
Nagoya Math. J. 202 (2011), 1–13
DOI 10.1215/00277630-1260414

COARSE DYNAMICS AND FIXED-POINT THEOREM

TOMOHIRO FUKAYA

Abstract. We study semigroup actions on a coarse space and the induced

actions on the Higson corona from a dynamical point of view. Our main theorem

states that if an action of an abelian semigroup on a proper coarse space satisfies

certain conditions, the induced action has a fixed point in the Higson corona.

As a corollary, we deduce a coarse version of Brouwer’s fixed-point theorem.

§1. Introduction

A metric space X is proper if closed, bounded sets in X are compact.
Let X and Y be proper metric spaces, and let f : X → Y be a map (not
necessarily continuous). We define the following.

(a) The map f is proper if for each bounded subset B of Y , f −1(B) is a
bounded subset of X .

(b) The map f is bornologous if for every R > 0 there exists S > 0 such
that for each x, y ∈ X , d(x, y) < R implies that d(f(x), f(y)) < S.

(c) The map f is coarse if it is proper and bornologous.

Let f, g : X → Y be maps. We define f as close to g, denoted f � g, if there
exists R > 0 such that d(f(x), g(x)) < R for all x ∈ X . We define X and Y as
coarsely equivalent if there exist coarse maps f : X → Y and g : Y → X such
that g ◦ f and f ◦ g are close to the identity maps of X and Y , respectively.
A coarse space is a coarsely equivalent class of proper metric spaces. The
category of coarse spaces consists of coarse spaces and coarse maps.

Let ϕ : X → C be a bounded continuous map. For each r > 0, we define
a map Vrϕ : X → R by

Vrϕ(x) := sup
{

|ϕ(y) − ϕ(x)| : d(x, y) < r
}
.
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2 T. FUKAYA

We define ϕ as a Higson function if for each r > 0, Vrϕ vanishes at infinity.
The Higson functions on a proper metric space X form a unital C∗-algebra,
denoted by Ch(X). It follows from the Gelfand-Naimark theorem that there
exists a compactification hX of X such that C(hX) = Ch(X). The compact-
ification hX is called the Higson compactification. Its boundary hX \ X is
denoted by νX and called the Higson corona. The Higson corona is a functor
from the category of coarse spaces into the category of compact Hausdorff
spaces. Namely, a coarse map f : X → Y induces a unique continuous map
νf : νX → νY , and moreover, if coarse maps f, g : X → Y are close, then
νf = νg. It follows that the Higson coronae of two proper metric spaces
which are coarsely equivalent to each other are homeomorphic. We note
that the Higson corona of an unbounded proper metric space is never sec-
ond countable and that its cardinality is greater than or equal to 22ℵ0 = 2c.
This means that the Higson corona is a huge, extremely complicated space.
We refer to [5] for a general reference of coarse geometry and the Higson
compactification.

Let X be a proper metric space, and let G be a finitely generated semi-
group acting on X . Here G is a proper metric space with a left-invariant
word metric. A coarse action, defined below, of G on X induces a continuous
action of G on the Higson corona νX . The main subject of this article is to
study fixed-point properties of these actions.

Definition 1.1. An action of G on X is a coarse action if for each
element g of G, the map Ψg : X → X defined by x �→ g · x is a coarse map.

Definition 1.2. For a point x0 of X , the orbit map Φx0 : G → X is
defined by g �→ g · x0. We define the following.

(a) The orbit of x0 is proper if Φx0 is proper.
(b) The orbit of x0 is bornologous if Φx0 is bornologous.
(c) The orbit of x0 is coarse if Φx0 is coarse.

The action of G on itself is a typical example of the coarse action (see
Lemma 2.1).

Theorem 1.3. Assume that G = N
k or Z

k and that G acts on X as a
coarse action. Suppose that there exists a point x0 of X whose orbit is coarse.
Then the induced action of G on the Higson corona νX has a fixed point.
Namely, there exists a point x of νX such that g · x = x for any element
g ∈ G.
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COARSE DYNAMICS AND FIXED-POINT THEOREM 3

Moreover, let X be a coarse compactification of X (see Definition 2.2).
We suppose that the action of G on X is continuous and extends to a
continuous action on X. Then the action on the boundary ∂X = X \ X has
a fixed point. Namely, there exists a point z of ∂X such that g · z = z for
any element g ∈ G.

Example 1.4. Let G be a finitely generated group with an element h of
infinite order. Then a group action of Z on G by (n, g) �→ hng is a coarse
action, and the orbit of e ∈ G is coarse. Thus, the action of Z on the Hig-
son corona νG has a fixed point. Moreover, if G is a hyperbolic group,
this action extends to the Gromov boundary ∂gG (see Proposition 2.4 and
Example 2.5). Then this action of Z on ∂gG has a fixed point. This is a
well-known fact on the boundary of hyperbolic groups (see [2, Chapter 8,
Proposition 10 and Theorem 30]).

Example 1.5. The wreath product Z � Z contains Z
n as a subgroup for

any positive integer n (see [5, p. 135]). Thus, the action of Z
n on Z � Z is

coarse, and the induced action of Z
n on ν(Z � Z) has a fixed point.

Remark 1.6. Let F2 be a free group of rank 2. By Lemma 2.1, the action
of F2 on F2 is a coarse action and has a coarse orbit. However, the induced
action of F2 on the Higson corona νF2 does not have any fixed point (see
Proposition 2.8).

Let f : X → X be a coarse map. We call a point x of X a coarse fixed
point of f if the orbit of x, {fn(x) : n ∈ N}, is bounded.

Corollary 1.7 (coarse version of Brouwer’s fixed-point theorem). Let
X be a proper metric space. Suppose that f : X → X is an isometry and that
X is a coarse compactification of X such that f extends to a continuous map
f̄ : X̄ → X̄. If f has no coarse fixed point in X, then f̄ has a fixed point
in ∂X.

In this paper, isometries does not mean surjective isometries. This corol-
lary says that an isometry f always has a coarse fixed point in X or a fixed
point in ∂X .

Example 1.8. The Gromov boundary of the hyperbolic plane H
2 is S1.

Let f : H
2 → H

2 be a continuous map such that f extends to the Gromov
boundary. Then Brouwer’s fixed-point theorem says that f : H

2 ∪ S1 → H
2 ∪

S1 has a fixed point. Let Γ be a discrete group of isometries acting freely
on H

2 with quotient a compact surface. Here Γ is coarsely equivalent to H
2,
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4 T. FUKAYA

and its Gromov boundary is also S1. Let f : Γ → Γ be an isometry. Then
Corollary 1.7 says that f : Γ ∪ S1 → Γ ∪ S1 has a coarse fixed point in Γ, or
a fixed point in S1.

Example 1.9. Let M be a compact path metric space. The cone CM

on M is the quotient space M × [0, ∞)/ ∼, where (x, t) ∼ (x′, t′) if and only
if either x = x′ and t = t′ or t = t′ = 0. We define a continuous function
τ : [0, ∞) → [0,1) by

τ(t) =
t

1 + t
.

Set CM = M × [0,1]/ ∼. The embedding CM → CM : (x, t) �→ (x, τ(t))
gives us a compactification of CM . We can define an appropriate metric on
CM such that CM is a proper metric space. Then CM becomes a coarse
compactification (see Appendix). Let f : CM → CM be an isometry, and
we suppose that f extends to a continuous map f̄ : CM → CM . Then f

has a coarse fixed point in CM , or f̄ has a fixed point on the bound-
ary ∂(CM) ∼= M . If M is Euclidean neighborhood retract (ENR), then
the Lefschetz fixed-point theorem implies that f̄ has a fixed point since
CM is contractible. However, let g be an isometry on a punctured cone
CM × = M × [1/2, ∞). We suppose that g extends to a continuous map ḡ

on a coarse compactification CM × = M × [1/2,1]. Then g also has a coarse
fixed point in CM ×, or ḡ has a fixed point in the boundary ∂(CM) ∼= M .
Since CM × is homotopic to M , the Lefschetz fixed-point theorem does not
imply this.

Example 1.10. Set M = Sn−1. Then CM is homeomorphic to the n-
dimensional Euclidean space R

n, and CM is homeomorphic to unit ball
Bn = {x ∈ R

n : |x| ≤ 1}. Any isometry f : R
n → R

n which can be extended
to continuous map f̄ : Bn → Bn has a coarse fixed point in R

n or a fixed
point in ∂(Rn) = Sn−1.

Remark 1.11. In Corollary 1.7, the assumption that the map f is an
isometry is essential. See Section 4.

§2. Coarse action

Lemma 2.1. Let G be a finitely generated group or G = N
k with left-

invariant word metric for some generating set. The action of G on G given
by the left-translation (g,h) �→ gh is a coarse action. Furthermore, any orbit
of h ∈ G has a coarse orbit.
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COARSE DYNAMICS AND FIXED-POINT THEOREM 5

Proof. For given g ∈ G, the map Ψg : G → G given by h �→ gh is an isom-
etry, so it is a coarse map. Let h ∈ G be given; we consider the orbit map
Φh : G → G given by g �→ gh. We denote the word length by | · |. For any
g, g′ ∈ G, we have

d
(
Φh(g),Φh(g′)

)
= d(gh, g′h) = |h−1g−1g′h| ≤ |g−1g′ | + 2|h|.

This shows that Φh is a large-scale Lipschitz map and hence a bornologous
map. Let D be a bounded subset of G, which is a finite set. Since Φg

is injective, �Φ−1
g (D) ≤ �D < ∞. This shows that Φh is a proper map. It

follows that Φh is a coarse map and that the orbit of h is coarse.

The coarse action of G on X induces the continuous action on the Higson
corona of X . Since the Higson corona is an extremely complicated space, it
is useful to find more manageable compactifications. The following show the
relation between the Higson corona and such compactifications. We say that
E ⊂ X × X is a controlled set if there exists R > 0 such that any (x, y) ∈ E

satisfies d(x, y) < R (see [5, Chapter 2]).

Definition 2.2. Let X be a proper metric space, and let X be a com-
pactification of X . We call X a coarse compactification if the following
condition is satisfied: for any controlled set E ⊂ X × X of X , its closure E

in X × X meets the boundary ∂(X × X) = X × X \ (X × X) only at the
diagonal; that is,

E ∩ ∂(X × X) ⊂ Δ∂X =
{
(ω,ω) : ω ∈ ∂X

}
.

Proposition 2.3. The Higson compactification hX is a coarse compact-
ification. Moreover, it is a universal coarse compactification, in the sense
that, for any coarse compactification X of X, the identity map id : X → X

extends uniquely to a continuous surjective map ι : hX → X.

Proposition 2.4. Let f : X → X be a continuous coarse map, and let X

be a coarse compactification. Suppose that f extends to a continuous map
f̄ : X → X. Then f̄(∂X) ⊂ ∂X and the following diagram commutes:

hX

ι

hf=f ∪νf

hX

ι

X
f̄

X
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6 T. FUKAYA

Proof. By the properness of f , we have f̄(∂X) ⊂ ∂X . Since f is a con-
tinuous coarse map, f induces f ∗ : Ch(X) → Ch(X). Because f extends to
a continuous map on X , f ∗ maps C(X) to itself. It is clear that f ∗ and the
inclusion ι∗ : C(X) ↪→ Ch(X) commute.

Example 2.5. Let X be a Gromov hyperbolic space. Then the Gromov
compactification of X is a coarse compactification (see [5, Lemma 6.23]).
If G is a hyperbolic group and γ ∈ G has an infinite order, then the left-
translation γ· : G → G extends to a continuous map on the Gromov bound-
ary ∂gG (see [2, Chapters 7, 8]).

Lemma 2.6. Let G be N
k or Z

k. The coarse action of G on G by (g,n) �→
g + n extends to the trivial action on the Higson corona of G. Namely, for
any g ∈ G, the induced map νΨg : νG → νG is equal to the identity map.

Proof. Let g ∈ G be given. For any n ∈ G, d(n,Ψg(n)) = d(n, g +n) = |g|.
Then Ψg is close to the identity idG : G → G. It follows that νΨg = idνG.

Proof of Theorem 1.3. Let x0 be a point in X whose orbit is coarse. The
G-equivariant map Φx0 : G → X given by g �→ g · x0 is a coarse map. Thus,
Φx0 extends to the continuous map νΦx0 : νG → νX . For each g ∈ G, the
coarse map Ψg : X → X extends to the continuous map νΨg : νX → νX .
Then we have the following commutative diagram:

νG

νΦx0

νΨg=id

νG

νΦx0

νX
νΨg

νX

By Lemma 2.6, the upper right arrow is the identity map. We choose any
x′ ∈ νG, and we put x = νΦx0(x

′). Then by the above commutative diagram,
we have νΨg(x) = x.

Moreover, let X be a coarse compactification of X . We suppose that the
action of G on X is continuous and extends to a continuous action on X .
Then we have the following commutative diagram:

νX

ι

νΨg

νX

ι

∂X
Ψg

∂X
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COARSE DYNAMICS AND FIXED-POINT THEOREM 7

Set z = ι(x). We have Ψg(z) = z.

Remark 2.7. Suppose that X is a proper metric space and that Φx0 is
a continuous map. By the results of Dranishnikov, Keesling, and Uspenskij
[1], if Φx0 is a coarse embedding and Φx0(G) is a closed subset, we can show
that the map νΦx0 in the proof of Theorem 1.3 is an embedding. Indeed, [1,
Theorem 1.4] states that the closure of Φx0(G) in hX is homeomorphic to
the Higson corona ν(Φx0(G)) of Φx0(G), which is a metric space with the
induced metric from X . Since Φx0 is a coarse embedding, νG is homeomor-
phic to ν(Φx0(G)). Thus, νΦx0 : νG → νX is an embedding. It follows that
there are 22ℵ0 fixed points on the Higson corona νX .

We cannot generalize Theorem 1.3 to a free group action, as is shown by
the following.

Proposition 2.8. The action of F2 on νF2 induced by the left-translation
F2 × F2 → F2 has no fixed point. Namely, there exists no point x of νF2 such
that g · x = x for any element g of F2.

Proof. Gromov compactification is a coarse compactification, and iso-
metric action on X induces the continuous action on the boundary. If the
induced action of F2 on νF2 has a fixed point, the induced action of F2 on
the Gromov boundary ∂gF2 also has a fixed point. However, one can easily
see that for any point z ∈ ∂gF2, there exists an element g of F2 such that
g · z �= z.

§3. Coarse fixed points

Definition 3.1. Let G be a finitely generated semigroup acting on X . We
call a point x of X a coarse fixed point if its orbit G · x = {g · x : g ∈ G} ⊂ X

is a bounded set.

If G is an infinite group and x is a coarse fixed point, then the orbit of x

is not proper. In the following two propositions, the converse holds.

Proposition 3.2. Let X be a metric space such that any bounded subset
D ⊂ X is a finite set. Suppose that N acts on X. Then a point of X whose
orbit is not proper is a coarse fixed point.

Proof. Let x0 be a point in X whose orbit is not proper. Then there exists
a bounded set D ⊂ X such that {n ∈ N : n · x0 ∈ D} is an infinite set. Because
D is a finite set, there exist positive integers m > n such that m · x0 = n · x0.
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8 T. FUKAYA

For any integer l > m, there exist integers k > 0 and r = 0, . . . ,m − n − 1
satisfying l − n = k(m − n) + r. Thus, we have l · x0 = (n + r) · x0. It follows
that N · x0 ⊂ {x0,1 · x0,2 · x0, . . . , (m − 1) · x0}.

Proposition 3.3. Let X be a proper metric space. Suppose that N acts
on X by isometries. Then each point of X whose orbit is not proper is a
coarse fixed point.

Proof. Suppose that the orbit of x0 is not proper. Then there exists a
bounded set D ⊂ X such that �{n ∈ N : n · x0 ∈ D} = ∞. We can assume
that x0 lies in D. We notice that for any point x of the orbit N · x0, there
exist n(x) ∈ N such that n(x) · x lies in D. We define a bounded subset
K ⊂ X by

K = B(D,1) ∩ N · x0.

Here B(D,1) = {x ∈ X : ∃y ∈ D,d(x, y) < 1} is the 1-neighborhood of D.
Since K is a compact set, there exist x1, . . . , xN ∈ K such that

K ⊂
N⋃

i=1

B(xi,1).

For 0 ≤ i ≤ N , we denote Ti = n(xi). The point Ti · xi lies in D. We define
a positive number L by

L = max
0≤i≤N

max
0≤a≤Ti

d(x0, a · xi).

We define inductively a sequence {ik }∞
k=0 consisting of integers in {1, . . . ,N }

and an increasing sequence {Sj }∞
j=0 as follows. Let S0 = T0. Since S0 ·

x0 = T0 · x0 ∈ K, there exists an integer i0 ∈ {1, . . . ,N } such that S0 · x0 ∈
B(xi0 ,1). Assume that we have defined i0, . . . , in and S0, . . . , Sn such that,
for 0 ≤ j ≤ n and 0 ≤ a < Tij , they satisfy

Sj =
j−1∑
k=0

Tik ,

Sj · x0 ∈ B(xij ,1),

(a + Sj) · x0 ∈ B(x0,L + 1).

Set Sn+1 = Tin + Sn. Since Tin · xin ∈ D and

d(Sn+1 · x0, Tin · xin) = d(Sn · x0, xin) < 1,
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COARSE DYNAMICS AND FIXED-POINT THEOREM 9

we have Sn+1 · x0 ∈ B(D,1), and thus Sn+1 · x0 lies in K. Hence, there exists
an integer in+1 such that Sn+1 · x0 lies in B(xin+1 ,1). For 0 ≤ a < Tin+1 , we
have d(x0, a · xin+1) ≤ L and

d
(
(a + Sn+1) · x0, a · xin+1

)
= d(Sn+1 · x0, xin+1) < 1.

It follows that (a + Sn+1) · x0 lies in B(x0,L + 1). This shows that for any
integer l > 0, l · x0 lies in B(x0,L+1), and thus x0 is a coarse fixed point.

The hypothesis that X is a proper space is necessary (see [3, Exer-
cise 5.2.26]).

Remark 3.4. Under the assumption of Proposition 3.3, if x0 is a coarse
fixed point, then any point x of X is a coarse fixed point.

If the orbit is not coarse, there are two possibilities; namely, the orbit is
either nonproper or nonbornologous. However, if the action is an isometry,
any orbit is bornologous.

Lemma 3.5. Let X be a proper metric space with an isometric action
of N. Then the action is a coarse action, and any orbit is bornologous.

Proof. An isometric action is a coarse action. For any given point x of
X , put L = d(1 · x,x). Then we have d((i + 1) · x, i · x) = L for all integers
i > 0. Hence, for any integers m ≥ n > 0, we have

d
(
Φx(m),Φx(n)

)
= d(m · x,n · x) ≤

m−1∑
i=n

d
(
(i + 1) · x, i · x

)
= L|m − n|.

Thus, Φx is a bornologous map.

Proof of Corollary 1.7. An isometric action of N on X is defined by
(n,x) �→ fn(x). If f has no coarse fixed point, then by Proposition 3.3 and
Lemma 3.5, any orbit of this action is coarse. Thus, Theorem 1.3 implies
that f̄ has a fixed point.

§4. Another example of coarse action

There exists a coarse map which has no coarse fixed points on the coarse
space or fixed points on its boundary.
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10 T. FUKAYA

Adding machine
Let T2 = (V2,E2) be a binary tree with the set of vertices V2 and the set

of edges E2. We identify V2 with the following sets:

V2
∼= {∗} �

⊔
n≥1

{0,1}n.

Here ∗ denotes the base point:

∗

0

00

000 100

10

010 110

1

01

001 101

11

011 111

∗ and 0 (resp., 1) can be joined by the edge e∗,0 (resp., e∗,1). Let x =
(in−1, . . . , i0) and y = (jn, . . . , j0) be two vertices. Both x and y can be
joined by the edge ex,y if and only if i0 = j0, . . . , in−1 = jn−1. T2 has the
usual metric and is a geodesic space. V2 has the induced metric from T2.

We construct a coarse action of N on V2. Let x be a vertex. If x =
(in, . . . , i0) �= (1, . . . ,1), we define 1 · x = (jn−1, . . . , j0) with

n−1∑
k=0

jk2k =
n−1∑
k=0

ik2k + 1.

If x = (
n︷ ︸︸ ︷

1, . . . ,1), we define 1 · x = (
n+1︷ ︸︸ ︷

1,0, . . . ,0). Finally, we define 1 · ∗ = (0).
The Gromov product of x = (in−1, . . . , i0) and y = (jm−1, . . . , j0) with a

base point ∗ is defined to be

(x | y) =
1
2
{
d(x, ∗) + d(y, ∗) − d(x, y)

}
.

We notice that (x | y) = r if and only if i0 = j0, . . . , ir−1 = jr−1 and ir �= jr.
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COARSE DYNAMICS AND FIXED-POINT THEOREM 11

Lemma 4.1. 1· : V2 → V2 is a coarse map.

Proof. Let x = (in−1, . . . , i0) and y = (jm−1, . . . , j0) be two vertices. Set
(x | y) = r. Then i0 = j0, . . . , ir−1 = jr−1. It is easy to see that (1 · x | 1 · y) ≥ r.
Hence, we have

d(1 · x,1 · y) = d(1 · x, ∗) + d(1 · y, ∗) − 2(1 · x | 1 · y)

≤ (n + 1) + (m + 1) − 2r

= d(x, y) + 2.

Thus, x �→ 1 · x is a large-scale Lipschitz map. Since the map 1· is injective
and every bounded set of V2 is a finite set, the map 1· is proper.

This action can be extended to a continuous action on the Gromov bound-
ary ∂gV2 of V2. Here we can identify ∂gV2 as the Cantor set {0,1}N with a
metric d defined to be

d(x, y) = 2−(x|y).

Here x = (ik)∞
k=0, and y = (jk)∞

k=0.

Proposition 4.2. The action of N on ∂gV2 is minimal. Namely, for any
point x of ∂gV2, its orbit N · x is dense in ∂gV2.

Proof. Let x ∈ ∂gV2 be given. For any point y of ∂gV2 and ε > 0, we
will show that there exists an integer n such that d(n · x, y) < ε. Set N >

− log ε/ log 2, and set x = (ik)∞
k=0. We choose a = 2N+1 −

∑N
k=0 ik2k; then

we have

a · x = (. . . ,
N+1︷ ︸︸ ︷

0, . . . ,0).

Set y = (jk)∞
k=0, and set b =

∑N
k=0 jk2k. Then we have

(a + b) · x = (. . . , jN , . . . , j0).

It follows that d((a + b) · x, y) < 2−N < ε.

In particular, the action of N on ∂gV2 has no fixed point. Moreover,
the action has no coarse fixed point in V2. Thus, by Proposition 3.2 and
Theorem 1.3, the orbit of x ∈ V2 can never be bornologous.
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Appendix

Metric of the cone and its compactification
Let M be a compact path metric space. The cone CM on M is the

quotient space M × [0, ∞)/ ∼, where (x, t) ∼ (x′, t′) if and only if either
x = x′ and t = t′ or t = t′ = 0. According to Roe [4, Section 3.6], we construct
a metric on CM . Let λ : [0, ∞) → [0, ∞) be a continuous function with
λ(t) = 0 if and only if t = 0. If γ is a path in CM , we define its λ-length,
lλ(γ), to be

sup

{
n−1∑
j=0

(
|tj − tj+1| + max

{
λ(tj), λ(tj+1)

}
d(xj , xj+1)

)}
,

where the supremum is taken over all finite sequences (xj , tj)n
j=0 of points

on the path γ (with (x0, t0) and (xn, tn) being two endpoints). We define
a metric dλ on CM by dλ((x, t), (x′, t′)) = inf lλ(γ), where the infimum is
taken over all paths joining (x, t) and (x′, t′). The metric dλ is compatible
with the topology of CM , and it becomes a proper metric space (see [4,
Proposition 3.47]).

Proposition A.1. Suppose that λ is an increasing, unbounded function;
then the compactification CM = M × [0,1]/ ∼ is a coarse compactification.

Proof. Let E ⊂ CM × CM be a controlled set, and let rE be a positive
number such that

sup
{
dλ(x,y) : (x,y) ∈ E

}
< rE .

Let {(xn,yn)} ⊂ E be a sequence such that xn and yn tend to x and y

in ∂(CM) ∼= M , respectively. We denote xn = (xn, tn) and yn = (yn, sn). It
is enough to show that x = y (see [5, Theorem 2.27]). Suppose that x �= y.
Since xn and yn converge to x and y, respectively, for any ε > 0 there exists
N1 > 0 such that, for all n > N1, xn and yn satisfy d(xn, yn) > d(x, y) − ε.
Because λ is an increasing, unbounded function, there exists N2 > 0 such
that, for all t > N2, we have

λ(t) >
rE

d(x, y) − ε
.

Since xn tends to infinity, there exists N3 > 0 such that, for all n > N3, the
second component tn of xn satisfies tn > N2. Thus, if we choose an integer n

satisfying n > max{N1,N3}, then we have dλ(xn,yn) > rE ; this contradicts
the definition of rE .

https://doi.org/10.1215/00277630-1260414 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1260414


COARSE DYNAMICS AND FIXED-POINT THEOREM 13

Acknowledgments. We thank the participants in the coarse geometry
seminar at Kyoto University — S. Honda, T. Kato, T. Kondo, and
M. Tsukamoto — for several discussions and useful comments.

References

[1] A. N. Dranishnikov, J. Keesling, and V. V. Uspenskij, On the Higson corona of
uniformly contractible spaces, Topology 37 (1998), 791–803.
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