕv is a summable potential if ‖Lv(1)‖∞ < ∞.

Suppose ϕi is α-Hölder for every i ∈ W . We shall estimate distortion of ϕv . Due
to the (a, λ)-Ruelle expanding property, for v = i1 . . . ik ∈ Wk and x, y, x̃ ∈ X with
d(x, y) < a and Tv(x̃) = x, there exists a unique point ỹ ∈ T −1

v (y) ∩ Bva (x̃). Moreover,

d(x̃, ỹ) < λkd(x, y), d(Ti1...ij (x̃), Ti1...ij (ỹ)) < λk−j d(x, y), 1 ≤ j < k.

https://doi.org/10.1017/etds.2022.60 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.60


3160 M. Stadlbauer et al

Hence, the inverse branch

(Tv)
−1
x̃

: Ba(x) → Bva (x̃), y �→ ỹ (4.1)

is well defined and contracts the distance at every intermediate step by λ. It follows that
for any pair x, y with d(x, y) < a, there is a bijection from T −1

v (x) to T −1
v (y) given by

x̃ �→ ỹx̃ := (Tv)
−1
x̃
(y). (4.2)

Now Hölder continuity implies that whenever d(x, y) < a,

|ϕv(x̃)− ϕv(ỹx̃)| ≤ maxi∈W Dα(ϕi)

1 − λα
d(x, y)α =: Cϕd(x, y)α . (4.3)

It follows from a simple argument that Lv maps Hα to Hα if ϕv is also summable.
As we are interested in operators that leave invariant the constant function 1, define for

finite words u, v

P
v
u(f ) := Lv(f · Lu(1))

Luv(1)
= Luv(f ◦ Tu)

Luv(1)
.

It is clear from the definition that

P
v
u(1) = 1.

The motivation to consider these families of operators stems from the simple observation
that for finite words u, v, w,

P
w
uv ◦ P

v
u(f ) = Lw(P

v
u(f ) · Luv(1))
Luvw(1)

= Lw(Lv(f · Lu(1)))
Luvw(1)

= P
vw
u (f ).

Hence, with

P
w(f ) := Lw(f )/Lw(1),

for a sequence of finite words v1, . . . vk ,

P
v1...vk = P

vk
v1...vk−1

◦ P
vk−1
v1...vk−2 ◦ · · · ◦ P

v3
v1v2

◦ P
v2
v1

◦ P
v1 . (4.4)

As a first result, we obtain Hα-invariance of these quenched operators.

LEMMA 4.1. P
v
u is a bounded operator on Hα . Furthermore, for f ∈ Hα and x, y with

d(x, y) < a,

|Pvu(f )(x)− P
v
u(f )(y)| ≤ Cϕ(2‖f ‖∞ + λ|v|Dα(f ))d(x, y)α . (4.5)

Proof. Following verbatim the proof of Lemma 2.1 in [3], one obtains that for x, y with
d(x, y) < a,

|Lv(fLu(1))(x)− Lv(fLu(1))(y)| ≤ CϕLuv(1)(x)(‖f ‖∞ + λ|v|Dα(f ))d(x, y)α .

The estimate (4.5) follows from this as in [3]. It remains to show that the operators are
bounded and leave invariant Hα . As P

v
u maps positive functions to positive functions

and P
v
u(1) = 1, we have ‖Pvu(f )‖∞ ≤ ‖f ‖∞. Furthermore, by considering the cases
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FIGURE 2. Selection of preimages.

d(x, y) < a and d(x, y) ≥ a separately, we obtain

Dα(P
v
u(f )) ≤ max{Cϕ(2‖f ‖∞ + λ|v|Dα(f )), 2a−α‖f ‖∞},

which proves that Pvu : Hα → Hα is a well-defined and bounded operator.

We observe that Lemma 4.1, which requires Hölder continuity of the potentials and no
further assumption on topological irreducibility, is one of the principal ingredients to prove
that the duals of the previous operators act as contractions on the space of probabilities.
The other ingredient is the following result for which finite aperiodicity is essential.

LEMMA 4.2. Suppose that S is jointly topologically mixing and finitely aperiodic, and
that every ϕi is α-Hölder and summable. Then Lv(1)(x) � Lv(1)(y), that is, there exists
C > 0 such that 1/C < Lv(1)(x)/Lv(1)(y) < C for all finite words v and x, y ∈ X.

Proof. First, note that for any x, y ∈ X with d(x, y) < a and any finite word v, the
bijection of equation (4.2) and the estimate (4.3) imply that Lv(1)(x) � Lv(1)(y).

Suppose S is n-finitely aperiodic. Let K be a finite set and r > 0 be given by finite
aperiodicity. It follows from the Ruelle expanding property and joint topological mixing
that there exists m ∈ N such that for all ξ , η ∈ K and |w| ≥ m, there exists η∗ ∈ X with
Tw(η

∗) = η and d(η∗, ξ) < a.
We now show the lemma for any x, y ∈ X and all finite words v with |v| > 2n+m.

Take such a finite word v, we will select preimages of x as follows, illustrated in Figure 2.
Decompose v = upwq, where u, w, p, q are finite words and |p| = |q| = n, |w| = m.

Note that

Lv(1)(x) = Lwq(Lup(1))(x) ≤ sup
i∈W

‖Li(1)‖n+m∞ sup
x′∈T −1

wq (x)

Lup(1)(x′).

Fix x′ ∈ T −1
wq (x). For any x̃ ∈ T −1

up (x
′), let x̂ = Tu(x̃). There exist by condition (1) of finite

aperiodicity, ξ ∈ K and ξ∗ ∈ T −1
p (ξ) such that dp(x̂, ξ∗) < a. Let ξ̃∗ = (Tu)

−1
x̃
(ξ∗), the

inverse branch defined in equation (4.1). Then using equation (4.3),

eϕup(x̃) = eϕu(x̃)eϕp(x̂) ≤ eCϕa
α+ϕu(ξ̃∗)ena

α+ϕp(ξ∗) = eCϕa
α+naα eϕup(ξ̃∗).
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Because dup(x̃, ξ̃∗) < a and Tup(ξ̃∗) = ξ , one has x̃ = (Tup)
−1
ξ̃∗ (x

′) and ξ̃∗ = (Tup)
−1
x̃
(ξ ).

Therefore, different x̃ is associated to different ξ̃∗, so that

Lup(1)(x′) =
∑

x̃∈T −1
up (x

′)

eϕup(x̃) �
∑

x̃∈T −1
up (x

′)

eϕup(ξ̃
∗) ≤

∑
ξ∈K

Lup(1)(ξ).

Hence,

Lv(1)(x) �
∑
ξ∈K

Lup(1)(ξ).

However, there exist by condition (2) of finite aperiodicity, a preimage x∗ ∈ T −1
q (x)

and η ∈ K such that d(x∗, η) < a and η ∈ Bqr (x∗). As d(x∗, η) < a, we know that
Lupw(1)(x∗) � Lupw(1)(η). Then,

Lv(1)(x) ≥ eϕq(x
∗)Lupw(1)(x∗) � eϕq(η)−nrαLupw(1)(η) � Lupw(1)(η).

The last estimate holds because q ∈ Wn and η ∈ K both range over finite sets. Now for
any ξ ∈ K , one can find η∗ ∈ T −1

w (η) such that d(η∗, ξ) < a, then find such a η∗
0 for ξ0

that achieves maxξ∈K Lup(1)(ξ). Then, Lup(1)(ξ0) � Lup(1)(η∗
0) and

Lupw(1)(η) =
∑

η∗∈T −1
w (η)

eϕw(η
∗)Lup(1)(η∗) ≥ eϕw(η

∗
0)Lup(1)(η∗

0)

� eϕw(η
∗
0)Lup(1)(ξ0) � Lup(1)(ξ0).

The last estimate holds because ϕw is continuous, η∗
0 ∈ Ba(ξ0), ξ0 ∈ K andw ∈ Wm range

over finite sets. Therefore,

Lv(1)(x) � max
ξ∈K Lup(1)(ξ).

All the constants absorbed into � or � are determined by S, ϕ, K , m, n (essentially
by S and ϕ), in particular independent of v, x, y. It follows from the above estimates that
Lv(1)(x) � Lv(1)(y) for any x, y ∈ X.

Lastly, when |v| ≤ 2n+m, take any finite word |v′| > 2n+m, then for any x ∈ X,

Lv′v(1)(x) = Lv(Lv′(1))(x) =
∑

x̃∈T −1
v (x)

eϕ(x̃)Lv′(1)(x̃) �
∑

x̃∈T −1
v (x)

eϕ(x̃)Lv′(1)(x)

= Lv(1)(x)Lv′(1)(x)

by the already-proven case. So Lv(1)(x) � Lv′v(1)(x)/Lv′(1)(x), and hence for any
x, y ∈ X, Lv(1)(x) � Lv(1)(y).

5. Contraction in the Wasserstein distance
Let M1(X) refer to the space of Borel probability measures on X. Recall that the
Wasserstein distance W of μ, ν ∈ M1(X) defined by

W(μ, ν) := inf
{∫

d(x, y) dP : P ∈ �(μ, ν)
}
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is a compatible metric with weak convergence, where �(μ, ν) refers to the couplings of
μ and ν, that is, the set of probability measures on X ×X with marginal distributions μ
and ν. Moreover, by Kantorovich’s duality,

W(μ, ν) = sup
{∣∣∣∣

∫
f d(μ− ν)

∣∣∣∣ : sup
x �=y

|f (x)− f (y)|
d(x, y)

≤ 1
}

.

Let P
v
u
∗ denote the dual operator of P

v
u on M1(X). To obtain a contraction of

W(Pvu
∗(·), Pvu∗(·)), the estimates of Lemma 4.1 indicate that for a-close measures, one

should consider (d(x, y))α instead of d(x, y). However, for distant measures, the method
of proof below based on an idea in [17] (see also [3, 23, 31, 32]) requires a truncated
distance. We consider

d∗(x, y) := min{1, � d(x, y)α}, � := max{4Cϕ , a−α}. (5.1)

Observe that, by construction, d(x, y) < a whenever d∗(x, y) < 1. To see that d∗ is a
metric, observe that the triangle inequality follows from xα + yα ≥ (x + y)α for x, y ≥ 0
and 0 < α ≤ 1, which is an inequality that easily can be deduced from the concavity of
x �→ xα . The remaining assertion that d∗(x, y) = 0 if and only if x = y is trivial.

We now introduce the space of d∗-Lipschitz functions. To do so, recall that the Lipschitz
coefficient is defined by Dd∗(f ) := sup{|f (x)− f (y)|/d∗(x, y) : x �= y} and that f is a
bounded Lipschitz continuous function with respect to d∗ if and only if ‖f ‖ := ‖f ‖∞ +
Dd∗(f ) < ∞. To identify these functions in terms of the metric d, set

D(f ) := max{ sup
x,y∈X

|f (x)− f (y)|, Dlocα (f )/�},

where

Dlocα (f ) := sup
{ |f (x)− f (y)|

d(x, y)α
: x, y ∈ X, 0 < d(x, y) < �−1/α

}
.

Now observe that it follows from the construction that D(f ) = Dd∗(f ), D(f ) ≤
2‖f ‖∞ +�−1Dα(f ) and Dα(f ) ≤ �D(f ). Hence, the norms ‖ · ‖∞ +Dlocα (·) and
‖ · ‖∞ +Dd∗(·) are equivalent. In particular, by Kantorovich’s duality, the Wasserstein
metric W with respect to d∗ is characterized through local Hölder continuous functions
with respect to d by

W(μ, ν) = sup
{∣∣∣∣

∫
f d(μ− ν)

∣∣∣∣ : D(f ) ≤ 1
}

.

THEOREM 5.1. Suppose that S is jointly topologically mixing and a finitely aperiodic
Ruelle expanding semigroup, and that every potential ϕi is α-Hölder and summable. Then
there exist k0 ∈ N and s ∈ (0, 1) such that for all finite words u, v with |v| ≥ k0 and
ν1, ν2 ∈ M1(X) and f with D(f ) < ∞,

W(Pvu
∗
(ν1), Pvu

∗
(ν2)) ≤ snW(ν1, ν2),

D(Pvu(f )) ≤ snD(f ).

Remark 5.2. Under the additional hypothesis that X is compact, the condition of finite
aperiodicity is automatically satisfied.
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FIGURE 3. The map x �→ x#.

Proof. As in [17], we first prove the assertions for Dirac measures and then extend the
partial result by optimal transport to arbitrary probability measures.

(1) Local contraction. Assume that d∗(x, y) < 1 and that f is d∗-Lipschitz continuous.
Since d(x, y) < a as soon as d∗(x, y) < 1, Lemma 4.1 gives that

|Pvu(f )(x)− P
v
u(f )(y)| ≤ (2Cϕ‖f ‖∞ + λ|v|Dlocα (f ))(d(x, y))α .

Furthermore, as Pvu(1) = 1, one may suppose without loss of generality that inf f = 0, and
therefore, ‖f ‖∞ ≤ D(f ). Dividing by � and choosing k0 such that λk0 ≤ 1/4, it follows
that for v with |v| ≥ k0,

|Pvu(f )(x)− P
v
u(f )(y)| ≤

(‖f ‖∞
2

+ Dlocα (f )

4�

)
d∗(x, y) ≤ 3D(f )

4
d∗(x, y).

Hence, by Kantorovich’s duality,

W(Pvu
∗
(δx), Pvu

∗
(δy)) ≤ 3

4d
∗(x, y) = 3

4W(δx , δy).

(2) Global contraction. If d∗(x, y) = 1, an upper bound for W can be obtained by
construction of a coupling based on finite aperiodicity. To do so, fix an open set U
of diameter smaller than a/2. Suppose S is n1-finitely aperiodic and K , r are given
by finite aperiodicity. As S is jointly topologically mixing, one can find n2 such that
Tw(U) ∩ Ba(ξ) �= ∅ for all w ∈ Wn2 and ξ ∈ K and that λn2 < 1/8. Choose n3 large
such that Cn3 := �(aλn3)α < 1/2. Let k0 = n1 + n2 + n3.

Let n ≥ k0. For v ∈ Wn, write v = v3v2v1, where |v1| = n1, |v2| = n2 and |v3| ≥ n3.
For any x ∈ X, we will select a preimage x# in T −1

v2v1
(x) as below, illustrated in Figure 3.

Let η ∈ K and x∗ ∈ X be given by condition (2) of finite aperiodicity so that
Tv1(x

∗) = x, d(x∗, η) < a and x∗ ∈ Bv1
r (η). Now the choice of n2 and Ruelle expanding

property allow us to find a preimage η′ ∈ T −1
v2
(η) such that η′ ∈ Ba/8(U). Use the Ruelle

expanding property again to find a preimage x# ∈ T −1
v2
(x∗) such that x# ∈ Ba/8(η′) ⊂

Ba/4(U). One has |ϕv2(x
#)− ϕv2(η

′)| ≤ Cϕa
α by equation (4.3), so that

|ϕv2v1(x
#)− ϕv2v1(η

′)| ≤ Cϕa
α + n1r

α max
i∈W

Dα(ϕi),

and hence

eϕv2v1 (x
#) � eϕv2v1 (η

′) = eϕv2 (η
′)eϕv1 (η).
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Since η′ lies in a fixed bounded region Ba/8(U) and ϕ is continuous and η ∈ K , v1 ∈
Wn1 , v2 ∈ Wn2 range over finite sets, one concludes that for all x ∈ X, v1 ∈ Wn1 ,
v2 ∈ Wn2 ,

eϕv2v1 (x
#) � 1. (5.2)

For any pair (x, y) ∈ X2, find as before x#, y# ∈ Ba/4(U). Then d(x#, y#) < a. As
stated in equation (4.2), there is a bijection x̃ �→ ỹ from T −1

v3
(x#) to T −1

v3
(y#). Pair (x̃, ỹ)

together by this bijection and set a subprobability measure on X2,

Q(x,y) := min
{ ∑
(x̃,ỹ)

eϕv(x̃)Lu(1)(x̃)
Luv(1)(x)

δ(x̃,ỹ),
∑
(x̃,ỹ)

eϕv(ỹ)Lu(1)(ỹ)
Luv(1)(y)

δ(x̃,ỹ)

}
.

Note that Q(x,y)(X
2) = Q(x,y)({(z1, z2) : d(z1, z2) < aλ|v3|}). For any A ⊂ X,

Q(x,y)(A×X) ≤
∑

Tv(z)=x

eϕv(z)1A · Lu(1)(z)
Luv(1)(x)

= Lv(1A · Lu(1))
Luv(1)

(x) = P
v
u
∗
(δx)(A)

and similarly Q(x,y)(X × A) ≤ P
v
u
∗(δy)(A). Hence, there exists a further subprobability

measure R such that P := Q(x,y) + R ∈ �(Pvu∗(δx), Pvu∗(δy)) (see, e.g. [17]). Therefore,
due to the choice of n3,

W(Pvu
∗
(δx), Pvu

∗
(δy)) ≤

∫
d∗(z1, z2)dP

≤ �(aλ|v3|)αP ({d(z1, z2) < aλ|v3|})+ P({d(z1, z2) ≥ aλ|v3|})
≤ 1 − Cn3P({d(z1, z2) < aλ|v3|}) ≤ 1 − Cn3Q(x,y)(X

2).

To get a lower bound for Q(x,y)(X
2), use equation (5.2) to see

Q(x,y)(X
2) � min

{ ∑
Tv3 (x̃)=x#

eϕv3 (x̃)Lu(1)(x̃)
Luv(1)(x)

,
∑

Tv3 (ỹ)=y#

eϕv3 (ỹ)Lu(1)(ỹ)
Luv(1)(y)

}

= min
{
Luv3(1)(x#)

Luv(1)(x)
,
Luv3(1)(y#)

Luv(1)(y)

}
.

Applying Lemma 4.2, we get that for any ξ0 ∈ K ,

Q(x,y)(X
2) � 1

Lv2v1(1)(ξ0)
≥ min{(Lw(1)(ξ))−1 : ξ ∈ K , w ∈ Wn1+n2} > 0.

Hence, there is a lower bound N ≤ Q(x,y)(X
2), independent of x, y ∈ X and v ∈ Wn.

Therefore, increasing n3 so that Cn3N < 1 if needed,

W(Pvu
∗
(δx), Pvu

∗
(δy)) ≤ 1 − Cn3N = (1 − Cn3N)d

∗(x, y) = (1 − Cn3N)W(δx , δy).

Combining part (1) with part (2) of the proof and letting t := max{3/4, 1 − Cn3N} < 1,
we obtain that there exists k0 such that for all finite words u, v with |v| ≥ k0 and x, y ∈ X,

W(Pvu
∗
(δx), Pvu

∗
(δy)) ≤ tW(δx , δy).

https://doi.org/10.1017/etds.2022.60 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.60


3166 M. Stadlbauer et al

Using Kantorovich’s duality, for f with D(f ) ≤ 1, it follows that

|Pvu(f )(x)− P
v
u(f )(y)| =

∣∣∣∣
∫
f dPvu

∗
(δx)−

∫
f dPvu

∗
(δy)

∣∣∣∣ ≤ t .

(3) Contraction for arbitrary probability measures. The extension to arbitrary probabil-
ity measures is a standard application of optimal transport and omitted as the proof is a
straightforward adaption of [17], [31] or [23]. We obtain that for any finite words u, v with
|v| ≥ k0 and any probability measures ν1, ν2,

W(Pvu
∗
(ν1), Pvu

∗
(ν2)) ≤ tW(ν1, ν2).

(4) Iteration. By the iteration rules given in equation (4.4), the theorem follows for
s = t1/2k0 . �

6. Conformal measures, quenched exponential decay and continuity
From now on, we always assume that S is jointly topologically mixing and finitely
aperiodic and every potential ϕi is α-Hölder and summable, so that Theorem 5.1 holds.
It has immediate consequences for the existence and regularity of two types of compact
sets of probability measures, which are canonical generalizations of conformal measures
and equilibrium states to the context of semigroups.

6.1. One-sided dynamics. Denote by 
 = {i1i2 . . . : i1, i2, . . . ∈ W} the set of infinite
words and by θ(i1i2 . . .) = i2i3 . . . the shift map. For an infinite word ω = i1i2 . . . ∈ 

and k ∈ N, let

[ω]k := i1 . . . ik ∈ Wk .

The first family of measures is constructed as follows, which generalizes the notion of
conformal measures.

PROPOSITION 6.1. For any finite word u, infinite word ω and measure ν ∈ M1(X), the
limit

μu,ω := lim
l→∞ P

[ω]l
u

∗
(ν)

exists and is independent of ν. Furthermore, with k0 and s given by Theorem 5.1, the
following statements hold.
(1) For k ≥ k0 and any ω, ω̃ ∈ 
 with [ω]k = [ω̃]k , W(μu,ω, μu,ω̃) ≤ sk .
(2) For k ≥ k0 and f ∈ Hα ,∥∥∥∥P[ω]k

u (f )−
∫
f dμu,ω

∥∥∥∥ ≤ 2skD(f ).

(3) Let μω := μ∅,ω, then

μuω = P
u∗
(μu,ω), μu,ω = μuω ◦ T −1

u .

If v is a finite word,

μu,vω = P
v
u
∗
(μuv,ω).
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(4) Let λu,ω := ∫
Lu(1) dμω, then

L∗
u(μω) = λu,ωμuω,

and if v is a finite word,

λuv,ω = λu,vωλv,ω.

(5) The measures μu,ω and μω are absolutely continuous to each other and

hu,ω := dμu,ω

dμω
= λ−1

u,ωLu(1).

Proof. For probability measures ν, ν̃ on X and l > k ≥ k0, Theorem 5.1 implies

W(P[ω]k
u

∗
(ν), P[ω]l

u

∗
(ν̃)) = W(P[ω]k

u

∗
(ν), P[ω]k

u

∗ ◦ P
[θkω]l−k
u[ω]k

∗
(ν̃)) ≤ sk .

Hence, {P[ω]k
u

∗
(ν)}k≥k0 is a Cauchy sequence and μu,ω := limk P

[ω]k
u

∗
(ν) exists and is

independent of ν. This, in particular, implies the estimate in item (1). To show item (2), it
suffices to consider ν = δx . If k ≥ k0, we have that∣∣∣∣P[ω]k

u (f )(x)−
∫
f dμu,ω

∣∣∣∣ ≤ D(f )sk .

The estimate in item (2) then follows from this combined with Theorem 5.1.
The second part of item (3) follows from
∫

P
v
u(f ) dμuv,ω = lim

k→∞ P
[ω]k
uv ◦ P

v
u(f )(x) = lim

k→∞ P
v[ω]k
u (f )(x) =

∫
f dμu,vω.

The first part of item (3) follows from this and
∫
f dμu,ω = lim

k→∞
L[ω]k (f Lu(1))(x)
Lu[ω]k (1)(x)

= lim
k→∞

Lu[ω]k (f ◦ Tu)(x)
Lu[ω]k (1)(x)

=
∫
f ◦ Tu dμuω =

∫
f dμuω ◦ T −1

u .

Item (4) holds because
∫
Lu(f ) dμω = lim

k→∞
L[ω]k (Lu(f ))(x)

L[ω]k (1)(x)
= lim
k→∞

Lu[ω]k (f )(x)

Lu[ω]k (1)(x)
· Lu[ω]k (1)(x)
L[ω]k (1)(x)

=
∫
f dμuω

∫
Lu(1) dμω

and

λuv,ωμuvω = L∗
uv(μω) = L∗

uL
∗
v(μω) = L∗

u(λv,ωμvω) = λv,ωλu,vωμuvω.

Item (5) follows from
∫
f dμu,ω = lim

k→∞
L[ω]k (1)(x)
Lu[ω]k (1)(x)

· L[ω]k (f Lu(1))(x)
L[ω]k (1)(x)

= 1
λu,ω

∫
fLu(1) dμω.
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Remark 6.2. Recall that a probability measure ν is (Tw, ϕw)-conformal, where w is a finite
word, if there exists c > 0 such that L∗

w(ν) = cν. Consider w := ww . . . ∈ 
 and μw =
μ∅,w given by Proposition 6.1. By item (4) of the same proposition, L∗

w(μw) = λw,wμw,
hence μw is conformal. Moreover, item (1) and μuw ◦ T −1

u = μu,w imply

{μu,ω : ω ∈ 
} =
{
μuw ◦ T −1

u : w ∈
⋃
k≥1

Wk

}
.

As 
 is compact and ω �→ μu,ω is Lipschitz continuous by statement (1) of
Proposition 6.1, {μu,ω : ω ∈ 
} is compact. It is also worth mentioning that item (1)
ensures that for any finite word u, the family
 � ω �→ μu,ω is Hölder continuous. Finally,
the fact that any two asymptotic limits are equivalent (recall item (5)) will be useful to
provide an application to characterize the boundary of a semigroup action in §9.

6.2. Two-sided compositions. We shall find a second family of probabilities which
generalizes the notions of invariant measures and equilibrium states. To attain that goal,
despite the fact that the underlying dynamics is not invertible, we need to consider
forward iterations of maps determined by two-sided sequences. Let 
− refer to the
set of left-infinite words, that is, 
− = {. . . i2i1 : i1, i2, . . . ∈ W}, and for k ∈ N and
σ = . . . i2i1 ∈ 
−, define

k[σ ] := ik . . . i2i1 ∈ Wk .

PROPOSITION 6.3. For any σ ∈ 
−, ω ∈ 
 and ν ∈ M1(X), the limit

μσ ,ω := lim
k,l→∞ P

[ω]l
k[σ ]

∗
(ν)

exists and is independent of ν. Furthermore, with k0 and s given by Theorem 5.1, the
following statements hold.
(1) For k, l with k ∧ l ≥ k0 and σ , σ̃ ∈ 
−, ω, ω̃ ∈ 
 with k[σ ] = k[σ̃ ], [ω]l = [ω̃]l ,

W(μσ ,ω, μσ̃ ,ω̃) ≤ sk∧l .
(2) For k, l with k ∧ l ≥ k0 and f ∈ Hα ,∥∥∥∥P[ω]l

k[σ ](f )−
∫
f dμσ ,ω

∥∥∥∥ ≤ 2sk∧lD(f ).

(3) For a finite word u, μσu,ω = μσ ,uω ◦ T −1
u .

(4) The measures μσ ,ω and μω are absolutely continuous to each other and hσ ,ω :=
dμσ ,ω/dμω satisfies

‖h
k[σ ],ω − hσ ,ω‖ � sk ,

where μω and h
k[σ ],ω are as given in the previous proposition.

Proof. As a consequence of Proposition 6.1(2), Lemmas 4.1 and 4.2, for any finite word u,
infinite word ω ∈ 
 and l ≥ k0, we have that

‖Lu[ω]l (1)/L[ω]l (1)− λu,ω‖ ≤ slD(Lu(1)) ≤ Cslλu,ω, (6.1)
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for some C > 0. Hence, for finite words v ∈ Wk , w ∈ W l , k ≥ k0 and f Hölder continu-
ous,

|Pwv (f )− P
w
uv(f )|

≤
∣∣∣∣Lw(fLv(1))Lvw(1)

− Lw(fLuv(1))
λu,vwLvw(1)

∣∣∣∣ +
∣∣∣∣Lw(fLuv(1))λu,vwLvw(1)

− Lw(fLuv(1))
Luvw(1)

∣∣∣∣
≤ Lw(|f |Lv(1)|1 − Luv(1)/λu,vwLv(1)|)

Lvw(1)
+ Lw(|f |Luv(1))

Luvw(1)

∣∣∣∣ Luvw(1)
λu,vwLvw(1)

− 1
∣∣∣∣

≤ C(Pwv (|f |)sk + P
w
uv(|f |)sk+l),

where we used the notation u := (uu . . .) to denote the periodic word formed by u
blocks. Now assume that ν and ν̃ are probability measures and f is Hölder continu-
ous with D(f ) ≤ 1 and infx∈X f (x) = 0. In particular, ‖f ‖∞ ≤ 1. By the above and
Proposition 6.1, for σ , σ̃ ∈ 
− and ω, ω̃ ∈ 
 such that k[σ ] = k[σ̃ ], [ω]l = [ω̃]l and
k ∧ l ≥ k0,∣∣∣∣

∫
P

[ω]l
k[σ ](f ) dν −

∫
P

[ω̃]l
k[σ̃ ](f ) dν̃

∣∣∣∣
≤

∫ ∣∣∣∣P[ω]l
k[σ ](f )− P

[ω]l
k[σ̃ ](f )

∣∣∣∣ dν +
∣∣∣∣
∫

P
[ω]l
k[σ̃ ](f ) dν −

∫
P

[ω]l
k[σ̃ ](f ) dν̃

∣∣∣∣
≤ C(2‖P[ω]l

k[σ ](f )‖∞sk + ‖P[ω]l
k[σ ](f )‖∞sk+l + ‖P[ω]l

k[σ̃ ](f )‖∞sk+l)+ 2sl

≤ 2C(sk + sk+l)+ 2sl � sk∧l .

Hence, by Kantorovich’s duality and completeness of the space of probability measures,
limk,l→∞ P

[ω]l
k[σ ]

∗
(ν) exists, is independent of ν and the estimate in part (1) holds. Part

(2) is an immediate consequence of part (1), and the proof of part (3) follows as in
Proposition 6.1. Proposition 6.1(5) indicates that hσ ,ω is the limit of h

k[σ ],ω and by the
first argument in Proposition 2.2 in [3], it follows that ‖h

k[σ ],ω − h
l [σ ],ω‖∞ � sk∧l . Then

the argument in there can be easily adapted to obtain exponential convergence with respect
to ‖ · ‖d∗ in part (4).

Remark 6.4. The first part of the above proposition implies that the map (σ , ω) �→ μσ ,ω

is Lipschitz continuous with respect to the metric

d((σ , ω), (σ̃ , ω̃)) := min{sk∧l : k[σ ] = k[σ̃ ], [ω]l = [ω̃]l}.
In particular, the image of each compact subset of 
− ×
 is a compact subset of the
space of probability measures.

Moreover, by fixing an order on W , the associated adic flow ht on 
− ×
 is uniquely
ergodic (see [15]) and, in particular, for any Hölder continuous f : X → R, the continuity
of (σ , ω) → ∫

f dμσ ,ω implies that

1
T

∫ T

0

∫
f (x) dμht (σ ,ω)(x) dt

T→∞−−−→
∫ ∫

f (x) dνσ ,ω(x) dm(σ , ω)

uniformly, where m refers to the Parry measure (or measure of maximal entropy). The
analogue of this statement holds for ω → ∫

f dμω,ω and Birkhoff sums with respect to
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the odometer on
, or with respect to uniformly ergodic adic flows or adic transformations
acting on compact subsets of 
− ×
 or 
, respectively.

The result provides the following link to invariant measures and equilibrium states.
A finite word w generates a periodic infinite word w := (ww . . .) ∈ 
 and a periodic
left-infinite word w := (. . . ww) ∈ 
−. Then, by Proposition 6.3, the measure μw,w is
Tw-invariant, dμw,w = hw,w dμw and

Lw(hw,w) = λw,whw,w.

Here, λw,w is given as in Proposition 6.1.
The following result identifies μw,w as the unique equilibrium state of Tw with respect

to the Hölder potential ϕw. Note that the statement avoids the notion of pressure as X might
be non-compact. However, if X is compact, then log λw,w is equal to the pressure [28] and
one obtains the usual notion of equilibrium state. In the proposition, Hμ(Tw) refers to
Kolmogorov’s entropy.

PROPOSITION 6.5.

log λw,w =Hμw,w(Tw)+
∫
ϕw dμw,w

= sup
{
Hν(Tw)+

∫
ϕw dν : ν ∈ M1(X), ν = ν ◦ T −1

w

}
.

Furthermore, μw,w is the unique measure which realizes the supremum.

Proof. As Tw is Ruelle expanding, the restriction Tw|U to a ball U of radius a is
bimeasurable. Hence, A �→ μw,w ◦ Tw(A) defines a measure on U which is, as a conse-
quence of Propositions 6.1 and 6.3, absolutely continuous with respect to μw,w|U . Hence,
Jμw,w := dμw,w ◦ Tw/dμw,w is a well-defined function on X, sometimes referred to as the
Jacobian of Tw with respect to μw,w. In fact, it follows from the construction of μw,w that
Jμw,w = exp(−ϕ̃w), where

ϕ̃w := ϕw + log hw,w − log hw,w ◦ Tw − log λw,w.

By construction, Jμw,w = exp(−ϕ̃w) and, as Tw is Ruelle expanding, Rokhlin’s formula
for entropy (see, e.g. Theorem 9.7.3 in [35]) implies that

Hμw,w(Tw) =
∫

log Jμw,w dμw,w

= log λw,w −
∫
(ϕw + log hw,w − log hw,w ◦ Tw) dμw,w

= log λw,w −
∫
ϕw dμw,w.

This proves the first identity. Now suppose that ν is an invariant probability measure with
Hν(Tw)+ ∫

ϕw dν ≥ log λw,w. Then, by Rokhlin’s formula, the invariance of ν and the
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definition of the transfer operator of Tw with respect to ν, denoting by Jν = dν ◦ Tw/dν,

0 ≤ Hν(Tw)+
∫
ϕw dν − log λw,w

=
∫
(log Jν + ϕw + log hw,w − log hw,w ◦ Tw − log λw,w) dν

=
∫

log
Jν

Jμw,w

dν =
∫ ∑

Tw(y)=x

1
Jν(y)

log
Jν(y)

Jμw,w(y)
dν(x).

As ν is invariant, it follows that
∑
Tw(y)=x 1/Jν(y) = 1 for all x ∈ X. Hence, by Jensens’s

inequality,

0 ≤ Hν(Tw)+
∫
ϕw dν − log λw,w

∗≤
∫

log
∑

Tw(y)=x

1
Jν(y)

Jν(y)

Jμw,w(y)
dν(x) = 0.

Moreover, equality holds in (∗) if and only if Jν(y)/Jμw,w(y) = 1 almost surely.

Remark 6.6. By usual normalization procedure, replacing the potential ϕw with ϕ̃w,
one then obtains a new operator L̃w with L̃w(1) = 1, that is, L̃w is normalized and
L̃∗
w(μw,w) = μw,w. In particular, part (2) of Proposition 6.1 applied to the semigroup

generated by Tw implies that L̃w has a spectral gap. However, the construction depends
on the specific periodic word w and is in general not functorial, that is, L̃vw �= L̃w ◦ L̃v .

7. Annealed exponential decay
So far, we have considered only quenched operators, which are determined by iterations in
S tracked by certain finite words and their limiting behaviour. As stated in the introduction,
another objective is to study annealed operators, which are averages of all the quenched
operators tracked by finite words of given lengths. To be more precise, suppose that the
one-sided full shift of finite alphabet (
, θ) is endowed with a non-singular probability
measure ρ. For every k ∈ N, define the averaged transfer operator

Ak(f )(x) :=
∫



L[ω]k (f )(x) dρ(ω)

for f ∈ Hα . One can do so for more general shifts, but we keep 
 to be a topological
mixing subshift of finite type for simplicity. Naturally, one would need some properties of
the shift space (
, θ , ρ) to study the operator Ak . We summarize them below.

Since ρ is non-singular, for a finite word u, let pu : 
 → R+ be defined by

pu(ω) := dρ

dρ ◦ θ |u| (uω), ω ∈ 
.

With the usual distance given on the shift, denote by H(
) the space of Hölder continuous
functions on 
 and by C(
) the space of continuous functions on 
. Recall that λu,ω =∫
Lu(1) dμω, as in Proposition 6.1. Note that log λi,· ∈ H(
) by Proposition 6.1. Suppose

that log pi ∈ H(
) as well. Define a linear operator ι acting on C(
) by

ι(g)(ω) :=
∑
i∈W

λi,ωpi(ω)g(iω), g ∈ C(
).
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As u �→ pu and u �→ λu,ω are multiplicative cocycles with respect to θ , it can be shown
that for every k ∈ N,

ιk(g)(ω) =
∑
u∈Wk

λu,ωpu(ω)g(uω).

In view of the duality with θ , we have that for any g1, g2 ∈ C(
),∫
ιk(g1) · g2 dρ =

∫
λ[ω]k ,θkω · g1 · g2 ◦ θk dρ. (7.1)

Since log λi,ω and log pi are both Hölder continuous, Ruelle’s Perron–Frobenius
theorem implies that there are β > 0, m ∈ M1(
) and go ∈ C(
), go > 0 such that

ι∗m = βm, ι(go) = βgo, m(go) = 1. (7.2)

Furthermore, there exists t ∈ (0, 1) such that for any g ∈ H(
) and k ∈ N,∥∥∥∥ β−kιk(g)− go

∫
g dm

∥∥∥∥



� tk‖g‖
 , (7.3)

where ‖ · ‖
 = D
(·)+ ‖ · ‖∞, the sum of the Hölder norm and the supremum norm over
the shift. Note that go is uniformly bounded from above and away from 0 as 
 is compact.

Remark 7.1. If (i, ω) �→ λi,ω is constant, then m = ρ. Moreover, if ρ is invariant, then
go = 1. If ρ is a Bernoulli measure, then Ak = (A1)

k for every k ≥ 1. In this case,
annealed transfer operators were studied in [2]. Note that Al ◦ Ak = Al+k if and only
if ρ is Bernoulli. Averaged transfer operators were also considered in [6] in the special
case that ρ is a Bernoulli measure and all potentials ϕi are equal.

Remark 7.2. The associated skew product

F : X ×
 → X ×
, (x, i1i2 . . .) �→ (Ti1(x), i2i3 . . .)

reflects the time evolution along a given path in 
 with a distribution on the space of
possible paths, that is, the probability of the event of applying T ∈ S in time n is given by
ρ({ω ∈ 
 : Fn(· , ω) = (T ( · ), θn(ω))}).

We proceed to prove that the family {An} has exponential decay of correlations. Fix
k0 ∈ N and s ∈ (0, 1), as given in Theorem 5.1. With m defined as in equation (7.2), let
π ∈ M1(X) be given by

dπ := dμωdm(ω).

For f ∈ Hα , let

‖f ‖m := ‖μ·(|f |)‖∞

be the supremum norm with respect to m of the map ω �→ μω(|f |) over the shift.

THEOREM 7.3. Suppose the Ruelle expanding semigroup S is jointly topologically mixing
and finitely aperiodic, and that every potential ϕi is α-Hölder and summable. Suppose that
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every log pi , i ∈ W is Hölder continuous on 
. Then there exists r ∈ (0, 1) such that for
all f ∈ Hα and n ≥ 2k0,∣∣∣∣An(f )(x)

An(1)(x)
−

∫
f dπ

∣∣∣∣ � rn(D(f )+ ‖f ‖m).

Moreover, there exists a positive function h ∈ Hα such that for all f ∈ Hα and n ≥ 2k0,∣∣∣∣An(f )(x)

βnh(x)
−

∫
f dπ

∣∣∣∣ � rn(D(f )+ ‖f ‖m),

with β > 0 given by equation (7.2).

Proof. In the first step of the proof, we derive the first decay. Proposition 6.1 implies that
for any n ≥ 2k0, ω ∈ 
 and x ∈ X, f ∈ Hα ,

|L[ω]n(f )(x)− μω(f )L[ω]n(1)(x)| � snD(f )L[ω]n(1)(x).

After integration, it yields that∣∣∣∣An(f )(x)−
∫
μω(f )L[ω]n(1)(x) dρ(ω)

∣∣∣∣ � snD(f )An(1)(x). (7.4)

It remains to analyse
∫
μω(f )L[ω]n(1) dρ(ω) as n → ∞. To do so, write n = k + l with

l = [n/2] + 1. Observe that by equation (6.1),

|L[ω]n(1)− λ[ω]k ,θkωL[θkω]l (1)| � slλ[ω]k ,θkωL[θkω]l (1). (7.5)

Note that it follows from Proposition 6.1 that ω �→ μω(f ) is Hölder continuous on 
 and
its Hölder coefficient is bounded by a constant times D(f ). Hence,∣∣∣∣

∫
μω(f )L[ω]n(1) dρ(ω)−

∫
μω(f )λ[ω]k ,θkωL[θkω]l (1) dρ(ω)

∣∣∣∣
� sl

∫
μω(|f |)λ[ω]k ,θkωL[θkω]l (1) dρ(ω)

equation (7.1)= sl
∫
ιk(μω(|f |)) · L[ω]l (1) dρ(ω)

= sl
∫
(β−kg−1

o ιk(μω(|f |))− π(|f |)+ π(|f |)) · ιk(go)L[ω]l (1) dρ(ω)

equation (7.3)� sl(tk(D(f )+ ‖f ‖m)+ π(|f |))
∫
ιk(go)L[ω]l (1) dρ(ω)

equation (7.1)= sl(tk(D(f )+ ‖f ‖m)+ π(|f |))
∫
go · λ[ω]k ,θkωL[θkω]l (1) dρ(ω)

equation (7.5)� sl(tk(D(f )+ ‖f ‖m)+ π(|f |))
∫
L[ω]n(1) · go dρ(ω)

� sl(tkD(f )+ ‖f ‖m)An(1).

Observe that in the previous estimate, we have also shown that∫
ιk(go)L[ω]l (1) dρ(ω) � An(1). (7.6)
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Then one can extract π(f ) by∣∣∣∣
∫
μω(f )λ[ω]k ,θkωL[θkω]l (1) dρ(ω)− π(f )

∫
λ[ω]k ,θkωL[θkω]l (1) dρ(ω)

∣∣∣∣
equation (7.1)=

∣∣∣∣
∫
ιk(μω(f ))L[ω]l (1) dρ(ω)− π(f )

∫
ιk(1)L[ω]l (1) dρ(ω)

∣∣∣∣
=

∣∣∣∣
∫
((β−kg−1

o ιk(μω(f ))− π(f ))− (β−kg−1
o ιk(1)− 1)π(f ))ιk(go)L[ω]l (1) dρ(ω)

∣∣∣∣
equation (7.3)� tk(D(f )+ ‖f ‖m)

∫
ιk(go)L[ω]l (1) dρ(ω) � tk(D(f )+ ‖f ‖m)An(1).

Finally, equation (7.5) induces that∣∣∣∣π(f )
∫
λ[ω]k ,θkωL[θkω]l (1) dρ(ω)− π(f )An(1)

∣∣∣∣ � sl |π(f )|An(1).

Combining the above estimates, one obtains that∣∣∣∣
∫
μω(f )L[ω]n(1) dρ(ω)− π(f )An(1)

∣∣∣∣ � (tkD(f )+ tk‖f ‖m + sl‖f ‖m)An(1).

The first statement now follows from equation (7.4) with r = max{√s, 3√t}.
We now proceed with proving the existence of h. To do so, let

Ãn(x) :=
∫
L[ω]n(1)(x) · go(ω) dρ(ω).

We first show that Ĩn(x) := β−nÃn(x) converges uniformly and exponentially fast to a
positive function h(x) ∈ Hα .

It follows from equation (7.5) that for any n = k + l with l ≥ k0,

L[ω]n(1) � λ[ω]k ,θkωL[θkω]l (1),

so that

Ãn �
∫
λ[ω]k ,θkωL[θkω]l (1) · go dρ equation (7.1)=

∫
ιk(go)L[ω]l (1) dρ = βkÃl ,

and hence, Ĩn � Ĩl , especially Ĩn � Ĩk0 for all n ≥ k0. Since equation (7.5) also implies
that

|Ãn − βkÃl | � slβkÃl ,

one has

|Ĩn − Ĩl | � sl Ĩl .

Hence, {Ĩn(·)} is a Cauchy sequence. Denote the limit of Ĩn(x) by h(x). Then Ĩn(x)
converges uniformly to h(x) since for n ≥ l ≥ k0,

|Ĩn − Ĩl | � sl Ĩk0 � sl .

Then because Ĩn are all Hölder, h is Hölder as well. That h is positive and ‖h‖∞ is finite
can be seen from h � Ĩk0 . To see that the rate of convergence is exponential, for n ≥ k0,
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choose j ∈ N such that |Ĩjn − h| ≤ sn, then

|Ĩn − h| ≤ |Ĩn − Ĩ2n| + · · · + |Ĩ(j−1)n − Ĩjn| + |Ĩjn − h| � sn.

Moreover, Lemma 4.2 infers that infx∈X Ĩk0(x) > 0, and so are Ĩn for n ≥ k0 and so is h.
It follows that Ĩn/h converges to 1 uniformly and exponentially fast.

Next we show that In(x) := β−nAn(1)(x) also tends to h(x). For n = k + l with l ≥ k0,
because ∣∣∣∣An(1)−

∫
ιk(1)L[ω]l (1) dρ

∣∣∣∣ � sl
∫
ιk(1)L[ω]l (1) dρ

obtained from integrating equation (7.5) and because∣∣∣∣
∫
(ιk(1)− ιk(go))L[ω]l (1) dρ

∣∣∣∣ =
∣∣∣∣
∫
(β−kg−1

o ιk(1)− 1)ιk(go)L[ω]l dρ

∣∣∣∣
equation (7.3)≤ tk

∫
ιk(go)L[ω]l dρ = tkβkÃl ,

one can deduce that

|An(1)− βkÃl | � (sl + tk)βkÃl ,

and hence

|In − Ĩl | � (sl + tk)Ĩl ,

so that

|In − h| � (sl + tk)h.

Lastly, applying Theorem 7.3, one has that for all f ∈ Hα and n ≥ 2k0,

|β−nAn(f )− π(f )h| ≤ β−n|An(f )− π(f )An(1)| + π(f )|β−nAn(1)− h|
� rn(D(f )+ ‖f ‖m)In + π(f )|In − h|
� rn(D(f )+ ‖f ‖m)h.

The second assertion on the decay follows from this.

The next result reveals an annealed version of the decay of correlations.

THEOREM 7.4. Now suppose that the assumptions of the above theorem hold and that, in
addition, ρ is θ -invariant. Then there exist a probability measure π̃ on 
 ×X, r ∈ (0, 1)
and k1 ∈ N such that∣∣∣∣

∫ ∑
v∈Wn

1[v](ω)f (Tv(x))g(x) dμω(x) dρ(ω)−
∫
f dπ̃

∫
g dμω dρ

∣∣∣∣
≤ rn

∫
|f | dμω dρ

(
D(g)+

∫
|g| dμω dρ

)

for all n ≥ k1, g ∈ Hα and f : X → R integrable with respect to dμω(x) dρ(ω).
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Proof. For ω = (ω1ω2 . . .) ∈ 
, set λn,ω := λω1...ωn,θnω and hn,ω := hω1...ωn,θnω,
where λ· and h· are given by Proposition 6.1. Moreover, Proposition 6.1 and Lemma 4.2
imply for n sufficiently large that∫ ∑

v∈Wn

1[v]f ◦ Tvg dμω dρ =
∫ ∑

v∈Wn

1[v]f
Lv(g)

λn,ω
dμθnω dρ

=
∫ ∑

v

1[v]fμω(g)
Lv(1)
λn,ω

dμθnω dρ ± 2snD(g)
∫ ∑

v

1[v]|f |Lv(1)
λn,ω

dμθnω dρ

=
∫ ∑

v∈Wn

1[v]fμω(g)hn,ω dμθnω dρ ± CsnD(g)

∫ ∑
v∈Wn

1[v]|f | dμθnω dρ

=
∫
fμω(g)hn,ω dμθnω dρ ± CsnD(g)

∫
|f | dμω dρ, (7.7)

where C/2 is given by Lemma 4.2, and the last equality follows from θ -invariance of ρ.
Now assume that n is even and n = 2m. Then, by item (4) of Proposition 6.3, there exists
C such that∫

fμω(g)hn,ω dμθnω dρ

=
∫
fμω(g)hm,θmω dμθnω dρ ± Csm

∫
μθnω(|f |)|μω(g)| dρ.

However, as ω → μω(g) is Lipschitz continuous by Proposition 6.1, the exponential decay
of correlations, say with rate t ∈ (0, 1) and the same constant C > 0, applied to the error
term implies that∫

fμω(g)hm,θmω dμθnω dρ ± Csm
∫
μθnω(|f |)|μω(g)| dρ

=
∫
fμω(g)hm,θmω dμθnω dρ ± C2sm

∫
μω(|f |) dρ

∫
μω(|g|) dρ. (7.8)

A further application of invariance and the exponential decay of correlations of θ to the
main term and Lemma 4.2 gives that∫

fμω(g)hm,ω dμθnω dρ =
∫
μω(g)μθ2mω(f hm,θmω) dρ

=
∫
μω(g) dρ

∫
f hm,ω dμθmω dρ ± C2tm

∫
μω(|f |) dρD(g) (7.9)

Hence, it remains to analyse
∫
f hm,ω dμθmω. To do so, let (
̂, θ̂ , ρ̂) refer to natural

extension of θ . Then, again by item (4) of Proposition 6.3, it follows that∫
f hm,ω dμθmω dρ(ω) =

∫
f hm,ω dμθmω dρ̂(ω̃, ω)

=
∫
f hω̃−m···ω̃−1,ω dμωdρ̂(ω̃, ω) =

∫
f hω̃,ω dμω dρ̂(ω̃, ω)± Csm

∫
μω(|f |) dρ

=
∫
f dμω̃,ω dρ̂(ω̃, ω)± Csm

∫
μω(|f |) dρ. (7.10)
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Let dπ̃(x) := dμω̃,ω(x)dρ̂(ω̃, ω). The theorem now follows by combining equations (7.7),
(7.8), (7.9) and (7.10).

Remark 7.5. As a corollary of the proof, we also obtain an explicit representation of
π̃ . That is, dπ̃(x) := dμω̃,ω(x)dρ̂(ω̃, ω), where ρ̂ is the natural extension of ρ (which
is assumed invariant). In particular, dπ̃ and dμω dρ(ω) are equivalent measures, even
though dπ̃/dμω dρ(ω) might be a function depending on ω. However, it is not clear if
π̃ and π coincide. Furthermore, this representation reveals that in our sequential setting,
the measure arising in the annealed version of the decay of correlations is an integral of
the pathwise equilibrium measures, as known for the special case where ρ is a Bernoulli
measure.

8. An almost sure invariance principle
Exponential decay of correlations has many implications on the statistical behaviour of the
dynamical system. A large deviation principle, a relativized central limit theorem and laws
of iterated logarithm for random dynamical systems generated by expanding dynamics
follow from the works by Kifer [21, 22]. For sequential dynamical systems of expanding
maps of the interval, first versions of central limit theorems were obtained by Heinrich [19]
and Conze and Raugi [9]. We now show an almost sure invariance principle in the setting
of Ruelle expanding maps. It is worth mentioning that almost sure invariance principles
have been obtained in the context of quenched random dynamical systems (see e.g. [13]
and references therein). Let B be the Borel σ -algebra on X. With respect to the measure
μuvω, where u, v are finite words and ω is an infinite word, Pvu can be seen as a conditional
expectation in the following way.

LEMMA 8.1. For any f ∈ Hα ,

Eμuvω(f ◦ Tu|T −1
uv B) = P

v
u(f ) ◦ Tuv .

Proof. For any A ∈ B, using item (3) of Proposition 6.1,∫
T −1
uv A

f ◦ Tu dμuvω =
∫

1A ◦ Tv · f dμuvω ◦ T −1
u =

∫
1A ◦ Tv · f dμu,vω

=
∫

1A ◦ Tv · f dPvu∗
(μuv,ω) =

∫
P
v
u(1A ◦ Tv · f ) dμuv,ω

=
∫

1A · Pvu(f ) dμuv,ω =
∫
A

P
v
u(f ) dμuvω ◦ T −1

uv

=
∫
T −1
uv A

P
v
u(f ) ◦ Tuv dμuvω.

The almost sure invariance principle we are going to show is similar to the one in [32]
for non-stationary shift. Both are based on the almost sure invariance principle for reverse
martingale differences by Cuny and Merlevède.

THEOREM 8.2. [10, Theorem 2.3] Let (Un)n∈N be a sequence of square integrable reverse
martingale differences with respect to a non-increasing filtration (Gn)n∈N. Assume that
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σ 2
n := ∑n

k=1 E(U2
k ) → ∞ and that supn E(U

2
n ) < ∞. Assume that

n∑
k=1

(E(U2
k |Gk+1)− E(U2

k )) = o(σ 2
n ) almost surely,

∑
n≥1

σ−2t
n E(|Un|2t ) < ∞ for some 1 ≤ t ≤ 2.

Then, enlarging our probability space if necessary, it is possible to find a sequence (Zk)k≥1

of independent centred Gaussian variables with E(Z2
k ) = E(U2

k ) such that

sup
1≤k≤n

∣∣∣∣
k∑
i=1

Ui −
k∑
i=1

Zi

∣∣∣∣ = o(

√
σ 2
n log log σ 2

n ) almost surely.

We need to make another assumption.

Definition 8.1. An (a, λ)-Ruelle expanding map T is finitely expanding if

sup
x,y∈X

0<d(x,y)<a

d(T (x), T (y))
d(x, y)

< ∞.

We refer to S as finitely Ruelle expanding if every Ti , i ∈ W satisfies this property.

THEOREM 8.3. Suppose the finitely Ruelle expanding semigroup S is jointly topologically
mixing and finitely aperiodic, and that every potential ϕi is α-Hölder and summable.
Suppose ω ∈ 
, f ∈ Hα . Let fn = f − ∫

f ◦ T[ω]n dμω for every n ∈ N0 and let s2
n =

Eμω(
∑n−1
k=0 fk ◦ T[ω]k )

2 for n ≥ 1. Assume that
∑
n

s−4
n < ∞. (8.1)

Then, enlarging our probability space if necessary, there exists a sequence (Zn) of
independent centred Gaussian random variables such that

sup
n

∣∣∣∣
√∑n−1

k=0 EμωZ
2
k − sn

∣∣∣∣ < ∞,

sup
0≤k≤n−1

∣∣∣∣
k∑
i=0

fi ◦ T[ω]i −
k∑
i=0

Zi

∣∣∣∣ = o

(√
s2
n log log s2

n

)
μω-almost surely.

Proof. Denote Bn = T −1
[ω]nB for n ∈ N and let B0 = B, then Bn is a non-increasing

filtration. Let h0 = 0 and define hn ∈ Hα recursively by hn+1 = P
[θnω]1
[ω]n (fn + hn). Then

equation (4.4) implies that hn = ∑n−1
k=0 P

[θkω]n−k
[ω]k fk ∈ Hα . It follows from Proposition 6.1

that μω ◦ T −1
[ω]k = μ[ω]k ,θkω, then

P
[θkω]n−k
[ω]k fk = P

[θkω]n−k
[ω]k f −

∫
f ◦ T[ω]k dμω = P

[θkω]n−k
[ω]k f −

∫
f dμ[ω]k ,θkω
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and that, with k0 ∈ N and s ∈ (0, 1) given by Theorem 5.1,

‖hn‖ ≤
n−k0∑
k=0

2sn−kD(f )+
n−1∑

k=n−k0+1

‖P[θkω]n−k
[ω]k fk‖

≤
n−k0∑
k=0

2sn−kD(f )+
n−1∑

k=n−k0+1

C‖f ‖ � ‖f ‖,

where C is a uniform bound for all ‖Pvu‖ (Lemma 4.1).
Let

Un := fn ◦ T[ω]n + hn ◦ T[ω]n − hn+1 ◦ T[ω]n+1 .

Here, Un is Bn-measurable and square integrable. Moreover, apply Lemma 8.1 to get that

Eμω(Un|Bn+1) = P
[θnω]1
[ω]n fn ◦ T[ω]n+1 + P

[θnω]1
[ω]n hn ◦ T[ω]n+1 − hn+1 ◦ T[ω]n+1 = 0.

So (Un)n∈N0 is a sequence of square integrable reverse martingale differences. Let

σ 2
n :=

n−1∑
k=0

EμωU
2
k = Eμω

( n−1∑
k=0

Uk

)2

.

We check the conditions of Theorem 8.2. Note that E in the rest of the proof stands for Eμω .
First we show σ 2

n → ∞ and supn EU
2
n < ∞. It follows from

|σn − sn| =
∣∣∣∣E1/2

( n−1∑
k=0

Uk

)2

− E
1/2

( n−1∑
k=0

fk ◦ T[ω]k

)2∣∣∣∣

≤ E
1/2

( n−1∑
k=0

Uk −
n−1∑
k=0

fk ◦ T k0
)2

= E
1/2(hn ◦ T[ω]n)

2

� ‖f ‖
that |σn − sn| is uniformly bounded. So s2

n → ∞ implies that σ 2
n → ∞. Since ‖Un‖∞ is

uniformly bounded, supn EU
2
n < ∞.

Next we show that

n−1∑
k=0

(E(U2
k |Bk+1)− E(U2

k )) = o(σ 2
n ) μω-almost surely.

Let un = fn + hn − hn+1 ◦ T[θnω]1 and let ũn = u2
n − EU2

n . Then ‖ũn‖∞ � ‖f ‖2. More-
over, the Hölder coefficient of ũn is also uniformly bounded because, denoting [θn−1ω]1 =
i ∈ W ,

Dα(hn ◦ Ti) = sup
x �=y∈X

|hn ◦ Ti(x)− hn ◦ Ti(y)|
d(x, y)α

≤ Dα(hn) · sup
0<d(x,y)<a

(
d(Ti(x), Ti(y))

d(x, y)

)α
+ 2a−α‖hn‖∞,
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which is uniformly bounded by assumption. Let

Fn = σ−2
n

n−1∑
k=0

E(U2
k |Bk+1),

then

n−1∑
k=0

(E(U2
k |Bk+1)− E(U2

k )) =
n−1∑
k=0

P
[θkω]1
[ω]k ũk ◦ T[ω]k+1 = σ 2

n (Fn − 1).

Applying Proposition 6.1, we have

E

( n−1∑
k=0

P
[θkω]1
[ω]k ũk ◦ T[ω]k+1

)2

�
∑

0≤k≤l≤n−1

E(P
[θkω]1
[ω]k ũk ◦ T[ω]k+1 · P[θ lω]1

[ω]l ũl ◦ T[ω]l+1)

=
∑

0≤k≤l≤n−1

∫
P

[θkω]l−k+1
[ω]k ũk · P[θ lω]1

[ω]l ũl dμ[ω]l+1,θ l+1ω

�
∑

l−k+1≥k0

sl−k+1Dũk · EU2
l +

∑
l−k+1<k0

‖ũk‖∞ · EU2
l

� k0 ·
k0−2∑
l=0

EU2
l + (sk0 + k0) ·

n−1∑
l=k0−1

EU2
l ,

where in the last inequality, we have used that ‖ũk‖ is uniformly bounded. Therefore,

E(Fn − 1)2 = σ−4
n E

( n−1∑
k=0

P
[θkω]1
[ω]k ũk ◦ T[ω]k+1

)2

� σ−4
n

n−1∑
l=0

EU2
l = σ−2

n .

As σn → ∞, E(Fn − 1)2 → 0. We need to show that it is almost sure convergence. Let
C = supn EU

2
n and let kn = inf{k : σ 2

k ≥ n2C}. Then kn < ∞, kn → ∞ and

n2C ≤ σ 2
kn

≤ (n2 + 1)C.

Since ∑
n

E(Fkn − 1)2 �
∑
n

σ−2
kn

< ∞,

Fkn → 1 almost surely by the Borel–Cantelli lemma. Let m = m(n) → ∞ be such that
km ≤ n ≤ km+1, then

Fkm
m2

(m+ 1)2 + 1
≤ Fkm

σ 2
km

σ 2
km+1

≤ Fn ≤ Fkm+1

σ 2
km+1

σ 2
km

≤ Fkm+1

(m+ 1)2 + 1
m2 .

Hence, Fn → 1 almost surely. Lastly,
∑
n σ

−2
n EU2

n < ∞ because ‖Un‖∞ is uniformly
bounded, |σn − sn| � ‖f ‖ and

∑
n s

−4
n < ∞ by assumption.
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Now we can use Theorem 8.2 to find a sequence of independent centred Gaussian
variables {Zk} with EZ2

k = EU2
k such that

sup
0≤k≤n−1

∣∣∣∣
k∑
i=0

Ui −
k∑
i=0

Zi

∣∣∣∣ = o

(√
σ 2
n log log σ 2

n

)
almost surely.

Since | ∑k
i=0 fi ◦ T[ω]i − ∑k

i=0 Ui | and |σn − sn| are both uniformly bounded, the state-
ment of the theorem follows.

Remark 8.4. One can verify condition (8.1) on total variance sn by verifying the inequality

lim inf
n→∞

1
n

n−1∑
k=0

Eμω(f
2
k ◦ T[ω]k ) > 2 sup

k,m∈N0

∣∣∣∣
k+m∑
l=k+1

Eμω(fk ◦ T[ω]k · fl ◦ T[ω]l )

∣∣∣∣.

Assuming that the Ruelle expanding semigroup S and the potentials ϕi satisfy the
conditions of Theorem 5.1, a priori the left-hand side of this inequality is positive and
the right-hand side is finite for every f ∈ Hα . A more explicit sufficient condition for f
under which this inequality (and equation (8.1)) holds is yet unknown to us.

In that regard, it is also worth noting that the applications of Theorem 2.3 in [10]
(cf. Theorem 8.2) by Cuny and Merlevède to the iteration of a single, weakly expanding
map give rise to explicit function spaces and stronger rates of approximation. However,
their results rely on a moderate deviation result for stationary Markov chains by Wu
and Zhao in [36], which seems not to be available for inhomogeneous Markov chains.
Moreover, Dragičević and Hafouta [14] and Hafouta [16] obtained a vector valued almost
sure invariance principle for the sequential iteration of non-uniformly expanding maps.
There, the authors obtain a better rate of approximation by assuming an abstract condition
on the characteristic functions of the associated process. Finally, we also would like to
mention the almost sure invariance principle in [32]. There, it was possible to determine
an explicit class of functions and sometimes their asymptotic variance such that the almost
sure invariance principle holds with respect to sequential systems associated with the
continued fraction expansion.

9. Applications
In this section, we illustrate some possible applications of our main results, both for
conformal iterated function systems and the thermodynamic formalism of free semigroup
actions by expanding maps.

9.1. Non-autonomous conformal iterated function systems. The class of non-autonomous
conformal iterated function system was introduced and studied in [27], and is defined as
follows.

Definition 9.1. We refer to {X, (�i : 1 ≤ i ≤ k)} as a non-autonomous conformal iterated
function system if X is a convex, compact subset of Rd for some d ∈ N with int(X) = X,
and (�i) is a collection {ϕi,1, . . . , ϕi,k(i)} of maps from X to X such that:
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(1) the following conformality condition holds—there exists an open connected set
V ⊃ X such that each ϕi,j extends to a continuously differentiable conformal
diffeomorphism from V into V;

(2) the open set condition holds—ϕi,j (int(X)) ∩ ϕ
i,j̃ (int(X)) = ∅, for all 1 ≤ j < j̃ ≤

k(i) and i = 1, . . . k;
(3) the following conditions on bounded distortion and uniform contraction hold—there

exist constants K ≥ 1 and η ∈ (0, 1) such that for any n ∈ N and any choice
(i1, j1), . . . , (in, jn), with il ∈ {1, . . . , k} and 1 ≤ jl ≤ k(l) and all x, y ∈ X, for
ϕ := ϕin,jn ◦ · · · ◦ ϕi1,j1 , we have that

‖Dϕ(x)‖ ≤ K‖Dϕ(y)‖, ‖Dϕ(x)‖ ≤ Kηn.

As X is assumed to be compact and k(i) < ∞ for all i = 1, . . . k, it follows for any
compact set A ⊂ K that �i(A) := ⋃k(i)

j=1 ϕi,j (A) is compact. Hence, for a given ω ∈ 
,
where 
 = {(ω1ω2 . . .) : 1 ≤ ωi ≤ k}, (�ω1 ◦ · · · ◦�ωn(X))n is a decreasing sequence
of compact sets which then implies that the limit set Jω, defined by

Jω := lim
n→∞ �ω1 ◦�ω2 ◦ · · · ◦�ωn(X),

is non-empty and compact.
We now derive an averaged version of Bowen’s formula to have access to the Hausdorff

dimension of these limit sets. To do so, we have to adapt the semigroup setting to the
intuitionistic fuzzy set (IFS). First observe that equation (1) in Definition 9.1 implies that
ϕ := ϕin,jn ◦ · · · ◦ ϕi1,j1 is a well-defined conformal diffeomorphism for any n ∈ N and
(i1, j1), . . . , (in, jn), with il ∈ {1, . . . , k} and 1 ≤ jl ≤ k(l). Furthermore, by equation
(3), ϕ is a contraction with rate Kηn and, by a standard argument, x �→ log ‖Dϕ(x)‖ is
Lipschitz continuous with respect to a uniform constant.

For δ ≥ 0, we now consider the operators, for w = (ω1 . . . ωn),

Lδωi (f ) :=
k(ωi)∑
j=1

‖Dϕωi ,j ( · )‖δf ◦ ϕωi ,j ,

Lδw(f ) :=
∑
j1,...,jn

‖D(ϕω1,j1 · · · ϕωn,jn)( · )‖δf ◦ ϕω1,j1 · · · ϕωn,jn

= Lδω1
◦ Lδω2

◦ · · · ◦ Lδωn(f )
for f in a suitable function space (the last equality follows from conformality). Now assume
that ρ is a probability measure on 
 which satisfies the conditions of Theorem 7.3, that
is, log dρ/dρ ◦ σ is Hölder continuous and the support of ρ is a topological mixing SFT,
and, for n ∈ N,

Aδ
n :=

∑
w∈{1,...k}n

ρ([w])Lδw.

Here [w] represents the cylinder set {ω ∈ 
 : [ω]n = w}. Observe that the arguments
in the proofs of Theorems A and C apply straightforwardly in this context through an
interpretation of ϕω1,j1 · · · ϕωn,jn as an inverse branch of an expanding map. Hence, we
obtain uniform and exponential convergence of Lδw as |w| → ∞ and of Aδ

n as n → ∞.
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In particular, for each δ ≥ 0, there exists λδ such that Aδ
n(1) � λnδ . Thus, the annealed

pressure function P : [0, ∞) → R given by

P(δ) := lim
n→∞

1
n

log Aδ
n(1) = log λδ

is well defined.

LEMMA 9.1. The function P is continuous and strictly decreasing. Furthermore,
limδ→+∞ P(δ) = −∞ and P0 = log λ0 ≥ log(mini k(i)), where λ0 is the spectral radius
of the operator defined by

ι(f ) =
k∑
i=1

k(i)
dρ

dρ ◦ σ (i · )f (i · ).

Proof. It follows from the definition and the finiteness of the generating IFS that there
exist η+, η− ∈ (0, 1) such that ηn− � ‖D(ϕω1,j1 · · · ϕωn,jn)‖ � ηn+. Hence, for ε > 0, we
have that

ηnε− Aδ
n(1) � Aδ+ε

n (1) � ηnε+ Aδ
n(1),

which implies that ε log η− ≤ P(δ + ε)− P(δ) ≤ ε log η+. Hence, P is continuous and
strictly decreasing. To determine limδ→+∞ P(δ) = −∞, observe that

Aδ
m+n(1)(x) ≤

∑
|v|=m

∑
|w|=n

ρ([vw])Lδv ◦ Lδw(1)(x)

≤
∑

|v|=m
ρ([v])Lδv

( ∑
|w|=n

ρ([vw])
ρ([v])ρ([w])

ρ([w])Lδw(1)
)
(x)

≤ CAδ
m ◦ Aδ

n(1)(x), for all m, n ≥ 1

as there is a uniform bound C for ρ([v])ρ([w])/ρ([vw]) by bounded distortion of ρ.
Hence, for every fixed n ≥ 1,

λδ = lim
l

ln

√
Aδ
ln(1) ≤ n

√
C‖Aδ

n(1)‖∞
δ→+∞−−−−→ 0.

To determine P(0), we employ Theorem 7.3 as follows. For δ = 0, Li(1) = k(i)1.
Hence, by the proof of Theorem 7.3, λ0 is the spectral radius of ι which is bigger than
or equal to log(mini k(i)).

As an immediate corollary, it follows that there exists a unique δ0 > 0 such that
P(δ0) = 0, provided that P(0) > 0, e.g. if mini k(i) > 1.

THEOREM 9.2. Assume that P(0) > 0. Then, for ρ-almost every ω, the Hausdorff
dimension dimH (Jω) of Jω is equal to the unique root δ0 of P.

Proof. Fix x ∈ X. In analogy to the above pressure function, for ω = (ωi), set

Pω(δ) := lim sup
n→∞

1
n

log Lδω1...ωn
(1)(x).
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To prove almost sure convergence, we employ Kingman’s subadditive ergodic theorem.
To do so, observe that the shift is ρ-ergodic, and that there exists an equivalent invariant
probability measure. Set

gn(ω) := sup{log Lδω1...ωn
(1)(x) : x ∈ X}.

By construction, gm+n(ω) ≤ gm(ω)+ gn(σ
n(ω)). As gn(ω) � log Lδω1...ωn

(1)(x), it now
follows from Kingman’s subadditive ergodic theorem that Pω(δ) exists almost everywhere
and in L1(ρ), that Pω(δ) is almost surely constant and that the lim sup in the definition in
fact is a limit. It follows from these observations that Pω(δ) = P(δ) almost surely, but for δ
fixed. However, by the same argument for Lipschitz continuity of P in the proof above, one
obtains that the maps Pω are equi-Lipschitz continuous. Hence, by choosing a countable
and dense set {δi}, one obtains a set of full measure � such that Pω(δ) = P(δ) for all
ω ∈ � and δ ≥ 0.

We now show that dimH (Jω) = δ0 for each ω = (ωi) ∈ �. To do so, we first recall
some consequences of conformality. As ϕ := ϕω1,j1 · · · ϕωn,jn is conformal, it follows that
the diameter diam(ϕ(X)) satisfies diam(ϕ(X)) � ‖Dϕ‖ · diam(X). Furthermore, covers
by sets of type ϕ(X) are optimal in the following sense. By Lemma 2.7 in [24], or from
the proof of Theorem 3.2 in [27], there exists M ∈ N such that for each ball B of radius
r > 0, there exist a subset W(B) of {((ω1, j1), · · · (ωn, jn)) : n ∈ N, 1 ≤ ji ≤ k(i)} of at
most M elements such that:
(1) the elements of {ϕω1,j1 · · · ϕωn,jn(int(X)) : ((ω1, j1), . . . (ωn, jn)) ∈ W(B)} are

pairwise disjoint;
(2) diam(ϕω1,j1 · · · ϕωn,jn(X)) � diam(B) for ((ω1, j1), . . . (ωn, jn)) ∈ W(B);
(3) B ∩ Jω ⊂ ⋃

((ω1,j1),...(ωn,jn))∈W(B) ϕω1,j1 · · · ϕωn,jn(X).
The result now provides access to the δ-Hausdorff measure of Jω as follows.

Assume that U is a finite cover of Jω by closed balls. By replacing each B ∈ U by
{ϕω1,j1 · · · ϕωn,jn(X) : ((ω1, j1), . . . (ωn, jn)) ∈ W(B)}, we obtain a further cover V
which satisfies ∑

B∈U
diam(B)δ �

∑
A∈V

diam(A)δ .

Hence, to estimate the right-hand side, we may assume without loss of generality
that for each B ∈ U , there exist (ωi , ji) such that B = ϕω1,j1 · · · ϕωn,jn(X). However,
Proposition 6.1 implies that for an arbitrary x ∈ int(X),

μω(B) = lim
l→∞

Lδωn+1...ωn+l ◦ Lδω1...ωn
(1B)(x)

Lδω1...ωn+l (1)(x)

� ‖Dϕω1,j1 · · · ϕωn,jn‖δ lim
l→∞

Lδωn+1...ωn+l (1)(x)
Lδω1...ωn+l (1)(x)

� diam(B)δλ−1
ω1...ωn,σnω.

Setting |B| = n, this implies that∑
B∈U

diam(B)δ �
∑
B∈U

λω1...ω|B|,σ |B|ωμω(B).
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Now assume that the interiors of the elements of U are disjoint. Then
∑
μω(B) = 1 and

the asymptotics of
∑

diam(B)δ as max diam(B) → 0 are determined by the asymptotics
of λω1...ωn,σnω as n → ∞. Hence, if δ > δ0, then the δ-Hausdorff measure of Jω is 0 and if
δ < δ0, then the δ-Hausdorff measure of Jω is ∞. This implies that dimH (Jω) = δ0.

9.2. Thermodynamic formalism of semigroup actions. In this subsection, we will
provide some applications of our results to the setting of finitely generated free semigroup
actions.

Let X be a compact metric space, ϕ : X → R be a continuous potential and let
G1 = {g1, g2, . . . , gk} be a finite set of continuous self maps on X, for some k ≥ 2. The
semigroup S generated by G1 induces a continuous semigroup action given by

S : S ×X → X

(g, x) �→ g(x),

meaning that for any g, h ∈ S and every x ∈ X, we have S(g h, x) = S(g, S(h, x)). The
thermodynamic formalism of semigroup actions faces several difficulties. On one hand,
while probability measures which are invariant by all generators may fail to exist, in
opposition to the case of group actions, there are evidences that the stationary measures
seem not sufficient to describe the dynamics. On the other hand, the existence of some
distinct concepts of topological pressure for group and semigroup actions makes it
necessary to test their effectiveness to describe the dynamics. In the case of free semigroup
actions, the coding of the dynamics by the full shift suggests to consider the skew-product

F : {1, 2, . . . , k}N ×X → {1, 2, . . . , k}N ×X

(ω, x) �→ (σ (ω), gω1(x)).
(9.1)

Moreover, a random walk on the semigroup S can be modelled by a Bernoulli probability
measure P on {1, 2, . . . , k}N. The pressure Ptop(S, φ, P) of the semigroup action deter-
mined by that random walk coincides with the annealed topological pressure P (a)top (F , φ̃, P)
of the random dynamical system determined by F, associated to the potential φ̃ :
{1, 2, . . . , k}N ×X → R given by φ̃(ω, x) = φ(x) (cf. Proposition 4.1 in [7]). In par-
ticular, Ptop(S, φ, P) coincides with the logarithm of the spectral radius of the averaged
transfer operator

A1(f ) =
∫
Lgω(f ) dP(ω).

Furthermore, if Ptop(S, 0, P) < ∞, then entropy and invariant measures can be defined
through a functional analytic approach, which culminates in the variational principle

Ptop(S, φ, P) = sup
{ν ∈ M(X) : �(ν,σ) �=∅}

{
hν(S, P)+

∫
φ dν

}
(9.2)

(we refer the reader to [7] for the definitions and more details). If all generators are Ruelle
expanding maps and φ is Hölder continuous, then there exists a unique equilibrium state
for the semigroup action S with respect to φ and this can be characterized either as a
marginal of the unique equilibrium state for the annealed random dynamics or as the
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unique probability on X obtained as the limit of the equidistribution along pre-orbits
associated to the semigroup dynamics by

e−nPtop(S,φ,P)A∗n
1 δx = e−nPtop(S,φ,P)

∫
Wn

[ ∑
gω(y)=x

δy

]
dP(ω)

(we refer the reader to [6, §9] and [7, Theorem B] for more details). A more general
formulation, considering more general probabilities on semigroup actions rather than
random walks, was not available up to now as the thermodynamic formalism of the
associated annealed dynamics needed to be described through a sequence of transfer
operators instead of a single averaged operator.

Our results allow not only to consider the thermodynamic formalism of semigroup
actions with respect to more general probabilities in the base, but also to provide important
asymptotic information on the convergence to equilibrium states. Indeed, in general, if
one endows the semigroup S with a probability generated by a Markov measure P on
{1, 2, . . . , k}N, then it is natural to define the topological pressure of the semigroup action
S by

Ptop(S, φ, P) = lim sup
n→∞

1
n

log ‖An(1)‖∞ (9.3)

where, as before, An(f ) = ∫
ω∈Wn

Lgω1ω2...ωn
(f ) dP(ω) (compare to the definition of

topological pressure of a semigroup action in [7, §2.6]). Our main results have the
following immediate consequences.

COROLLARY 9.3. Given x ∈ X, the sequence of probability measures on X defined as

νxn := A∗
n(δx)

An(1)(x)
, n ≥ 1

is weak∗ convergent to some probability ν = hdπ on X (independently of x). Moreover, the
convergence is exponentially fast with respect to the Wasserstein distance.

9.3. A boundary of equilibria. As in the section before, we now assume that X is
compact and that there is only one potential ϕ : X → R. However, in contrast to the
approach via the free semigroup, we are now interested in identifying elements in
the semigroup S which are dynamically close and use this information to define a
compactification of the discrete set S. However, as the topology will rely on the associated
equilibrium states, we have to extend the semigroup by considering also the potential
function. That is, for G1 := {(g1, ϕ), (g2, ϕ), . . . (gk , ϕ)}, we consider

G := {(g, ψ) : there exists n∈N, j1, . . . , jn such that (g, ψ)= (gi1 , ϕ) ∗ · · · ∗ (gin , ϕ)},
where

(g1, ψ1) ∗ (g2, ψ2) := (g1 ◦ g2, ψ2 + ψ1 ◦ g2)

is also the product on G.
As a first step, we begin with the definition of a metric on the countable set W∗ := {w :

|w| < ∞} of finite words. For finite words v = (v1 . . . vm) and w = (w1 . . . wn) in W∗,
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set dW∗(v, w) = 0 for v = w and

dW∗(v, w) := 2− min{k:vk �=wk or k>min{m,n}}

+ 2− min{k:vm+1−k �=wn+1−k or k>min{m,n}},

for v �= w. Observe that dW∗ is a metric, that W∗ is discrete with respect to this metric
and that two words are close if they have the same beginning and ending. In particular,
Cauchy sequences either have to be eventually constant or have to grow from the interior
of a word. The reason for this construction is based on the following observation. Let w
and w refer to the periodic extensions of w to the left and the right, respectively, as defined
in Remark 6.4. Then, by Proposition 6.3, the map w → μw,w is Hölder continuous with
respect to dW∗ . In particular, dW∗ can be seen as a metric on the free semigroup which is
compatible with the Wasserstein distance of the associated equilibrium states.

Second, we define a metric on G which does not depend on the choice of w ∈ W∗ for
the representation of (g, ψ) = (Tw, ϕw). To do so, define for g ∈ S,

κ(g) := lim
ε→0

inf
{
d(g(x), g(y))
d(x, y)

: 0 < d(x, y) < ε

}
,

and note that as the semigroup is Ruelle expanding with parameter λ ∈ (0, 1), we have that
κ(Tw) ≥ λ−|w|. Furthermore, for (g, ψ) ∈ G, let μg,ψ be the unique equilibrium state for
the potential ψ and the map g, that is, if (g, ψ) = (Tw, ϕw), then μg,ψ = μw,w. Now set

dG((g, ψ1), (h, ψ2)) :=
⎧⎨
⎩
W(μg,ψ1 , μh,ψ2)+ 1

κ(g)
+ 1
κ(h)

, (g, ψ1) �= (h, ψ2),

0 , (g, ψ1) = (h, ψ2).

The following proposition summarizes the basic topological facts. The proof is omitted as
the assertions almost immediately follow from the definitions and Proposition 6.3.

PROPOSITION 9.4. Assume that g1, . . . , gk are Ruelle expanding and jointly topological
mixing, and that ϕ is Hölder continuous. Then, for the objects defined above, the following
hold.
(1) (W∗, dW∗) and (G, dG) are discrete, metric spaces.
(2) The map w �→ (Tw, ϕw) is Hölder continuous.
(3) A sequence ((gn, ψn))n in G is a Cauchy sequence if and only if κ(gn) → ∞ and

(μgn,ψn) converges in the weak∗-topology. Moreover, two Cauchy sequences have the
same limit if and only if their sequences of equilibrium states have the same limit.

(4) For the boundary ∂G of the completion with respect to dG, identified with limits of
Cauchy sequences ((gn, ψn))n in G, we have that the map

∂G → {μσ ,ω : σ ∈ 
−, ω ∈ 
}, ((gn, ψn))n �→ lim
n→∞ μgn,ψn

is Lipschitz continuous and onto.

Observe that the result provides a description of ∂G as a set of equivalence classes of
Cauchy sequences, that is, two sequences are considered to be equivalent if they have the
same limit. However, it seems to be impossible to obtain an explicit description of ∂G in
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general. We close with two examples where this is possible. In the first example, ∂G is
trivial whereas in the second example, ∂G is equal to 
−.

PROPOSITION 9.5. If G is Abelian, then ∂G is a point.

Proof. Assume that (g1, ψ1), (g2, ψ2) ∈ G, and denote by Li the corresponding Ruelle
operators. As G is Abelian, it immediately follows that L1L2 = L2L1. Now assume
that the hi are the unique positive Hölder functions (up to colinearity) and λi > 0
such that Li(hi) = λihi , given by Ruelle’s theorem. Hence, L2(L1(h2)) = L1(L2(h2)) =
λ2L1(h2). As L1(h2) is positive, it follows that L1(h2) and h1 are colinear, that is, L1(h2)

is a multiple of h1 and λ1 = λ2. The same argument then shows that the L∗
i -eigenmeasures

coincide. Hence, after normalizing, we obtain that μg1,ψ1 = μg2,ψ2 . In particular, {μσ ,ω :
σ ∈ 
−, ω ∈ 
} is a singleton.

Example 9.6. Let T : [0, 1] → [0, 1], x �→ 4x(mod1) and S = U−1T U , where

U : [0, 1] → [0, 1], x �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3x/2, 0 ≤ x < 1/8,

x + 1/16, 1/8 ≤ x < 3/8,

x/2 + 1/4, 3/8 ≤ x < 1/2,

x, 1/2 < x ≤ 1.

PROPOSITION 9.7. The semigroup S generated by {S, T } is a free semigroup, that is, two
elements in S coincide if and only if they have the same representation as a product of
the generators. Moreover, ∂G ∼= 
−, where G is the semigroup generated by (T , 0) and
(S, 0).

Proof. The proof relies on the construction of a family of renormalization operators acting
on the set of orientation-preserving homeomorphisms f in such a way that

T n ◦�n(f ) = f ◦ T n,

as this allows to associate to each element g = SmkT nk · · · Sm1T n1 in S a uniquely
determined normal form T m1+n1+···mk+nk ◦ fg , where fg is an orientation-preserving
homeomorphism. The uniqueness of the normal form is a consequence of the choice
of U as the compositions with U and U−1 act as markers in the following way. For
an orientation-preserving homeomorphism f, it is shown below that ‖�n(f )− id‖∞ =
4−n‖f − id‖∞, and that the composition �n(f ) ◦ U±1 leaves invariant the right half of
�n(f ), whereas the left half is marked by a positive or negative bump of size bigger than
‖�n(f )− id‖∞.

Construction and properties of �n. Let f : [0, 1] → [0, 1] be a homeomorphism which
fixes 0 and 1 and define for x ∈ [k/4n, (k + 1)/4n],

�n(f )(x) := (T n|[k/4n,(k+1)/4n])
−1 ◦ f ◦ T n(x) = 4−n(f (4nx − k)+ k).

Then, as it can be easily seen, T n ◦�n(f ) = f ◦ T n and �n(f )(k/4n) = k/4n for all
k = 0, . . . , 4n. In particular, as �n(f )|[k/4n,(k+1)/4n] is a homeomorphism, �n(f ) is a
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homeomorphism. Moreover, for x ∈ [k/4n, (k + 1)/4n], we have

�n(f )(x)− x = 4−n(f (4nx − k)+ k)− x

= 4−n(f (4nx − k)− (4nx − k)) = 4−n(f ◦ T n(x)− T n(x)).

That is,�n contracts the distance to the identity by the factor 4−n. We now proceed with an
analysis of the concatenations�n(f ) ◦ U and�n(f ) ◦ U−1, where f is a homeomorphism
with ‖f − id‖∞ ≤ 1/12. First note that

U(x)− x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x/2, x ∈ [0, 1
8 ),

1/16, x ∈ [ 1
8 , 3

8 ),

−x/2 + 1/4, x ∈ [ 3
8 , 1

2 ),

0, x ∈ [ 1
2 , 1],

U−1(x)− x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x/3, x ∈ [0, 3
16 ),

−1/16, x ∈ [ 3
16 , 7

16 ),

x − 1/2, x ∈ [ 7
16 , 1

2 ),

0, x ∈ [ 1
2 , 1],

and observe that, by construction, �n(f )− id is periodic with period 4−n. However, as
[ 1

8 , 3
8 ), [3/16, 7/16) and [ 1

2 , 1] are all of length bigger than or equal to 1/4, we obtain that

max
x∈[0,1]

(�n(f )(U(x))− x) = max
x∈[1/8,3/8)

(�n(f )(U(x))− U(x)+ U(x)− x)

= 4−n max
x∈[0,1]

(f (x)− x)+ 1
16

= 1
4n · 12

+ 1
16

≤ 1
12

,

and, repeating the argument, ‖�n(f ) ◦ Uj − id‖∞ ≤ 1/12, for j = ±1.
In other words, the space H of orientation-preserving homeomorphisms with ‖f −

id‖∞ ≤ 1/12 is invariant under the operation f �→ �n(f ) ◦ Uj . Moreover, we have that

‖�n(f ) ◦ Uj − Uj‖∞ = 4−n‖�n(f )− id‖∞ = 4−n‖f − id‖∞ ≤ 1
48 . (9.4)

Coding of G. Assume that g = SmkT nk · · · Sm1T n1 for some k ∈ N and mi , ni ∈ N ∪
{0}. As U , U−1 ∈ H, it follows from an iterated application of �n(·) ◦ Uj that there exists
a homeomorphism fg ∈ H such that g = T n ◦ fg , where n = ∑k

i=1 mi + ni . Moreover,
as T n is a local homeomorphism, f = fg is uniquely determined.

Now assume that g = SmkT nk · · · Sm1T n1 ∈ S where, without loss of generality,
m1, . . . , mk−1 �= 0 and n2, . . . , nk �= 0. We now show how to determine m1 and n1 from
f in a unique way.

Case 1. If m1 = 0, then k = 1, g = T n1 and f = id.

Case 2. If m1 �= 0 and n1 �= 0, then k > 1 and for f̄ := fSmk T nk ···Sm1 , we have that f =
�n1(f̄ ). It now follows from equation (9.4) that f̄ − id is strictly positive on [1/8, 3/8] and
has zeros in [1/2, 1]. Therefore, n1 is determined by the periodicity of f − id, and f̄ (x) =
f (2n1)(x). The value of m1 is then determined by applying Case 3 to SmkT nk · · · Sm1

and f̄ .

Case 3. If m1 �= 0 and n1 = 0, then k ≥ 1 and for f̄ := fSmk T nk ···T m2 , we have that
f = �m1(f̄ ◦ U−1) ◦ U or, equivalently, f ◦ U−1 = �m1(f̄ ). Hence, to repeat the above
argument based on periodicity, we have to show that the left half of f̄ − id is somehow
marked. If k = 1, then f̄ = U−1 and, in particular, f̄ is strictly negative on [3/16, 7/16]
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and has zeros in [1/2, 1]. Hence, m1 can be determined through the period of f ◦ U−1.
However, if k > 1, then n2 > 0 and the same argument is applicable as equation (9.4)
implies that f̄ is strictly negative on [3/16, 7/16] and has zeros in [1/2, 1].

By iterating this procedure, one then recovers m2, . . . , mk and n2, . . . , nk from f.
Furthermore, as the mi and ni only depend on the period, it follows that the relation
between f and these values is one-to-one. This then implies that the map

S → {fg : g ∈ S}, (w1 . . . wn) �→ fwn◦···◦w1

is a bijection, and, as an immediate corollary, S is a free semigroup.
The associated measures of maximal entropy. Now fix a Hölder function h, an element

g ∈ S and let n ∈ N be given by g = T n ◦ fg . Then the Ruelle operators Lg and LT
associated to g and T, respectively, satisfy

Lg(h)(x) =
∑
g(y)=x

h(y) =
∑
T nz=x

h(f−1
g (z)) = LnT (h ◦ f−1

g )(x),

Lg(hLg(1))
Lg2(1)

= Lg(4nh)
42n = 1

4n
LnT (h ◦ f−1).

By Proposition 6.3, the measures of maximal entropy μg and μT of g and T, respectively,
satisfy W(μg , μT ◦ fg) � sn. Hence, μg = liml→∞ μT ◦ fgl . However, this result also
implies that for an infinite word (vi) ∈ {S, T }N, the sequence μgvl ···v1 is a Cauchy sequence
and therefore convergent. It remains to show that the mapping from (vi) to this limit is
injective. To do so, let (vi) �= (wi) be different elements in {S, T }N. Then, by applying the
construction of the ni and mi above to infinite words, it follows that μgvl ···v1 �= μgwl ···w1

for
all l sufficiently large. Furthermore, it can be deduced from the recursive construction of
fg that there exists an open set A and ε > 0 such that fvl ···v1(x)− fwl ···w1(x) > ε for all
x ∈ A and all l sufficiently large. Hence, liml μgvl ···v1 �= liml μgwl ···w1

. �
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