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The self-sustained interactions between a flexible film and periodic vortices epitomize
the spirit of fish swimming and flag flapping in nature, involving intricate patterns of
flow–structure coupling. Here, we comprehensively investigate the multiple coupling
states of a film in the cylinder wake mainly with experiments, complemented by theoretical
solutions and nonlinear dynamical analyses. Four regimes of film motion states are
identified in the parameter space spanned by the reduced velocity and the length ratio.
These regimes are (i) keeping stationary, (ii) deflection flutter, (iii) hybrid flutter and
(iv) periodic large-amplitude flapping, each governed by a distinct coupling mechanism,
involving regular and irregular Kármán vortices, local instability of the elongated shear
layers and 2P mode vortex shedding. The film futtering in regimes (ii) and (iii) is
substantiated to be chaotic and bears a resemblance to the ‘entraining state’ of fish behind
an obstacle in the river. The periodic flapping in regime (iv) manifests itself in an amalgam
of standing and travelling waves, and has intrinsic relations to the ‘Kármán gaiting’ of
fish in periodic vortices. With the spatiotemporal reconstruction for the periodic flapping,
we procure the energy distributions on the film, revealing the energy transfer processes
between the film and the large-scale vortices. The findings unequivocally indicate that
the flow–structure interaction during the energy-release stage of the film is more intense
than that during the energy-extraction stage. Given the similarities, the mathematical and
physical methods presented in this work are also applicable to the research on biological
undulatory locomotion.
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1. Introduction

The motion of a flexible film/filament in the wake of a bluff body is the quintessence
of flow–structure interactions. Copious phenomena of biological undulatory locomotion,
such as the rainbow trout (Oncorhynchus mykiss) adopting Kármán gait in the vortex street
behind an obstacle (Liao et al. 2003a,b), the trailing fish swimming in the vortex wake
generated by the preceding two side-by-side fish in a diamond formation (Weihs 1973;
Liao 2007) and the larval zebrafish (Danio rerio) or tadpole whipping the tail to propel
in streams (Van Buskirk & McCollum 2000; Wang et al. 2021), can be abstracted as the
interactions between the flexible film and the periodic vortices.

Both laboratory experiments and field observations have revealed that fish exhibit a
preference for swimming in the wake flow of an obstacle (e.g. the rock in the natural
river or the cylinder vertically placed in the uniform flow in the experiment) as they
moved against the current (Liao 2007). It is believed that in the wake flow of a bluff
body where the periodic vortices prevail, fish can reduce their energy expenditure either
by taking advantage of the low-pressure feature in the circulation region or by harnessing
the energy from the oncoming periodic vortices (Beal et al. 2006; Liao 2007; Taguchi &
Liao 2011; Ortega-Jiménez & Sanford 2021). Two representative swimming states of a fish
in the wake of a cylinder, contingent on the streamwise distance between the fish and the
cylinder, are documented in the literature. When the fish enters the recirculation region
with its head close but not against the cylinder, the undulation of the fish’s body decreases
drastically, and the fish performs irregular yawing flutter with a very small amplitude,
which is designated as the ‘entraining state’ (Webb 1998; Liao 2006; Przybilla et al. 2010;
Ortega-Jiménez & Sanford 2021). This state is favourable for energy saving due to the
small body flutter. When the fish swims in the periodic vortex street downstream of the
cylinder, it synchronizes the body undulation with the vortex street in frequency and phase,
and performs large lateral motion and bending. In this situation, the fish slaloms between
the oncoming vortices without traversing or breaking them. This locomotion is termed the
‘Kármán gaiting’ state by Liao et al. (2003a,b). Through this particular gait, fish exploit
their interactions with the oncoming large-scale vortices to generate passive lateral body
bending, thereby extracting energy from the vortices and reducing their metabolic costs
(Beal et al. 2006; Liao 2007; Taguchi & Liao 2011).

The existing quantitative kinematic model for the Kármán gaiting describes the motion
of the fish body as a linear superposition of the periodic translation, rotation and bending
waves (Akanyeti & Liao 2013b). This model is merely capable of representing the
primary morphological characteristics of the Kármán gaiting but powerless for more
in-depth physical analyses, for example, solving the energy distribution, since the average
deviation of the modelled motion from the fish’s action attains 27.73 % (Akanyeti & Liao
2013b), while the maximum deviation is around 60 % (this value is assessed from the
figure in that paper). Regarding the entraining state, the previous studies based on direct
observations deemed it as an indiscernible pattern (Webb 1998; Liao 2007; Przybilla
et al. 2010), lacking quantitative description and analysis. Accordingly, it is imperative
to develop quantitative methods to characterize the Kármán gaiting and the entraining
state accurately. In both the Kármán gaiting and the entraining state, a remarkable fact
is that the fish activates less muscle and behaves like a passive hydrofoil in the cylinder
wake (Liao et al. 2003a; Müller 2003; Taguchi & Liao 2011; Tong, Xia & Chen 2021).
Consequently, the simplified model of the flow–structure interaction, i.e. a flexible film
flaps or flutters in the wake of a circular cylinder, holds promise for providing inspirations
for the physics underlying these systems. The motion of the film in the wake is entirely
passive. This feature allows us to decipher how the fish passively harnesses energy from
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the vortex street or takes advantage of the unsteady flow in the wake of a bluff body, thus
offering insights that may inspire energy-efficient motion strategies (Ristroph & Zhang
2008; Alben 2012). More importantly, given the dynamic similarities among the different
undulatory motions, the methods developed from the analyses of the film motion would
find application in the broader field of piscine locomotion research.

In the abiotic realm of nature, as we mention the interaction between the flexible film and
fluid flow, one may immediately associate it with a flag fluttering or flapping in the wind.
The systematic research on flag dynamics dates from the mid-1960s, in which Taneda
(1968) completed a series of experiments in a vertical wind tunnel. He reported that the
flag showed three typical motion states successively with the gradual increase of the free
stream velocity, which were the flutter with a small amplitude, the regular periodic flapping
and the violent irregular flapping, respectively. Taneda’s results have led the orientation
of the experimental and numerical researches over the past decades, in which the variety
of motion states mentioned are still worthy of detailed investigations by later researchers
(Shelley & Zhang 2011). Another piece of impressive research is the simplified facsimile
of the flag’s two-dimensional motion via a silk thread in a gravity-driven soap-film flow by
Zhang et al. (2000). They observed two different dynamical states: the stretched-straight
and stable periodic flapping state. A special phenomenon was that the two states could
be switched alternately with the action of external force. The periodic flapping of the
flag has been verified to be well modelled as a travelling wave with a linearly increasing
spatial envelope in streamwise orientation (Zhang et al. 2000; Alben & Shelley 2008;
Ristroph & Zhang 2008). The motion of the trailing edge of the flag induces shear flow
in the wake flow field, resulting in a series of small-scale Kelvin–Helmholtz (K–H) vortex
structures or alternately shed Kármán vortices, depending on the free stream velocity
(Zhang et al. 2000; Jia et al. 2007; Alben & Shelley 2008; Portaro et al. 2011). The states of
a flexible film/flag in the flow field are dominated both by the flow parameters (free stream
velocity U∞, fluid density ρf ) and by the material parameters of the film itself (material
density ρs, streamwise length L, spanwise width b, thickness h and bending stiffness B);
these parameters yield two non-dimensional parameters that govern the coupling system
between the flexible film and the flow field, namely the structure-to-fluid mass ratio S and
the effective bending stiffness KB as the following, respectively (Connell & Yue 2007;
Shelley & Zhang 2011; Sader et al. 2016),

S = ρsh
ρf L

and KB = B
ρf U2∞bL3 . (1.1a,b)

In the two-dimensional parameter space spanned by S and KB, each dynamical state of
the flexible film corresponds to a specific point in the S–KB plane. We can implement the
transition of the film from a stationary state to a flapping state by adjusting S and KB and
vice versa; then, we can identify a stability boundary (or instability boundary) by tracking
all the parameter points (S,KB) at which the transition occurs (Argentina & Mahadevan
2005; Connell & Yue 2007; Jia et al. 2007; Alben & Shelley 2008; Pfister & Marquet
2020). In addition, this stability/instability transition displays evident hysteresis (Zhang
et al. 2000; Eloy et al. 2008; Eloy, Kofman & Schouveiler 2012). The film also transitions
to intense, irregular, aperiodic flapping as the parameters S and KB are manipulated
(Connell & Yue 2007; Alben & Shelley 2008; Michelin & Doaré 2013; Shukla, Govardhan
& Arakeri 2013), which means there may be a boundary that represents the transition from
periodic state to aperiodic state but that remains to be revealed further. The attention paid
to the aperiodic flapping of a film is currently insufficient, and the related studies are still in
their infancy, leaving ample room for further exploration, crucially, developing quantitative
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methods to determine and portray the aperiodic flapping. It constitutes one of the interests
of our present study.

In the previous studies on flag flapping, the coupling system was routinely simplified as
the interaction between a flexible film and uniform flow, where the influence of the flagpole
was neglected (Taneda 1968; Zhang et al. 2000; Huang & Sung 2010; Hœpffner & Naka
2011; Shelley & Zhang 2011). The top diameter of a common flagpole is approximately
80 mm, according to which the Reynolds number attains Re ∼ O(104) even in a breeze
(with a speed of approximately 5 m s−1). Hence, we must be conscious that large-scale
vortices do shed periodically from the flagpole as the wind blows it (Williamson 1996);
furthermore, the spatial scale of the periodic vortices exceeds the flagpole diameter and
gradually grows whilst they convect downstream (Zdravkovich 1996; Wang et al. 2020;
Duan & Wang 2021). Accordingly, a more cogent physical model for the coupling system
of a flag flapping is posited on the interaction of a flexible film with the periodic vortices
from a cylinder, which is more drastic and complex than the interaction with a uniform
flow. This, in turn, implies the existence of complex and intensive energy exchange
between the film and the flow field.

Actually, as an archetype of the flow–structure interaction, the motion of a flexible
film in the cylinder wake has captivated many scholars. A series of investigations,
encompassing experiments, numerical simulations and theoretical analyses, have been
conducted to dig out the characteristics and mechanisms underlying this flow–structure
interaction model. It has been revealed that an appropriately sized flexible film contributes
to the reduction of drag (Lee & You 2013; Sharma & Dutta 2021; Mao, Liu & Sung 2022),
noise (Duan & Wang 2021) and vibration (Sahu, Furquan & Mittal 2019; Cui, Feng &
Hu 2022) associated with flow over a circular cylinder or similar bluff bodies. However, a
substantial number of fundamental issues related to this model are seemingly long shunned
and thus demand urgent solution. The majority of investigations are predominantly
performed by two-dimensional numerical simulations at pretty low Reynolds numbers
(even at Reynolds numbers involving laminar vortex shedding), such as Re = 100 in
Lee & You (2013), Re = 150 in Wu et al. (2014), Re = 100 and 200 in Kundu et al.
(2017), Re = 150 in Sahu et al. (2019), Re = 80 in Pfister & Marquet (2020), Re = 150
in Furquan & Mittal (2021) and Re = 100 in Mao et al. (2022), to name but a few,
which are significantly smaller than the Reynolds number encountered by real-world flag
flapping or fish swimming. Several noteworthy experiments with Re ∼ O(103)− O(105),
including studies by Shukla et al. (2013), Sharma & Dutta (2020, 2021), Deng et al.
(2021) and Cui et al. (2022), present intriguing phenomena, but which are divergent from
the results of numerical simulations. We venture to point out that most of the related
analyses in these experimental studies are only confined to rudimentary descriptions of
experimental phenomena lacking profound insights into the mechanism. The scarcity of
high-quality experimental data and the conspicuous discrepancies between experimental
observations and numerical simulations persist as prominent issues. Furthermore, this
model possesses prospects for the application of energy harvesting. When the film is made
from thin flexible piezoelectric material, exploiting its passive flapping in the cylinder
wake, converting the elastic strain energy of film deformation to electricity has been
achieved by previous researchers (Taylor et al. 2001; Akaydin, Elvin & Andreopoulos
2010; Yu & Liu 2015). The predominant focus of these valuable experiments lies within
the energy output characteristics, such as voltage, frequency and efficiency, whereas the
details of how energy exchanges between the film and the flow field remain notably
absent from the explorations. To gain insight into the details of the energy exchange, we
must determine the energy density distributed on the film at every moment during the
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flapping while concurrently obtaining the corresponding evolution of flow structures. The
former involves the high-order derivatives of the experimental data, being an ill-posed
problem (Qian, Fu & Feng 2006a; Epps, Truscott & Techet 2010; Nayak 2020), while
the latter presents challenges in resolving the details of flow structure evolution at high
Reynolds numbers (Green, Rowley & Haller 2007; He et al. 2016). Thus, the adoption of
sophisticated methods becomes essential to perform the comprehensive analysis of both
solid and fluid fields.

In this work, we delve into the intricate interactions between the flexible film and the
cylinder wake, and seek to elucidate somewhat the coupling mechanisms, motivated by
their foregoing significances in both biological and abiotic realms, as well as the potential
practical applications. A circular cylinder with a thin flexible film attached to its rear in
streamwise orientation was fabricated as the experiment model, with which wind tunnel
experiments were performed to investigate the variety of interactions between the film and
the periodic vortices (figure 1). We find that as the streamwise length of the film changes
incrementally, the film first loses its stability with a small-amplitude chaotic flutter, then
exhibits a dramatic transition to large-amplitude periodic flapping. The small-amplitude
flutter of the film strikingly resembles the entraining state of the fish that flutters irregularly
behind an obstacle, which was mentioned in the literature as an indiscernible pattern
(Webb 1998; Liao 2007). With regard to the large-amplitude flapping, its undulation
characteristics, particularly the spatial phase, have an inherent similarity to the Kármán
gaiting of a trout (Akanyeti & Liao 2013b). These similarities provide a basis for us to
generalize the mathematical and physical methods developed herein to the undulatory
locomotion of biological entities (Liao et al. 2003a; Ortega-Jimenez et al. 2013; Lucas
et al. 2014; Pochitaloff et al. 2022). It is hoped that the results and methods from the
present work could help in yielding insights into the flow–structure interaction in film
motion and spark inspiration for our explorations of undulatory locomotion observed in
living entities.

The remaining part of this paper is organized as follows. The details of the experiment
protocol, including model design, material parameters, experimental techniques as well as
operation process, are described in § 2. The results of the present study are shown in § 3
mainly from four aspects: quantification of motion states of the film, coupling mechanisms
underlying the different motion states, spatiotemporal characteristics of the flapping and
energy distributions. Besides, a discussion of the results is also incorporated in this section
with the expectation of offering a prospect for future research. Finally, the conclusions are
drawn in § 4. Furthermore, we place the expatiations for the mathematical and physical
methods utilized in this study in Appendices A–F.

2. Experimental protocol

We performed the experiments in the open-circuit low-speed wind tunnel D6 with a closed
test section of 5 m in length at Beijing University of Aeronautics and Astronautics. The
experimental model consisting of the cylinder and the flexible film was vertically placed
in the wind tunnel with a distance of approximately 1.9 m downstream from the nozzle,
at which the rectangular cross-section of the test section was 430 mm × 500 mm (width
× height) and the free stream turbulent intensity was less than 0.3 %. A sketch of the
experimental set-up is shown in figure 1(a), where the origin of the Cartesian coordinate
system is defined at the centre of the midspan cross-section of the circular cylinder
model; besides, the x, y and z axes align with the streamwise, vertical and spanwise
directions, respectively. The cylinder diameter of D = 20 mm, the free stream velocity
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Figure 1. Sketches of the experiment protocol. (a) Experiment set-up and definition for the Cartesian
coordinate system. The origin is set at the centre of the midspan cross-section of the cylinder model, while
the x, y and z axes align with the streamwise, vertical and spanwise directions, respectively. The film with
a spanwise height of b = 240 mm is clamped behind the circular cylinder with a diameter of D = 20 mm,
which covers the middle spanwise portion of the cylinder across −6 < z/D < 6. (bi) Cross-section of the
experimental model. Here, the Lagrangian curvilinear coordinate s is defined along the film length with the
points of s = 0 and s = L corresponding to the fixed leading edge and the free trailing edge, respectively. (bii)
Magnified view to show details on the connection between the film and the circular cylinder. (c) Film with
fabricated leading edge, which is attached to the cylinder by inserting the clamped leading edge into the slot on
the cylinder, as illustrated in panel (bii).

of U∞ = 10 m s−1 and the constant temperature of 21 ◦C in the test section cooperated to
yield a Reynolds number of ReD = 1.34 × 104. In the experiment, we put the utmost effort
into achieving the quasi-two-dimensionality of the flow and the model. Firstly, the aspect
ratio of the cylinder up to 25 satisfied the criterion of the ‘quasi-infinite’ circular cylinder
in the experiment (Duan & Wang 2021). Secondly, the films with a spanwise height of
b = 240 mm attached to the cylinder rear only covered the middle portion of the cylinder
across −6 < z/D < 6 (figure 1a), thereby avoiding the influences of the sidewall flow of
the wind tunnel and cylinder end effects on the film motion.

In the main experiment, a transparent polyethylene terephthalate (PET) membrane with
a thickness of h = 0.10 mm, a density of ρs = 1.32 × 103 kg m−3 and Young’s modulus
of 2.10 GPa was selected to fabricate the flexible film for experiments. The material
parameters were measured with the national standard of China, GB/T 1040.3–2006,
by a third-party organization, the Beijing Center for Physical and Chemical Analysis.
According to the material parameters, the film possessed a bending stiffness of B = 4.20 ×
10−5 N m2 and a linear density of ρshb = 3.17 × 10−2 kg m−1 along the Lagrangian
curvilinear coordinate s (see figure 1b for the definition). We machined a thin slot (2 mm
in width, 7.5 mm in depth and 420 mm in spanwise height) at the rear of the cylinder,
which allowed us to insert the film into the cylinder using two thin sheet clips clamping
at the film’s leading edge (figure 1b); the size of the clips was 0.8 mm in thickness (h1
in figure 1bi), 12 mm in width and 420 mm in spanwise height (figure 1c). The thin sheet
clips were made of FR-4 epoxy fiberglass board with a bending intensity of 575 MPa and
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a Rockwell hardness of M107. This composite material ensured that the two sheet clips
were quite flat and straight to avoid extra prestress on the film, which was a very important
prerequisite for the success of the present experiment. Double-sided removable tape with
a thickness of approximately h2 = 0.1 mm (figure 1bii) (Tape 665 of 3MTM 2023) was
employed to adhere the sheet clips to the leading part of the film. The fabricated leading
part then had a thickness of h + 2h1 + 2h2 = 1.9 mm, slightly less than the width of the
slot in the cylinder. In the final step, the model was assembled by inserting the clamped
leading part of the film into the slot of the cylinder. This connection was firmly fixed by
six embedded screws at the two ends of the sheet clips (figure 1c). It is noted here that
the spanwise height of the sheet clips (420 mm) was larger than that of the film (240 mm)
(figure 1c), so the fixing at both ends of the sheet clips had scarcely any influence on the
flatness of the film. In this manner, a practically ideal clamped condition was achieved
at the leading edge of the film. The streamwise lengths of the films selected in the main
experiment were L/D = 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 and 6, respectively (figure 1c), which
corresponded to the effective bending stiffness in a range of 1.52 > KB > 8.82 × 10−4

and the mass ratios in a range of 10.98 > S > 0.91 (see (1.1a,b)). Besides, to systematically
assess the influences of the dimensionless parameters on the coupling states, we perform
additional experiments using films with different materials and subjected to different free
stream velocities. A collection of parameters for all the experimental cases is provided in
table 1, while specific details regarding these additional experiments are incorporated into
the pertinent context where they are discussed. For the films with different thicknesses
listed in table 1, the thicknesses of the corresponding sheet clips are also varied, ensuring
the fabricated leading edges of the films exactly match the slot at the rear of the cylinder
(refer to figure 1b).

We captured both the flow fields and the film’s instantaneous shapes with
two-dimensional time-resolved particle image velocimetry (PIV). The tracer particles,
whose main composition was bis(2-ethylhexyl) sebacate (molecular formula C26H50O4),
were uniformly dispersed into the flow field from the inlet of the wind tunnel by a
seeding particle generator. The flow fields and the transparent film were illuminated by a
green laser sheet (wavelength 532 nm) emitted from a high-repetition-rate double-pulsed
Nd:YLF laser with energy up to 30 mJ (figure 1a). The laser sheet was perpendicular to the
cylinder and coincided with the midspan plane of z = 0. A PCO dimax HS4 high-speed
CMOS camera equipped with a Nikon 50 mm f/1.8D lens was arranged right below the
wind tunnel to capture both the flow fields and the film shapes. The effective physical
field of vision had a size of 0 < x < 12D and −4D < y < 4D with the camera resolution
adjusted to 2000 × 1500 pixels. Using a signal synchronizer to trigger the camera and
the laser synchronously, we accomplished the image pair acquisition with a frequency
of 800 Hz and a straddling time of 135 μs (the time interval within an image pair). The
total sampling time was larger than 20 s so that we could acquire more than 1.6 × 104

pairs of images. The velocity fields were then obtained by analysing the image pairs with
the multipass iterative Lucas–Kanade algorithm (Duan & Wang 2021; Wang & Wang
2021a). As for instantaneous film shapes, with our in-house algorithm, they were extracted
quantitatively from the greyscale images as two-dimensional curves in the x–y plane.
The extraction accuracy could reach the subpixel level, for this experiment, of the order
of O(10−2) mm. The curve of each frame was then equidistantly discretized along the
Lagrangian curvilinear coordinate s. After piecewise linear interpolations, each curve was
outputted as two parametric equations, x(s) and y(s), eventually.

Furthermore, to eliminate the reflective light from the cylinder surface, we smoothly
pasted a red fluorescent polyvinyl chloride (PVC) self-adhesive film (6510 #039
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Passive bionic motion of a flexible film

Oracal 2023) onto the surface of the cylinder model, whose thickness was only 0.1 mm,
thus with a negligible influence on the cylinder diameter. The pasting process must be as
scrupulous as possible to avoid the formation of air bubbles. This fluorescent film could
transform the incident green laser sheet perpendicular to the cylinder to red lights. As a
bandpass filter (centre wavelength 532 nm, bandwidth 40 nm and pass rate greater than
90 %) was attached to the camera lens beforehand, the wall reflection was consequently
effectively inhibited. Consequently, we could gain high-accuracy velocity fields near the
cylinder wall.

3. Results

3.1. Regimes of motion states
As the flexible film interacts with the cylinder wake, we identify four distinct kinematic
regimes, which successively emerge with the increase of the film streamwise length, viz.,
(i) keeping stationary, (ii) deflection flutter, (iii) hybrid flutter and (iv) travelling-wave
flapping (figure 2a). Given that the experiments conducted with the 0.1-mm-thick flexible
film involve most of the representative coupling states, the results introduced herein
will mainly be predicated on the observations and analyses of this specific film unless
explicitly stated. Remarkably, the film flutters in regimes (ii) and (iii) appear disordered
and aperiodic unexpectedly, which are new phenomena significantly different from the
results in previous studies (see supplementary movies S1 and S2, available at https://doi.
org/10.1017/jfm.2024.327). In the previous numerical simulations, the film in the cylinder
wake always fluttered or flapped periodically irrespective of the streamwise length (Lee
& You 2013; Wu et al. 2014; Sahu et al. 2019; Pfister & Marquet 2020; Furquan & Mittal
2021). Additionally, in the experiment of Shukla et al. (2013), the aperiodic flutter of the
flexible film in the cylinder wake only occurred when the flexible film was long enough to
yield a very small effective bending stiffness (see (1.1a,b)), as an example, L/D = 5 and
KB ∼ O(10−4), three orders of magnitude lower than the minimum KB = 1.82 × 10−1

where the aperiodic flutter emerges in our experiment. Moreover, an isolated flexible film
with its leading edge pinned in the uniform flow also exhibits aperiodic undulation, which,
however, is merely reported in the case of a long film with a very small KB as well, for
example, KB ∼ O(10−3) in Alben & Shelley (2008) and KB ∼ O(10−4) in Chen et al.
(2014). Given the aperiodic flutters in the present research, we define the amplitude of
the film statistically as Ã = 2

√
2ys/L=1

rms , where ys/L=1 denotes the vertical displacement
(in the y direction) of the film’s trailing edge (refer to figure 1). Thereupon, when the
motion of the film is periodic, the statistical amplitude Ã is equivalent to the peak-to-peak
amplitude; in contrast, if the motion of the film is aperiodic, the statistical amplitude is an
equal-energy characterization of the time-varying amplitude in essence.

In the stationary regime (i) (L/D � 0.5, the red region in figure 2a), the flexible
film behaves like a rigid plate in the cylinder wake without any vibration or deflection,
and obviously, its amplitude is Ã/D = 0. Nevertheless, in our previous study on the
flexible film behind a circular cylinder, the film with a length of L/D = 0.5 showed
small-amplitude flutter as we adopted a softer film material and higher free stream
velocities (U∞ > 20 m s−1) (Duan & Wang 2021). This discrepancy lies on the
competition between the stabilization of the bending force inside the film and the
destabilization of the fluid force. We will expatiate on the instability mechanism of the
short flexible film through the stability theory in § 3.2.

In the regime of deflection flutter (ii) (L/D = 1 ∼ 2, the yellow region in figure 2a),
the film commences to interact with the vortices shed from the cylinder, and flutter
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Figure 2. Motion states of the 0.1 mm thick film in the cylinder wake. (a) Trailing-edge amplitudes Ã/D
(left-hand vertical axis and triangular markers), self-similarity coefficients γ ∗ (right-hand vertical axis and
square markers) and largest Lyapunov exponents λ1 (top coordinate and circled plus markers) as functions
of the non-dimensional film length L/D. For each regime separated by light-coloured blocks, sequences of
instantaneous deformations are incorporated to show the representative motion patterns. (b) Phase trajectories
of (i) trailing-edge point for L/D = 1.0, (ii) trailing-edge point for L/D = 3.0, (iii) trailing-edge point (s/D =
5) and s/D = 3 point for L/D = 5.0. Here, the vertical velocity Uy/U∞ and the displacement y/D of the
point are fivefold refined by modified Akima piecewise cubic interpolation to enhance the fineness of data
and the accuracy of the phase trajectories (Akima 1970; Moler 2019). (c) Short-time fluctuations of the film
motion in the y direction with unit-amplitude rescaling [yrms]∗t = [yrms]t/[yrms]s=L

t vary with time within 10 s,
by which the self-similarity is revealed: (i) L/D = 1.0; (ii) L/D = 3.0; (iii) L/D = 5.0. (d) Cross-correlation
coefficients, cr(t) = Corr([yrms]∗t , [yrms]∗t ), as a function of time t within 10 s: (i) L/D = 1.0; (ii) L/D = 3.0;
(iii) L/D = 5.0. .
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Passive bionic motion of a flexible film

aperiodically with a very small amplitude Ã/D ∼ O(10−2) (figure 2bi and supplementary
movie S1). This small-amplitude flutter bears a striking resemblance to the deflection of
a cantilever beam described by the first-order Euler–Bernoulli mode. At this stage, the
deformation envelope contains only one node located at the junction between the cylinder
rear and the leading edge of the film. All the points on the film flutter with the same phase,
and they deflect towards a single direction at a certain time. The maximum deflection angle
is less than 7◦. Hence, we characterize the aperiodic small-amplitude motion of the film
in this regime as deflection flutter.

In the regime of hybrid flutter (iii) (L/D = 2.5 ∼ 4, the blue region in figure 2a), the
film still keeps a pretty small-amplitude flutter, Ã/D ∼ O(10−1), despite its amplitude
surpassing that in regime (ii) by an order. The flutter also appears aperiodic and disordered
(figure 2bii), but exhibits two distinct modes alternately, as in supplementary movie S2.
One mode is similar to the deflection flutter in regime (ii), i.e. all the points on the film
move in phase, whereas the other mode behaves as a cambered-flection flutter, whose
feature in substance accords with the second Euler–Bernoulli mode that portrays the
flection of a cantilever beam. In the flection mode, there are two wave nodes on the
envelope of the deformation sequence (figure 2a); besides, different points on the film
show a perceptible phase difference. We observed in the experiment that the two modes
alternate randomly and spontaneously with an alternating time scale of the order of
O(10−1) s.

For the disordered aperiodic flutters of the film in regimes (ii) and (iii), we calculate the
largest Lyapunov exponent λ1 of the vertical displacement of the trailing edge, in order to
quantify this disordered dynamics (refer to the phase trajectories for L/D = 1 and L/D = 3
in figure 2b) (Abarbanel et al. 1993; Connell & Yue 2007; Goza, Colonius & Sader 2018).
The largest Lyapunov exponent λ1 describes the divergence and convergence of the nearby
initial orbits in the phase space of a dynamical system; for uniformly discrete data, it is
defined as

λ1 = 1
NT

M∑
k=1

log2
d′(tk)

d(tk−1)
, (3.1)

where NT is the total number of the evaluated data series, M the number of iterations,
d the Euclidean distance between two nearest points on adjacent phase trajectories in
phase space and d′ the distance between the two points after evolution within a time step
of tk − tk−1 (Wolf et al. 1985; Abarbanel et al. 1993; Pikovsky & Politi 2016). Here, a
logarithm with base 2 is applied to define λ1 so that λ1 has the units of a ‘bit’ in information
theory. A positive λ1, λ1 > 0, corresponds to an exponential divergence of the orbits,
indicating the system becomes unpredictable rapidly, namely, a chaotic system, whereas
a negative λ1, λ1 < 0, a convergence of the system, and it is then evident that λ1 → 0
signifies a stable periodic system (Pikovsky & Politi 2016). To determine the largest
Lyapunov exponent λ1 for each case, we embed the vertical motion of the trailing edge into
a four-dimensional phase space using the time delay algorithm to reconstruct an attractor
without ambiguity (Abarbanel et al. 1993; Cellucci, Albano & Rapp 2003; Majumdar,
Bose & Sarkar 2022). The largest Lyapunov exponent λ1 for each case is iterated out with
Wolf’s algorithm on the reconstructed four-dimensional attractor (Wolf et al. 1985) (see
Appendix A), and the results of λ1 are incorporated in figure 2(a). Here, in the phase-space
reconstruction, we follow the broadly used assumption in the embedding theorem that the
time delay and the embedding dimension are two uncorrelated parameters (Kennel, Brown
& Abarbanel 1992; Kantz & Schreiber 2003). Then, as presented in Appendix A, the
optimal value of time delay for phase-space reconstruction is determined with the average
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mutual information (AMI) algorithm (Fraser & Swinney 1986; Cellucci et al. 2003), and
the embedding dimension is obtained by reconciling the false nearest neighbours (FNN)
algorithm (Kennel et al. 1992; Wallot & Mønster 2018) and the requirement of Wolf’s
Lyapunov exponent algorithm (Wolf et al. 1985). It is worth noting that Wolf’s algorithm
has been adopted to the analyses of flow–structure interactions by Connell & Yue (2007)
and Goza et al. (2018); however, they did not give rigorous details on the computations.
An accurate estimation of the largest Lyapunov exponent relies on the appropriate phase
space reconstruction and the proper prescription of iteration parameters, which depend on
the nature of data (Cellucci et al. 2003; Kantz & Schreiber 2003). Therefore, a simple use
of Wolf’s algorithm would not yield an ideal outcome; in this situation, the applications
of this algorithm by different researchers to address the same or similar problems may
acquire Lyapunov exponents that exhibit substantial deviations. Here, in pursuit of utmost
accuracy and reproducibility in estimating λ1 for flow–structure interactions, we present a
solving framework for the largest Lyapunov exponent in fastidious detail, which integrates
Wolf’s algorithm with a series of parameter-optimization processings. It is anticipated that
this framework would yield an optimal estimation for λ1. For coherence of the main text,
we put the details of the solving procedure for the Lyapunov exponent in Appendix A.

As illustrated in figure 2(a), the largest Lyapunov exponents are always positive for
the cases of L/D = 1 ∼ 4 (λ1 > 0.4 bit), where the maximum attains λ1 ≈ 0.8 bit at
L/D = 2. This result accords with our observations of the disordered and aperiodic
flutters in regimes (ii) and (iii) (figures 2a and 2b; supplementary movies S1 and S2),
which further corroborates the fact that the flutters tend to chaos. From the viewpoint
of information theory, the positive Lyapunov exponent measures how rapidly the system
creates information (Wolf et al. 1985). Use L/D = 3 as an example, whose amplitude
is approximately 0.224D. Considering the measurement accuracy of the deformation in
our experiment attains the subpixel magnitude of approximately O(10−2) mm (§ 2), we,
therefore, have an initial inherent uncertainty of approximately 1/500, equivalent to data
with a 9-bit acquisition. The largest Lyapunov exponent for L/D = 3 is λ1 ≈ 0.75 bit,
indicating we will lose the predictability of this case after 12 samples ((9 bits)/(0.75 bits))
on average since 9 bits of new information is produced after this time (Pikovsky & Politi
2016). The sampling frequency of our experiment is 800 Hz (1/800 s per sample); hence,
the motion of the film with L/D = 3 only has a predictability time of 0.015 s. In contrast to
the film flutters, the flow fields in regime (ii) and (iii) show perceptible periodicity (refer to
§ 3.3), which implies a non-complete coupling state between the film and the flow field, in
other words, the film and the periodic vortices do not lock in with each other. Synthesizing
the previous research, we notice this non-complete coupling state resembles the ‘entraining
state’ of a fish (e.g. rainbow trout and smallmouth bass) behind an obstacle in the flow,
where the fish’s body is relatively straight and presents an irregular small-amplitude flutter
without rhythmic body undulation (Webb 1998; Liao 2007; Przybilla et al. 2010; Taguchi
& Liao 2011). It naturally occurs to us that we might be able to utilize the largest Lyapunov
exponent to quantitively fathom out how irregular the flutter of the fish is under the
entraining state. It will be not only interesting but valuable to find out the relationships
between λ1 and the fish species, the free stream velocities, and so forth, which would help
to construct a biomechanical model for the entraining state.

In the regime of travelling-wave flapping (iv) (L/D � 5, the green region in figure 2a),
the film jumps to stable periodic flapping, which is completely locked-in with the flow
field (refer to supplementary movies S3 and S4, and figure 2biii). The amplitude of the
film soars to the magnitude of Ã/D ∼ O(1), accompanied by a significant increase of the
deformation curvature. This periodic flapping can be regarded as a bending wave traveling
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along the film, and then can be depicted by a wavefunction (see § 3.4); as a result, we
designate it as a travelling-wave flapping. Taking the flapping at L/D = 5 as an example,
we find the amplitude reaches Ã/D = 5.1 (figure 2a), while the flapping frequency is
identical to that of the flow field, 30.8 Hz for both of them. The corresponding largest
Lyapunov exponent approaches zero, λ1 ∼ O(10−2) (figure 2a), demonstrating that the
film flapping follows a stable limit cycle in the phase space (see figure 2biii), as well as
an almost constant amplitude and frequency. The exponent λ1 tending to zero also implies
that the periodic flapping is highly self-sustained, which can quickly revert to the limit
cycle after being perturbed. By comparison, in the experimental research of Zhang et al.
(2000), where the flapping of an isolated flexible filament in the soap film is examined,
the flapping filament can be easily switched to the stretched-straight state by externally
forcing the filament. Thus, we presume the flapping of the film in the cylinder wake is
more robust, which is attributed to the robustness of the vortex shedding.

The largest Lyapunov exponent aids us in quantitatively delineating and differentiating
the periodic (regime iv) and chaotic (regimes ii and iii) motions of the flexible film;
nevertheless, we have the question of how to further discriminate the two chaotic flutters in
regimes (ii) and (iii) quantitatively. Here, we further propose the short-time self-similarity
coefficient γ to characterize the motion state changing with the film length L/D. The
deflection flutter in regime (ii) appears a steady ‘stochastic process’ (figure 2bi and
supplementary movie S1). In contrast, the flutter in regime (iii) is a hybrid of deflection
and flection; as the flutter switches from the deflection to the flection, the associated
statistics will change forthwith, meaning the flutter in regime (iii) is similar to a non-steady
‘stochastic process’ (figure 2bii and supplementary movie S2). It should be accentuated
that within the framework of classical mechanics, the disordered aperiodic flutter of the
film does not possess a truly random nature. Instead, its fundamental essence resides in
being a deterministic chaotic system that remains extremely sensitive to initial conditions
or small perturbations (Abarbanel et al. 1993; Kantz & Schreiber 2003). We employ the
terminology of a ‘stochastic process’ merely for the qualitative depiction of the film’s
motion characteristics. The above analysis tells us that the flutters in regime (ii) over
different time intervals possess self-similarity, whereas in regime (iii), this self-similarity
disappears. Besides, the stable periodic flapping in regime (iv) is also believed to be
controlled by self-similarity. Since it is observed in the experiment that the alternating
time scale between deflection and flection in regime (iii) is around O(10−1) s (see
supplementary movie S2), we take�t = 0.125 s as the length of the time interval to assess
the short-time statistics. At each moment t, we can obtain a short-time fluctuation [yrms]t
of the vertical displacement of the whole film in a time interval [t −�t/2, t +�t/2],
which is then normalized by the value of the trailing edge [ys=L

rms ]t, namely, [yrms]∗t =
[yrms]t/[ys=L

rms ]t. Obviously, [yrms]∗t characterizes the short-time statistical quality of the
film motion in the time interval [t −�t/2, t +�t/2]; we emphasize here that [yrms]∗t is
a function of time t and curvilinear Lagrangian coordinate s. Figure 2(ci–iii) show the
variations of [yrms]∗t with time t for L/D = 1.0, L/D = 3.0 and L/D = 5.0, respectively.
One can see for L/D = 1.0 (figure 2ci) and L/D = 5.0 (figure 2ciii), the short-time
fluctuations [yrms]∗t accord well with each other at different moments, manifesting a strong
self-similarity, in addition to which the case of L/D = 5.0 shows a better self-similarity
due to its regular periodicity. However, the tendencies of [yrms]∗t for L/D = 3.0 vary
with time conspicuously (figure 2cii), corresponding to the alternations of the deflection
flutter and the flection flutter. We use Pearson’s correlation coefficient to measure the
linear similarity among [yrms]∗t at different times. As such, the correlation coefficient
is calculated by cr(t) = Corr([yrms]∗t , [yrms]∗t ) with the time-averaged value, [yrms]∗t , as

986 A29-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.327


F. Duan and J.-J. Wang

the benchmark. For the cases of L/D = 1.0 and L/D = 5.0 with high self-similarity, the
temporal variations of the correlation coefficient cr(t) remain nearby flat and close to
unity (figure 2ci,iii), whereas cr(t) for the case of hybrid flutter of L/D = 3.0 experiences
definite fluctuations (figure 2cii). Consequently, the self-similarity coefficient γ is defined
by the root-mean-square (r.m.s.) value of cr(t), i.e. γ = r.m.s.[cr(t)], and for comparative
purposes, γ is then rescaled by the value of the case of L/D = 1.0 as γ ∗ = γ /γ L/D=1.0.
A small value of γ ∗ means a high self-similarity while a large value a low self-similarity.

In figure 2(a), we compare γ ∗ for each case tested. It is illustrated that γ ∗ exhibits
changes in order of magnitude with the transition of regimes, γ ∗ ≡ 0 in stationary
regime (i), γ ∗ ∼ O(100) for the small-amplitude deflection flutter in regime (ii), γ ∗ ∼
O(101) for the hybrid flutter in regime (iii) and γ ∗ ∼ O(10−1) for the travelling wave
flapping in regime (iv). The self-similarity coefficient γ ∗, therefore, quantifies the
transitions of the motion states with length; in particular, the two small-amplitude chaotic
flutters in regimes (ii) and (iii) are distinguished clearly. Compared with the superficial
parameter (the trailing-edge amplitude Ã), the value of γ ∗ extracts the inherent kinematic
characteristics of different motion regimes. This method that quantifies the kinematic
characteristics with self-similarity coefficient γ ∗ may also be generalized to analyse the
motion of a flexible film in any configurations so as to verify whether and when the motion
incorporates multiple modes, for example, the chaotic flapping of an isolated flexible flag
in the study of Connell & Yue (2007); in addition, it is not limited to two-dimensional
cases (Huang & Sung 2010).

3.2. Instability and flow fields for the short film
For the motion of the flexible film in the cylinder wake, another issue of our main interest is
to explore the instability mechanism. In our previous experiment (Duan & Wang 2021), the
film with L/D = 0.5 showed visible flutter in the cylinder wake, yet it remains stationary
in the current experiment. When the length of the film is large enough, it is evident
that the flapping or fluttering is attributed to the direct and strong interactions with the
large-scale vortices from the cylinder, which is visually demonstrated by the evolution
of flow structures presented in § 3.3 for L/D = 3.0 and 4.0, and in § 3.5 for L/D = 5.0.
Nevertheless, what is the kinetic mechanism that dictates the flutter of a short film (for
example, L/D = 0.5)? The short film is entirely encompassed by the recirculation region
of the cylinder wake, where the flow is relatively steady in comparison with the region after
vortex shedding (Duan & Wang 2021). Hence, we attempt to solve the stability boundary
of the short film via the linear stability analysis, thereby providing guidance for us to
explore the physical mechanism that excites the flutter. The slight flutter of a clamped film
can be deemed as the bending of a cantilever beam under the small load of the ambient
flow field, and is thus governed by the Euler–Bernoulli theory (Argentina & Mahadevan
2005; Connell & Yue 2007; Alben & Shelley 2008; Shoele & Mittal 2016). Considering
the two-dimensional condition (the spanwise height is unit length, b = 1), a film with a
linear density ρsh and a bending stiffness B flutters with a small vertical displacement
η(x, t) in the flow with a fluid density ρf , which satisfies the kinetic equation

ρsh
∂2η

∂t2
− ∂

∂x

(
τ(x)

∂η

∂x

)
+ B

∂4η

∂x4 = Υ (x, t), (3.2)

where x is the streamwise Cartesian coordinate (figure 1a), τ(x) originating from the
friction acting on the film along the tangential direction, which manifests itself in the
tensile stress (τ > 0) or the compressive stress (τ < 0) inside the film; Υ (x, t) the vertical
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force (lift) on the film per unit length by the fluid in the vicinity, which is equal in
magnitude but opposite in sign to the force acting on the fluid by the film. According
to Newton’s law, the force acted by the film on the fluid per unit length is equivalent to the
change rate of the momentum of the ambient fluid induced by the displacement η(x, t) of
the film (Coene 1992; Connell & Yue 2007; Michelin & Doaré 2013), that is,

Υ (x, t) = − D
Dt

(
ma

D
Dt
η

)
; (3.3)

here, ma is the added mass per unit length, and material derivative D/Dt = ∂/∂t +
U(∂/∂x). Note that U in the material derivative is the velocity of the flow over the film,
which is equal to the free stream velocity U∞ for an isolated film in the flow field. However,
for the short film surrounded by the recirculating flow, the velocity of the flow over the film
U is less than the free stream velocity U∞ and in the opposite direction to the free stream
(U towards the −x direction). As a result, the tangential force τ exerted by the fluid on
the film yields a compressive effect on the film, acting as compressive stress. In search of
a theoretical solution for the nonlinear differential equations (3.2) and (3.3), we consider
implementing linearization to them with the three assumptions: (i) the velocity of the flow
over the film, U, is linearly proportional to the free stream velocity U∞, namely U = εU∞;
(ii) the internal tangential stress τ is a constant value τ0 (Argentina & Mahadevan 2005;
Connell & Yue 2007); (iii) the added mass ma remains constant (Coene 1992). Introducing
the three linearization assumptions to (3.2) and (3.3), and then non-dimensionalizing the
equations with U∞, L and ρf , we obtain a fourth-order linear differential equation for
η(x, t),

(S + m∗
a)
∂2η

∂t2
+ (ε2m∗

a − τ ∗
0 )
∂2η

∂x2 + KB
∂4 η

∂x4 + 2εm∗
a
∂2η

∂x∂t
= 0, (3.4)

where dimensionless parameters m∗
a = ma/(ρf L), τ ∗

0 = τ0/(ρf U2∞L); the mass ratio S and
the effective bending stiffness KB are defined in (1.1a,b). The three terms,

m∗
a
∂2 η

∂t2
, ε2m∗

a
∂2η

∂x2 and 2εm∗
a
∂2η

∂x∂t
, (3.5a–c)

associated with the added mass m∗
a in (3.4) refer to translation inertial force, centrifugal

force and Coriolis force, respectively (Triantafyllou 1992); particularly, the term of
centrifugal force, ε2m∗

a(∂
2η/∂x2), represents the destabilization of the K–H instability on

the interfaces. Considering a perturbation with frequency ω and wavenumber k in the form
η(x, t) = η0ei(kx−ωt), we obtain a quadratic function for ω,

−(S + m∗
a)ω

2 + 2εm∗
akω − (ε2m∗

a − τ ∗
0 )k

2 + KBk4 = 0. (3.6)

Note that both the frequency ω and the wavenumber k in (3.6) are dimensionless
parameters. The former is obtained by normalizing the dimensional frequency with L and
U∞, while the latter by normalizing the dimensional wavenumber with L. Solving (3.6),
we acquire the dispersion relation linking the frequency ω and the wavenumber k, namely

ω = k
S + m∗

a
(εm∗

a±
√
Δk), (3.7a)

Δk = −ε2m∗
aS + (S + m∗

a)(KBk2 + τ ∗
0 ). (3.7b)

For Δk ≥ 0 in (3.7b), the system remains neutrally stable, while for Δk < 0, ω contains
imaginary part iωi, meaning the perturbation will undergo an exponential growth with
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time t, and consequently the system becomes unstable. Here, we give a simple discussion
regarding the physical implications of Δk. The first term in Δk, −ε2m∗

aS, is negative,
representing the destabilizing effect of the ever-present K–H instability. In the second
term of Δk, the constantly positive component KBk2 describes the stabilizing effect of the
elasticity of the film; a positive τ ∗

0 (τ ∗
0 > 0) means the tensile stress stabilizes the film

whereas a negative τ ∗
0 (τ ∗

0 < 0) means the compressive stress destabilizes the film. For
the film with L/D = 0.5 encompassed in the recirculation region, if its bending stiffness
is large enough, it keeps stable even though the friction from the reverse flow in the
recirculation region generates compressive stress, namely, regime (i) in § 3.1. Note that
(3.7a,b) is not limited to the film in the recirculation region of the cylinder, but also holds
for the isolated film in uniform flow, where the coefficient ε = 1 for the leading-edge
pinned film (normal configuration) and ε = −1 for the trailing edge pinned film (inverted
configuration). Thus, we can interpret and compare some phenomena in the literature with
(3.7a,b). For the isolated film with the normal configuration, the friction from the ambient
flow stretches and stabilizes the film; on the contrary, for the inverted configuration,
the friction acts as compressive stress and destabilizes the film. Thus, the film with the
inverted configuration is more prone to instability than the normal configuration. Besides,
for the short film surrounded by the recirculation region of the cylinder or the inverted
film, an interesting inference from (3.7a,b) is that owing to the destabilizing effect of
the compressive stress, the film with its mass tending to zero (S → 0) can still become
unstable, provided that the condition |τ ∗

0 | > KBk2 is satisfied. This theoretical inference
confirms the hypothesis of Kim et al. (2013) from experiments that the mass ratio is not the
prerequisite for the instability mechanism of the inverted film. Conversely, for a massless
film with the normal configuration, the instability cannot be accomplished (Connell & Yue
2007).

According to (3.7b), we can determine the stability boundary by applyingΔk = 0, which
gives

KB = k−2
(
ε2m∗

aS
S + m∗

a
− τ ∗

0

)
. (3.8)

The dimensionless added mass m∗
a is a function of the wavenumber k in the form of

m∗
a = 2/k by solving the Laplace equation of potential flow and the linearized Bernoulli

equation (Coene 1992; Connell & Yue 2007). In addition, in the previous studies (Shelley,
Vandenberghe & Zhang 2005; Jia et al. 2007; Eloy et al. 2008, 2012), the discussions for
the instability of a film were contextualized in the parameter space spanned by the reduced
velocity U∗ and the mass ratio S, where the reduced velocity is U∗ = √

1/KB. Substituting
the above two terms for the parameters m∗

a and KB in (3.8), respectively, we finally derive
the stability boundary as

U∗ = k

√
2 + kS

2ε2S − τ ∗
0 (2 + kS)

. (3.9)

In our experiment, the flow velocity in the recirculation region attains approximately
1/4 of the free stream velocity, which agrees with the results in the literature (Beaudan
1995; Parnaudeau et al. 2008), so we take ε = −1/4 as the linearization coefficient for
the oncoming velocity U. Given that the short film exbibits instability in the first-order
mode (see subpanels in figure 3a), the corresponding wavenumber of a cantilever beam,
i.e. k = 1.875, is introduced in (3.9) (Jia 2014). The compressive stress τ ∗

0 arises out
of the friction exerted on the film by the reverse flow in the recirculation region, but
unfortunately, there is no directly available data for the skin friction of the film surrounded
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Passive bionic motion of a flexible film

by the recirculation region of a circular cylinder. For this reason, we endeavour to estimate
a reasonable compressive stress τ ∗

0 with the skin friction coefficient given by Castro &
Haque (1987), where the friction coefficient on a plate in the recirculation region of a
bluff body was measured with the pulsed-wire skin-friction probe. The Reynolds number
based on the scale of the bluff body is ReD = 1.49 × 104 in Castro & Haque (1987), close
to the Reynolds number ReD = 1.34 × 104 in the present experiment. After integrating
the friction along the streamwise length of the film, we secure an estimated stress value of
τ ∗

0 ∼ −2 × 10−3. We must acknowledge that the above estimation for τ ∗
0 is not rigorous;

be that as it may, we believe the estimated value is at least acceptable in the order of
magnitude. The stability boundary determined by τ ∗

0 ∼ −2 × 10−3 is shown in figure 3(a)
with the green solid line; besides, the boundary with vanishing τ ∗

0 is also plotted in
figure 3(a) using the black dashed line for comparison. The region over the boundary
represents an unstable coupling system, where the perturbation undergoes an exponential
increase, and then the film loses stability. One can see that the introduction of a negative
τ ∗

0 , viz. compressive stress, diminishes the critical reduced velocity U∗. Moreover, the
smaller the mass ratio S, the more significant the destabilizing effect of the compressive
stress (τ ∗

0 < 0); particularly, as S � 10−1, a considerable diminution of the U∗ appears,
as shown by the shaded area with diagonals in figure 3(a). The mass ratio S in the water
is lower by a magnitude of O(10−3) than that in air for a certain flexible film, so it is of
particular importance to account for the influence of τ ∗

0 as the experiment is conducted in
water flow.

In the S − U∗ parameter plane of figure 3(a), we plot the state point (S,U∗) for the
L/D = 0.5 film with a thickness of 0.1 mm in the present study (U∞ = 10 m s−1) together
with the state points (S,U∗) for the L/D = 0.5 film at U∞ = 20 m s−1 and 30 m s−1 in
our previous experiment (Duan & Wang 2021). The L/D = 0.5 film in the present study
remains stationary, along with which its (S,U∗) point is located in the stable region of
the S–U∗ plane. By comparison, in the experiment of Duan & Wang (2021), the film just
destabilizes to a very small flutter at U∞ = 20 m s−1, and its (S,U∗) exactly falls near the
theoretical stability boundary (a critical state); with the velocity raised to U∞ = 30 m s−1,
the film flutters noticeably, and unsurprisingly its (S,U∗) point drops into the unstable
region of the S − U∗ plane, as shown in figure 3(a). Consequently, for the short film of
L/D = 0.5, our theoretical model accords well with the experimental data. However, it
deviates from the experimental results as the length L/D � 1.0. Notwithstanding the films
of L/D � 1.0 exhibiting an obvious flutter in the experiment (figure 2a), the corresponding
state points still scatter in the stable region of the theoretical model (figure 3a). We,
therefore, consider inquiring into the related reason from the flow fields. With the
backward-time integration of the phase-averaged velocity fields for the cases of L/D = 0.5
and 1.0, we obtain their finite time Lyapunov exponent (FTLE) fields (Pan, Wang &
Zhang 2009; He et al. 2016; Wang & Wang 2021a), as shown in figures 3(b) and 3(c).
The convective material lines identified from the FTLE fields for the two cases reveal
the formation and evolution of the periodic large-scale vortices that dominate the flow
fields (see Appendix B for the detailed computation of the FTLE fields). For the case
of L/D = 1.0, the separated shear layer from each side of the cylinder rolls up to form
the large-scale vortex just at the trailing edge of the film, which results in a conspicuous
interaction between the trailing edge and the material line of the vortex, as depicted in
figure 3(c). From this perspective, the destabilization of the film is primarily induced
by the large-scale vortex, whose perturbations are so strong that the case of L/D = 1.0
lies beyond the valid scope of the linear small-perturbation theory, thereby delivering
an invalid linear stability analysis for this case. In comparison, concerning L/D = 0.5,

986 A29-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.327


F. Duan and J.-J. Wang

–2

–1

0

1

2

2 40 6 8 10

–2

–1

0

1

2

–2

–1

0

1

2

–2

–1

0

1

2

(a)
70

Stability boundary solved with stress

Stability boundary solved without stress

L/D = 0.5, U∞ = 10 m s–1, h = 0.1 mm

L/D = 1 ∼ 2, U∞ = 10 m s–1, h = 0.1 mm

L/D = 0.5, U∞ = 10 m s–1, h = 0.045 mm

L/D = 0.5, U∞ = 20 m s–1, h = 0.045 mm

L/D = 0.5, U∞ = 10 m s–1, h = 0.022 mm

L/D = 0.5, U∞ = 20 m s–1, Duan & Wang (2021)

L/D = 0.5, U∞ = 30 m s–1, Duan & Wang (2021)

10–2 10–1 100 101 102

S = ρsh/ρf L

60

50

40

30

Stable

Unstable

Flutter
20

10

0

(b) (c)

U
∗  =

 U
∞

�ρ
bL

3
/B

y/D

y/D

x/D
2 40 6 8 10

2 40 6 8 10 2 40 6 8 10

3210–1–2–3

ω∗
z

x/D

U∞ = 10 m s–1,

h = 0.022 mm

U∞ = 20 m s–1,

h = 0.045 mm

3210–1–2–3

ω∗
z

(i) (i)

(ii) (ii)

Figure 3. Results of linear stability analysis. (a) Stability boundaries of the film motion in the S–U∗ plane
solved by (3.2)–(3.9), above which the perturbations undergo such an exponential growth that the film loses it
stability. The green solid line shows the stability boundary with the linearized tangential stress τ ∗

0 considered,
while the black dashed line is without the stress τ ∗

0 . The diagonal shading between the two boundaries gives
the diminution of the reduced velocity due to the tangential stress τ ∗

0 . Here, τ ∗
0 ∼ −2 × 10−3. Sequences

of instantaneous deformations for the film of L/D = 0.5 after instability are also incorporated in this panel.
(b,c) (i) Finite time Lyapunov exponent (FTLE) fields calculated from the phase-averaged velocity fields (see
Appendix B) (He et al. 2016; Wang & Wang 2021a), and (ii) time-averaged vorticity fields superimposed with
the time-averaged streamlines; (b) for L/D = 0.5 and (c) for L/D = 1.0.

the film entirely immerses in the recirculation region of the cylinder, and the large-scale
vortex is formed downstream of the film’s trailing edge without a direct influence on
the film (figure 3b); under this situation, the flow condition in the vicinity of the film is
broadly in line with the premises of the theoretical model. Hence, a substantial agreement
between the stability analysis and the experiment results is drawn for L/D = 0.5. Briefly,
the destabilization of a short film in the recirculation region of a circular cylinder stems
from the combined destabilizing effects of the two factors: one is the K–H instability on
the interface while the other is the negative tangential compressive stress (τ∗

0 < 0) from
the recirculating flow. Additionally, these two factors also hold for the destabilization of
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Passive bionic motion of a flexible film

an inverted film in free stream. If the film is long enough, for example, L/D � 1.0, the
direct interaction between the film and the large-scale vortices from the cylinder will be
the major responsibility for the flutter.

In order to further validate the theoretical analysis, we completed supplementary
experiments for the film of L/D = 0.5, but different film materials and free stream
velocities were employed (see table 1 in § 2). Specifically, PVC membranes with
thicknesses of 0.045 mm and 0.022 mm were selected to fabricate the film of L/D = 0.5.
The density and Young’s modulus of the PVC membrane were 1.28 × 103 kg m−3 and
1.12 GPa, respectively, which were measured in the same way as described in § 2. For the
film with h = 0.045 mm, the free stream velocities were U∞ = 10 m s−1 and 20 m s−1,
where the latter was very close to the critical instability velocity of the film observed in the
experiment. For the film with h = 0.022 mm, the free stream velocity of U∞ = 10 m s−1

was still selected in order to keep a consistent Reynolds number, ReD = 1.33 × 104, with
other cases. The dimensionless parameter pair (S,U∗) for the film with h = 0.022 mm
at U∞ = 10 m s−1 is (2.34, 11.00), while (S,U∗) for the film with h = 0.045 mm at
U∞ = 10 m s−1 and 20 m s−1 are (4.79, 3.76) and (4.79, 7.52), respectively. Notably, in
the experiment, the free stream from the wind tunnel was carefully accelerated to the target
velocity gradually, namely, U∞ = 10 m s−1 or 20 m s−1, to avert the potential influence of
hysteresis. At U∞ = 10 m s−1, the film with h = 0.022 mm exhibits obvious flutter with
the first-order mode, as shown by the sequence of instantaneous deformations integrated
in figure 3(a) on the left-hand side, whereas the film with h = 0.045 mm keeps stationary,
which accord well with the scattering of the state points (S,U∗) in the parameter plane
for the two cases (figure 3a). As the velocity is increased to U∞ = 20 m s−1, the film
with h = 0.045 mm is also destabilized, as shown by the sequence of instantaneous
deformations integrated in figure 3(a) on the right-hand side. The state point for this
case drops near the stability boundary (figure 3a), approximately in agreement with the
theoretical analysis. It is essential to point out that the present theoretical analysis is not
impeccable, given that the influence of the vortex shedding is neglected. Although the film
of L/D = 0.5 is encompassed in the recirculation region and has no direct interactions with
the large-scale vortices as mentioned above (figure 3b), the disturbance of the large-scale
vortices can propagate forward, which is also the factor inducing the instability of the
film. Nevertheless, the stability boundary according to the linear theory yields a tolerable
consistency with the experimental data, implying this simple theory indeed catches the
dominant factors. Two cases near the critical states, shown by blue cross maker ‘×’ and
blue diamond maker ‘♦’, are located near but below the stability boundary in the U∗–S
plane, of which the relative U∗ errors are 4.9 % and 6.6 %, respectively. Consequently, the
real stability boundary is bound to be lower than the present prediction, which indicates
the influence of the vortex shedding outside the recirculation region.

Next, we discuss the influences of the short film on the flow fields. Figures 4(a) and 4(b)
show the distributions of the velocity fluctuations, urms/U∞ and vrms/U∞, for the four
cases at U∞ = 10 m s−1, which are the plain cylinder, the cylinder with film of L/D = 0.5
and h = 0.1 mm (stationary state), the cylinder with film of L/D = 0.5 and h = 0.022 mm
(flutter) and the cylinder with film of L/D = 1.0 and h = 0.1 mm (flutter). It is apparent
that as a film is attached to the rear of the cylinder, both the urms/U∞ and vrms/U∞ exhibit
considerable reductions in comparison with the plain cylinder, where the L/D = 1.0 film
provides an optimal control effect on suppressing the velocity fluctuations. This result is
consistent with our previous experiment for the circular cylinder with a flexible film (Duan
& Wang 2021), and shows similar regularity to the experiment on a rigid plate attached to
the cylinder rear (Liu, Deng & Mei 2016). As shown in table 2, compared with the plain
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Figure 4. Comparison of the flow field characteristics. Distributions of (a) the streamwise velocity
fluctuations, urms/U∞, with the contour interval of ±0.06, (b) the vertical velocity fluctuations, vrms/U∞,
with the contour interval of ±0.07 and (c) the normalized instantaneous spanwise vorticity fields, ωzD/U∞,
with the contour interval of ±0.6. Here, the vorticity fields are calculated using the velocity fields reconstructed
by the spatial modes from the proper orthogonal decomposition (POD), which accounts for 85 % of the total
energy (Qu et al. 2019). (i) The plain cylinder; (ii) the cylinder with the film of L/D = 0.5 and h = 0.1 mm,
the stationary state; (iii) the cylinder with the film of L/D = 0.5 and h = 0.022 mm, the flutter state; (iv) the
cylinder with film of L/D = 1.0 and h = 0.1 mm, the flutter state. The bottom x-axis is normalized by cylinder
diameter D while the top x-axis by the vortex formation length Lf . The blue plus markers ‘+’ in (b) denote the
location of the maximum vrms/U∞.

Stationary film Flutter film Flutter film
Parameters Plain cylinder (L/D = 0.5) (L/D = 0.5) (L/D = 1.0)

urms_max/U∞ 0.351 0.306 0.329 0.290
vrms_max/U∞ 0.557 0.486 0.519 0.471
Vortex formation length Lf /D 2.16 2.87 2.61 2.97
Vortex shedding strength Evs 5.50 2.91 2.85 2.55

Table 2. Representative statistical quantities of flow fields for the four cases in figure 4.

cylinder, the L/D = 1.0 film achieves a reduction in the maximum of urms/U∞ by 17.4 %,
while a reduction in the maximum of vrms/U∞ by 15.4 %. For the films of L/D = 0.5, the
stationary film (h = 0.1 mm) presents a superior performance on suppressing the velocity
fluctuations compared with the flutter film (h = 0.022 mm); approximately 7 % increases
of both urms/U∞ and vrms/U∞ occur due to the flutter of the L/D = 0.5 film.

The differences in control effects between the four cases are closely related to the
vortex formation length, Lf , or rather, the streamwise length of vortex formation region,
a representative length scale portraying the spatial characteristic of the unsteady wake
(Roshko 1993). There are several definitions for the vortex formation length of a bluff
body which have been proposed by previous researchers based on different research aims
(Roshko 1993; Griffin 1995; Williamson 1996; Chopra & Mittal 2019). Given that we
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have the global velocity field from the PIV measurement, we adopt the vortex formation
length defined by the streamwise distance from the centre of the cylinder to the location
where the global maximum of streamwise velocity fluctuation, urms_max/U∞, occur in
the wake. The determined vortex formation lengths based on the above definition for the
four cases are presented in figure 4(a). Further combining the instantaneous vorticity fields
in figure 4(c), one can see that the location of x/Lf = 1 is exactly the location where
one vortex is just released into the wake from the shear layer while the other vortex is
formed. The vortex formation length exhibits an incremental variation for the cases of
the plain cylinder, the cylinder with L/D = 0.5 flutter film, the cylinder with L/D = 0.5
stationary film and the cylinder with L/D = 1.0 flutter film in sequence; correspondingly,
the velocity fluctuations, both urms/U∞ and vrms/U∞, present a sequentially diminishing
tendency (table 2). Moreover, once the streamwise coordinate x is normalized by the
vortex formation length Lf , at a specific streamwise location x/Lf , the above magnitude
relationship of the velocity fluctuations among the four cases is consistent, as exemplified
by the urms/U∞ profiles in figure 5(a). Consequently, in terms of the short flexible films,
an increase in the vortex formation length is accompanied by a decrease in the magnitude
of wake fluctuations irrespective of flutter or not, which is similar to the trend of the base
suction versus the formation length in the experiments of Bearman (1965) and Apelt, West
& Szewczyk (1973), where a rigid splitter plate was used to control the flow over a circular
cylinder.

An increase in the vortex formation, on the other hand, implies an inevitable elongation
of the separated shear layers, which, therefore, induces an enhanced diffusion of the
shear layers, thereby a gradual reduction in the strength of the shear layers (Anderson
& Szewczyk 1997). The strength of the vortex shedding and the attendant velocity
fluctuations are finally attenuated. To substantiate this mechanism, for each case, we
extract the variation of the vorticities at the key location of x/Lf = 1 and y = 0 (denoting
this location as L(x/Lf = 1, y = 0)), as shown in figure 5(b). The variation of the
vorticities is employed to evaluate the strength of vortex shedding since (i) the large-scale
vortices are formed and shed at x/Lf = 1 and (ii) the clockwise and the anticlockwise
vortices alternatively dominate the flow field at L(x/Lf = 1, y = 0) (refer to figure 4c).
One can qualitatively perceive from figure 5(b) that in terms of the amplitude of ω∗

z , the
case of the plain cylinder is the largest, followed by the cylinder with L/D = 0.5 flutter
film, the cylinder with L/D = 0.5 stationary film and the cylinder with L/D = 1.0 flutter
film in a descending order, which means the vortex shedding is suppressed by the film.
Figure 5(c) shows the power spectral densities (PSD) for theω∗

z variations of the four cases.
It is not surprising that the presence of the film brings about a reduction in the Strouhal
number (St0 = f0D/U∞) of the vortex shedding, on account of the elongation of the shear
layers (Anderson & Szewczyk 1997). For the two films of L/D = 0.5, in comparison with
the stationary one, the flutter one causes the Strouhal number to increase from St0 = 0.180
to St0 = 0.191 (figures 5bii and 5biii). We suppose the phenomenon could be attributed
to the film-flutter-induced perturbations, which disturb the shear layers so that the shear
layers are more prone to undergo ‘wake instability’ and roll up to large-scale vortex
(Williamson 1996); this mechanism also holds for the reduction of vortex formation length
due to the flutter of the film. By integrating the PSD on the peak associated with the vortex
shedding, we can acquire a quantitative depiction of the vortex shedding strength, namely,
Evs = ω∗

z
2|f 2

f 1. Evs has a form reminiscent of the definition of enstrophy in turbulence
research, which can be regarded as a band-pass filtering operation applied to the enstrophy,
selectively retaining the components associated with the vortex shedding. The full width at
tenth maximum is employed to define the range of peak in PSD here (Cerezo et al. 1998).

986 A29-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.327


F. Duan and J.-J. Wang

(a) x/Lf = 0.8 x/Lf = 1 x/Lf = 2 x/Lf = 3

urms/U∞

y/D

3

(i) (ii) (iii) (iv)

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3

3

2

1

0

C
y
li

n
d
er

L/
D

 =
 0

.5
, 
fl

u
tt

er
L/

D
 =

 1
.0

, 
fl

u
tt

er

L/
D

 =
 0

.5
, 
st

at
io

n
ar

y

–1

–2

–3

0 1 2 3

urms/U∞
0 1 2 3

urms/U∞
0 1 2 3

urms/U∞
0 1 2 3

(b)

(c)
Time t/T0 Time t/T0

(i) (ii)

(iii) (iv)

(i) (ii) (iii) (iv)

ω∗
z

5

0

–5

5

0

–5

ω∗
z

5

0

–5

5

0

–5

P
S

D
 (

H
z–

1
)

1.0
St = 0.196

St = 0.180

St = 0.191

St = 0.183
0.5

0.1 0.2

St
0.3 0.40.1 0.2

St
0.3 0.40.1 0.2

St
0.3 0.40

1.0

0.5

0

1.0

0.5

0

1.0

0.5

00.1 0.2

St
0.3 0.4

0 3 6 9 12 150 3 6 9 12 15

0 3 6 9 12 150 3 6 9 12 15

Figure 5. Influences of the short films on the typical characteristics of flow fields. (a) Profiles of urms/U∞ at
several streamwise locations, which are normalized by the vortex formation length Lf . (b) Time histories of
normalized spanwise vorticity, ω∗

z = ωzD/U∞, at L(x = Lf , y = 0) in 15 periods of vortex shedding (T0),
which are extracted from the POD reconstructed vorticity fields with 85 % total energy. Here, the bule
circles highlight the data corresponding to the instantaneous vorticity fields shown in figure 4(c). (c) Power
spectral densities (PSD) for the vorticity series at L(x = Lf , y = 0). The grey shadings indicate the peak range
determined by full width at tenth maximum. The subpanels (i), (ii), (iii) and (iv) in (b) and (c) correspond to the
cases of the plain cylinder; the cylinder with film of L/D = 0.5 and h = 0.5 mm (stationary); the cylinder with
film of L/D = 0.5 and h = 0.022 mm (flutter); the cylinder with film of L/D = 1.0 and h = 0.1 mm (flutter),
respectively.

Thus, f1 and f2 are the first and second frequency values corresponding to one-tenth
maximum of the peak value (as shown by the grey shading in figure 5c). The results of Evs
for the four cases are incorporated in table 2. It is evident that Evs positively correlates to
the maximum fluctuations in the wake while negatively correlates to the vortex formation
length, which provides a full substantiation that the reduction effects of the flexible film
on the wake fluctuations are ascribed to the decrease of vortex shedding strength resulting
from the elongation of shear layers.

In figure 5(b), the vorticities extracted from L(x/Lf = 1, y = 0) of the instantaneous
vorticity fields shown in figure 4(c) are highlighted by the blue circles. Crucially, the
timing of the vortex just formed exactly aligns with the occurrence of vorticity extrema
at L(x/Lf = 1, y = 0). This intriguing correspondence emphasizes again the significance
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of the vortex formation length as well as the effectiveness of its definition based on the
global maximum urms/U∞. In the research of Minelli et al. (2020), they consider the
location with the highest reverse velocity value as the most representative characteristic of
a bluff body wake and define this location as ‘wake core’. Following this train of thought,
we posit that L(x/Lf = 1, y = 0) should be regarded as the wake core in the context of the
vortex shedding. The vortex formation length serves as a pivotal parameter in our present
investigation, which will help us gain insight into the mode transition during the hybrid
flutter regime in the next section.

3.3. Transitions of motion modes and flow fields during the hybrid flutter
In this section, we will discuss the flow–structure interactions during the hybrid flutter of
the film, for example, L/D = 3.0 and L/D = 4.0, and attempt to dig out the mechanisms
underlying the transition of motion modes. As stated in § 3.1, within the hybrid flutter
regime, the film motion switches between two motion modes alternately and randomly,
either the deflection mode or the flection mode. The former resembles the first-order
Euler–Bernoulli mode while the latter the second-order Euler–Bernoulli mode. This kind
of mode alternation of the film motion is unavoidably tied to the changes in the flow field,
leading to a distinct nature of interactions. Thus, in order to detect the differences in the
flow–structure interactions between the two modes, we must extract the data separately
corresponding to the deflection mode and the flection mode of the film flutter from
the whole dataset. Considering the random and intermittent alternation of the modes,
the phase identification methods, such as the Hilbert transform, are not suitable for the
present problem. Fortunately, the short-time characteristics of the film motion discussed
in § 3.1 could aid us in achieving pattern recognition since the normalized short-time
fluctuation [yrms]∗t of the film changes as the motion mode switches from one to another
(figure 2cii). As presented in figure 6, the flection state (flutter with flection mode) and
the deflection state (flutter with deflection mode) of the L/D = 3.0 film are distinguished
through the correlation coefficients of the short-time fluctuations. In contrast to the
calculation of the self-similarity coefficient in § 3.1, here, a short-time fluctuation [yrms]∗0
portraying the typical flection state of the film is adopted as the baseline to perform the
cross-correlation, as shown in figure 6(a). Then, with the length of the time window for
a short-time statistic being set as �t = 0.125 s (see § 3.1), the correlation coefficients
cr(t) is obtained by cr(t) = Corr([yrms]∗0, [yrms]∗t ). In this sense, a higher cr means the
film motion in the corresponding time window is mainly dominated by the flection mode
(the light red region in figure 6b), while a lower cr means the motion dominated by the
deflection mode (the light green region in figure 6b). We use a threshold for flection
of cr ≥ c̄r + 0.5c′

r and a threshold for deflection of cr ≤ c̄r − 0.5c′
r, where c̄r and c′

r
denote the averaged and the r.m.s. values over all cr (figure 6b), respectively; then, the
data associated with c̄r − 0.5c′

r < cr < c̄r + 0.5c′
r is regarded as a mixing of flection and

deflection and is, therefore, excluded. In figure 6(a), two examples of the identification
results are presented; example 1 with cr = 0.761 (green cross marker in figure 6b) is
recognized as the deflection-dominated short-time fluctuation, while example 2 with
cr = 0.989 (the red plus marker in 6b) is recognized as the flection-dominated short-time
fluctuation.

Now, with the aid of the cross-correlation of the short-time fluctuations, the entirety
of the original dataset, encompassing both film motion data and flow field data, was
partitioned into two distinct parts, each individually governed by a single flutter mode.
Subsequently, conditional statistics can be applied to each part of the data to examine what
happens as the flutter mode is changed. As shown in figure 7, the velocity fluctuations,
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Figure 6. Extraction of the flection state and the deflection state during the L/D = 3.0 film flutter based
on the short-time fluctuation characteristics. (a) The normalized short-time fluctuations [yrms]∗t of the film’s
vertical displacements. Example 1 for the deflection state and Example 2 for the flection state. (b) Variation
of correlation coefficients cr(t) versus time t, which is calculated by correlating all the normalized short-time
fluctuations [yrms]∗t with the baseline [yrms]∗0 shown in panel (a). The light red region represents the film flutter
dominated by flection, while the light green region represents the film flutter dominated by deflection. The red
plus marker ‘+’ highlights the correlation coefficient for example 1 in panel (a), while the green cross marker
‘×’ highlights the correlation coefficient for example 2 in panel (a).

urms/U∞ and vrms/U∞, during the film’s deflection state and flection state are compared.
It is explicit that both the distributions of urms/U∞ and vrms/U∞ exhibit significant
changes as the film adopts different flutter modes. Following the definition for vortex
formation length Lf in § 3.2, namely, the streamwise location of the global maximum
urms/U∞ in the wake, one can find that Lf for the deflection state, Lf = 4.00D, is larger
than that for the flection state, Lf = 2.71D (figures 7a and 7b). As compared in figure 7(e),
for x/D < 2, the variations of the maximum urms/U∞ at each streamwise slice, designated
as slice maximum urms/U∞, for the two states vary in consistency with each other.
However, as x/D > 2, the slice maximum urms/U∞ for the flection state experiences
a drastic increase and attains the crest of urms_max/U∞ = 0.262 at x/D = 2.71, which
suggests that large-scale vortices are formed on the film (note the trailing edge of the film
is located at x/D = 3.5). By comparison, the slice maximum urms/U∞ for the deflection
state experiences a sustained increase until x/D = 4.00, at which a urms_max/U∞ = 0.279
is achieved, suggesting the large-scale vortices are formed downstream the trailing edge
of the film. The global maximum urms_max/U∞ for the deflection state is 6.5 % larger than
that for the flection state (figure 7f ). In contrast, the global maximum vrms_max/U∞ for
the deflection state is 11.9 % lower than that for the flection state, where the vrms_max/U∞
for the two are 0.317 and 0.366, respectively, as compared in figure 7(g). Moreover, the
vrms_max/U∞ for both the states occur downstream the trailing edge of the film, namely,
Lx(vrms_max) > 3.5, as signified by the blue plus marker ‘+’ in figures 7(c) and 7(d).

The statistical discrepancies between the two states individually dominated by flection
and deflection are undeniably ascribed to the distinct coupling processes within this
fluid–structure system. As presented in figures 8–10, the vortex dynamics during the
L/D = 3.0 film’s flection flutter and deflection flutter are revealed by Lagrangian coherent
structures (LCS) (figures 8 and 9) and Eulerian vorticity fields (figure 10). The LCS
are more adept at tracking the long-term dynamics of flow structures associated with
transport processes, while the vorticity fields provide more direct information on local
circulation patterns; hence, a combination of these two methods would help us to gain
a more comprehensive understanding of the flow–structure interactions. Considering the
noise in the measured velocity fields and the breakup of large-scale vortex structures into
small-scale eddies at Re ∼ O(104), the POD is applied to the original velocity fields, and
reconstruction is performed with POD modes accounting for 85 % of the total energy

986 A29-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.327


Passive bionic motion of a flexible film

(a)

4
0 1 2 0 1 2 3 4

y/D

x/Lf x/Lf

0

2

–2

–4

(c)

(e) ( f ) (g)

(b)

(d)
4

y/D
y/

D
0

2

–2

–4

4

0

2

–2

–4

4

0

2

–2

–4

0.35

0.20

0.25

0.30

0.10

0.15

0

0 0.2 0.4

0.05

0.28

0.16

0.20

0.24

0.08

0.12

0

0.04

u r
m

s/
U

∞
v

rm
s/

U
∞

vrms/U∞
0 0.20.1 0.3

–4

0

–2

2

4

–4

0

–2

2

4

urms/U∞

L f
 =

 2
.7

1
D

L f
 =

 4
.0

0
D

x/Lf = 1 x = Lx (vrms.max)

u r
m

s/
U

∞

2

Dominated by deflection
Dominated by flection

0
0.10

0.15

0.20

0.25

0.30

64 8 10

x/D

20 64 8 10

x/D
20 64 8 10

20 64 8 10 20 64 8 10

x/D

Figure 7. Comparison of the velocity fluctuations during the deflection state and the flection state for L/D =
3.0. (a,b) Distributions of streamwise velocity fluctuations, urms/U∞, associated with the deflection state and
the flection state, respectively. (c,d) Distributions of vertical velocity fluctuations, vrms/U∞, associated with
the deflection state and the flection state, respectively, wherein the blue plus ‘+’ markers denote the locations of
the global maximum vrms_max/U∞. The bottom x-coordinates for panels (a) to (d) are normalized by cylinder
diameter D, while the top ones by the vortex formation length Lf . (e) Variation of the maximum urms/U∞
at each streamwise slice. The locations of the slice maximum urms/U∞ are signified by cyan cross markers in
panels (a) and (b). ( f ) Profiles of the urms/U∞ for deflection state and the flection state at x/Lf = 1. (g) Profiles
of the vrms/U∞ for deflection state and the flection state at the streamwise slice where the global maximum
vrms/U∞ is located, namely, Lx(vrms_max).

(Qu et al. 2019). Then, the LCS are extracted from the reconstructed velocity fields
via FTLE with backward-time integral, as shown in figures 8 and 9. The ridges in the
backward-time FTLE fields indicate the attracting material lines, or the attracting LCS,
corresponding to the vortex evolution observed in flow visualization (Shadden, Lekien &
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Figure 8. The FTLE fields reveal the evolution of the LCS during the L/D = 3.0 film’s flection flutter in
approximately one period of the vortex shedding (table 3). The time interval between two adjacent panels is
�t = 1/400 s. The clockwise and anticlockwise vortices are marked by V and V⊕, respectively. The subpanel
in (a) presents the time trace of the film’s trailing edge, in which the six red points on the trace from left to
right correspond to the film motion in panels (a) to ( f ), respectively. The time coordinate in the subpanel is
normalized by the dominant period of the vortex shedding (table 3). The yellow dashed arrows in panel (d)
schematically show the directions of force exerted by the large-scale vortices on the different positions of the
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3
2
1
0

0 2 4 6 8 10

–1
–2
–3

x/D
0 2 4 6 8 10

x/D
0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

x/D

y/D

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

3
2
1
0

–1
–2
–3

y/D

V⊕ V⊕

0 1 2
x/Lf

0 1 2
x/Lf

0 1 2
x/Lf

0.4 A/D

t/T0

0.2

–0.2
–0.4

0

0 1 2 3 4 5

V� V�

V�V�V�

V�

Stretched V⊕Stretched V⊕

Stretched V⊕Stretched V⊕

4.5

4.0

3.5

2.5

1.5

1.0

0.5

2.0

3.0

F
T

L
E

s 
(×

1
0

2
 s

–
1
)

(a) (b) (c)

(d ) (e) ( f )

Figure 9. The FTLE fields reveal the evolution of the LCS during the L/D = 3.0 film’s deflection flutter in
approximately one period of the flow field (refer to table 3). The time interval between two adjacent panels is
�t = 1/400 s. The subpanel in (a) presents the time trace of the film’s trailing edge, in which the six red points
on the trace from left to right correspond to the film motion in panels (a) to ( f ), respectively.

Marsden 2005; He et al. 2016). More details on FTLE can be found in Appendix B. The
vorticity fields shown in figure 10 are derived from the reconstructed velocity field as well.

For the flection state of the film flutter, it is explicit in figure 8 that both the clockwise
and anticlockwise vortices, V and V⊕, are formed against the film surface at x = Lf ,
which conforms to the result from the urms/U∞ distribution in figure 7(b). The alternately
formed vortices are released into the wake from the trailing edge of the film, and then
convect in the form of a standard Kármán vortex street (figure 8). During the flection state,
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Figure 10. Representative instantaneous spanwise vorticity fields, ω∗
z = ωzD/U∞, for L/D = 3.0. (a) For

flection state, corresponding to LCS in figure 8(c), at which the vortex V is formed and vortex V⊕ is just
shed into the wake. (b) For deflection state, subpanels (i) and (ii) corresponding to LCS in figures 9(e) and
9( f ), respectively. The contour interval for the vorticity fields is ±0.8.

both the film flutter and the flow fields possess a periodic nature with a dominant frequency
of approximately 78.8 Hz (table 3). However, this periodicity is not steady, evidenced by
changes in the trailing-edge amplitude with time (see the trailing-edge trace of the film
in the subpanel of figure 8a). Particularly, as presented by figures 8(c) and 10(a), the
moment at which one vortex is formed and the other vortex is just shed corresponds
to the maximum vertical displacement of the trailing edge (the inset in figure 8a). As
attractive structures in flow fields, the periodic large-scale vortices alternately form and
evolve against the film surfaces on both sides, which exert attraction forces with opposite
directions on the different positions of the film, as sketched by yellow arrows in figure 8(d).
These opposite forces, therefore, lead to the flection deformation of the film in figure 8(e).
The flection deformation of the film undergoes approximately periodic variation in
concert with the evolution of periodic vortices on the film, thereby manifesting as the
flection flutter. This process can be deemed as ‘vortex structure attraction’ (Alben 2012).
It is essential to underscore here that the film’s motion, lags behind the force owing to the
second temporal derivative in the dynamic equation governing film motion (the first term
in (3.2)).

When the film adopts the deflection mode, the wake is rendered irregular despite the
existence of an oscillatory feature (figure 9). The separated shear layers extend along the
film until large-scale vortices are formed downstream of the film’s trailing edge, but the
process of vortex rolling up is not obvious from the LCS since the vortices are rapidly
stretched directly after being formed, as illustrated by the stretched vortex V⊕ in figures 9
and 10(bi). The large-scale vortex stretching is also observed by He et al. (2017) in the
experiment, where the vortex dynamics for flow over a circular cylinder in proximity to
a wall is investigated. In their experiment, the LCS associated with different large-scale
vortices are stretched so as to intertwine with each other, meaning one vortex is entrained
and absorbed into the other vortices and the occurrence of ‘vortex tearing’ (He et al. 2017).
However, in our present experiment, notwithstanding the stretching of vortices, the LCS
do not intertwine, thus no vortex tearing, which can also be verified by the vorticity field
shown in figure 10(bi). There is also a situation where the large-scale vortex sustains
its circulation structure without being considerably stretched in the wake, as illustrated
by vortexV in figures 9(d–f ) and 10(b). The different evolution of vortices, whether
being stretched or not, aggravates the irregularity of the wake during the deflection state
of the film. Moreover, due to the extension of the separated shear layers, the whole
film is enveloped by the extended shear layers, resulting in the absence of alternate
forces with different directions exerting on the film. Consequently, the film appears

986 A29-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.327


F. Duan and J.-J. Wang

Flection

c̄r

c̄r – 0.5c′
r

Deflection

(b)(a)
1.0

Baseline
Example 1
Example 2

1.00

0.95

0.90

0.85

C
o
ef

fi
ci

en
t 

c r
 (

t)

0.80

0.8

0.6

0.4

[y
rm

s]
t∗

0.2

0 2

s/D
4 0 5 10 15

Time t (s)

20 25

c′
r

c̄ r
 +

 0
.5

c′ r

Figure 11. Extraction of the flection state and the deflection state during the flutter of the L/D = 4.0 film
based on the short-time fluctuation characteristics. Captions for panels (a) and (b) are the same as those for
figure 6(a) and 6(b), respectively.

fairly straight without conspicuous second-order deformation, and only small-amplitude
aperiodic deflection flutter can be perceptible (refer to the inset in figure 9a).

The distribution characteristics of velocity fluctuations can be properly elucidated by
the vortex dynamics. For the flection state, the vortices are formed on the film so that the
film impedes the interaction between the vortices; the magnitude of streamwise fluctuation
urms/U∞, which is closely related to the formation of the vortices (Williamson 1996), is
thus lower in comparison with the deflection state (figures 7e and 7f ). The magnitude of
the vertical fluctuation vrms/U∞ is demonstrated to increase with the strength and spatial
correlation of the large-scale wake vortices (Govardhan & Williamson 2001; Bourgoyne,
Ceccio & Dowling 2005), since more intense alternating vertical velocities are created
by a stronger vortex shedding. Hence, once the vortices are released into the wake, the
regular large-scale vortices in the flection state induce higher vrms/U∞ in preference to the
irregular vortices in the deflection state (figure 7g). Likewise, in light of the more regular
vortex shedding in the flection state, the dominant frequency of the wake identified from
the PSD of the vertical velocity fields aligns with the vortex shedding frequency during
the flection state (table 3).

The above analyses discuss the mechanisms accountable for the hybrid flutter of the
L/D = 3.0 film, which also adeptly holds for the hybrid flutter of the L/D = 2.5 film
(figure 2a). However, as the film length increases up to L/D = 4.0, the vortex dynamics
manifest distinctions from those observed in L/D = 3.0 and L/D = 2.5, especially for
the deflection state. Here, the deflection and flection states of the L/D = 4.0 film are
recognized by cross-correlation of the normalized y-directional short-time fluctuations
[yrms]∗t of the film as well. A short-time fluctuation [yrms]∗0 depicting the typical deflection
state of the film serves as the baseline for cross-correlation (figure 11a), and the resulting
correlation coefficients, cr(t) = Corr([yrms]∗0, [yrms]∗t ), are shown in figure 11(b). In
contrast to L/D = 3.0, here, a higher cr suggests the film flutter is dominated by the
deflection mode (the light green region in figure 11b), whereas a lower cr corresponds
to the flection flutter of the film (the light red region in figure 11b), since the baseline
is selected to represent the typical deflection state (figure 11a). In figure 11(a), example
1 with cr = 0.998 (green cross marker in figure 11b) showcases an identified short-time
fluctuation [yrms]∗t dominated by deflection, while example 2 with cr = 0.865 (the red
plus marker in figure 11b) an identified [yrms]∗t dominated by flection. In order to further
ensure the precision of the pattern recognition, we omit the data corresponding to
c̄r − 0.5c′

r < cr < c̄r + 0.5c′
r and exclusively utilize the data that satisfies cr ≥ c̄r + 0.5c′

r
(deflection state) or cr ≤ c̄r − 0.5c′

r (flection state) for conditional statistics (figure 11b).
The velocity fluctuations, urms/U∞ and vrms/U∞, from the conditional statistics of the
flection data and deflection data are compared in figure 12. The vortex dynamics during
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Figure 12. Comparison of the velocity fluctuations of the deflection state and the flection state for the film of
L/D = 4.0. Captions for panels (a–g) are the same as those in figures 7(a) to 7(g) in a one-by-one manner.

the L/D = 4.0 film’s flection flutter and deflection flutter are revealed by LCS in figures 13
and 14, respectively. Some additional information on the vortex evolution is provided by
the vorticity fields in figure 15.

The primary statistical characteristics for L/D = 4.0 (figures 12a to 12d) are similar to
those for L/D = 3.0 (figures 7a to 7d), except for the distribution of urms/U∞ for the film’s
flection state (figure 12b). As clarified by figure 12(e), the streamwise variation of the slice
maximum urms/U∞ for the flection state undergoes a significant secondary growth so that
two extrema appear on the curve. The first extremum at x/D = 3.11 means the formation of
the large-scale vortices against the film surface, as demonstrated by the evolution of LCS
for the flection state in figure 13. Hence, the vortex formation length for the flection state
of L/D = 4.0 is determined as Lf = 3.11D. However, the secondary growth of urms/U∞
cannot be directly interpreted by LCS since no marked structure is resolved by FTLEs, so
we attempt to seek the mechanism from the vorticity fields. Figures 15(a) to 15(c) present
three successive vorticity fields during the film’s flection flutter, which have a one-by-one
correspondence to the LCS shown in figures 13(b) to 13(d). The large-scale vortices, V

1
and V⊕

1 , exhibited in the vorticity fields accord well with those identified from the LCS.
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Figure 13. The FTLE fields reveal the evolution of the large-scale LCS during the flection flutter of the film
with L/D = 4.0 in approximately one period of the flow field (refer to table 3). The time interval between two
adjacent panels is �t = 1/400 s. Here V⊕

1 and V⊕
2 denote the anticlockwise vortices evolved from the shear

layer on the lower side of the cylinder, while V
1 and V

2 denote the clockwise vortices evolved from the shear
layer on the upper side of the cylinder. Panel (i) presents the time trace of the film’s trailing edge, in which the
eight red points on the trace from left to right correspond to the film motion in panels (a–h), respectively. The
time coordinate in panel (i) is normalized by the dominant period of the vortex shedding (table 3). The yellow
dashed arrows in panel (e) schematically show the directions of forces exerted by the large-scale vortices on
the different positions of the film.

Furthermore, it is also noticeable from the vorticity fields that two small-scale vortices
are formed at the trailing edge of the film. These two small-scale vortices are not the
commonly thought trailing-edge vortex that is generated due to the motion of the film’s
trailing edge. For instance, in the experiment of Hu, Pan & Wang (2014), where a cylinder
with a flexible film is forced to heave periodically in the free stream of a water tunnel, a
clear trailing-edge vortex with a comparable size to that of the primary vortex is induced
by the active downward or upward motion of the film’s trailing edge. Besides, for the film
of L/D = 5.0 in the present investigation, a trailing edge vortex is formed from the shear
layer induced by the motion of the trailing edge towards the negative x direction (§ 3.5.1).
Hence, a vortex is considered a trailing-edge vortex because its formation is directly linked
to the motion of the trailing edge. The two small-scale vortices in figures 15(a) to 15(c) are
formed by the vorticities peeled off from the large-scale vortices, which can be ascribed to
the entraining of the shed vortex V⊕

1 to the developing vortices V
1 and V⊕

2 .
The periodic formations of the large-scale vortices on the film of L/D = 4.0 exert forces

with opposite directions on the different positions of the film, as sketched by the yellow
arrows in figure 13(e), which, therefore, lead to the flection deformation of the film in
figure 13( f ). The moment at which one vortex is formed while the other vortex is just
released into the wake corresponds to the maximum vertical displacement of the trailing
edge (figures 13c and 13f ). The flection deformation undergoes a pseudoperiodic variation
with the movement of the large-scale vortices against both the film’s surfaces (figures 13a
to 13h), thus a pseudoperiodic flection flutter of the film (figure 13i). This mechanism
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for the flection flutter of the L/D = 4.0 film is the same as that for the L/D = 3.0 film
mentioned above. This shared mechanism arises from the fact that forces with opposite
directions exerted on different positions of the film are the necessary condition for the
flection deformation (the second-order mode of a cantilever beam) (Piersol & Paez 2010).

The vortex dynamics underlying the deflection flutter of the L/D = 4.0 film exhibit
distinct differences from that of the L/D = 3.0 film. For L/D = 3.0, as described
above, despite the irregular vortex shedding during the deflection state, the presence of
an oscillatory wake and alternate formations of large-scale vortices remain discernible
from the LCS and vorticity fields (figures 9 and 10). However, as the film of L/D = 4.0
adopts deflection flutter, the oscillatory characteristic is absent from the wake (figure 14).
The most prominent phenomenon in the flow field is the approximately symmetric
evolution of the upper and lower shear layers along the film until a pair of vortices are
shed downstream the trailing edge of the film, as exemplified by the vortex pairs P1 and
P2 enclosed within dash–dotted boxes in figure 14. In this situation, the film enveloped by
the shear layers keeps a relatively straight state without an apparent flection, owing to the
lack of alternating forces exerting on it. After the symmetric shedding, there is a strength
difference between the two vortices, giving rise to a subsequent competition between them.
The stronger one will prevail in the wake (figures 14d and 15d), evolving downstream into
a large-scale vortex, as shown by the vortex V⊕ within the green dash–dotted circle in
figures 14 and 15. During the approximately symmetric extension of the separated shear
layers along the L/D = 4.0 film, they exhibit obvious local instability before reaching
the trailing edge, as highlighted in figures 14(e) to 14(h) by dashed boxes B1 and B2.
By amalgamating insights from previous experiments of separated shear layers (Unal
& Rockwell 1988; Prasad & Williamson 1997), we consider that this identified local
instability of the shear layers is an amplification of the ‘separated shear-layer instability’
developing from the action of the K–H mechanism. The spatial and temporal scales of
the ‘shear-layer instability’ are usually pretty small so that it cannot be perceived from
the PIV measurement with a large field of view. For the case of L/D = 4.0 in the present
experiment, however, the visible occurrence of the local instability associated with the
shear-layer instability is ascribed to the presence of the long enough flexible film and its
deformation being small enough, which stabilizes the separated shear layers globally but
allows the small-scale shear-layer instability to undergo significant amplification during
the extension of shear layers along the film. Otherwise, the shear-layer instability would
be concealed by the formation of large-scale vortices due to the shear layers rolling up,
which is deemed to be the global instability of the shear layer, or rather the primary wake
instability (Unal & Rockwell 1988), as observed in the deflection state of the L/D = 3.0
film (figure 9). Thus, the deflection flutter of the L/D = 4.0 film and the approximately
symmetric development of the separated shear layers establish a mutually supportive
interaction (figure 14). When the separated shear layers undergo global instability and
alternately roll up to large-scale vortices on the film, the film will adopt the pseudoperiodic
flection flutter (figure 13).

The vorticity fields corresponding to LCS in figures 14(e) and 14( f ) are presented in
figures 15(e) and 15( f ), respectively, where the markers B1 and B2 in these figures have
the same meaning. One can see that the visible occurrence of the local instability is
accompanied by the vorticity concentration in the shear layers, which conforms to the
characteristic of shear-layer instability described by Unal & Rockwell (1988), that is, the
coalescence of small-scale vortices. As the vorticity concentrations convect and reach the
trailing edge of the film, the approximately symmetric shedding of the vortex pair ensues.
This local vorticity concentration is similar to that observed in the shear layers of jet flow,
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Figure 14. The FTLE fields reveal the evolution of the LCS during the deflection flutter of the film with L/D =
4.0. The time interval between two adjacent panels is�t = 1/400 s. The dash–dotted boxes P1 and P2 highlight
the approximately symmetric evolution of the two separated shear layers. The dashed rectangular boxes B1 and
B2 highlight the local instability of the shear layers. Marker V⊕ denotes the large-scale anticlockwise vortex in
the wake. (i) The time trace of the film’s trailing edge, in which the eight red points on the trace from left to
right correspond to the film motion in panels (a)–(h), respectively. In panel (a), the red pentagram marker at
L(x/D = 3, y/D = 1) denotes the probe used to extract the streamwise velocity signal in the shear layer, while
the purple triangle marker at L(x/D = 4.67, y/D = 0) denotes the probe used to extract the vertical velocity
signal in the wake.
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Figure 15. Representative instantaneous spanwise vorticity fields, ω∗
z = ωzD/U∞, for the film of L/D = 4.0.

(a–c) For flection state, corresponding to LCS in figures 13(b) to 13(d), respectively. Vortices V⊕
1 , V

1 and V⊕
2

are the same as those in figure 13, while vortices V⊕
s and V

s are small-scale vortices. (d–f ) For deflection
state, corresponding to LCS in figures 14(d) to 14( f ), respectively. Markers P1, P2, B1, B2 and V⊕ have same
meaning as those in figure 14.
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Figure 16. Frequency characteristics for the case of L/D = 4.0. (a) Continuous wavelet transform of the
streamwise velocity signal extracted from the shear layer at L(x/D = 3, y/D = 1), the location of the
pentagram in figure 14(a). The time coordinate is normalized by the dominant period of the flow field (table 3).
(b) The PSD of the vertical velocity signal extracted at L(x/D = 4.67, y/D = 0) in the wake, the location of
the triangle in figure 14(a).

where a series of vortices are formed in and develop along the shear layers until being
released, irrespective of axial (Gharib, Rambod & Shariff 1998) or transverse jets (Iyer &
Mahesh 2016), which also means local instability of the shear layers.

The small-scale shear-layer instability in the cylinder wake is not a persistent
phenomenon but a short-time event with a frequency larger than the vortex shedding
frequency by an order (Prasad & Williamson 1997). Thus, the detailed investigation
into the development of the shear-layer instability requires long-term high-frequency
sampling for the shear layer. Limited by the sampling frequency and sampling time in
the present PIV measurement (§ 2), we cannot resolve the frequency characteristic of
the shear-layer instability itself in the present study. But with the aid of the continuous
wavelet transform (CWT), we can determine the frequency and the timing of the
amplified visible local instability of the shear layer, as shown in figure 16(a). The CWT
allows for the resolution of a non-stationary signal in both time and frequency domains
simultaneously. Following the experimental study on shear-layer characteristics of Prasad
& Williamson (1997), here, the streamwise velocity signal extracted in the shear layer
at L(x/D = 3, y/D = 1) is deemed as the representative signal of the shear layer, as
signified by the pentagram in figure 14(a). The CWT is then applied to this signal to
obtain the time-frequency spectrum in figure 16(a). The morse wavelet is selected as
the basis to perform CWT for the extracted velocity signal (Olhede & Walden 2002); in
addition, the CWT function uses L1 normalization so that the magnitude in the outputted
time-frequency spectrum is equal to the amplitude of oscillatory components in the
inputted data at different scales (Lilly 2017).

In the time-frequency spectrum for the shear layer signal, the frequency of f0 = 59.8 Hz
corresponds to the regular vortex shedding associated with the flection state (figure 16a).
This frequency is identified from the PSD of the vertical velocity in the wake, as shown in
figure 16(b). In comparison with the deflection state (figure 14), the vortex shedding during
the flection state is more regular (figure 13), thus, a more prominent peak in the PSD.
As a result, the high-magnitude regions in the CWT spectrum close to f0 roughly mean
the occurrence of the regular alternate vortex shedding involving the flection flutter of the
film. The spectrum between the two grey vertical dotted lines in figure 16(a) corresponds
to the flow evolution during the deflection flutter in figure 14, from which one can see
that the dominant frequency in this region is approximately 29 Hz, the frequency for
the local instability of the shear layer. For different times, the frequencies of the local
instability exhibit slight variations, for example, the frequency of approximately 26.5 Hz
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in t/T0 = 15 ∼ 20. Overall, the local instability of the shear layer covers a frequency
band of approximately 25 Hz to 37 Hz. It should be emphasized again that this frequency
band represents the structures evolved from the amplified shear-layer instability (the local
instability), rather than the small-scale shear-layer instability itself. This frequency band
is also captured by the PSD but with less prominence than that of regular vortex shedding
(figure 16b). If without the assistance of the CWT spectrum, we could not link this
frequency band to the local instability of the shear layer, demonstrating that the CWT
is a powerful tool for this hybrid motion of the film with a non-stationary nature.

3.4. Temporal and spatial characteristics of periodic flapping
In the present experiment, the films of L/D � 5.0 stand out with the concise and rhythmic
pattern of their periodic flapping (figure 17a), of which the flapping cycle can be easily
adjusted by altering the thickness or the streamwise length. Thus, this periodic flapping
has an attractive prospect in practical applications, for instance, energy harvest with a
flexible piezoelectric film (Yu & Liu 2015). Moreover, this periodic flapping shows an
intuitive resemblance to the Kármán gaiting of a trout fish in the vortex street of a cylinder
(Liao et al. 2003a; Beal et al. 2006; Akanyeti & Liao 2013b). So, can the underlying
relationship between the two be established mathematically and thus serve as a physical
bond for further exploration of this kind of undulatory locomotion? Here, we will analyse
the mathematical and physical characteristics of the periodic flapping of the film with the
typical length of L/D = 5. Figure 17(b) shows the phase-averaged deformation sequence
of the film and the corresponding spatiotemporal distribution of the curvature κ , where the
curvature κ is normalized by the cylinder diameter D as κ∗ = κD. In time, the curvature
periodically evolves, while in space, it is mainly concentrated in the range of s/D = 2 ∼ 4
and the anterior portion of the film, as depicted in figure 17(bii). The curvature at s/D = 3
climbs to the maximum of κ∗ ≈ 1 when the film exhibits the most significant flection, as
illustrated by the yellow and green snapshots in figure 17(bi). The dimensionless curvature
κ∗ ≈ 1 suggests the curvature radius at s/D = 3 is equal to the cylinder diameter D. The
smallest curvature distributions coincide with the fairly straight shapes of the film, as
illustrated by the blue and red snapshots in figure 17(bi). The figure-eight trajectory of
the trailing edge is the result of the fact that the flapping frequency in the streamwise
direction (x direction) is twice of that in the vertical direction (y direction) (refer to the
reconstructed phase portraits in § 3.5.2), which is further ascribed to the symmetry of the
vortex shedding in the coupling process, essentially (refer to § 3.5.1 and supplementary
movie S4).

To detect the dominant kinematic characteristics of the film flapping, we adopt POD
to the vertical deformations in the curvilinear Lagrangian coordinate s (Pan, Wang &
Wang 2013; Bingham, Morton & Martinuzzi 2018). The first two POD modes account
for more than 99 % of the total energy, indicating the film flapping can be almost entirely
represented by the first two modes from the view of energy. The first mode with a straight
shape portrays the deflection around the leading edge while the second mode with a
cambered shape depicts the large-curvature flection (figure 17c). Evidently, the significant
curvature distributed over the range of s/D = 2 ∼ 4 on the film is contributed by the
second mode, whereas the curvature concentration in the anterior portion reflects the
joint influences of both the two modes. We find that the first two POD modes comply
approximately with the first two intrinsic modes of a cantilever beam solved from the
Euler–Bernoulli equation, respectively (figure 17c) (Piersol & Paez 2010), which hints
that the flapping of the film still tends to be a linear dynamical process in terms of
the curvilinear coordinate s, despite its considerable deformation. This linear property
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Figure 17. Kinematic analyses for the periodic flapping of the film with L/D = 5. (a) Film flapping in
approximately one cycle captured by long-exposure imaging with an exposure time of 1/30 s, where the
film is illuminated by a double pulsed laser with a frequency 800 Hz and straddling time of 135 μs. (bi)
Phase-averaged deformation of the film in one cycle. The curvature distributions for four typical phases are
shown by vectors, and the figure-eight trajectory of the trailing edge by the dashed line. (bii) Spatiotemporal
evolution of the curvature on the film in one phase-averaged flapping cycle. (c) Comparison of the first two POD
modes of the film flapping in the y direction and the modes of a cantilever beam solved by the Euler–Bernoulli
theory (Piersol & Paez 2010). (di) Spatial amplitude of the first complex empirical orthogonal function (CEOF)
mode, ζ(s), characterizes the envelope of the film flapping in y direction. (dii) Sequence of the film flapping in
the y–s space in one cycle reveals the physical meaning of ζ(s). (diii) A comparison between the envelope of the
film flapping (black solid line) and that of the Kármán gaiting of a trout (red dash–dotted line) (Akanyeti & Liao
2013b) in the range of s/L = 0.5 ∼ 1; here, unit-energy normalization is applied to both the envelopes. (ei) The
temporal phase of the first CEOF mode, ψ(t). (eii) Global PSD derived from the Fourier mode decomposition
of the film flapping in the y direction shows the dominant frequency f0 = 30.8 Hz (Wang et al. 2021). ( f i)
Spatial phase of the first CEOF mode, φ(s), with a linear fitting in the range of s/D = 2.5 ∼ 5 (goodness of fit
r2 > 0.995). (f ii) A comparison between the spatial phase of the film flapping (black solid line) and that of the
trout’s Kármán gaiting (red dash–dotted line) (Akanyeti & Liao 2013b). In this subpanel, the light green shade
represents the mean squared error given by Akanyeti & Liao (2013b). For comparability, the phase curves are
rescaled with their maximum, namely, φ∗ = φ/φmax, and for the present data, φmax is chosen as the maximum
of the linear fitting in panel ( f i).

springs from the inextensibility of the film during its flapping, which makes the flapping a
large-bending but trivial-strain motion, or rather, a geometrically nonlinear but physically
linear process. The first two intrinsic frequencies of the film are 2.04 Hz and 12.77 Hz,
respectively, whereas the dominant frequencies of its first two POD modes are both
30.8 Hz, identical to the dominant frequency of the flow field (refer to figure 17e and
table 3). Consequently, a complete coupling state is achieved between the film and the flow
field, where the vortex shedding dictates the film flapping so that what the film undergoes
is a forced process (see § 3.5.1 for details).

The undulation of an isolated flexible film with normal configuration in the uniform
flow is well described by the travelling wave with an increasing spatial envelope from
the leading edge to the trailing edge (Zhang et al. 2000; Shelley et al. 2005; Michelin,
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Llewellyn Smith & Glover 2008). The flapping of an inverted flexible film in uniform flow
can be deemed as a standing wave with its node located at the pinned trailing edge, where
the different points on the film have the same phase (Kim et al. 2013). Intuitively, in the
present study, the flapping of the film with L/D = 5.0 appears akin to the travelling-wave
undulation of the isolated film with the normal configuration; so, can it also be described
by a wavefunction, is it really a simple travelling wave? To seek for an answer, we analyse
the vertical flapping of the film with the aid of complex empirical orthogonal function
(CEOF) to extract the undulating characteristics (Michelin et al. 2008). The CEOF is a
data-driven approach in the complex field, which is effective in detecting the propagating
components of an undulating process (Barnett 1983; Hannachi, Jolliffe & Stephenson
2007; Esquivel & Messina 2008), such as the interaction of the monsoon with the pacific
trade wind (Barnett 1983), the flapping of an isolated flag (Michelin et al. 2008) and the
undulation of a flying snake (Yeaton et al. 2020).

After applying CEOF to the vertical motion of the film y(s, t), we obtain the most
energetic spatial amplitude ζ1, temporal phase ψ1 and spatial phase φ1 of y(s, t), as
illustrated in figures 17(d) to 17( f ), respectively (see Appendix C for details of CEOF),
which describe the undulating characteristics of the film flapping together. The spatial
amplitude ζ1 (figure 17di), which measures the inhomogeneity of the flapping in space
and geometrically portrays the shape of the envelope (figure 17dii), monotonically grows
from the leading edge to the trailing edge. The temporal phase ψ1 (figure 17ei), whose
slope amounts to the circle frequency of the present flapping mode (figure 17eii), linearly
increases with time t with a constant slope of dψ1/dt = 2πf0 Hz, representing the stable
periodicity of the coupling system. The spatial phase φ1 remains unchanged in the region
of s/D � 1, dφ1/ds → 0, suggesting the flapping in this spatial region can be regarded
as a standing wave-like motion (the region shown by blue shadow in figure 17f i). The φ1
then rises gradually with s increasing (away from the leading edge) and has a linear trend
in the region of s/D = 2.5 ∼ 5, whose spatial growth rate is dφ1/ds ≈ 23 rad m−1, as
fitted by the green dashed line in figure 17( f i), indicating the propagation of a travelling
wave along the film in this region. More precisely, the bending wave with a frequency
of dψ1/dt = 2πf0 Hz and a wavenumber of dφ1/ds ≈ 23 rad m−1 (the corresponding
wavelength is approximately 13.66D) propagates along the film towards the trailing edge
at a phase speed of 0.84U∞, viz., (dψ1/dt)/(dφ1/ds) = 8.4 m s−1, higher than the phase
speed of the flapping of an isolated film (approximately 0.66U∞ in Shelley et al. (2005)).
The bending wave proceeds from the interaction between the film and the large-scale
vortices (refer to § 3.5.1), and then propagates downstream along the film, which is a
passive wave so that its phase speed of 8.4 m s−1 will not exceed the free stream velocity
of U∞ = 10 m s−1. To sum up, the periodic flapping of the film in the cylinder wake
incorporates both the standing wave-like and the travelling wave-like motions at the same
time; in terms of the mathematical description, it differs from both the pure travelling-wave
undulations of the film with normal configuration (Zhang et al. 2000; Shelley et al. 2005;
Michelin et al. 2008) and the pure standing-wave flapping of the inverted film (Kim et al.
2013; Goza et al. 2018; Ojo et al. 2022). In this sense, the flapping of the film with
L/D = 5.0 (figure 17a) is a new kind of flow–structure coupling pattern.

As we compare the spatial phase of the film flapping with that of the Kármán gaiting
of the rainbow trout (Akanyeti & Liao 2013b), the two present an astonishing resemblance
(figure 17f ii). They both undulate like a standing wave in the first 20 % of their lengths
(s/L � 0.2), then experience a gradual increase of the spatial phase φ along the curvilinear
coordinate s, and finally exhibit the travelling-wave flapping in the last 50 % of their
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lengths (s/L � 0.5), in which the φ tends to a linear growth. For the temporal phase of
the Kármán gaiting, due to the complete synchronization between the gaiting and the
vortex shedding (Liao et al. 2003a; Liao 2007; Akanyeti & Liao 2013b), its temporal
phase ψ is bound to feature a linear growth with time t, which agrees perfectly with
the ψ for the film flapping in figure 17(e). Additionally, in the present experiment, the
film is clamped to the cylinder rear, thereby without a vertical degree of freedom at the
leading edge (see experiment set-up in § 2), owing to which there is a distinct discrepancy
of the envelopes between the film flapping and the Kármán gaiting in the first 20 %
region (s/L � 0.2). However, in the region occupied by the travelling wave (s/L � 0.5),
both of their envelopes have a monotonic increasing trend and conform to each other, as
compared in figure 17(diii). We emphasize here that the φ, ψ and ζ extracted by CEOF
represent the inherent characteristics of the data, which means that the similarities between
the film flapping and the Kármán gaiting in terms of the three parameters are not an
episodic phenomenon or a superficial attribute. These inherent similarities are expected
to act as underpinning mathematical support for us to extend the methods and physical
mechanisms developed and dug out from the film flapping to the biomechanics. Further,
synthesizing the resemblance between the small-amplitude aperiodic flutter of the film and
the ‘entraining state’ of fish (§ 3.1), we thus consider the film fluttering and flapping in the
periodic vortices as passive bionic motion. Another point particularly worth mentioning
here is that the Reynolds number in our experiments, Re ∼ O(104), lies in the same order
of magnitude as that in the Kármán gaiting of a real fish (Liao et al. 2003a; Beal et al.
2006).

3.5. Evolution of flow structures and energy during the periodic flapping

3.5.1. Flow structures
During the periodic interactions between the flapping of the film with L/D = 5.0 and the
wake of the cylinder, two pairs of vortices are shed into the wake in one period, as a 2P
vortex-shedding mode, which are, respectively, formed in the upstroke and downstroke of
the film flapping, as shown by the LCS revealed by FTLEs in figure 18. In contrast to
the FTLE fields for L/D = 3.0 and L/D = 4.0, the FTLE fields here are resolved from
the reconstructed velocity fields based on phase-lock POD. We cannot directly implement
the POD algorithm to the whole original velocity fields in the case of L/D = 5.0, due
to the large-scale interference of the film’s flapping in the flow fields. Therefore, an
alternative scheme, the phase-lock POD, is proposed, as detailed in Appendix D, with
which a reconstruction of the velocity fields using the POD modes accounting for 85 % of
the total energy is achieved to suppress the noise.

In figure 18(a), at the initial moment t0, the film is downward curved and in the stage
of downstroke (refer to the phase portrait of the flapping in the y direction in § 3.5.2), and
meanwhile, the shear layer separated from the upper side of the cylinder extends towards
downstream alongside the film. Next, the shear layer begins to roll up at s/D ≈ 2.5 above
the film at moment t1 until a clockwise cylinder vortex, V

C , is fully formed at moment t3
(figures 18b to 18d). Besides, at the stage of t2 ∼ t3, the trailing edge of the film moves
in the −x direction (refer to the phase trajectory of the trailing edge in the x direction in
§ 3.5.2), at which the trailing-edge velocity is opposite to the free stream, thus inducing
a strong shear layer downstream of the trailing edge (moment t3 in figure 18d). The
trailing-edge shear layer rolls up to an anticlockwise trailing-edge vortex, V⊕

T . Finally, the
vortices V

C and V⊕
T comprise the vortex pair in the downstroke stage (figures 18d and 18e).
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Figure 18. The FTLE fields reveal the evolution of the LCS in one flapping cycle during the lock-in interaction
between the L/D = 5.0 film and the flow fields. The time interval between two adjacent panels is�t ≈ 1/9T0,
where the flapping period T0 = 3.25 × 10−2 s. In this figure, superscripts and subscripts are used to signify
the vortex characteristics, where V

C denotes the clockwise vortex evolved from the shear layer of the upper
side of the cylinder and V⊕

T denotes the anticlockwise vortex evolved from the trailing-edge shear layer. The
vortices V

C and V⊕
T comprise the vortex pair in downstroke together. Likewise, the anticlockwise cylinder

vortex V⊕
C and the clockwise trailing-edge vortex V

T comprise the vortex pair in upstroke together. The vortex
pair marked by the grey dashed circles in panels (a) and (b) are formed in the upstroke of the last period.

After being formed, the cylinder vortex V
C stretches and attaches to the upper surface of

the film to move downstream (figures 18d to 18f ). Within this period, the cylinder vortex
continuously interacts with the film until it is released into the wake, which thus brings
about energy transfer to the film, and we will discuss this process in detail in § 3.5.3.
Afterwards, the downstroke vortex pair consisting of V

C and V⊕
T convects downstream in

the wake below the wake centreline (figures 18g to 18i). At the stage of t4 ∼ t7 (figures 18e
to 18h), the film executes upstroke (see the phase portrait in § 3.5.2), which yields a vortex
evolution mirroring that in the downstroke. The shear layer separated from the lower
side of the cylinder extends downstream alongside the film, and then rolls up to form
the anticlockwise cylinder vortex, V⊕

C (from moment t5 to moment t6). In the upstroke,
the trailing edge of the film moves in the −x direction again (see the trailing-edge phase
trajectory in § 3.5.2) and induces a trailing-edge shear layer likewise but with an opposite
vorticity orientation to that in the downstroke (figure 18h). The current trailing-edge shear
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layer then rolls up to form a clockwise trailing-edge vortex V
T (figures 18h and 18i).

The vortices V⊕
C and V

T comprise the upstroke vortex pair together, which will convect
downstream above the wake centreline after the stretched cylinder vortex V⊕

C is shed into
the wake from the trailing edge, as illustrated by the vortex pair marked by grey dashed
circles in figures 18(a) and 18(b), the upstroke vortex pair in the last period, which is
similar to flow structures after t8 due the periodicity of the system. The generation of the
trailing-edge vortex in the present study resembles that in the flapping of an isolated film
in uniform flow. For the isolated film, at a low Reynolds number, the shear flow from the
trailing edge leads to a series of K–H vortices (Zhang et al. 2000; Jia et al. 2007). In
comparison, with the increase of Reynolds number and the attendant progressively severe
interactions between the film and flow field, the shear flow rolls up to a large-scale vortex,
the trailing-edge vortex, which then convects in the wake with the pattern of a Kármán
vortex (Connell & Yue 2007; Alben & Shelley 2008; Huang & Sung 2010; Shelley &
Zhang 2011; Uddin, Huang & Sung 2015).

Throughout the coupling process in figure 18, the film elegantly slaloms pass the vortices
gap instead of transversely intersecting the vortices, by virtue of which the kinetic energy
of the fluids is converted to the bending potential energy and the flapping kinetic energy
of the film itself. In the following sections, our focus lies in understanding the exchange of
energy between the flowing fluids and the film.

3.5.2. Motion reconstruction and energy distribution solving
In this section, we will discuss how to solve the energy distribution on the film with L/D =
5.0 as it interacts with ambient fluids. Ignoring the tensile strain in the film, the force acted
on the film by the fluids generates two effects (Jia 2014): moving the film and deforming
the film, which corresponds to the kinetic energy Ek and the bending potential energy Eb
carried by the film, respectively. In the curvilinear Lagrangian coordinate s, the kinetic
energy Ek and the bending potential energy Eb in the film are, respectively,

Ek(t) =
∫

s

1
2
ρsh

(
∂Xi

∂t
·∂Xi

∂t

)
ds, i = 1, 2, (3.10)

Eb(t) =
∫

s

1
2

B·κ(s, t)2 ds, (3.11)

where Xi(s, t) = (x(s, t), y(s, t)) is the position of the film, index i = 1, 2 for the x and y
directions in Cartesian coordinates, respectively. In (3.10) and (3.11), the two integrands,
denoted as

ek(s, t) = 1
2
ρsh

(
∂Xi

∂t
·∂Xi

∂t

)
and eb(s, t) = 1

2
Bκ(s, t)2, (3.12a,b)

correspond to the kinetic energy density and the bending potential energy density,
respectively. Here, under the inextensible condition (∂Xi/∂s)·(∂Xi/∂s) = 1, we have the

curvature of κ =
√
(∂2Xi/∂s2)·(∂2Xi/∂s2) in the curvilinear Lagrangian coordinate s.

The solution for the energy of the film from the experiment data entails the first
temporal derivatives of the position Xi(s, t) to time t and the second spatial derivatives
of Xi(s, t) to space s (see (3.12a,b)). Note that the position of the film, Xi(s, t), is the
direct value measured in the experiment and inevitably incorporates measurement noise,
thus a set of discrete noisy data. Unfortunately, the numerical derivative for the noisy
data is such an ill-posed problem that arbitrarily ‘tiny’ noise in the input data would
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Figure 19. Characteristics of the L/D = 5.0 film flapping as a support for the motion reconstruction and
energy solving. (ai) Global PSD for the film motion in the x direction obtained by applying the Fourier
mode decomposition to the motion (Wang & Wang 2021b), (aii) sequence of the film motion in the x–s
plane in one flapping period T0 (here, x′ = x − x̄). (b) The same as (a) but for the motion in the y direction.
(c) Second spatial derivatives of the Fourier coefficients an

x and bn
x determined by the quintic smoothing spline

for the reconstructed x-directional motion. (d) Second spatial derivatives of the Fourier coefficients an
y and bn

y
determined by the quintic smoothing spline for the reconstructed y-directional motion.

deliver arbitrarily ‘huge’ errors in the approximate numerical derivatives as the order of the
derivation accumulates (Qian et al. 2006b; Nayak 2020). Even for the second derivative of
experimental data, the direct differentiation or local least squares cannot yield gratifying
results (refer to Appendix E). In the grip of this fact, we are unable to gain the correct
results of the energy by a direct calculation of (3.10)–(3.12a,b) using the experimental
data Xi(s, t), even if our measurement is accurate enough with only very small noise
in the data. Therefore, we consider performing a spatiotemporal reconstruction for the
original experimental data in order to fit Xi(s, t) to an analytical function with respect to
time t and space s, denoting the reconstructed result as X̃i(s, t). The film flapping is a
periodic motion, and its global spectra for x component, X1 = x(s, t), and y component,
X2 = y(s, t), include several discrete frequency-multiple harmonic peaks as shown in
figures 19(a) and 19(b), respectively, indicating the flapping is not a simple harmonic
oscillation. Accordingly, the reconstructed motion, X̃i(s, t), ought to retain the harmonic
information as much as possible. In light of the above analysis, we employ a Fourier series
to fit the motion of each element on the film. On the basis of the nonlinear least square
fitting with the Levenberg–Marquardt algorithm (Hansen, Pereyra & Scherer 2013; Gavin
2023), the motion of the whole film Xi(s, t) is reconstructed to a Fourier series X̃i(s, t)
with its coefficients varying with the curvilinear coordinate s, as the following:

X̃i(s, t) =
Ni∑

n=0

[an
i (s) cos(nωt)+ bn

i (s) sin(nωt)], i = 1, 2. (3.13)

The reconstruction of the motion by a Fourier series allows us to truncate the series to
the target order Ni (see (3.13)). In the present study, it is expected that the information
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on the second strongest harmonic peak is captured by the reconstructed motion, X̃i(s, t).
Taking account of the fact that the harmonic frequencies in both the x and y directions
are integer multiples of the dominant frequency f0, as shown in figures 19(a) and 19(b),
we truncate the reconstructed motion in the x direction, X̃1(s, t), to the order N1 = 4
while that in the y direction, X̃2(s, t), to N2 = 3. The harmonics of higher orders are
disregarded due to their very low energy in the global spectra, which is close to or below
the energy of the low-frequency noise (figures 19a and 19b). According to the above
operations, Pearson’s correlation coefficient for each snapshot between the reconstructed
motion X̃i(s, t) and the original one Xi(s, t) surpasses 0.999 on average. The reconstructed
motion is then employed to solve the energy distributions on the film. Furthermore,
since the Fourier series-based reconstruction decouples the motion in terms of time t
and space s (see (3.13)), we can directly obtain the temporal derivatives of X̃i(s, t) via
the symbolic derivation of the trigonometric functions. Then, the reconstructed phase
portrait for the film motion is acquired, as shown in figure 20, where Ux = ∂X̃1/∂t and
Uy = ∂X̃2/∂t. In figure 20(a), the x-directional phase trajectories for both the points
s/D = 5 and s/D = 3 follow two coinciding phase trajectories within one flapping period
T0, which is elucidated by the symmetry of the film motion with respect to the x axis
(figure 17a), thereby establishing the dominant frequency for the x-direction motion as
2f0 (figures 19a,b). As a result, each point on the film goes through two identical motion
cycles in the x direction over one T0, corresponding to the upstroke and downstroke of
the film flapping, respectively. We note here that the subtle deviations between the two
coinciding trajectories for each point are ascribed to the fact that the film flapping in the
real-world experiment is not a perfectly periodic process but has slight differences in each
cycle. The reconstructed result effectively captures the subtle deviations in different cycles
of the film motion, thus highlighting the precision of our reconstruction using (3.13). The
phase trajectories in figure 20(a) are not symmetric, meaning a discernible distinction
exists in the film motion in the −x direction and +x direction, whereas the symmetrical
motion of the film along the y direction yields a central symmetrical phase portrait, as
shown in figure 20(b). From the leading edge (s/D = 0) to the trailing edge (s/D = 5),
the y-directional phase portrait stretches from a circle to an ellipse and finally appears as a
rounded rectangle, such that the entire phase portrait looks like a ‘soap bar’ located in the
Uy − y phase space obliquely. The phase portrait deviating from the circle is indicative of
the changes in the equilibrium positions and the occurrence of a distinct phase difference.
Note that this periodic flapping of the film includes two equilibrium positions situated on
opposite sides of the y = 0 axis, with one corresponding to the upstroke and the other
to the downstroke. Illustratively considering the motion of the trailing edge (s/D = 5), it
transits through the equilibrium positions of y/D = −0.9 in the downstroke and y/D = 0.9
in the upstroke at approximately t2 and t6, respectively (figure 20b). The anticlockwise
bending of each isochrone in figure 20(b) indicates the phase lag from the leading edge to
the trailing edge, which accords well with the spatial phase φ1 obtained from the CEOF
shown in figure 17( f ).

Now, the reconstructed motion is employed to solve the energy distributions on the film.
As the temporal derivative ∂X̃i/∂t has been determined with the symbolic derivations,
the distributions of the kinetic energy density are worked out by introducing the temporal
derivatives ∂X̃i/∂t into (3.12a,b), as shown in figures 21(a) and 21(b) for the x direction and
the y direction, respectively. Calculating the spatial derivatives of X̃i(s, t) is equivalent to
seeking the derivatives of the Fourier coefficients an

i and bn
i to s in essence, yet the Fourier

coefficients are not the known analytical functions or composite functions. Note that we
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Figure 20. Phase trajectories of the film motion obtained from the motion reconstruction (see (3.13)). (a) For
the motion of the points s/D = 5 and s/D = 3 in the x direction, where the bottom horizontal axis is for s/D =
5 and the top one for s/D = 3, both of them of the same scale. (b) Phase portrait characterizes the y-directional
motion of all the points on the film, where the curvilinear coordinate s/D is represented by the gradient colour
scale. The dash–dotted lines are isochrones, each of which indicates the phase distribution for the whole film
at a certain moment. The moments t0 ∼ t8 in panels (a) and (b) have a one-by-one correspondence to those in
figure 18.

should not fit the coefficients to a simple parametrical model, such as the polynomial
fitting, which would merely capture the appearance of the input data but without the
high-order varying information. In this sense, we have to apply numerical methods to
calculating the second-order derivative of the Fourier coefficients with respect to the
spatial coordinate s. However, regrettably, the coefficients an

i and bn
i also incorporate

noise so that their numerical higher-order derivatives will be ill-posed. Here, we utilize
the derivative method proposed by Epps et al. (2010), where the experimental data is
first used to solve an optimal quintic smoothing spline with Reinsch’s algorithm (Reinsch
1967, 1971; Ahlberg, Nilson & Walsh 2016), and then the derivative of the experimental
data is given by the analytic derivative of the quintic smoothing spline. This method has
been proved to be pretty effective for the first and second derivatives of experimental
data by previous studies (Truscott, Epps & Techet 2012; Mansoor et al. 2017; Castagna,
Mazellier & Kourta 2018). The details of solving the second spatial derivatives for the
Fourier coefficients using this method are given in Appendix E. In figures 19(c) and 19(d),
we present all the second spatial derivatives of the Fourier coefficients for the x direction
and y direction, respectively. Introducing these second spatial derivatives into (3.13) to
determine ∂2X̃i/∂s2, then, with the (3.12a,b), we obtain the distribution of the elastic
potential energy density on the film, as shown in figure 21(c).

3.5.3. Evolution of energy on the film
As the solutions for the kinetic and elastic potential energy entail the squares of the
velocity and the curvature, respectively (see (3.12a,b)), the distributions of the energy
density on the film will evolve with a period of 1/2T0, and thus undergo two entire
cycles in one T0 (figure 21). The two cycles are, respectively, tied to the downstroke
and the upstroke of the periodic flapping. Since all the infinitesimal mass elements on
the film move with the same dominant frequency (figures 19a and 19b), we can readily
perceive that the greater is the amplitude of an element, the higher its motion velocity,
and in turn, it will carry more kinetic energy. That is, the magnitude of the local kinetic
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Figure 21. Energy density distributions on the film over one flapping period T0. (a) Kinetic energy density in
the x direction, ek_x, with a contour interval of 1 mJ D−1. (b) Kinetic energy density in the y direction, ek_y, with
a contour interval of 5 mJ D−1. (c) Elastic potential energy density, eb, with a contour interval of 0.1 mJ D−1.
In panels (a–c), the cylinder diameter D serves as the unit length for the energy density in order to match with
the non-dimensional curvilinear coordinate s/D. The moments t0 to t8 correspond to those in figures 18 and 20
in a one-by-one manner.

energy density is directly proportional to the square of the local amplitude. Accordingly,
the kinetic energy density in the y direction, ek_y, monotonically and rapidly increases
from the leading edge to the trailing edge (figure 21b). Regarding the x direction, owing
to the contraction of the motion envelope at approximately s/D = 3.8 (figure 19aii), the
x-directional distribution of the kinetic energy density, ek_x, is relatively complicated,
which experiences increasing first in s/D ≈ 0 ∼ 3, then decreasing in s/D ≈ 3 ∼ 4, and
increasing again in s/D ≈ 4 ∼ 5 (figure 21a). Finally, two separate concentration areas of
ek_x occur, respectively, in the posterior portion (s/D = 4 ∼ 5) and the middle portion
(s/D = 2 ∼ 3) of the film (figure 21a). In virtue of the foregoing square relationship
between the kinetic energy and the amplitude, ek_x in the posterior portion far exceeds
that in the middle portion by an order. Moreover, as presented in figures 21(a) and 21(b),
the distributions of the kinetic energy density for different points on the film also shows
significant phase difference, which creeps up from the position of s/D ≈ 2 to the trailing
edge of the film, in agreement with the phase differences in the film motion (figure 17f ).
In one energy period, for example, t = 0 ∼ 1/2T0, ek_x distributed in the posterior portion
of the film undergoes two transitions from the local minimum to the local maximum but
with different peak values, corresponding to the asymmetric motions of the trailing edge
in the +x direction and the −x direction, respectively, as depicted by the phase trajectory
in figure 20(a).

The elastic potential density eb is proportional to the square of the local curvature κ (see
(3.12b)), so it exhibits concentration in the anterior (s/D ≈ 0 ∼ 1) and middle (s/D ≈
2 ∼ 4) portions of film (figure 21c). Under the clamped condition at the leading edge
of the film, its anterior portion shows a standing wave-like motion (figure 17f ), and this
portion of the film lacks direct interactions with the dominant flow structures in the flow
field (see the flow structures shown in figure 18). As such, the accumulation of elastic
energy in this portion is contingent upon the consumption of its own kinetic energy, akin
to that of an inverted film. It should be mentioned that the elastic energy accumulation
of the inverted film not only consumes its own kinetic energy, but continuously gains
energy from the flow field (Kim et al. 2013; Ojo et al. 2022). In contrast, the elastic energy
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accumulation in the middle region is mainly ascribed to the mutual interactions between
the film and the cylinder vortices, V

C and V⊕
C , as evidenced by the evolution of the LCS

in figure 18. One can see from figures 18(d) and 18(h) that the cylinder vortices V
C and

V⊕
C are completely formed exactly at the point of s/D = 3 on the film, which is also the

kernel position where the strongest elastic energy is concentrated in space (figure 21c).
When the cylinder vortex V

C is just formed at moment t3 in figure 18(d), the film is fairly
straight, and the distribution of the elastic energy along the entire film appears to be very
small accordingly (figure 21c). Then, as the cylinder vortex V

C evolves against the film
surface (figures 18d to 18f ), the elastic potential energy on the middle portion of the film
progressively accumulates until the maximum is attained at moment t5 (figure 21c).

By integrating the energy density along the curvilinear coordinate s (see (3.10) and
(3.11)), we then obtain the temporal variations of the kinetic energy (Ek_x and Ek_y), the
elastic potential energy (Eb) and the total mechanical energy (Et = Ek_x + Ek_y + Eb)
carried by the film in flapping, as depicted in figure 22(a). Owing to the existence of
the phase differences along the film, there is never a moment at which the film is not
bending or moving, which accounts for the phenomenon that the potential and kinetic
energy is always larger than zero in figure 22(a). The peak values of the kinetic and the
potential energy are Ek_x = 4.19 mJ, Ek_y = 30.80 mJ and Eb = 1.17 mJ with a ratio of
them amounting to 3.6 : 26.3 : 1, where Ek_y is considerably greater than the other two
by an order. We further identify that the significant phase differences between different
points on the film certainly induce a surprising phenomenon in the energy variation.
Specifically, the total elastic energy and the total kinetic energy carried by the film
exhibit in-phase variation over time, thoroughly different to the property of a classical
oscillation system, in which the total elastic energy and the total kinetic energy undergo
an antiphase evolution, for example, the flapping of an inverted film (Kim et al. 2013) as
well as the first-order vibration of a rod or beam (Piersol & Paez 2010). Moreover, the
variations of Ek_x and Ek_y appear almost antiphase, as evidenced by the occurrence of
the minimum Ek_y accompanied by the maximum Ek_x at approximately moments t3 and
t7+ in figure 22(a). Here, t7+ is used to denote a certain moment after but close to t7.
This phenomenon is the result of the fact that the maximum-amplitude position of the
y-directional motion is in close proximity to the equilibrium position of the x-directional
motion, as the comparison of the phase portraits for the x and y directions in figures 20(a)
and 20(b).

The variation in the total energy on the film reflects the mutual transfer of energy
between the film and the ambient fluids. From a holistic viewpoint, the increase of the total
energy Et corresponds to the film extracting energy from the flow field with the ambient
fluids doing positive work to the film (accelerating or deforming the film); conversely, the
decrease of Et is indicative of the film releasing energy to the flow field while the ambient
fluids do negative work (decelerating or unbending the film). The energy transfer process
can be further quantified by evaluating the power of the energy extracted and released by
the film. In figure 22(a), the difference between the minimum and maximum values of the
total mechanical energy is approximately �Et = 24 mJ over an energy period (1/2T0),
indicating the upper limit of the energy exchange between the film and the flow field is
24 mJ, where the kinetic energy (figure 22ai) and the elastic potential energy (figure 22aii)
account for 95.5 % and 4.5 %, respectively. Besides, it takes 0.3T0 for the film to extract
energy (e.g. t/T0 = 0.32 ∼ 0.62, approximate to t = t3 ∼ t5+) while 0.2T0 to release
energy (e.g. t/T0 = 0.62 ∼ 0.82, approximate to t = t5+ ∼ t7+) (see figure 22a). At this
point, we can figure out the power for energy extracting is 2.46 W while that for energy
releasing is 3.7 W. The power for energy extracting is less than that for energy releasing,
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Figure 22. Energy evolution. (ai) Variations of the kinetic energy Ek_x and Ek_y as well as the total mechanical
energy (Ek_x + Ek_y + Eb) versus time t. (aii) Variation of the elastic potential energy Eb versus time t. At the
top of panel (a), the evolution periods of vortices in the flow field are depicted by different bars to expatiate
the phase relation between the film energy and the dominant flow structures. The red bars with diagonal line
denote the formation of the cylinder vortices, V

C and V⊕
C , after which the bars with diamond pattern denote

the movement of the cylinder vortices against the film surface. The grey shadings denote the stage where both
the cylinder vortices have direct interactions with the film. The green bars with diagonal dotted line denote the
formation of the trailing-edge vortices, V

T and V⊕
T . The moments t0 to t8 correspond to those in figures 18,

20 and 21 in a one-by-one manner. (b) Instantaneous spanwise vorticity fields (ωzD/U∞) with the contour
interval of ±0.8 at (i) moment t1 and (ii) moment t5, exactly corresponding to the LCS shown in figures 18(b)
and 18( f ), respectively. (c) Sequence of the film flapping and total energy evolution the in one energy period,
viz., 0.5T0. For each frame, the area of the circular marker at the trailing edge is proportional to the total energy
carried by the film. During the stage of energy extracting, the maximum projected distance swept by the film
in the y direction is �ŷ = 3.77D; then, the maximum frontal swept area is Ŝp = �ŷ × b, where b = 240 mm
is the spanwise height of the film (see figure 1).
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indicating that the interaction between the film and the flow field is more intense at
the stage of energy releasing. This finding drops a hint to us that the power for energy
extracting or releasing (normalized with ρf U3∞bL) presents a viable means to quantify the
coupling strength in flow–structure interactions, which can be even utilized to compare
the coupling strength between two different flow–structure interaction systems, such as to
compare the isolated film and the inverted film despite the distinct flow fields of the two.
Moreover, it is significant to note here that the present coupling system is self-sustained
with the flapping of the L/D = 5.0 film being purely periodic, i.e. both the frequency
and amplitude are almost constant (figures 19a and 19b). As a result, the extracted energy
and the released energy by the film in one energy period, namely 1/2T0 (for example,
t/T0 = 0.12 ∼ 0.62), maintain balance, both of which are �Et = 24 mJ, indicating a net
energy transfer of zero. Otherwise, the motion state of the film will exhibit changes. Taking
the film of L/D = 5.0 in the critical scenario as an example, when the free stream velocity
is increased from U∞ = 5 m s−1 to U∞ = 6 m s−1, the film experiences a complete
transition from the small-amplitude hybrid flutter to the large-amplitude periodic flapping
(refer to the transition shown in Appendix F). This transition signifies a discernible net
energy input into the film from the flow fields.

Here, we further discuss the relationship between the variation of film energy and the
evolution of flow structures during the periodic flapping of the L/D = 5.0 film. As shown
by the bars at the top of figure 22(a), the film extracting energy from the flow field is
accompanied by the convection of the stretched cylinder vortex, V

C or V⊕
C , against the

film surface. Using the clockwise cylinder vortex V
C as an example, it attaches to the

upper surface of the film as an attracting flow structure and does positive work to the
film (see the LCS in figures 18d to 18f ). In this stage, the total energy Et carried by the
film rapidly increases (figure 22a). Once the anticlockwise cylinder vortex V⊕

C begins to
form on the other side of the film at approximately moment t5 (figure 18f ), the growth
rate of Et is slowed, and then Et gradually decreases after attaining its maximum at
t/T0 = 0.62. As the cylinder vortex V

C is released into the wake from the trailing edge of
the film at moment t6 (see figure 18g), there is only the developing anticlockwise cylinder
vortex V⊕

C that has direct interaction with the film. The total energy on the film then
undergoes a significant diminution until the vortex V⊕

C is formed at approximately t = t7
(figure 18h). This process suggests that the releasing of energy from the film acts as a
necessary condition for the formation of the cylinder vortex V⊕

C . Another phenomenon
supporting this point is that the cylinder vortex V⊕

C exhibits an appreciable distinction
from the conventional Kármán vortex from an isolated cylinder (Zdravkovich 1969, 1996;
Parnaudeau et al. 2008) or the cylinder with a short film (figure 4c); here, the vortex
V⊕

C crosses over the wake centreline (see LCS in figure 18h). This special trait of V⊕
C

undoubtedly relies on the injection of energy from the film. Likewise, the formation of V
C

is also accompanied by the decline of Et (figure 22a). Moreover, there are two stages where
both the V

C and V⊕
C have direct interactions with the film, as delineated by the light grey

shadings in figure 22(a). The moments t1 and t5 are exactly included in these two stages,
respectively. The corresponding vorticities fields at moments t1 and t5 are presented in
figures 22(bi) and 22(bii), respectively. In order to show the large-scale vortices as clearly
as possible, we calculate the vorticity fields using the reconstructed velocity fields based
on the phase-lock POD with 85 % total energy (see Appendix D for details). The vorticity
fields in figure 22(b) reveal the coinciding interactions of V⊕

C and V
C with the film more

clearly than the LCS shown in figures 18(b) and 18( f ). Within these stages, one formed
cylinder vortex convects against the film surface and transfers energy to the film, while the
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other developing cylinder vortex gains energy from the film, establishing a competitive
relationship. The variation of energy Et, therefore, becomes gentle, where dEt/dt > 0
indicates the influence of the formed convecting vortex is dominant, whereas dEt/dt < 0
means the Et variation is dominated by the developing vortex; correspondingly, the zenith
of Et is attained when dEt/dt = 0 (figure 22ai). As for the trailing-edge vortex, it is
formed by the rolling up of the trailing-edge shear layer, which originates from the reverse
motion of the trailing edge in the −x direction. Hence, the formation of the trailing-edge
vortex, e.g. V⊕

T , is closely related to the x-directional kinetic energy, during which the
x-directional kinetic energy, especially the energy distributed on the posterior portion of
the film, changes from the minimum to the maximum and then decreases to the minimum
(e.g. t = t2 ∼ t4 in figures 21a and 22a).

In the current steady coupling situation, an additional aspect of our particular interest
pertains to the efficiency of energy extraction by the film from the flow field, or rather
the rate of energy conversion. At the stage of energy extraction, the dimensional kinetic
energy of the oncoming flow passing through the maximum frontal swept area Ŝp of
the film is Êd

k = 0.5 × ρf�tŜpU3∞ = 88.22 mJ, where�t = 0.3T0, Ŝp = 1.81 × 10−2 m2.
The specific definition of Ŝp as well as the detailed solution for the flow energy
can be found in figure 22(c). Then, we procure the energy extraction efficiency by
the film with L/D = 5, which is �Et/Êd

k = 27.21 % (Kim et al. 2013). The current
energy extraction efficiency, albeit not sufficiently remarkable, can be substantially
but easily enhanced through, for example, an appropriate augmentation of the film
thickness.

3.6. Discussions
In this section, we give a discussion for the results in the present study. In our
experiments, with the length of the film changed incrementally, the film initially shows
a small-amplitude disordered aperiodic flutter (L/D = 1), which is retained until L/D = 4
(figure 2a). We have examined whether the motion state of the film with L/D = 4 will
alter when subjected to an increasing free stream velocity up to U∞ = 30 m s−1, at
which the corresponding effective stiffness KB has been less than that of the film with
L/D = 5 at U∞ = 10 m s−1. However, we did not observe a transition from the aperiodic
flutter to periodic flapping. In the two-dimensional numerical simulations at low Reynolds
numbers of the previous research, the flexible films (L/D = 1 ∼ 3.5) attached to the rear
of a cylinder always behave with periodic patterns regardless of the length (Lee & You
2013; Sahu et al. 2019; Pfister & Marquet 2020; Furquan & Mittal 2021). By comparison,
an isolated film placed in the uniform flow with its leading edge pinned shows periodic
flapping first after losing stability, but transitions into aperiodic flapping as the effective
stiffness KB decreases (Alben & Shelley 2008; Shelley & Zhang 2011; Chen et al. 2014)
or the mass ratio S increases (Connell & Yue 2007) beyond their respective critical values;
especially, this aperiodic flapping is more violent than the periodic one. It is noteworthy
that the violent aperiodic flapping of the isolated film appears completely coupled to the
flow field, whereas for the aperiodic flutter in our present experiment, the film and the
flow field perpetually maintain a non-complete coupling state with a very small amplitude
of only O(10−2)D ∼ O(10−1)D (figures 2a, 9 and 14). Shelley & Zhang (2011) posed a
thought-provoking question, ‘whether the motions of the flag passively reflect the unseen
dynamics of the fluid, or whether flag and wind are a coupled system with their motions
jointly determined?’, in their review on the flapping of flexible film. By virtue of the
present results, it is prudent to consider that the answer to this question is ‘no’ in terms of
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the non-complete coupling state, viz., the motions of the film cannot reflect the dominant
characteristics of the flow field, or may manifest partial characteristics of the flow field.
Another piece of evidence for our perspective can be found in the study on membrane
wings by He & Wang (2020), where the vibration of the membrane only shows the
characteristics of the leading-edge vortices but not that of the more prevailing reversed
structures in the wake.

For the isolated film in uniform flow, it has been demonstrated by previous studies that
as the Reynolds number is fixed, the motion states are governed by effective stiffness
KB (or the reduced velocity U∗ = √

1/KB) and the mass ratio S (see (1.1a,b)). However,
for the film behind a circular cylinder, owing to the flow separation and the subsequent
vortex shedding from the cylinder, there is another essential parameter that influences the
mechanisms underlying different motion states, the length ratio L/D, which determines
how the film interacts with the characteristic flow structures. As the detailed analyses
of the coupling mechanisms in §§ 3.2–3.5, by increasing the length of the film with a
thickness of 0.1 mm, the film experiences different coupling processes with the flow fields
due to the changes of the dominant flow structures, which sequentially include the relative
steady reverse flow in the circulation region (L/D � 0.5) (§ 3.2), the vortex shedding at the
trailing edge (1 � L/D � 3) (§§ 3.2 and 3.3), the large-vortices alternately formed against
the film’s surfaces (2.5 � L/D � 4) (§ 3.3), the approximately symmetric evolution of
the separated shear layers (L/D = 4) (§ 3.3) and the periodic vortex shedding in the 2P
mode (L/D � 5) (§ 3.5). Besides, different coupling processes can intermittently manifest
at specific film lengths, giving rise to the hybrid flutter of the film with 2.5 � L/D � 4
(§ 3.3). We also conduct experiments for the film with a thickness of 0.2 mm at U∞ =
10 m s−1, and the film length is changed from L/D = 0.5 to L/D = 6 (see table 1 in § 2
for details). The 0.2 mm film also experiences the above coupling processes like those for
0.1 mm film, and exhibits keeping stationary, deflection flutter, hybrid flutter and periodic
flapping as well. But, the emergence of different motion states for the 0.2 mm film shows a
delay in length compared with that for 0.1 mm film. For example, the 0.1 mm film exhibits
the periodic flapping at L/D = 5.0, whereas for the 0.2 mm film, it maintains the hybrid
flutter at L/D = 5.0, with the onset of periodic flapping being delayed until L/D ≈ 5.5.
This length delay of motion states could be ascribed to the increase of the effective stiffness
KB, since a twofold increase in the thickness induces a surge of KB by approximately
an order (see (1.1b)). To further verify the influences of KB on the transition of the film
motion state, two sets of supplementary experiments are conducted for the 0.1 mm film
and 0.2 mm film, respectively (see table 1). Here, the length for the 0.1 mm film is held
constant at L/D = 5.0, while that for the 0.2 mm film is fixed at L/D = 6.0. The oncoming
flow velocities U∞ are changed successively from 5 m s−1 to 12 m s−1 with an interval of
1 m s−1. Through this approach, both the length ratio L/D and mass ratio S for each film
remain constant. For both the films, a motion state transition emerges as the flow velocity
is increased from 5 m s−1 to 6 m s−1. At U∞ = 5 m s−1, the two films show hybrid flutter,
whereas at U∞ = 6 m s−1, pure periodic flapping. An example for this state transition can
be found in Appendix F, where the deflection state and flection state during the hybrid
flutter of the 0.1 mm film at U∞ = 5 m s−1 are compared with the periodic flapping at
U∞ = 6 m s−1.

After amalgamating the data of the present study with the data reported by previous
studies (Kim, Kang & Kim 2017; Sahu et al. 2019; Pfister & Marquet 2020; Duan
& Wang 2021; Furquan & Mittal 2021; Shukla, Govardhan & Arakeri 2023), we can
obtain a diagram in the parameter plane spanned by the reduced velocity U∗ (1/

√
KB)

and length ratio L/D, which delineates the variations of motion states for the different
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Figure 23. Diagram shows the variations of coupling states in the U∗–L/D plane for the film in the wake of
a circular cylinder. The light red region below boundaries I and II, light yellow region between boundaries
I, II and III, light blue region between boundaries III and IV, and the light green region between above the
boundaries IV represent the regimes of keeping stationary, deflection flutter, hybrid flutter and travelling-wave
flapping, respectively. The region covered by diagonal lines denotes film motion approximately governed by
linear instability (figure 3). The region superimposed by light grey shading indicate the transition from linear
instability to vortex–film interaction, where the red arrow suggests the sharp decrease of the stability boundary
in U∗–L/D plane due to the influence of large-scale vortices. The dash–dotted line at L/D = 3.5 denotes
an estimated length limit for the steady extension of the separated shear layers. The boundary I is derived
from the stability boundary in figure 3 in terms of the film with h = 0.45 mm. The boundaries II, III, IV
are approximately determined based on the critical points of state transitions, as exemplified by the points
in the grey dashed circles. The critical points are initially interconnected using Bézier curves and then the
Bézier curves are fitted to rational functions to gain the boundaries. Since the density of critical data points is
insufficient, these frontiers only provide a rough estimation.

films in the wake of a circular cylinder, as shown in figure 23. Nonetheless, we must
acknowledge that the dimensionless parameter S is out of consideration here. On the
one hand, no substantial effects of S are observed in the present experiment and related
previous research on flow–structure interactions involving a film in the cylinder wake.
On the other hand, limited by the materials and experimental conditions, we now cannot
achieve a successive adjustment of S without pronounced alterations to the other two more
prominent parameters, KB and L/D, as well as the Reynolds number in the real-world
experiment. By comparison, as discussed in the preceding context, the length ratio L/D
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manifests its critical significance in this coupling system due to the evident changes
of characteristic flow structures with L/D. Additionally, in the literature, researchers
may define the reduced velocity slightly differently; however, through simple algebraic
manipulations, these definitions can be unified as the definition of U∗ in the present study,
thereby enabling the incorporation of them into figure 23. The parameter plane in figure 23
is split into four regions, representing the four different regimes of film motion, i.e.
keeping stationary, deflection flutter, hybrid flutter and periodic travelling-wave flapping.
The boundaries between different regimes are roughly constructed according to the critical
points that indicate a regime transition (refer to Appendix F) (for details see the caption of
figure 23). For the very short film, its instability can be elucidated by a linear instability
mechanism (the region imposed by diagonal shading in figure 23), while as the film
is long enough, the evolution of large-scale vortices will dominate the film motion.
Thus, there is a transition from the linear instability to the vortex–film interaction, as
shown by the grey shading in figure 23. However, the accurate width of this transition
region remains uncertain at present, which may necessitate very meticulous numerical
simulations; besides, a quantified criterion should be proposed to measure the width of
the transition region in future investigations. This aspect deserves unwavering scholarly
attention. Hence, the grey shading here acts merely as an illustrative representation. Owing
to the more intense interactions with the vortices, there is a sharp decline of the boundary
in the transition from the linear instability to the vortex–film interaction, as illustrated by
the red arrow in figure 23, which indicates the film is more prone to be destabilized as
interacting with the large-scale vortices.

Another important length scale in the diagram of figure 23 is the length limit for the
steady extension of the separated shear layers. Below this length, the separated shear
layers can steadily extend along the film so that large-scale vortices are alternately formed
downstream of the film’s trailing edge (figures 3c, 4c and 9), even in cases where the
wake may be not so regular (figure 9). In contrast, over this length, the separated shear
layers undergo visible local instability on both sides of the film, inducing approximately
symmetric vortex evolution on the film (figure 14). This critical length, associated with the
amplification of the shear-layer instability, is independent of the film’s characteristics but
may be influenced by the Reynolds numbers (Anderson & Szewczyk 1997). According to
the analyses in § 3.3 and the corroborating evidence from the results in Sahu et al. (2019)
and Furquan & Mittal (2021), here, this critical length is illustratively approximated as
L/D = 3.5, as shown by the black dash–dotted line in figure 23. Moreover, the hybrid
aperiodic flutter of the film only occurs in the experimental studies, e.g. the present
experiment and the experiment in Shukla et al. (2023), whereas in the two-dimensional
numerical simulations at low Reynolds numbers, the film in this regime (the region
between boundaries III and IV) always behaves with periodic small-amplitude flection
flutter (Sahu et al. 2019; Pfister & Marquet 2020; Furquan & Mittal 2021), a similar
pattern to the flection flutter of the film in the present experiment (figures 8 and 13).
This discrepancy between experiments and numerical simulations intimates that the
intermittent occurrence of the flection state and the deflection state in the hybrid flutter
regime could stem from the inherent non-uniformity of the vortex shedding in the spanwise
orientation under the experimental condition (Williamson 1996). Even if our experiments
have been arranged in such a way that the end effects of the cylinder on the film motion
are excluded (see figure 1 in § 2), the spanwise variations in the phase and strength
of the vortex shedding are inescapable (Szepessy & Bearman 1992). If so, the aspect
ratio of the film (Ojo et al. 2022) and the spanwise correlation length of the vortex
shedding (Zdravkovich 1996; West & Apelt 1997) will be two crucial parameters. A more
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thorough investigation into the deeper mechanism requires synchronous measurement of
the three-dimensional flow field, the deformation field as well as the dynamic force, which
represents one of the challenges in current experimental fluid mechanics. Our team is now
actively addressing this issue through our research endeavours, especially in improving
experimental techniques, and some progress has been made (Guo & Wang 2023).

To the best of our knowledge, there is a paucity of research on the disordered aperiodic
motion of a flexible film. Hence, the largest Lyapunov exponent λ1, which has found
prominent application in the field of nonlinear dynamics research, is used to quantify
this particular form of irregularity (figure 2a) (Wolf et al. 1985; Abarbanel et al. 1993;
Connell & Yue 2007; Pikovsky & Politi 2016). We introduce a refined algorithm for
evaluating the λ1 especially applicable to the film motion, where meticulous parameter
optimizations are incorporated so that both precision and reproducibility are ensured
(figure 2 and Appendix A). We then propose the short-time self-similarity coefficient γ ∗,
as a complement to the largest Lyapunov exponent, to discern the steady ‘stochastic’ flutter
for L/D = 1 ∼ 2 and the non-stationary one for L/D = 2.5 ∼ 4. As the small-amplitude
chaotic flutters of the film behind the cylinder bear a striking resemblance to the
‘entraining state’ of the fish just behind an obstacle in the river, where the fish’s body keeps
fairly straight with small-amplitude irregular flutters (Webb 1998; Liao 2007; Taguchi &
Liao 2011), we believe the above two methods are also applicable for the quantitative
analyses of the ‘entraining state’ of fish. In nature, during steady-state propulsion by a wide
range of animals, there are common rules on the bending feature (Lucas et al. 2014) and
the non-dimensional frequency (Taylor, Nudds & Thomas 2003) of the animals’ natural
propulsors (wings or fins, in either air or water). It is, therefore, natural for us to ponder
whether a shared feature lies beneath the surface of the ‘entraining states’ of different fish;
both the largest Lyapunov exponent λ1 and the self-similarity coefficient γ ∗ will offer
promising avenues to explore this question.

Moreover, previous researchers have perceptively posited that there is a profound
intrinsic connection between the flag flapping and the fish swimming; however, they did
not provide direct mathematical evidence to support this claim (Zhang et al. 2000; Müller
2003; Jia & Yin 2008; Ristroph & Zhang 2008; Shelley & Zhang 2011). Here, with the
aid of CEOF (§ 3.4 and Appendix C), we obtain the propagation characteristics of the
periodic flapping of the film with L/D = 5.0 (figures 17d to 17f ), and then quantitatively
confirm the intrinsic similarities between the film flapping and ‘Kármán gaiting’ of the
trout fish in periodic vortices (Liao 2007; Akanyeti & Liao 2013b) from three aspects, i.e.
the envelope, the temporal phase and the spatial phase (figures 17d to 17f, respectively).
Further, the dimensionless mass forces associated with the L/D = 5.0 film flapping and
the fish’s Kármán gaiting can also be proved to be comparable. For the two-dimensional
periodic undulatory motion of a film or a fish, on the inner scale, the dimensionless
mass force is expressed as f ∗

k_i = S·(∂2X∗
i /∂t∗2) (Shelley & Zhang 2011), where S is

the dimensionless mass ratio (see (1.1a,b)), X∗
i = Xi/L the dimensionless body position,

t∗ = tL/U∞ the dimensionless time, and index i = 1, 2 for the x and y directions. Besides
the mass ratio S, there is another implicit dimensionless parameter related to the mass
force, that is, the dimensionless frequency depicting the undulatory characteristic of the
motion, which is incorporated by Xi. Considering a simple undulatory motion in the y
direction described by X∗

2 = ζ ∗(s∗) sin(ω∗t∗ + k∗s∗), we can obtain a dimensionless mass
force as f ∗

k_2 = −Sω∗2ζ ∗(s∗) sin(ω∗t∗ + k∗s∗), where the minus sign means antiphase
between motion and force. The dimensionless parameters ζ ∗, s∗, ω∗ and k∗ correspond
to the spatial envelope, curvilinear coordinate, frequency and wavenumber, respectively. It
has been shown in figure 17(d) that the envelopes between film flapping and fish’s Kármán
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gaiting are similar, so the magnitude of f ∗
k_2 depends on the combined parameter Sω∗2. The

dimensionless frequency ω∗ = ωL/U∞ for the L/D = 5 film flapping is ω∗ ≈ 2π × 0.3
with ω = 2π × 30.8 Hz, L = 0.1 m and U∞ = 10 m s−1 (figure 17e). For the Kármán
gaiting, using the parameters of a trout given by Akanyeti & Liao (2013a), where the
trout with a body length of 18.6 cm performs undulatory swimming with a frequency
of 2.5 Hz at U∞ = 50 cm s−1, we can figure out that the dimensionless frequency is
ω∗ = 2π × 0.93. Hence, the ω∗2 of the Kármán gaiting exceeds that of the L/D = 5.0
film by an order. The mass ratio for the L/D = 5.0 film is S ≈ 1, while that for a
trout with neutral buoyancy in water is approximately S ∼ O(0.1), estimated from the
experimental images of trout in Liao (2006) and Ashraf et al. (2017). Accordingly, the
combined parameters, Sω∗2, of the L/D = 5.0 film and the trout’s Kármán gaiting are
of the same order so that the dimensionless mass forces of them are comparable, which
further substantiates the similarity between the film and fish in terms of the undulatory
characteristics.

Given the vital importance of water and air for living beings, it is not surprising that
wave-like undulations associated with fluid–structure interactions are widely observed in
biological locomotion across various scales. Certainly, such motion represents one of the
most prevalent forms of biological locomotion, involving phenomena as diverse as the
flagellar beating of eukaryotes at the microscale (Pochitaloff et al. 2022), the Kármán
gaiting of trout at the mesoscale (Liao et al. 2003a,b) and the propulsion with the fluke
motion of cetaceans at the large scale (Lucas et al. 2014). Derived from billions of years of
evolution, these motions are often highly efficient (Lucas et al. 2014). To gain insight into
and exploit the fundamental mechanisms of these motions, we must advance the research
from observation to in-depth portrayal of fluid–structure coupling dynamics, which relies
on the development of mathematical and physical methods. The methods proposed in our
present work are based on the passive flow–structure interaction of an inanimate flexible
material, namely the flexible film. Despite this origin, our methods hold the potential to
be extended to the dynamical analyses of the biological undulatory motions across the
above various scales, regardless of chaotic or periodic motions. This potential is primarily
ascribed to the physical and mathematical resemblances between the film motion and
these biological phenomena (§§ 3.1 and 3.4) (Müller 2003; Jia & Yin 2008; Ristroph &
Zhang 2008). We aspire the methods herein to be widely applied to the investigations on
the flow–structure interactions in both bio- or abiotic fields; additionally, our proposed
perspectives regarding the swimming of fish and flapping of film could pique the interest
of future researchers and be further substantiated, which is also serving as the linchpin of
our future research pursuits.

4. Conclusions

Our work is primarily devoted to the study of the archetypal model of the flow–structure
interactions – the interactions between a flexible film and the periodic vortices, which is
abstracted from fish swimming and flag fluttering. We complete the study primarily based
on experiments, complemented by theoretical solution and nonlinear dynamical analysis.
We seek to explore the flow–structure interactions quantitatively from four aspects: film
motion states, coupling mechanisms, vortex dynamics and energy evolution. For these
aims, we present a set of systemic methods that facilitate the quantitative and scrupulous
explorations of the flow–structure interactions, with which some underlying characteristics
that offer valuable insights into the coupling between the film and the cylinder wake are
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uncovered. Here, we conclude the findings of the present investigation. For convenience,
the parameters detailed below pertain to the film with a thickness of 0.1 mm.

Firstly, from the perspectives of kinematics and nonlinear dynamics, four regimes
of motion states are identified for the film in the cylinder wake (figure 2a): keeping
stationary (L/D � 0.5), deflection flutter (L/D = 1 ∼ 2), hybrid flutter (L/D = 2.5 ∼ 4)
and travelling-wave flapping (L/D � 5). In particular, the motion of the film in regimes (ii)
and (iii) manifests in a disordered and aperiodic manner. Therefore, we employ the
largest Lyapunov exponent λ1 and the short-time self-similarity coefficient γ ∗ to quantify
the motion states (figure 2a). We present a solving framework for the estimation of
λ1 with meticulous attention to details (Appendix A). The results demonstrate that the
aperiodic flutter of the film does tend to chaos so that the predictability time is only of
the order of O(10−2) s. The short-time self-similarity coefficient changes in the order
of magnitude directly the film motion transitions between different regimes, thereby
providing a quantitative means to discriminate the two chaotic regimes.

The flow–structure coupling mechanism responsible for each regime is different. The
destabilization of the very short flexible film, for example, L/D = 0.5, can be aptly
elucidated through the lens of linear stability analysis, which yields an acceptable
agreement with the experimental results (figure 3a). The combined destabilizing effects
originates from two key factors: the K–H instability at the film–fluid interface and the
tangential compressive stress exerted on the short film by the reversed flow (see (3.7a,b)).
In the flow fields, it is found that the vortex formation length Lf acts as the most essential
parameter to depict the influences of the short film on the wake characteristics, irrespective
of the film fluttering or not (figure 4 and table 2). A new definition for the wake core
is proposed based on Lf as L(x/Lf = 1, y = 0) from the statistical view, at which the
band-pass filtering enstrophy, Evs = ω∗

z
2|f2f1 , emerges as an effective measure for the vortex

shedding strength (figure 5). For the film long enough (L/D � 1), the film motion directly
couples with the evolution of the large-scale vortices (figures 3c and 23). The flection state
observed in the hybrid flutter regime (L/D = 2.4 ∼ 4) is accompanied by a regular vortex
shedding in the form of Kármán vortex street. The vortices are alternately formed against
each surface of the film, thereby exerting alternating forces of opposite directions on the
film (figures 8 and 13). In comparison, the mechanisms underlying the deflection state
are more complicated due to the stability of the separated shear layers. For L/D � 3, the
separated shear layers steadily extend along the film so that the whole film is surrounded by
the shear layers, and large-scale vortices are alternately formed downstream of the film’s
trailing edge (figures 4c and 9). For L/D � 4, the length of the film exceeds the length limit
that the shear layers can undergo steady extension. The shear layers exhibit visible local
instability on both sides of the film, thus yielding the approximately symmetric shedding of
the vortices and the absence of oscillatory wake (figure 14). We consider this visible local
instability of the shear layers arises from an amplification of the small-scale ‘shear-layer
instability’ during the downstream extension of the shear layers, since the primary wake
instability associated with the alternate large-scale vortex shedding is suppressed by the
film.

In the periodic travelling-wave flapping regime, the flexible film and the flow field
conspire together to be mutually locked-in (figure 18). At this time, the large-amplitude
flapping of the film exhibits geometrical nonlinearity but physically tends to linear
behaviour (figure 17c), while the flow field is dominated by the large-scale vortex shedding
with the 2P mode (figure 18). The propagating characteristics of the film flapping extracted
by CEOF provide compelling evidence that the flapping incorporates both standing wave
and travelling wave with a phase speed of approximately 0.84 m s−1 (figures 17d to 17f ).
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In view of the apparent resemblance between the film’s small-amplitude flutter and the
entraining state of fish and the inherent relations between the film flapping and the Kármán
gaiting, we consider the film motion in the cylinder wake as passive bionic motion.

Finally, the energy evolution on the L/D = 5.0 film is solved with the aid of motion
reconstruction (figures 21 and 22). It is demonstrated that the energy released from
the film facilitates the formation of the cylinder vortices, V

C and V⊕
C , so that they

become distinctive from the conventional Kármán vortices (Zdravkovich 1996) (figure 18);
subsequently, the formed cylinder vortices transfer energy back to the film as they convect
against the film surface. Consequently, the self-sustained flapping of the film in periodic
vortices is achieved.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.327.
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Appendix A. Determination of the largest Lyapunov exponent

To determine the largest Lyapunov exponent, we must first embed the one-dimensional
data of the trailing-edge vertical motion of the film into a multidimensional phase space,
namely, the phase-space reconstruction, which transfers the time series of motion to a
multidimensional attractor in phase space (Abarbanel et al. 1993; Cellucci et al. 2003;
Rafati & Clemens 2020). Here, we reconstruct the multidimensional phase space with
the time-delay method based on the wildly practised Mañé–Takens’ embedding theorem
(Mañé 1981; Takens 1981; Cellucci et al. 2003). Then, two critical parameters, the
embedding dimension m and the delay time td, as the prerequisites, must be properly
selected to achieve optimal reconstruction. Based on the assumption in the embedding
theorem that the two parameters, m and td, are logically independent in phase-space
reconstruction (Kennel et al. 1992; Kantz & Schreiber 2003), we first determine the
optimal value of the time delay, denoted as t0d, with the AMI algorithm (Fraser & Swinney
1986; Cellucci et al. 2003; Wallot & Mønster 2018). The average mutual information,
denoted as I, measures the nonlinear dependence between two random variables, that is,
how much information one learns about one variable from measuring another variable. If
one variable is the original time series, y(t), and the other is time-delayed series from the
original one, y(t + td), the average mutual information is given by

I[y(t), y(t + td)] =
s∑

i=1

q∑
j=1

pij log2
pij

pipj
, (A1)

where the probability pi represents the observing of y(t) in bin i of the histogram from
y(t) with a total bin number of s, probability pj the observing of y(t + td) in bin j of
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Passive bionic motion of a flexible film
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Figure 24. Average mutual information. (a) Variations of the average mutual information I with the delay
time td: (i) for L/D = 1; (ii) for L/D = 3; (iii) for L/D = 5. Here, the delay time td is scaled by the mean
orbit period T̂ . We adopt the vortex-shedding period to approximate the mean orbit period of the case, namely,
T̂ ∼ T0 (table 3). The optimal delay time t0d for the phase-space reconstruction is determined by the first local
minimum on the I–td curve. (b) Probability histograms of pi, pj and pij at the optimal time delay t0d: (i) for
L/D = 1; (ii) for L/D = 3; (iii) for L/D = 5.

the histogram from y(t + td) with a total bin number of q, and the joint probability pij a
coinstantaneous observing of y(t) and y(t + td) in bin ij of the bivariate histogram from
y(t) and y(t + td), as illustrated in figure 24. Provided that the data series is large enough,
only the joint probability pij is a function of time delay td, i.e. pij(td), and correspondingly
the average mutual information I becomes a single-valued function of td, i.e. I[y(t), y(t +
td)] = I(td) (Fraser & Swinney 1986; Wallot & Mønster 2018). In view of the definition
for AMI and its meaning in information theory, I(t) has units of a ’bit’. By tracking the
evolution of the AMI with the time delay, we can obtain a curve of I versus td for each
motion state of the film, as shown in figure 24(a). Then, the optimal time delay is given
by the first local minimum of the I–td curve, which brings a reconciliation so that y(t) and
y(t + td) have enough independence to provide us with two independent coordinates but
are not completely independent in statistics (Abarbanel et al. 1993; Abarbanel 2012).

Before evaluating the I–td curve, we perform some preprocesses to the original
experimental data in order to enhance the solving accuracy. In our experiment, given that
the sampling frequency of the film deformation is 800 Hz and the sample time is over
20 s, the total data length of the trailing-edge vertical motion is, therefore, approximately
1.6 × 104 (see § 2). This original data is fivefold refined with modified Akima piecewise
cubic interpolation to enhance the data fineness (Akima 1970; Moler 2019), and then
the refined data is denoised with a Savitzky–Golay filter (Savitzky & Golay 1964;
Hamming 1997). The modified Akima piecewise cubic interpolation stands out for its
notable advantage, as it harmoniously integrates the strengths of spline curves (spline
interpolation) and piecewise cubic Hermite interpolating polynomials (Moler 2019). This
superiority enables the effective refinement or recovery of the undulation characteristics
within data while it circumvents the issue of overshooting, thereby ensuring a precise and
reliable representation of the underlying information. It should be stressed here that the
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Film length (L/D) 1 1.5 2 2.5 3 4 5 6

Frequency ( f0), Hz 91.5 82.0 89.2 93.5 78.8 59.8 30.8 26.1
Period (T0), ×10−2 s 1.09 1.22 1.12 1.07 1.27 1.67 3.25 3.83

Table 3. The dominant frequency and period of the vortex shedding for each case.

overshooting in interpolation could lead to over-estimation of the final Lyapunov exponent.
A Savitzky–Golay filter is a lowpass filter that leverages the principles of local least
squares (Hamming 1997; Schafer 2011), which is here utilized to filter out the noise in
data given that the noise could influence the operation of renormalization in the iteration
of Lyapunov exponent (see below) (Wolf et al. 1985). For our present study, the most
important feature of a Savitzky–Golay filter is its remarkable capacity for peak shape
preservation, which is ascribed to its extremely flat passbands and nominal passband gain
of unity (Schafer 2011). Note that this capacity of peak shape preservation guarantees that
the filtering operation has hardly any influence on the spatial scale of the attractor from
phase space reconstruction.

The final filtered data with a length over 8 × 104 points will serve as the input data for
evaluating the AMI as well as implementing the subsequent phase-space reconstruction. In
figure 24(a), the I–td curves for the three representative cases L/D = 1, 3, 5 are presented
in figures 24(ai), 24(aii) and 24(aiii), respectively. As mentioned above, the optimal value
of the time delay, t0d, is determined at the first local minimum of the I–td curve (Fraser &
Swinney 1986; Abarbanel et al. 1993; Cellucci et al. 2003), which is highlighted by the
red points in figure 24(ai–aiii). Note that the time delay td in figure 24(a) is scaled by
the mean orbit period T̂ in the phase space. In light of the fact that in the present study
the film motion is excited by the flow field, it is convenient and reasonable to choose the
period of the dominant flow structure, the vortex shedding, as the mean orbit period T̂ ,
namely, T̂ ∼ T0 (table 3), even if the film motion is chaotic and the coupling between the
film and the flow field is not complete. Figure 24(b) shows the probability histograms of
pi, pj and pij at the optimal time delay (namely histograms from y(t) and y(t + t0d)) for the
three cases to exhibit how the AMI is determined. Here, the bin numbers s and q in the
calculation of AMI are both 30 (see (A1)). It is critical to mention that the position of the
first local minimum on the I–td curve alters scarcely with the numbers of the histogram
bins, s and q, on condition that they are not too large or too small. It is recommended to
employ a total bin number of s × q lower than the total data length by a factor of O(102)
as the preferable choice for evaluating the I–td curves.

After determining the optimal time delay t0d, we need to find an appropriate embedding
dimension m for phase-space reconstruction. In general, the appropriate m is determined
by a reliable technique, viz., the FNN algorithm (Kennel et al. 1992; Abarbanel et al. 1993;
Cellucci et al. 2003). The FNN means two data points on the reconstructed attractor are
close due to the insufficiency of the embedding dimension but not the data’s inherent
property; by increasing the embedding dimension, the FNNs can be gradually eliminated
(Wallot & Mønster 2018). Thus, the FNN algorithm is in the spirit of finding the lowest
dimension m that is adequate to eliminate the false neighbours in the reconstructed
attractor. With this appropriate dimension, the structures of the attractor are properly
unfolded to the unambiguous state (Abarbanel et al. 1993; Abarbanel 2012). The optimal
time delay, which has been obtained from the results of AMI as illustrated in figure 24(a),
is the precondition for implementing the FNN algorithm. Besides, two thresholds, usually
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Figure 25. Percentage of FNN versus embedding dimensions m for (a) L/D = 1.0, (b) L/D = 3.0 and (c)
L/D = 5.0. The time delays used for evaluate the FNN percentage are given by the AMI results in figure 24.
At m = 4, the FNN percentages for the three cases are all smaller than 1 % and plateaus occur in the figure,
meaning the appropriate dimension for embedding should be m ≥ 4.

denoted as Rtol and Atol in the literature, must be determined to catch the FNNs. The
definitions for the two thresholds are meticulously documented by Kennel et al. (1992);
for brevity, the introduction for them is not incorporated here. According to Abarbanel
(2012), we adopt the recommended values of Rtol = 15 and Atol = 2 to evaluate the FNN
percentage for all the cases. Figure 25 presents the variations of the FNN percentage
versus the embedding dimensions m for the three representative cases. It is obvious that
with the increase of the embedding dimensions, the FNN percentage decreases rapidly
until a plateau occurs for the dimension m ≥ 4, at which the FNN percentages for the
three cases are all smaller than 1 %. Consequently, the appropriate embedding dimension
given by the FNN algorithm is m ≥ 4. On the other hand, considering that we attempt
to solve the largest Lyapunov exponent using Wolf’s algorithm (Wolf et al. 1985), we
should further identify that the selected embedding dimension meets the requirements
of this algorithm. Wolf’s algorithm requires the relationship between m and td to satisfy
mtd/T̂ ∼ O(1); besides, in order to sufficiently ‘fill out’ the attractor for the iterative
computation of the largest Lyapunov exponent, it is imperative to ensure that the data
length fulfils the requisite number of 10m ∼ 30m points (Wolf et al. 1985). Now, we
have the data length of 8 × 104 for each case, and the corresponding optimal time
delay t0d from AMI varies in the range of 0.25T̂ ∼ 0.6T̂ (figure 24a). Hence, we select
m0 = 4 as the optimal embedding dimension for all the cases of film motion in the
present study; this embedding dimension reconciles both the results of the FNN algorithm
(the necessary dimension for unfolding the attractor) and the requirements of Wolf’s
Lyapunov algorithm. Using embedding dimension m0 = 4 and the time delay t0d, we
achieve multidimensional phase reconstruction for the trailing-edge motion of the film.
In figure 26, the four-dimensional attractors for the three cases of L/D = 1, 3 and 5 are
exhibited by their projections on three-dimensional spaces and two-dimension planes.
Then, the largest Lyapunov exponents λ1 for all the cases will be solved on the attractors
with Wolf’s algorithm. Since the mean orbit period T̂ is different for each case, the
orbit number of the attractor and the point number per orbit are also different for each
case. For L/D = 1, there is the biggest orbit number of approximately 1800 with 45
points per orbit on average, while for L/D = 6, approximately 500 orbits with 160 points
per orbit. Notwithstanding the differences, all the attractors from time-delay embedding
suffice the requirements of Wolf’s algorithm for the largest Lyapunov exponent (Wolf et al.
1985).
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Figure 26. Projections of the reconstructed four-dimensional attractors to the three-dimensional spaces of
(i) y1 − y2 − y3, (ii) y1 − y2 − y4, (iii) y1 − y3 − y4 and (iv) y2 − y3 − y4 as well as the two-dimensional
planes (the light grey projections): (a) for L/D = 1.0; (b) for L/D = 3.0; (c) for L/D = 5.0. The attractor
is reconstructed by embedding the vertical motion of the trailing edge to the four-dimensional space with the
optimal time delay t0d , where y1 = y(t), y2 = y(t + t0d), y3 = y(t+2t0d) and y4 = y(t+3t0d). The optimal time
delay t0d is determined by the corresponding AMI in figure 25. For clarity, only evolution of the attractor within
1 s is shown in this figure.

Wolf’s algorithm estimated the Lyapunov exponent by iteratively monitoring the
long-term evolution of a single element of nearby orbits on the attractor (for the largest
Lyapunov exponent, this single element is a vector comprised by two nearest points on
the nearby orbits) (Wolf et al. 1985). Each iteration outputs the rate of divergence at a
different location on the attractor and the attendant Lyapunov exponent, until the result is
convergent, as described by (3.1). This algorithm relies on repeated replacements of the
evolved vector with a new fiducial vector in order to initiate a new round of evolution,
where the orientation of the evolved vector is preserved but the size of the new vector is
minimized (this operation is termed as renormalization) (Abarbanel et al. 1993; Pikovsky
& Politi 2016). Hence, the evolution time (tk − tk−1 in (3.1)) and the length limits for the
new vector (the ceiling of d(tk−1) in (3.1)) are two critical parameters. Referring to the
suggestions of Wolf et al. (1985), we use an evolution time of 1/4 of the mean orbit period
T̂ so that four iterations are carried out on each orbit on average and set a length limit of
5 % of the data magnitude for the new vector. Figure 27 presents the evolution of the largest
Lyapunov exponent λ1 with the number of iterations M, illustrating how the exponent λ1
is iterated out. Given the presence of noticeable fluctuations even after convergence of λ1,
as shown by the insert in figure 27(a), we employ nonlinear least square fitting to model
the evolutionary process of λ1 as a power-law function, that is, λ1 = αMβ + c (Madsen,
Nielsen & Tingleff 2004; Hansen et al. 2013). Then, the outcome of the estimated largest
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Figure 27. Evolution of the largest Lyapunov exponent λ1 with the number of iterations M, (a) for L/D = 1, (b)
for L/D = 3 and (c) for L/D = 5. The subpanel incorporated in figure (a) shows details of λ1 within the range
of 1000 ≤ M ≤ 2000. The evolution of λ1 is fitted as a function of the number of iterations M in the power-law
form, λ1 = αMβ + c. The constant c in the fitted result gives the final estimated λ1, which represents the limit
of convergence of λ1. For L/D = 1 and 5, the estimated λ1 are 0.455 and 0.017, respectively. For L/D = 3, due
to the oscillations at the beginning stage of the iteration, the evolution of λ1 with M is fitted to two power-law
functions, and then the estimated λ1 is given by the average of the two corresponding constants as 0.7315.

Lyapunov exponent is given by the value of constant c in the fitting model, as illustrated
in figure 27. With the same procedure, λ1 for all the cases of film motion are determined
with satisfactory repeatability, and the results are integrated into figure 2(a).

Appendix B. Computation of FTLEs

The FTLE field is a scalar field with its values measuring the averaged divergence rate
of the trajectories of two neighbouring fluid particles within a finite evolution time T
(Pan et al. 2009). Consider the flow map Φ t0+T

t0 , under the function of which the fluid
particle with an initial location of x0 = x(t0; x0, t0) at initial time t0 moves to the location
of x(t0 + T ; x0, t0) after a finite time T :

Φ
t0+T
t0 : x0 = x(t0; x0, t0) → Φ

t0+T
t0 (x0) = x(t0 + T ; x0, t0). (B1)

For the time-resolved PIV flow fields with equal time intervals, we can conveniently
determine the map Φ

t0+T
t0 by tracking the convection of the particle with velocity

integration; in this sense, the map Φ
t0+T
t0 can be regarded as the particle trajectory.

We then define the Cauchy–Green strain tenor of Φ t0+T
t0 (x0) as [∇Φ t0+T

t0 ]T[∇Φ t0+T
t0 ] to

detect how far initially close particles will stray over the finite time T (Shadden et al.
2005). More precisely, the maximum divergence of the neighbouring particle trajectories
is characterized by the maximum eigenvalue, λmax, of the Cauchy–Green strain tensor, so
that the tensor is aligned with its principal eigenvector. Accordingly, the FTLE associated
with the particle x0 = x(t0; x0, t0) is defined by (Haller & Yuan 2000; Shadden et al. 2005;
Green et al. 2007; He et al. 2016)

FTLE(x0) = 1
|T | ln

√
λmax. (B2)

To enhance the detection accuracy of the LCS with the FTLEs, we first reconstruct
the velocity fields via POD or phase-lock POD (Appendix D), where the POD modes
accounting for 85 % of total energy are used for the reconstruction (Qu et al. 2019). Next,
the denoised flow fields are interpolated on a refined spatial mesh of 925 × 1125 with
a spacing of approximately 0.2 mm (Punzmann et al. 2014; He et al. 2016). Using the
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fourth-order Runge–Kutta method, the particle trajectories are procured by backward-time
numerical integrations (T < 0) for the refined velocity fields. We select an integration time
length |T | of three times the dominant period of the flow field to reveal enough details of
the LCS (Shadden et al. 2005; Green et al. 2007; He et al. 2016). The algorithm employed
to determine the FTLEs using discrete data, as described above, has been demonstrated to
possess high robustness (Green et al. 2007); besides, LCS are the most robust structures
in flow fields (MacMillan & Richter 2021). Therefore, the LCS identified based on
FTLEs portray the intrinsic characteristics of the flow–field evolution. Mathematically,
for well-defined LCS, the flux across the structures (for example, the material surface of a
vortex boundary) is usually negligible. These structures are hence invariant manifolds and
act as transport barriers with robustness (Shadden et al. 2005).

Appendix C. Complex empirical orthogonal function

Here, we provide details of the complex empirical orthogonal function. We use matrix
Y to represent all the spatiotemporal data of the vertical motions of the film, y(t, s),
such that each row of Y is a deformation snapshot of the film while each column
of Y is the time-varying vertical displacement of a Lagrangian point on the film. By
applying a Hilbert transform to Y , we can deliver the vertical motions to the complex
field as J = Y + iY H , where Y H is the Hilbert transform of Y in time, building the
phase information of the original data into the complex field J, and i = √−1 is the
imaginary unit. The energy information of the complex field J is given by its covariance
matrix C, namely C = 〈JT × J〉t, where the superscript ‘T’ denotes the operation of
conjugate transpose, and 〈· · · 〉t denotes average in time. The matrix C is Hermitian so
that it possesses real eigenvalues λn and complex eigenvectors bn(s) with orthogonality.
Eigenvectors bn(s) (column vectors) are a set of orthogonal spatial bases that serve as
the complex spatial principal components – or rather physically the spatial modes –
of the complex field J, while eigenvalues λn represent the energy magnitude of the
corresponding spatial principal components. By linearly projecting the complex field
J onto the spatial bases bn(s), we obtain the temporal principal components an(t),
i.e. an(t) = Jbn(s). The temporal principal components an(t) (column vectors), therefore,
characterize the intensity of the corresponding complex modes bn(s) in time coordinate
(Yeaton et al. 2020). If we designate B = [b1(s)| · · · |bn(s)| · · · ] as the eigenvector matrix
and A = [a1(t)| · · · |an(t)| · · · ] as the temporal principal matrix, the complex field J is
recovered by J = ABT. In this sense, we can decouple the motion of the film y(t, s) into
the following form:

y(t, s) = Re
[ ∑

n

an(t)bT
n (s)

]
=

∑
n

αn(t)ζn(s) cos[ψn(t)− φn(s)]. (C1)

In (C1), the relationship between the temporal amplitude αn, the temporal phase ψn

and the temporal principal component an is established by an(t) = αn(t)eiψn(t), and the
relationship between the spatial amplitude ζn, the spatial phase φn and the spatial principal
component bn is established by bn(s) = ζn(s)eiφn(s) (Barnett 1983; Esquivel & Messina
2008; Michelin & Doaré 2013). With the above decomposition, the salient features
of y(s, t) are incorporated into its low-order principal components, thereby enabling a
reduced-order operation for the dynamical system. For the flapping of the film with
L/D = 5.0, its first CEOF mode accounts for more than 99.9 % of the total energy (namely,
λ1/

∑
n λn > 99.9 %), which is sufficient to furnish the dominant kinematic information

on the flapping. For a periodic system with a stable limit cycle, the temporal amplitude α1
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is almost a constant (Michelin et al. 2008), and our focus will be projected on the spatial
amplitude ζ1, temporal phase ψ1 and spatial phase φ1, as illustrated in figures 17(d) to
17( f ), respectively.

Appendix D. Phase-lock POD

For the case of film with L/D = 5.0, due to the large-amplitude flapping of the film, the
velocity fields are contaminated on a large spatial scale. Thus, the common POD algorithm
is not suitable in this situation. A refined algorithm of POD is proposed here in order to
achieve the reconstruction of the velocity fields. Considering the pure periodicity of the
film flapping, we can readily identify the phase of each frame of the velocity field with
Hilbert transform based on the signal of the film deformation, more precisely, the signal
of the cross-correlation coefficients from the film’s instantaneous deformations. Then,
the frames corresponding to the same or similar phase angles are regarded as a set of
phase-lock velocity fields. In the present study, one period of the film flapping (360◦) is
sequentially split into 60 phase blocks from 0◦ to 360◦, meaning the phase differences
within a set of phase-lock velocity fields do not exceed 6◦. Subsequently, POD is applied
to each set of the phase-lock velocity fields. The POD modes accounting for 85 % of total
energy are utilized to reconstruct the velocity fields in each phase block. Finally, every
reconstructed velocity field is put back to its original frame position. The FTLE fields in
figure 18 and vorticity fields in figure 22(b) are obtained from the reconstructed velocity
fields.

Appendix E. Determining second derivative with optimal quintic smoothing spline

The high-order derivatives of experimental data are ill-posed due to the inescapable noise
in the measurement. With the increase of the derivative order, arbitrary tiny noise in the
experimental data will generate arbitrary huge divergence in the outcome (Qian et al.
2006b; Nayak 2020). Even for the second derivative, conventional methods such as central
differencing and local least squares (Savitzky & Golay 1964; Fan & Gijbels 1996) also fail
to yield satisfactory results. Here, we adopt the derivative method introduced by Epps et al.
(2010) to solve the second derivatives of the Fourier coefficients in (3.13) (see § 3.5.2).
This method is based on fitting the experimental data to an optimal quintic smoothing
spline that is solved by Reinsch’s tolerance algorithm (Reinsch 1967, 1971; Ahlberg et al.
2016); the derivative of the experimental data will be given by the derivative of the optimal
quintic smoothing spline.

A quintic smoothing spline is formed by a set of piecewise-defined quintic polynomial
segments joined together. It does not have a specific functional form for the curve. Instead,
it estimates the curve for the input data by balancing the fitting error E, and the roughness
of the curve R3. For the quintic smoothing spline, the fitting error E and the roughness R3

are, respectively, defined by

E(f̃ ) =
∫

x
|y(x)− f̃ (x)|2 dx, (E1)

and

R3(f̃ ) =
∫

x

∣∣∣d3 f̃ (x)
dx3

∣∣∣2
dx. (E2)

Here, the fitting error E( f̃ ) measures the distance between the smoothing spline f̃ (x)
and the original data y(x), while the roughness R3( f̃ ) describes the curvature of f̃ (x)
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Figure 28. Solving the second derivative for the Fourier coefficient a0
x in equation (3.13). (ai) The original data

of a0
x and its optimal quintic smoothing spline fitting; (aii) magnified view in s/D = 1 ∼ 1.2 to show the details

of data; (aiii) difference between the original data and the smoothing spline fitting, where δ = a0
x − f̃ , which

approximately represents the noise in a0
x . (b) Roughness, R3, versus error tolerance, Ξ , of quintic smoothing

splines solved by iterating Reinsch’s tolerance method with a successive value of Ξ . Here, each point on the
curve corresponds to a specific quintic smoothing spline. The optimal error tolerance for the fitting of a0

x(s) is
given by the kink on the R3–Ξ curve as Ξ0 = 5.56 × 10−12. (ci) Comparison of the derivatives solved by the
quintic smoothing spline fitting and local least squares; (cii) magnified view in s/D = 1.8 ∼ 2.4 to show the
details. Here, the local least square is solved with the window size of 21 points and the polynomial order of
five.

(Wahba 1990; Ahlberg et al. 2016). The primary principle behind constructing a smoothing
spline with Reinsch’s tolerance algorithm can be sketched as follows: for a given error
tolerance Ξ , find the smoothest one from the set of the smoothing spline curves that
not only fits the original data y(x) but adheres to the tolerance limit (Reinsch 1967,
1971). Therefore, the determined smoothing spline f̃ (x) meets both the following two
requirements:

[Minimize R3( f̃ )] ∧ [E(f̃ ) ≤ Ξ ]. (E3)

For a predetermined tolerance Ξ , the above smoothing spline f̃ (x) with the minimum
roughness is uniquely determined so that the tolerance Ξ and the minimum roughness
R3 bear a one-to-one correspondence. According to (E3), seeking the optimal smoothing
spline f̃ 0(x) is equivalent to determining the optimal value of the tolerance, Ξ0, for
the original data. The optimal smoothing spline effectively eliminates data noise while
minimizing the deviation from the data so as to achieve a superior balance between the
error E( f̃ ) and the roughness R3( f̃ ) (Wahba 1990), thus being the optimal approximation
of the unknown true value of the data.

Epps et al. (2010) have identified that for the experimental data with a high temporal or
spatial resolution, as a set of quintic smoothing splines is constructed utilizing Reinsch’s
tolerance algorithm by given successive values of tolerance Ξ (see (E3)), the curve
that describes the relationship between the minimum roughness R3 of the smoothing
splines and the given tolerances Ξ possesses a specific form in the Ξ–R3 plane. As the
tolerance progressively increases, a distinct kink emerges on the Ξ–R3 curve (refer to
figures 28b and 29b), at which the tolerance located is the optimal tolerance Ξ0 for the
experimental data (Epps et al. 2010; Truscott et al. 2012). The optimal smoothing spline
f̃ 0(x) determined by Ξ0 not only approximates the true value of the original data with
excellent accuracy but also ensures the second derivative is well-posed.

With the above method, we can determine the second derivatives of the Fourier
coefficients for the reconstructed film motion in (3.13), as well as the subsequent
distribution of elastic energy density (see (3.12a,b)). We chose the two representative
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Figure 29. Solving the second derivative for the Fourier coefficient a1
y in (3.13). The captions for this figure

are the same as those for figure 28 in a one-to-one correspondence. The magnified view, panel (aii), exhibits
the details of data in s/D = 1.6 ∼ 1.8. The optimal error tolerance for the fitting of a1

y(s) is given by the kink
on the R3 −Ξ curve as Ξ0 = 5.49 × 10−9 in (b). In panel (c), due to the relatively large noise in a1

y , its second
derivative solved by local least squares is completely divergent, whereas the optimal quintic smoothing spline
fitting outputs a satisfactory second derivative of a1

y .

Fourier coefficients a0
x(s) and a1

y(s) as examples for the x and y directions, respectively,
and the solving processes are detailed in figures 28 and 29. For a0

x(s) (figure 28a), to find
its optimal quintic smoothing spline fitting, we construct a series of quintic smoothing
splines via iterating the Reinsch’s tolerance algorithm at 500 predetermined tolerances,
which are uniformly and sequentially selected within the range ofΞ = 10−18 ∼ 100 in the
logarithmic coordinate of Ξ , i.e. logΞ = −18 ∼ 0. Since each tolerance Ξ corresponds
to a specific smoothing spline and thus a specific roughness R3, we can obtain a curve
of R3 versus Ξ determined by the 500 tolerance values, as depicted in figure 28(b). Then
the optimal tolerance for a0

x(s) is given by the kink on the R3 −Ξ as Ξ0 = 5.56 × 10−12

(the light blue point in figure 28b), with which the optimal quintic smoothing spline for
a0

x(s) is constructed, as shown by the dash–dotted line in figure 28(a). By directly taking
the analytic second derivative of the quintic smoothing spline, we eventually procure
the approximate second derivative for a0

x(s), as shown in figure 28(c). The solution for
the second derivative of the coefficient a1

y(s) follows a similar process to that of a0
x(s)

except for the optimal tolerance ofΞ0 = 5.49 × 10−9 (see figure 29b). The optimal quintic
smoothing spline for a1

y(s) is compared with the original a1
y(s) in figures 29(ai) and 29(aii).

The approximate second derivative for a1
y(s) is shown in figure 29(c) by the dash–dotted

line. In the same fashion, we can also procure the approximate second derivatives for the
remaining coefficients in (3.13), and the ultimate outcomes have been given in figures 19(c)
and 19(d).

In figures 28(c) and 29(c), we also compare the second derivatives determined by quintic
smoothing spline fitting with those solved by local least squares (Savitzky & Golay 1964;
Fan & Gijbels 1996). Here, the window size of 21 points and the polynomial order of five
are utilized to calculate the local least square. As shown in figure 28(c), even though the
noise intensity in a0

x is pretty low (figure 28aiii), its second derivative from the local least
squares is just barely tolerable, of which the data quality is evidently poorer than the second
derivative from the smoothing spline. However, for the coefficient a1

y , where the noise
intensity (figure 28aiii) is larger than that in a0

x by an order of magnitude (figure 29aiii), the
second derivative from the local least squares becomes divergent (figure 29c), whereas the
outcome from the quintic smoothing spline is still pretty good. Therefore, we believe that
the energy density distribution based on the second derivatives from the quintic smoothing
spline fitting is accurate enough, as presented in figure 21.
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Figure 30. Transition of the motion states from hybrid flutter to the periodic flapping for the 0.1 mm thick film
with L/D = 5.0. Panels (a) and (b) depict the hybrid flutter of the film at U∞ = 5 m s−1 together, where (a) is
for deflection state and (b) is for flection state. (c) shows the periodic flapping of the film at U∞ = 6 m s−1.

Appendix F. Additional information for the discussion section (§ 3.6)

Here, an additional figure supporting the results in § 3.6 is presented. Figure 30 shows the
motion transition from hybrid flutter to the periodic flapping for the 0.1 mm thick film of
L/D = 5.0. This transition occurs as the free stream velocity changes from U∞ = 5 m s−1

to U∞ = 6 m s−1. The deflection state and the flection state within the hybrid flutter are
presented in figures 30(a) and 30(b), respectively, while the periodic flapping at U∞ =
6 m s−1 is presented in figure 30(c).
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