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Abstract . We study the magnetic field structures of fast kincmatic dynamos for a class of steady 
chaotic flows with stagnation points. We find that the dynamos arc generated by a strctch-fold-
sliear mechanism, which is effective only when the chaotic flow region is large enough and overlaps 
significantly with the rotating flux tubes. 
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1. I n t r o d u c t i o n 

Dynamo activity is thought to be responsible for the magnetic fields of the earth, 
the sun, and other astrophysical bodies. For a conducting fluid with resistivity η, 
the generation of magnetic fields is governed by the induction equation dB/dt = 
V X ( v X B ) - V X ( i / V X B ) , where v(x , i ) is the fluid flow. In the kinematic problem 
one treats ν as given and not influenced by B. For V-v = 0, the induction equation 
can be written as (assuming uniform resistivity) 

dB/dt + v V B = B· Vv + ?/V2B. (1) 

Equation (1) is a linear equation for B. If it possesses eigenfunctions that grow 
exponentially in time, the flow is said to possess a dynamo. If the growth rate 
remains positive in the limit of infinite conductivity Rm = Ι/η —> oo ( R m is the 
magnetic Reynolds number), the dynamo is said to be fast. The existence of a fast 
dynamo has been found to be associated with chaos in the streamlines (Finn et ai 
1991), which are solutions of dx/dt = v(x, t ) . For a steady flow v(x), this means 
that the streamlines must be chaotic. 

In this paper, we study the magnetic field structures of fast kinematic dynamos 
for a class of steady incompressible flows with stagnation points. The flow structure 
has been investigated before (Lau & Finn 1992) and the corresponding dynamo 
solutions have been presented (Lau & Finn 1993). 

2. Flow M o d e l a n d D y n a m o Solu t ions 

The three-dimensional steady flow introduced in (Lau L· Finn 1992) is 

= y9 vy = 1/4 - ( x - l ) 2 - = B0{x - xN). (2) 
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Fig. 1. The parameter space (ΧΝ,ΒΟ) of flow (2), showing the existence of stagnation 
points within 0.5 < χ ν < 1.5, the dashed curve where the stagnation points become 
spiralling, and several domains divided by global bifurcations (solid curves). In particular, 
the streamlines are chaotic in domains 3 and 4. The dynamo window is shaded. 

This two-parameter (xjsf and Bo) flow is aperiodic in space. It consists basically 
of a single convective vortex, which may be viewed as a qualitative model for a 
convection cell in a turbulent environment, such as the solar convection zone. This 
model was chosen because it exhibits characteristics of the stretch-fold-shear dy-
namo (Vainshtein & Zerdovich 1972), and of the models of (Finn et ai 1991), but 
with stagnation points. 

The streamline structures of this flow have been studied in (Lau & Finn 1992). 
For 0.5 < xn < 1.5, the flow has two stagnation points, whose stable and unstable 
manifolds may intermingle, resulting in chaos in the streamlines. Figure 1 [from (Lau 
L· Finn 1992)] is a bifurcation diagram for the flow. Among the domains separated 
by the solid global bifurcation curves, domains 3 and 4 contain chaotic streamlines 
and therefore are most interesting. We note also that domain 4 is associated with 
spiralling stagnation points, while domain 3 is not. 

We pick a representative point in Fig. 1 and find the solution of Eq. (1) for flow 
(2) by a split step finite difference scheme. [The numerical method and convergence 
study are described in (Lau L· Finn 1993).] Figure 2 shows (on a logarithmic scale) 

1 / 9 

Brms = (B 2 ) and I (B z ) I versus time for a case with XJV = 1.25, Bo = 0.75 
(( ) being a volume average over 90% of the volume). These quantities indicate an 
eigenmode Β = Bo(x)exp(7* — ιωί) with y & 0.06 and ω « 1.0. (The quantities 
ln(V-B)r m s and ln(^, · IdBi /dx i \ ) are for monitoring the divergence cleaning in the 
numerical scheme.) 

Under our numerical scheme, the growth rate γ is found to obey γ = joo —C/Na
} 

where C is a constant and α is a positive integer dependent on the interpolation 
scheme. With this we obtain the growth rates of fast dynamos (7/ —• 0) for grid 
number Ν —• oo. In Fig. 1 , the domain with positive growth rates is shaded and 
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Fig. 2. The quantities ln /? r m e , In | (B z ) l n ( V ' B ) r m s , and \dBi/dxi\) as functions 
of time for a dynamo mode with Χ Ν = 1.25 and B0 = 0.75. The resistivity Η = 10~6 and 
the number of grid points in each direction Ν = 150. 

labeled dynamo. A noted feature is that the dynamo domain lies within the chaotic 
domain 4. This leads to the conclusion that chaos is a necessary (but not sufficient) 
condition for fast dynamos (Lau & Finn 1993). 

3. Magnetic Field Structures 

To find out what additional conditions are required for a fast dynamo, we need to 
examine the structure of the dynamo magnetic field. Figure 3 shows the Bz(x, y} 0) 
contours of a typical dynamo mode for the present flow. It is seen that the two 
spots of opposite Bz rotate around the unstable manifold η a > which is a streamline 
coming out of one of the stagnation points. These spots correspond to tubes of 
concentrated magnetic flux. Other flux regions slide along Σβ, the two-dimensional 
unstable manifold of one stagnation point, and merge with the rotating flux tubes. 
The field outside of these areas is practically zero. The rotation frequency of the 
tubes is the same as the oscillation frequency of the eigcnmode (u>), indicating that 
the dynamo mechanism is closely related to these rotating tubes. 

Next in Fig. 4 we trace the magnetic field lines for the above dynamo. The 
(rotating) dark tubes are roughly parallel to field lines passing through the maximal 
field regions. By tracing field lines at different times, we obtain the sketch in Fig. 5, 
which exhibits the stretch-fold-shear feature of (Vainshtein & Zerdovich 1972). The 
actual process in our steady flow is of course continuous, yielding an oscillating 
exponential growth of the field. The twisting is related to the flow rotation. For the 
present model, the rotation is attributed to the spiralling nature of the stagnation 
points. In fact, the frequency ω is roughly equal to the imaginary part of the complex 
eigenvalue of the stagnation points. This is consistent with the absence of dynamos 
in domain 3 of Fig. 1. [Oscillating dynamo modes also exist in ABC flows, which have 
stagnation points with real eigenvalues (Lau & Finn 1993). These flows, however, 
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(a) B z > 0 ( b ) 

F i g . 3 . T w o s n a p s h o t s o f t h e Bz(x>y, 0 ) c o n t o u r s for a d y n a m o m o d e . T h e c o n t o u r s w i t h 
w h i t e reg ions c o r r e s p o n d t o Bz > 0 a n d t h e o t h e r s t o Bz < 0. T h e spiral c u r v e is t h e 
i n t e r s e c t i o n of Σ β w i t h t h e ζ = 0 p lane . T h e t ip of the spiral is t h e o n c - d i m e n s i o n a l 
u n s t a b l e m a n i f o l d y A-

posses KAM regions.] 
In order to have the stretch-fold-shear mechanism act on the field repeatedly, 

it is necessary for the flow to be chaotic. More specifically, a horseshoe map exists 
in the chaotic region of the flow (Lau & Finn 1992). This is why dynamos do not 
exist in domain Y of Fig. 1 (no chaotic invariant set in the flow), nor for χ χ greater 
than the period doubling curve (the regular toroidal flow region dominating over 
the chaotic region). Similarly, the part of domain 4 near 2; and 3 has very small 
chaotic regions. These regions barely overlap with the rotating flux tubes, which is 
very thin because of the large eigenvalues for the chaotic invariant set in this part 
of domain 4. Thus dynamo action does not occur there. 

In summary, the stretch-fold-shear mechanism is effective only when the chaotic 
flow region is large enough (compared to the regular flow regions) and overlaps 
significantly with the rotating flux tubes. 
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Fig. 4. A three-dimensional view of a dynamo magnetic field. The dotted curve is the 
intersection of the unstable manifold Σ2? with the cross-sectional plane (z = 0). The dark 
tubes are isosurfaces of \BZ\ near its maximal value. The curves with arrows are field lines 
that pierce through these tubes and connect to other flux regions along ΣΒ-

Fig. 5. The evolution of an ideal flux loop, (a) Stretching along the unstable manifolds. 
Here a line stands for strong magnetic flux and and a band means weak flux, (b) Rotation 
of the strong flux tubes yields twisting in the loop. Parts of the loop are taken out of the 
region of interest by continued stretching, (c) A right amount of rotation brings together 
the two positive Bz regions, which merge into a stronger flux tube. The same happens to 
the negative Bz regions later. The new flux tube is then stretched and folded to the left 
side of Σ Β as in (a). Note that (b), corresponding to Fig. 4, occurs just before Fig. 3(a). 
Also, (c) corresponds to Fig. 3(b). 
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