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Standard response formats such as rating or visual analogue scales require respondents to condense
distributions of latent states or behaviors into a single value. Whereas this is suitable to measure central
tendency, it neglects the variance of distributions. As a remedy, variability may be measured using interval-
response formats, more specifically the dual-range slider (RS2). Given the lack of an appropriate item
response model for the RS2, we develop the Dirichlet dual response model (DDRM), an extension of the
beta response model (BRM; Noel & Dauvier in Appl Psychol Meas, 31:47–73, 2007). We evaluate the
DDRM’s performance by assessing parameter recovery in a simulation study. Results indicate overall good
parameter recovery, although parameters concerning interval width (which reflect variability in behavior or
states) perform worse than parameters concerning central tendency. We also test the model empirically by
jointly fitting the BRMand theDDRM to single-range slider (RS1) and RS2 responses for two Extraversion
scales. While the DDRM has an acceptable fit, it shows some misfit regarding the RS2 interval widths.
Nonetheless, the model indicates substantial differences between respondents concerning variability in
behavior. High correlations between person parameters of theBRMandDDRMsuggest convergent validity
between the RS1 and the RS2 interval location. Both the simulation and the empirical study demonstrate
that the latent parameter space of the DDRM addresses an important issue of the RS2 response format,
namely, the scale-inherent interdependence of interval location and interval width (i.e., intervals at the
boundaries are necessarily smaller).

Key words: response formats, dual range slider, item response theory, interval responses, continuous
bounded responses, variability in behavior, uncertainty.

1. Introduction

Personality psychology has a decades-long tradition of using response scales to measure
traits (Likert, 1932; Thurstone, 1929). In standard personality inventories, respondents answer
questions or statements by condensing a wide range of attitudes, experiences, and behaviors into
a single response value. In contrast to standard practice, whole trait theory (Fleeson and Jayaw-
ickreme, 2015) conceptualizes personality traits as density distributions of states. Fleeson (2001)
showed in a series of experience-sampling studies that not only the central tendencies of these
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state distributions, but also their variances, are stable person characteristics. Consequently, a sin-
gle response to an item can be viewed as an aggregate summary reflecting the central tendency of
a distribution of states within a respondent. Usually, however, the variance of internal distributions
is neither measured nor modeled. This can be problematic because two respondents having per-
sonality state distributions of different variability could end up choosing the same response value
on the response scale, which might in turn lead researchers to assume equivalence with respect to
the latent construct, while in reality the two individuals differ with respect to their experiences.

As a solution, it might be possible to measure the variability of internal distributions of states
or behaviors using an interval-response format. For each question or statement, respondents set a
lower and an upper bound to indicate a range of values that best represent their attitudes, behaviors,
or experiences. Such an approach can lead to different statistical conclusions compared to using
Likert-type scales (Lubiano et al., 2016) .

Ellerby et al. (2022) showed that interval responses are a promising approach for psychometric
measurement in general. Using an interval-response format, respondents were able to adequately
indicate both objective and subjective variance. The authors also describe two types of interval
responses that represent qualitatively different sets of values (for a more in depth discussion,
see Couso & Dubois, 2014). First, disjunctive sets include only one value that is considered
to be the normatively correct answer. Response intervals that represent disjunctive sets allow
respondents to express uncertainty about the correct answer, for instance,when answering general-
knowledge questions (e.g., “What is the height of the Eiffel tower?”). Second, a response interval
may represent a conjunctive set which consists of values that are all true or valid answers. For
instance, in a personality questionnaire, a respondent may provide a range of plausible values for
a question or statement, which might reflect their variability in behaviors or flexibility in reacting
to situational demands. Response intervals representing conjunctive sets are thus at the focus of
the present article.

Based on the findings of Ellerby et al. (2022), we assume that the location of a response
interval still reflects the central tendency of the underlying latent trait equivalently as for a single-
response format. Further, we assume that the width of a response interval is an indicator of trait
variability that reflects the variance of the distribution of states (Ellerby et al., 2022). However,
the interpretation of the interval width will change depending on the specific use case for the
interval response format. We therefore use the more neutral term “expansion dimension” to refer
to the corresponding latent dimension, which is the hypothesized variability of latent states in
our motivating example (i.e., whole trait theory). The intended interpretation of the expansion
dimension for a given application needs to be treated with caution and should be validated,
for instance, using experimental studies. To facilitate empirical tests of the assumptions and
interpretations mentioned above, we develop a psychometric model for measuring trait variability
via interval responses.

Given that we aim at modeling the variability of latent traits, our approach is an alternative
to so-called variable-θ models (Ferrando, 2011, 2014). In the variable-θ approach, variability is
conceptualized at the respondent level. A response to an item is assumed to be generated by the
current, momentary trait level of the respondent, which fluctuates around a stable, person-specific
mean of the trait. The amount of variability in the latent trait is modeled by a person-specific
variance parameter, which can be interpreted as the respondent’s reliability across the whole set
of items. In contrast, our approach directly infers the variability of behaviors and states from the
responses at the item level (operationalized by the width of a response interval).

One convenient implementation of an interval-response format is the dual-range slider (RS2;
see Appendix A for a list of abbreviations) shown in Fig. 1B. Using a web browser or any exper-
imental software, respondents have to adjust two slider handles in order to obtain a response
interval of a certain location and width. Thus, the response forms a bounded segment on a contin-
uous response scale. Compared to categorical answers, the continuous scale of the RS2 provides
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Figure 1.
Single-range slider (Panel A) and dual-range slider (Panel B). Note. The sliders were created with the Ion.RangeSlider
java plugin (Ineshin, 2021) .

a higher resolution of response options, which in turn allows respondents to give finer-grained
answers and allows for interval-scale measurement (Reips and Funke, 2008) . This is espe-
cially important in the present application where the mutual constraint of lower and upper bounds
naturally decreases the number of possible response values for either one of the sliders. Another
benefit of relying on a continuous scale is that the corresponding item response models are usually
more parsimonious than those for categorical data because they do not require multiple category
threshold parameters (Noel and Dauvier, 2007).

1.1. Item Response Theory Models for Continuous Bounded Responses

Computerized tests have made it easy to implement continuous response scales for data
collection, usually via single-range sliders (RS1) as shown in Fig. 1A. The idea is not novel
though. Outside of the digital world, continuous scales have been known for a long time as
graphic rating scales or visual analog scales. According to Yeung and Wong (2019), a graphic
rating method was first mentioned by Hayes and Patterson (1921). Continuous scales have since
been used regularly to measure various constructs such as the strength of pain in clinical settings
(e.g., Bijur et al., 2001). From a modeling perspective, several item response theory (IRT) models
have been proposed for the evaluation and scoring of continuous scales such as theRS1 (Ferrando,
2001; Mellenbergh, 1994; Müller, 1987; Noel and Dauvier, 2007; Samejima, 1973; Deonovic et
al., 2020). However, to the best of our knowledge, IRT models for continuous interval responses
have not yet been proposed. The present article addresses this gap by developing such a model.

Bounded responses often have a skewed distribution (Verkuilen and Smithson, 2012), which
renders the normal distribution an inappropriate choice for modeling. A specific challenge thus
concerns the mapping of the bounded space of the manifest response scale to an unbounded latent
parameter space. The continuous response model (Samejima, 1973) addresses this issue with
a transformation approach. After applying a logit transformation to the responses, latent values
are assumed to be normally distributed (Wang and Zeng, 1998) . In contrast, Müller (1987)
and Ferrando (2001) used a truncation approach assuming that unbounded latent responses are
normally distributed. If latent responses fall outside the range of the manifest response scale, they
are simply truncated and redistributed during the response process.

Othermodels for bounded responses completely omit the assumption of an underlying normal
distribution. The approach by Deonovic et al. (2020) divides the continuous response into condi-
tionally independent binary variables that each follow a Rasch model (Rasch, 1993). Moreover,
Noel and Dauvier (2007) proposed a response mechanism in terms of agreement and disagree-
ment that is parameterized using a beta distribution. In addition to its ability to account for heavily
skewed distributions, the beta distribution offers the advantage that it directly generalizes to the
Dirichlet distribution if more than one response is observed on the bounded scale. Thus, the beta
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response model (BRM; Noel & Dauvier, 2007) is an ideal candidate for a model extension that
applies to interval responses. However, when providing two values on a shared scale (i.e., lower
and upper bound of an interval response), the inherent constraints on possible responses become
even more severe. The two bounds of a response interval are bounded by the lower and upper end
of the scale, and additionally, the lower bound necessarily has to be below the upper bound. As
a remedy, the Dirichlet distribution offers the benefit of taking the scale-inherent constraints and
interdependencies into account. Hence, we decided to rely on the BRM as a basis for developing
a model that accommodates interval responses via a Dirichlet distribution.

1.2. Aims

The first aim of the present article is to propose a novel IRTmodel, the Dirichlet dual response
model (DDRM), which accounts for interval responses on a continuous bounded scale. For this
purpose, we evaluate parameter recovery in a simulation study. Moreover, we assess the model’s
fit to data in an empirical example for an Extraversion questionnaire based on posterior predictive
checks and leave-one-out cross-validation.

The second aim concerns the validation of the person parameters of the proposed IRT model.
We assume that the locations of the response intervals of the RS2 correspond to the central
tendency of a latent trait. To test this assumption, we assess the convergent validity of the model’s
location parameters by comparing the corresponding estimates to those obtained by fitting the
BRM to RS1 responses. We expect a high correlation (i.e., r > .70, comparable to reliability
estimates) between the corresponding person parameters of the BRM and the DDRM. A high
correlation would indicate convergent validity for the two models and, consequently, for the two
item formats.

Our third aim focuses on advantages of the DDRM over the use of raw mean scores. Specif-
ically, we investigate whether correlational patterns of the two dimensions of core interest (i.e.,
location and expansion) differ when relying either on manifest mean scores or on latent parameter
estimates. First, we again consider the correlation of the location estimates of the RS1 and the RS2
format, expecting higher convergent validity for the model parameters than for mean scores. Sec-
ond, we assess whether the scale-inherent correlation among the two dimensions expansion and
location is smaller for the model-based than the descriptive estimates. For this purpose, concern-
ing the manifest mean scores, we focus on the correlation of the interval width and the absolute
deviance of the response-interval location from the scale midpoint. Concerning the model param-
eters, this corresponds to the correlation of the person expansion parameter and the absolute value
of the person location parameter. Higher convergent validity and a smaller internal correlation
among the two dimensions would justify the employment of the proposed model.

In the following, we outline the BRM (Noel and Dauvier, 2007; Noel, 2014) in Sect. 2 and
subsequently extend the model to the DDRM in Sect. 3. Next, we present a simulation study for
the DDRM in Sect. 4. In Sect. 5 we report an empirical example in which we model both RS1 and
RS2 responses using a joint hierarchical model that incorporates both the BRM and DDRM. We
finally discuss the implications and limitations of the proposed model in Sect. 6.

2. The Beta Response Model (BRM)

As a running example, we use the response scale implemented in our empirical example,
which allows respondents to select values from 0 to 100. To fit the BRM, the observed responses
X∗ must first be rescaled using the transformation X = X∗+1

102 so that X ∈ (0, 1). This is required
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for computational reasons as response values must not be equal to 0 or 1, thereby ensuring that
the log-likelihood does not become −∞ (see Stan Development Team, 2022).1

In a standard testing scenario, the randomvariable Xi j represents the response of a respondent
i = 1, . . . , I (number of respondents) on item j = 1, . . . , J (number of items). Noel and Dauvier
(2007) derived Xi j by proposing the following theoretical response mechanism: The respondent
assigns a proximity judgment to each of the semantically anchored endpoints of the response scale,
resulting in two psychological values, namely, υ(A)

i j for agreement and υ
(D)
i j for disagreement. To

generate a single response, both values are interpolated into a relative proportion on the response
scale,

Xi j = υ
(A)
i j

υ
(D)
i j + υ

(A)
i j

. (1)

The resulting response variable Xi j denotes the degree of agreement on the unit-scale segment.

Both υ
(A)
i j and υ

(D)
i j are assumed to be positive values and are modeled as gamma-distributed

random variables with separate shape parameters mi j and ni j , but a common scale parameter s,

υ
(A)
i j ∼ �(mi j , s),

υ
(D)
i j ∼ �(ni j , s).

This is an arbitrary yet advantageous choice since it implies that the response variable Xi j follows
a beta distribution (Johnson et al., 1995) ,

Xi j ∼ Beta(mi j , ni j ). (2)

To transform the beta distribution into an IRT model, the shape parameters mi j and ni j are
reparameterized in terms of a latent person ability θi , a latent item difficulty δ j , an item precision
parameter τ j ≥ 0, and a general scaling parameter α > 0. A slightly modified version of the
original parameterization2 is given by,

mi j = exp[α(θi − δ j ) + τ j ],
ni j = exp[−α(θi − δ j ) + τ j ]. (3)

The positive versus negative sign for ±α has the effect that differences between ability and
difficulty parameters (i.e., θi −δ j ) result in parametersmi j and ni j of the beta distribution that are
further away from the value 1 in opposite directions (while assuming τ j = 0). Depending on the
sign of the difference θi − δ j , the mode of the beta distribution moves up or down on the response
scale, thereby resulting in answers that indicate agreement or disagreement on the response scale,
respectively. Since the variance of the beta distribution decreases when both parameters mi j and
ni j increase,3 larger values of τ j result in a steeper response-density curve, and thus, in less
variability of the observed responses.

1Due to the transformation, the minimum and maximum of the values used in the analysis are 1
102 and 1 − 1

102 ,
respectively, which is an arbitrary choice based on the resolution of the original scale. The theoretical endpoints of the
scale (i.e., zero and one) cannot be selected by the respondents (this corresponds to the open-response situation described
in Samejima, 1973).

2The original model by Noel and Dauvier (2007) fixes α to 1 and divides everything inside the two exponential
functions by 2.

3This becomes evidentwhen parameterizing the beta distribution in terms of themeanμi j = mi j
mi j+ni j

, (0 < μi j < 1)

and the sample size νi j = mi j + ni j > 0 where Var(xi j ) = μi j (1−μi j )

1+νi j
. If we increase mi j and ni j such that μi j stays

constant, the numerator of the variance equation stays constant, but the denominator increases.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 06:53:46, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


M. KLOFT ET AL. 893

3. The Dirichlet Dual Response Model (DDRM)

3.1. Model Structure

The BRM is concerned with a continuous bounded scale and is based on the idea that each
response divides the scale into two proportions that sum up to one. Analogously, the RS2 can be
viewed as a continuous bounded scale where each response interval divides the scale into three
proportions. A Dirichlet distribution with three parameters can thus be applied to the RS2 format,
similar to the beta distributionwith two parameters for theRS1 format. In fact, Noel (2014) already
used a Dirichlet distribution to derive an extended version of the BRM, the beta unfolding model
that applies to single continuous responses. Building on this approach, we develop a different
parameterization that applies to the RS2 format.

A response interval can be described by two values, namely, Y ∗
L for the lower bound (adjusted

via the left slider), and Y ∗
U for the upper bound (adjusted via the right slider). Due to the same

computational reasons as for the BRM, the original responses on the scale from 0 to 100 are first
transformed to avoid values at the boundaries of the response scale (see Stan Development Team,
2022). Since respondents can select identical values for both sliders in the RS2 format (resulting
in an response interval of length zero), it is also necessary to ensure that YL is strictly smaller

than YU . As a remedy, the transformations YL = Y ∗
L+1
103 and YU = Y ∗

U+2
103 ensure that the strict

inequalities 0 < YL < YU < 1 hold.
Using the transformed responses, we define a response vector Y which contains the three

proportions describing the response interval on a unit scale,

Y =
⎛
⎝

YL
YU − YL
1 − YU

⎞
⎠ . (4)

In this vector, YL is the proportion to the left of the response interval, YU − YL is the middle
proportion (i.e., the relative width of the response interval), and 1 − YU is the proportion to the
right of the response interval.

For theDDRM,we extend the responsemechanism assumed by theBRM (Noel andDauvier,
2007). The response vector Y i j for respondent i answering item j is modeled by an interpolation

mechanism of the three latent values υ
(A)
i j , υ(E)

i j , and υ
(D)
i j ,

Y i j =
(

υ
(A)
i j

υ
(A)
i j + υ

(E)
i j + υ

(D)
i j

,
υ

(E)
i j

υ
(A)
i j + υ

(E)
i j + υ

(D)
i j

,
υ

(D)
i j

υ
(A)
i j + υ

(E)
i j + υ

(D)
i j

)′
. (5)

The latent value υ
(A)
i j reflects overall agreement with an item since larger values lead to an increase

of the leftmost proportion and to a decrease of the other two proportions, which in turn shifts the
response interval to the right side of the scale (i.e., in the direction of agreement). The latent value
υ

(D)
i j reflects overall disagreement and follows a similar mechanism, but in the opposite direction.

Finally, the parameter υ
(E)
i j represents the expansion of latent values, that is, the variability of

latent agreement and disagreement values. If υ
(E)
i j increases, the middle proportion becomes

larger whereas the two outer proportions become smaller, in turn leading to a wider response
interval.

Similar to the BRM, the three latent values are assumed to be gamma-distributed with a
common scale parameter s (Noel, 2014). Concerning the shape parameters, ai j and di j again
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reflect agreement and disagreement, respectively, whereas ei j refers to the expansion of latent
values,

υ
(A)
i j ∼ �(ai j , s),

υ
(E)
i j ∼ �(ei j , s),

υ
(D)
i j ∼ �(di j , s). (6)

Equations (5) and (6) imply that the response vector follows a Dirichlet distribution,

Y i j ∼ Dir(ai j , ei j , di j ), (7)

where the density function of the Dirichlet distribution is given by

f ( yi j |ai j , ei j , di j ) = �(ai j + ei j + di j )

�(ai j ) · �(ei j ) · �(di j )
y
ai j−1
i j1 y

ei j−1
i j2 y

di j−1
i j3 . (8)

The Dirichlet distribution of the response vector Y i j is re-parameterized in terms of person
and item parameters, thus building an IRT structure on top of the Dirichlet parameters,

ai j = exp
[
αλ(θi − δ j ) + τ j

]
,

ei j = exp
[
αε(ηi + γ j ) + τ j

]
,

di j = exp
[−αλ(θi − δ j ) + τ j

]
. (9)

Note that some of the parameters appear in both the BRMand theDDRM (e.g., θi or δ j ). Formally,
these parameters fulfill different roles depending on the specific model structure. Substantively,
however, these parameters have an equivalent interpretation in the BRM and the DDRM, and
thus, we use the same letters to facilitate readability. In the empirical example, where both models
are analyzed jointly, we label these corresponding parameters using upper scripts B for the BRM
(e.g., θ B

i ) and D for the DDRM (e.g., θD
i ).

In the DDRM, the latent parameterization of agreement ai j and disagreement di j follows a
similar mechanism as for mi j and ni j , respectively, in the BRM. Essentially, the difference in
person and item parameters (i.e., θi − δ j ) moves the response interval up or down on the response
scale, thus reflecting the central tendency of the distribution of latent values. The latent expansion
value ei j controls the width of the response interval and is parameterized in terms of a person
parameter ηi and an item parameter γ j . The parameter ηi refers to a respondent’s tendency to
provide wide response intervals, which may represent various psychological constructs such as
variability in the latent trait or behavior, subjective uncertainty, or response styles. The expansion
parameter γ j represents an item’s tendency to elicit wide versus narrow response intervals. Param-
eters ηi and γ j are combined by summation to obtain ei j , which contrasts with the subtraction
used for the latent location dimension (i.e., θi − δ j for ai j and di j ). Using the sum of the person
and item parameters (i.e., ηi +γ j ) results in a more intuitive interpretation, as for both parameters
larger values then correspond to wider response intervals.

The parameter τ j fulfills an equivalent function as in the BRM, representing the precision of
responses both on the location and the expansion dimension at the same time. Essentially, large
values of τ j imply that respondents provide consistent response intervals in terms of locations
and widths. Lastly, we assume a separate scaling parameter for each latent dimension, that is,
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±αλ for the location dimension and αε for the expansion dimension. In the location dimension,
the parameter αλ serves the same function as in the BRM: it allows for a scaling of the difference
between person ability and item difficulty (i.e., θi − δ j ), and thereby facilitates shifts of the whole
response interval up and down on the response scale. In the expansion dimension, the scaling
parameter αε only controls the influence of the corresponding person and item parameters (i.e.,
ηi + γ j ).

Figure 2 shows four exemplary Dirichlet distributions of interval responses using ternary
plots (right column) for different configurations of the latent parameters, including 50 randomly
drawn response intervals for each scenario (left column). As intended, the location and expansion
parameters clearly affect the expected interval location (solid vertical line) and expected interval
width (dashed vertical lines), respectively. However, locations and widths are not exclusively
influenced by the corresponding latent dimension, but are also affected by the respective other
dimension. When comparing Fig. 2A and B, we see that a change in ηi − γ j (i.e., the expansion
dimension) causes a shift in the expected interval location. Analogously, when comparing Fig. 2B
and C, we see that a change in θi − δ j (i.e., the location dimension) causes a shift in the expected
intervalwidth. This behavior is due to the fact that theDDRMaccounts for the inherent dependency
of interval location and width on the bounded response scale. Also, note that a change in τ j
(precision) does not cause a change in the expected interval width. Instead, larger values of τ j
imply that response intervals are more homogeneous both with respect to their locations and
widths (see Fig. 2C, D).

3.2. Item Information

To investigate themodel’s sensitivity to changes in the latent parameters, we derived the item-
information functions for θi and ηi based on the expected Fisher information. For a full derivation
of the log-likelihood, first and second derivatives, and item information, see Appendix B. The
item information for θi is illustrated in Fig. 3A and given by

Iθ = −E

[
∂2 ln L(�;Y)

∂2θi

]

= −
[
(ζ (a)

a αλai j ) + (−ζ
(a)
d αλdi j )

]
αλai j

−
[
(ζ (d)

a αλai j ) + (−ζ
(d)
d αλdi j )

]
(−αλ)di j (10)

with

ζa =
[
ψ(ai j + ei j + di j ) − ψ(ai j ) + ln(yi j1)

]
,

ζd =
[
ψ(ai j + ei j + di j ) − ψ(di j ) + ln(yi j3)

]
,

ζ (a)
a = ∂ζa

∂ai j
= ψ ′(ai j + ei j + di j ) − ψ ′(ai j ),

ζ
(d)
d = ∂ζd

∂di j
= ψ ′(ai j + ei j + di j ) − ψ ′(di j ),

ζ (d)
a = ∂ζa

∂di j
= ψ ′(ai j + ei j + di j ),

ζ
(a)
d = ∂ζd

∂ai j
= ψ ′(ai j + ei j + di j ), (11)

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 06:53:46, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


896 PSYCHOMETRIKA

0 0.25 0.5 0.75 1

Response

S
am

p
le

d
 I

te
m

�i � �j � �3, �i � �j � 0, 	j � 0.5, 
�, � � 0.5

A

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

0

0.2

0.4

0.6

0.8

1

Disagree Agree

Width

0 0.25 0.5 0.75 1

Response

S
am

p
le

d
 I

te
m

�i � �j � �3, �i � �j � �3, 	j � 0.5, 
�, � � 0.5

B
0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

0

0.2

0.4

0.6

0.8

1

Disagree Agree

Width

0 0.25 0.5 0.75 1

Response

S
am

p
le

d
 I

te
m

�i � �j � 0, �i � �j � �3, 	j � 0.5, 
�, � � 0.5

C

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

0

0.2

0.4

0.6

0.8

1

Disagree Agree

Width

0 0.25 0.5 0.75 1

Response

S
am

p
le

d
 I

te
m

�i � �j � 0, �i � �j � �3, 	j � 1.5, 
�, � � 0.5

D

0

0.2

0.4

0.6

0.8

1

0

0.
2

0.
4

0.
6

0.
8 1

0

0.2

0.4

0.6

0.8

1

Disagree Agree

Width

Figure 2.
Response distributions and sampled interval responses for the DDRM. Note. The left column shows 50 randomly drawn
response intervals that correspond to the Dirichlet distributions illustrated in the right column (with densities approximated
based on 100,000 randomdraws). Solid vertical lines show the expected value for themidpoint (YL+YU )/2 of the response
interval (i.e. expected location), whereas the dashed vertical lines show the expected values for the corresponding lower
bound and upper bound (i.e., YL and YU , respectively).
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Figure 3.
Item information for the person parameters of the DDRM. Note. Scaling parameters αλ and αε are fixed to 0.5.

whereψ ′(x) = ∂2 ln�(x)/∂2x is the trigamma function. The item information for ηi is illustrated
in Fig. 3B and is given by

Iη = −E

[
∂2 ln L(�;Y)

∂2ηi

]

= −
[
ψ ′(ai j + ei j + di j ) − ψ ′(ei j )

]
α2

ε e
2
i j . (12)

The item-information curves for the location parameter θi (Fig. 3A) under the condition of
small values for the expansion dimension (ηi + γ j ; Fig. 3A, left panel) are unimodal. The shape
of these functions is very similar to the item-information curves derived for the BRM by Noel and
Dauvier (2007). With higher values of ηi + γ j (see Fig. 3A, middle and right panel), the curves
tend towards bimodal U-shapes. For an arbitrary τ j (i.e., a specific line type in the figure) the
overall item-information increases when ηi + γ j increases (compare all panels of Fig. 3A from
left to right), except for the point θi − δ j = 0; the item-information at that point stays constant for
increasing ηi + γ j . This behavior is caused by the asymmetric model architecture: ηi + γ j raises
or lowers the sum of the Dirichlet parameters (i.e., ai j , ei j , di j ) independently from θi − δ j . Thus
it can govern the precision of the corresponding response distribution without a change in θi − δ j .

In line with this mechanism, the item-information curves for the expansion parameter ηi
(Fig. 3B) are monotonically increasing for all three levels of the location dimension (i.e., θi − δ j ).
For lower levels of ηi + γ j , item information is generally lower, while the overall information
level is raised by moving the location dimension away from zero (i.e., |θi − δ j | > 0; comparing
the middle panel of Fig. 3B to the outer ones). Again, the reason is that θi − δ j raises or lowers
the sum of the Dirichlet parameters (i.e., ai j , ei j , di j ) independently from ηi + γ j . Since the sign
of the scaling parameter αλ differs for ai j and di j , θi − δ j = 0 leads to the minimum precision
of the distribution and consequently also to the lowest overall level of item information (see
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middle panel of Fig. 3B). The monotonically increasing item-information curve implies that the
model is relatively insensitive to changes of latent parameters in the lower range of the expansion
dimension. At the same time, the model is more sensitive when the location dimension is situated
in the higher or lower region (i.e., away from zero). The item-information curve thus implies
that response intervals are more informative when the interval width is large, and also, when the
interval is located closer to one of the ends of the response scale.

4. Simulation Study

4.1. Data Generation

To investigate the parameter recovery of the DDRM, we conducted a simulation study. All
R scripts are available at the Open Science Framework (https://osf.io/br8fa/). We simulated 300
datasets for 4×3 conditions, namely, four different numbers of items (J = 10, 15, 20, 30) crossed
with three different sample sizes (I = 100, 250, 500). The data-generating person parameters θi
and ηi were drawn fromN (0, 1) for each simulated dataset. In contrast, δ j and γ j were randomly
drawn from a fixed set of values given by the sequence from [−2, 2] with step size 4

J . Thereby,
we randomized the combinations of both parameters for each item across simulated datasets and
items. Precision parameters τ j were drawn from a uniform distribution, U(0, 2), whereas scaling
parameters αλ,ε were fixed to 0.5 for all simulated datasets.

4.2. Bayesian Parameter Estimation

The model was fitted to all simulated datasets in a Bayesian framework using Stan (Stan
Development Team, 2021). To ensure identifiability, we implemented the model with a standard
normal prior on the person parameters, thus fixing the group-level means to zero and the standard
deviations to one,

θi , ηi ∼ N (0, 1). (13)

To limit computation times and avoid divergent transitions of the sampler, we chose weakly
informative priors for the remaining parameters,4

δ j ∼ N (μδ, σδ),

γ j ∼ N (μγ , σγ ),

μδ, μγ ∼ N (0, 1.5),

σδ, σγ ∼ �(1.5, 1.5),

τ j ∼ N (μτ , στ ) truncated to (0,∞),

μτ , στ ∼ �(1.5, 1.5),

αλ, αε ∼ �(1.5, 1.5). (14)

We fitted theDDRM in R (RCore Team, 2021) with Stan (StanDevelopment Team, 2021) via
the CmdStanR package (Gabry and Češnovar, 2021) by running four chains of the Hamiltonian-
Monte-Carlo (HMC; Betancourt, 2018) no-U-turn sampler (NUTS). Each chain included 500

4Graphical illustrations can be found at theOSF repository: https://osf.io/br8fa/. The 95%HDI of the prior distribution
N (0, 1.5) is [−2.94, 2.94] and that of the prior distribution �(1.5, 1.5), parameterized in terms of shape and rate, is
[0.00, 2.61].
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burn-in iterations and 3,500 sampling iterations, resulting in a total of 14,000 samples per param-
eter. Concerning convergence of the sampler, therewere overall 17model fits across five conditions
that had divergent transitions of the HMC chains. We excluded these model fits from further anal-
yses. We further excluded one model fit for high values of the R̂ statistic (> 1.05; Vehtari et
al., 2021). For the remaining model fits, all parameters had an R̂ < 1.03. Concerning the effec-
tive sample sizes (ESS), the bulk ESS, which determines the precision of the estimated posterior
means or medians, as well as the tail-ESS, which determines the precision of the estimated lower
and upper credibility bounds, were satisfactory for all models and parameters (minimum bulk-
ESS across model fits: minimum = 212, median = 1,002; minimum tail-ESS across model fits:
minimum = 428; median = 2,693).

4.3. Performance Measures

Weused the posteriormedians as point estimates for the parameters. Based on these estimates,
we computed several measures of parameter-recovery performance for each group of parameters
(e.g., using the θi parameters of all individuals), which were then averaged over the 300 model fits
within each condition. As performance measures, we focus on the correlations between estimated
and true parameters (referred to as correlation), the mean signed difference (bias), the root mean
square error (RMSE), and the percentage of 95% highest density intervals (HDIs) covering the
true parameter value (coverage).

4.4. Results and Discussion

Figure 4 shows the different performance measures (rows) for each group of parameters
(columns). The bias estimates (second row) are overall negligibly small and, with the exception
of ηi and τ j , which were overall slightly underestimated, basically reduce to noise. The estimates
for correlation (first row) and RMSE (third row) reveal that higher numbers of items benefit the
person-parameter estimateswhile higher numbers of persons benefit the item-parameter estimates.
Additionally, we see that the parameters concerning the location dimension (θi , δ j ) show a lower
RMSE than the corresponding parameters concerning the expansion dimension (ηi , γ j ). This
trend is especially pronounced for person parameters. To achieve a performance of the person
expansion ηi comparable to the performance of the person location θi using 10 items, it would
be necessary to double the number of items. Given the lower item information for ηi (see Fig. 3),
this is not surprising but should be considered when deciding on a certain test length. Although
larger numbers of persons and items obviously lead to higher precision in parameter estimates,
there are diminishing returns on investment when stepping up from 250 to 500 persons or from
20 to 30 items. Comparing the item parameters, the recovery of precision parameters τ j was
considerably worse than for the other two parameters. Besides the mentioned negative bias and
lower correlation, τ j was the only parameter group that did not achieve the targeted coverage
across all conditions, which is a consequence of the negative bias.

We also used the simulated datasets to assess the added value of the rather complex DDRM
by comparing the performance of raw mean scores and latent person parameters. Specifically,
we focused on a critical property of continuous bounded interval responses, namely, the scale-
inherent dependence of interval locations and interval widths. The further away a response interval
is placed from the scalemidpoint, the smaller themaximumpossible width becomes, which in turn
implies a negative correlation. We assessed this dependence by computing the absolute deviance
from the scale midpoint (ADSM) as an alternative representation of a given response interval,

YADSM = |0.5 − YL+YU
2 |. (15)
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Figure 4.
Average performance measures for the DDRM parameters. Note. Performance measures were computed for each group
of parameters separately (i.e., θi , ηi , etc.) and then averaged across the 300 replications. Error bars show corresponding
95% confidence intervals.

For each simulated dataset, we then computed the correlation between the individual mean
scores for the response-interval width and the mean scores for the absolute deviance from the
scale midpoint, YADSM. Averaged across all 12 conditions and all replications, this correlation
was r = −.74 (95% CI = [−.82,−.66]), indicating a strong dependence of location and width.
Analogously to the manifest responses, we computed the correlation for the latent parameters of
the DDRM while focusing on their absolute values for the location dimension (i.e., |θi | and η j ).
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Contrary to the raw mean scores, the mean correlation of recovered parameters was close to zero,
r = −.01 (95%CI = [−.16, .13]). These values are very close to the mean correlation between the
true generating parameters (r = .00, 95% CI = [−.14, .14]). Overall, these results show that the
raw mean scores for interval location and width exhibit a strong negative correlation even when
the true, data-generating parameters are basically uncorrelated. This is a major drawback of using
simple mean scores for response intervals. As a remedy, the DDRM provides parameter estimates
for location and expansion with a correlation close to zero, which facilitates the estimation of the
actual, data-generating parameter structure. We will come back to this point in the context of the
empirical example.

5. Empirical Example

5.1. Sample and Procedure

The primary goal of our empirical study was the collection of a suitable data set for the
development and evaluation of the DDRM. The secondary goal was to compare the DDRM
location parameters to those of the BRM. In an effort to maximize the number of items and
respondents, we decided to split neither the sample nor the item pool. Instead, for the standard
single-range-slider format (RS1),we used a different set of items froman establishedmeasurement
instrument (Danner et al., 2019). While this approach does not allow us to perform a direct
comparison of the two response formats at the item level, we can still compare the person location
parameters of the DDRM and the BRM since both parameters reflect the central tendency of the
same trait. Moreover, a test of the convergent validity at the person level with distinct items per
response format provides an even stricter test than the alternative approach of using an identical
set of items with repeated measurement.

We conducted an online survey containing 36 RS2 items and 12 RS1 items.5 Recovery
simulations based on a previous version of the DDRM showed that sufficiently precise parameter
estimates could be obtained with a sample size of N = 200. The original sample consisted of
246 German-speaking respondents of which the majority were psychology students. In total, 24
respondents were excluded as they provided extremely long response times (n = 3), univariate
extreme responses (n = 6), ormultivariate extreme responses (n = 15). Thefinal sample consisted
of 222 respondents (female: 140, male: 80, diverse: 2) with a median age of 27 years (M =
29.4, SD = 10.9).

The items were presented in two blocks. First, 36 Extraversion items from the International
Personality ItemPool (IPIP;Goldberg, 1999) had to be answered using theRS2 format. Second, 12
Extraversion items from the Big Five Inventory 2 (BFI-2; Danner et al., 2019) had to be answered
using the RS1 format. Regarding the RS2 items, respondents were instructed to indicate how
well the presented statement applied to themselves (e.g., “I like to visit new places”). In doing
so, they had to use the two sliders to specify a range of values indicating the variability of the
statement’s fit across different situations (including both work and private life). Whereas broader
response intervals had to be specified for statements with a high variability of fit across situations,
narrower response intervals had to be chosen if the fit of the statement was similar across different
situations. Respondents were also instructed to consider only typical behaviors while disregarding
extreme situations. In the instructions for theRS1 items, respondentsweremerely asked to indicate
how well the statement applied to themselves by choosing a single value on the response scale.
Both the RS1 and the RS2 format were verbally and numerically anchored at their endpoints
(0 = does not apply at all, 100 = fully applies), while the midpoint (50) was also labeled on
the scale (see Fig. 1). Above each of the adjustable visual sliders, the currently specified numeric

5A list of the used items can be found at the OSF repository: https://osf.io/br8fa/.
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value was displayed. The initial values for the sliders were 50 for the RS1 and [0, 100] for the
RS2. The sliders had to be moved at least once before respondents could proceed to the next item.
Items were presented one at a time and in random order within each block.

5.2. Measures

5.2.1. IPIP-NEO The scale contained 36 Items from the IPIP-NEO (Goldberg, 1999) in our
own German translation. We selected items representing the core of the Extraversion factor in a
multidimensional graded responsemodel (Samejima, 1969;Chalmers, 2012). 6 The selected items
mainly belonged to the facets Sociability,ActivityLevel,Adventurousness, PositiveEmotions, and
Unrestraint. McDonald’s ωt (internal consistency) was .94 in our sample for the response-interval
locations, and .92 in the original Eugene SpringfieldCommunity Sample (ESCS;Goldberg, 1999),
which used a 5-point Likert-type scale and included 570 respondents (female: 330, male: 240)
with ages ranging from 20 to 85 years. McDonald’s ωh (g-saturation) was .63 for our sample and
.62 for the ESCS. Hence, our subset of IPIP-NEO items which were answered in the RS2 format
performed equally well in our study as in the original study, despite differences in item selection,
item format, and translation.

5.2.2. BFI-2 The 12 items of the Extraversion scale from the German version of the BFI-2
(Danner et al., 2019; Soto and John, 2017) cover three facets: Sociability, Assertiveness, and
Energy Level. In our sample, McDonald’s ωt and ωh for the RS1 format were .92 and .79,
respectively. The latter value resembles McDonald’s ωh = .80 obtained with 5-point Likert-type
items in the original norming sample which consisted of 770 respondents (female: 396, male:
374) with a mean age of 44.5 years (SD = 13.8). This shows that the BFI-2 performed equally
well in our study as in the original study, which provides evidence for the measurement quality
of the RS1 format.

5.3. Bayesian Parameter Estimation

To address research questions regarding the correlation of person parameters across different
response formats, it is convenient to combine the BRM and the DDRM into a joint model. For
this purpose, we assumed a multivariate normal prior distribution for the person parameters of
both models (upperscripts B and D stand for the BRM and DDRM, respectively),

(θ B
i , θD

i , ηD
i ) ∼ MVN (μ,�). (16)

The covariance matrix � was parameterized in terms of a correlation matrix and a vector of
standard deviations,

� = diag(σ )� diag(σ ). (17)

The Cholesky factor decomposition of the correlation matrix (Barnard et al., 2000) was used to
assume an uninformative LKJ-Cholesky prior (Lewandowski et al., 2009),

� = �L�T
L ,

�L ∼ LKJ-Cholesky(1). (18)

To ensure the identifiability of the hierarchical model, we fixed the group-level means to μ = 0
and the standard deviations to σ = 1.

6The selection criterion for items was an angle with the factor axis of α ≤ 30◦ (Reckase, 2009, p. 117).
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For the item parameters, we assigned normal priors to δ j and γ j , and truncated normal priors
to τ j along with weakly informative hyperpriors. For all α parameters we specified a weakly
informative truncated Student-t prior. Since the priors apply to both the BRM and the DDRM, we
drop the superscripts,7

δ j ∼ N (μδ, σδ),

γ j ∼ N (μγ , σγ ),

μδ, μγ ∼ t(3, 0, 2),

σδ, σγ ∼ t(3, 0, 2) truncated to (0,∞),

τ j ∼ N (μτ , στ ) truncated to (0,∞),

μτ ∼ t(3, 0, 2) truncated to (0,∞),

στ ∼ t(3, 0, 2) truncated to (0,∞),

α, αλ, αε ∼ t(3, 0, 2) truncated to (0,∞). (19)

We fitted the Bayesian hierarchical model using the same software as for the simulation study
(see Sect. 4).8 We ran 4 chains of Stan’s HMC NUTS sampler, each with 4,000 burn-in and 4,000
sampling iterations, and a thinning factor of 2, resulting in 8,000 samples per parameter.9 We
checked convergence of the chains via the diagnostic function of the CmdStanR package (Gabry
and Češnovar, 2021) and via the convergence statistics split R̂ and effective sample size (ESS;
Vehtari et al., 2021). All R̂ were smaller than 1.01, the minimum bulk-ESS was 2, 828 and the
minimum tail-ESS was 4, 358, which indicated convergence of all HMC chains. Also, there were
no divergent transitions for any of the chains.

5.4. Results and Discussion

5.4.1. Descriptive Statistics There were no missing data. If respondents answered an item
multiple times by going back to previous pages of the survey, only the first response was used for
analysis. The means of all RS1 responses (M = 58.67, SD = 24.99) and all interval locations
in the RS2 format (M = 56.65, SD = 24.96) were comparable. The mean interval width was
about 25% of the scale segment’s length (M = 26.12, SD = 15.97). Regarding mean scores, the
RS2 interval locations had a more balanced variance ratio of person statistics to item statistics
( SDperson

SDitem
= 12.27

9.35 = 1.31) compared to the RS1 ( SDperson
SDitem

= 16.45
5.59 = 2.94), which could be

beneficial for parameter estimation. However, the fact that the variance ratio was closer to one for
RS2 than RS1 might also be due to the larger number of items for the RS2 format. The variance
ratio was even more unbalanced for the RS2 interval widths ( SDperson

SDitem
= 9.84

2.34 = 4.2), suggesting
that items might not have differentiated very well in terms of interval widths.

Given that we transformed all raw responses by adding a certain smoothing constant to avoid
proportion values of 0 and 1, it is of interest how many of the untransformed responses actually
were at a boundary (meaning that one of the sliders hit the limits of the response scale or the
other slider). At the level of respondents, for RS1 responses, the mean percentage of responses
X∗ = 0 was 1.43% (Q[.025,.975] = [0, 16.67]) and the mean percentage of responses X∗ = 100

7The 95%HDI of the prior distribution t(3, 0, 2) is [−6.36, 6.36] and that of the prior distribution t(3, 0, 2) truncated
to (0, ∞) is [0.00, 6.36].

8The data, R script, and Stan code for fitting the joint model can be found at the OSF repository: https://osf.io/
br8fa/. Fitting took approximately 75min on an i9-9820X processor. The estimation of a simple DDRM model for 200
respondents on 30 items with 4 chains, 500 burn-in iterations, and 500 sampling iterations required approximately 7.2min.
A template for fitting the model can also be found at the above-mentioned OSF repository.

9The tuning parameter adapt� was set to.80. We also used random starting values from the interval [−.2, .2].
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Figure 5.
Marginal posterior predictive checks for the DDRM (Panels A–D) and the BRM (Panel E) Note.Dark-blue lines show the
empirical distributions of responses. Light-blue lines correspond to posterior-predicted densities drawn from the DDRM
or the BRM (50 densities per plot) (Color figure online).

was 5.83% (Q[.025,.975] = [0, 41.67]). For RS2 responses, the mean percentage of responses with
only Y ∗

L = 0 was 2.63% (Q[.025,.975] = [0, 17.99]) and the mean percentage of responses with
only Y ∗

U = 100 was 7.33% (Q[.025,.975] = [0, 41.67]). On the other hand, the mean percentage
of responses where only the interval width Y ∗

U − Y ∗
L = 0 was 1.58% (Q[.025,.975] = [0, 11.11])

and the mean percentage of responses where the interval width Y ∗
U − Y ∗

L = 100 was 0.04%
(Q[.025,.975] = [0, 0]). Further, the mean percentage of responses where Y ∗

L = 0 and Y ∗
U −Y ∗

L = 0
was 0.49% (Q[.025,.975] = [0, 5.56]) and the mean percentage of responses where Y ∗

U = 100
and Y ∗

U − Y ∗
L = 0 was 0.94% (Q[.025,.975] = [0, 9.65]). Overall, the percentage of RS1 and RS2

responses at the boundaries was thus relatively low.

5.4.2. Model Fit The fit of Bayesian models can be evaluated via graphical checks (Gelman,
Carlin, et al., 2014, Chapter 6; Gabry et al., 2019) by comparing the actual, empirical responses to
posterior-predicted responses drawn from the fitted model. To facilitate an in-depth assessment of
model fit, Fig. 5 shows a direct comparison of the empirical versus posterior-predicted densities
with respect to five aspects of the data: the RS2 lower and upper bounds of the response interval,
the RS2 interval locations and widths, as well as the RS1 responses. For the BRM (Fig. 5E),
and for the lower bounds (Fig. 5A) and upper bounds (Fig. 5B) of the DDRM, posterior-predicted
distributions fit the empirical data reasonablywell. Regarding the upper bounds of theRS2, Fig. 5B
shows that the empirical distribution is slightly shifted towards the upper end of the response scale
compared to the distribution implied by the DDRM. In contrast, Fig. 5C shows that the DDRM
predicts distributions of interval locations that are concentrated too much in the middle of the
response scale. According to Fig. 5D, the model also predicts too narrow intervals (i.e., overly
small widths). Consequently, the skew of the empirical and posterior-predicted distributions does
not match. The plots also show that the respondents’ preferences for round figures (i.e., the
distribution modes on the numbers 10, 20, etc.) were not accounted for by the models.
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Figure 6.
Posterior predictive checks: aggregated interval responses on the respondent level.Note.Dark-blue lines show the empirical
distributions of aggregated interval responses. Light-blue lines correspond to posterior-predicted densities drawn from the
DDRM (50 densities per plot). Panels are ordered by the magnitude of estimated parameter values for the corresponding
respondent. First row: θD < −1. Second row: −1 ≤ θD < 0. Third row: 0 ≤ θD < 1. Fourth row: θD > 1. Inside each
row, the panels are ordered by ascending values of ηD (Color figure online).

To illustrate model fit at the level of respondents, we plotted the aggregated interval responses
against 50 posterior draws of their predicted interval responses for 16 randomly selected respon-
dents (Fig. 6). In the plot, the interval responses of a person are aggregated across items by
counting how often each of the possible response values is included in the response intervals
(e.g., the value .53 might be included in the three intervals [.50, .54], [.32, .55] and [.53, .87],
leading to a density value of 3). The plot shows the empirical distribution of response values of a
respondent as a solid, dark-blue line. In contrast, multiple, randomly-drawn posterior-predicted
densities are indicated by light-blue color. Figure6 reveals that the DDRM had a good fit for
respondents with a uni-modal distribution of aggregated interval responses (e.g., Respondent 3
in the first row and third column). In contrast, multi-modal response distributions were not well
fitted by the model (e.g., Respondent 6 in the second row and second column). Also, aggregated
response distributions that are broadly spread across the whole response scale show a higher level
of misfit. For instance, the parameter estimates for Respondent 10 (third row, second column) led
to an over-prediction of smaller response intervals in the middle of the response scale. In conclu-
sion, for some respondents, additional latent dimensions might be needed to achieve a better fit
of response intervals that are located in different regions of the response scale.

An alternative way to judge a models predictive capabilities is leave-one-out cross-validation
(LOO). The basic principle of LOO is to fit a model on a dataset multiple times while holding out
one response at a time (Gelman et al., 2014, Chapter 7). The held-out responses are subsequently
interpreted as potential future data, which can be used to evaluate the predictive validity of the
model. The loo package (Vehtari et al., 2017) uses Pareto-smoothed importance sampling
as a computationally efficient approximation of LOO. Since only one response in the DDRM
(< 0.1%) and two responses (0.1%) in the BRM were flagged as either bad or very bad (k̂ > 0.7;
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Figure 7.
Posterior estimates for the BRM and DDRM person parameters. Note. Panel A: Central tendency of Extraversion based
on the BRM. Panel B: Central tendency of Extraversion based on the DDRM. Panel C: Variability in Extraversion based
on the DDRM. Point estimates show the posterior median whereas dark and light segments show the 50% and 95%
equal-tailed posterior intervals, respectively. Across all three panels, individuals are ordered identically depending on
their estimate for the DDRM location parameter θDi (Panel B).

Gabry et al., 2019) by the LOO diagnostics, we assume that the LOO estimates are reliable to
facilitate an evaluation of the models. An indicator of predictive performance computed from the
LOO estimates is ploo, defined as the difference between elpdloo, that is, the LOO estimate for
the expected log pointwise predictive density (with higher values indicating better fit), and the
non-cross-validated log posterior predictive density. The ploo statistic can be interpreted as the
effective number of parameters (Gelman et al., 2014; Vehtari et al., 2017). Essentially, the value
of ploo should be smaller than the actual number of parameters and the number of responses. For
both models, the BRM (ploo = 179.1, SE = 10.3) and the DDRM (ploo = 514.2, SE = 11.6),
ploo was smaller than the number of parameters (BRM: p = 252, DDRM: p = 562) as well
as the number of responses (BRM: n = 2, 664, DDRM: n = 7, 992). This indicates that both
models had a satisfactory predictive performance.

5.4.3. Parameter Estimates Figure 7 shows the estimated person parameters of the BRM
(Fig. 7A) and the DDRM (Fig. 7 B and C), which are located on a standard-normal scale due to the
standard-normal prior. In all three panels, individuals are ordered by the location estimates of the
DDRM (i.e., θD

i , Fig. 7B). Comparing the location estimates of the BRM (Fig. 7A) and the DDRM
(Fig. 7B), we clearly see a correlation between θ B

i and θD
i (correlation estimates are reported in

Sect. 5.4.4). On the other hand, θD
i (Fig. 7B) and ηi (Fig. 7C) seem to be mostly uncorrelated

with a slight curvilinear trend at extreme levels of θD
i . Although estimates were more precise

for the location parameters θD
i than for the expansion parameters ηi , the substantial variance

of the estimates (relative to the credibility intervals) clearly allows for measuring differences
between respondents with respect to all three person parameters. In summary, Fig. 7 illustrates the
convergent validity of the BRM and the DDRM with respect to the location dimension, and also
the distinction between the location dimension and the expansion dimension within the DDRM.
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Figure 8.
Posterior estimates for the BRM and DDRM item parameters. Note. Panel A: Item difficulty for the BRM. Panel B: Item
difficulty for the DDRM location dimension. Panel C: Item easiness for the DDRM expansion dimension. Point estimates
show the posterior median whereas dark and light segments show the 50% and 95% equal-tailed posterior intervals,
respectively. Across all three panels, items are ordered identically depending on their estimate for the DDRM location
parameter δDj (Panel B).

In the item domain depicted in Fig. 8, the location parameters (δBj , Fig. 8A; δ
D
j , Fig. 8B) and

expansion parameters (γ j , Fig. 8C) exhibit an overall negative bias compared to the estimates for
the person parameters. For the location dimension this could mean that items were overall on
the easy side; it might also be an indication of socially desirable answering. For the expansion
dimension, this negative bias has no natural interpretation as there is no such thing like a neutral
interval width. The estimates for the location dimension δDj of the DDRM (Fig. 8B) vary across a
large range of roughly four standard deviations. In contrast, estimates for the expansion dimension
γ j (Fig. 8C) cover only a small range of values compared to the variance of corresponding person
parameters ηi . This mirrors the unbalanced variance ratio of the manifest response interval widths
discussed above (see Sect. 5.4.1). In conclusion, the item domain did only have a minor impact
on the interval widths, which could be interpreted in two ways. On the one hand, respondents’
variability in Extraversion could be relatively stable across different items, consistent with the
findings of Fleeson (2001). On the other hand, the negligible variance of expansion parameters
in the item domain could have been caused by respondents’ response styles. The extent to which
such response styles occur should be investigated in the future.

Since the BRM concerns one-dimensional data (location) and the DDRM concerns two-
dimensional data (location and expansion), a direct comparison of the corresponding item-
precision parameters is not meaningful. Nonetheless, within each model, low precision can be
used to detect potentially problematic items. In case of the DDRM, this means that respondents
answered the respective item in a way that was not consistent with responses given for other items,
both regarding interval location and interval width. To give an intuition, we discuss the two items
with the lowest precision parameters. The content of these items reveals the potential pitfalls of
using an interval-response format. For instance, the item “I am not easily amused” suggests that
the use of items that involve more than one semantic direction to reason about (i.e., “not” and
“easily”) may be especially problematic when using the RS2 format. Moreover, the item “I love
surprise parties” could pose the problem that surprise parties do not happen very frequently, and
consequently, respondents might not have had a sufficient number of experiences to assess the
variability of their agreement. It is also illustrative to consider the three items with the highest
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precision parameters: “I cheer people up”, “I feel comfortable around people”, and “Imake friends
easily.” We can expect respondents to have experienced multiple instances of situations where
the described behaviors could have potentially occurred. Overall, this means that the precision
parameter is useful for evaluating the alignment of the location and expansion dimension of an
item. Precision can only be high if an item allows for a good discrimination in both dimensions.
On the flip side, low precision estimates can be used to detect (and possibly remove) inconsistent
items.

Lastly, the three scaling parameters were very similar in size across models and dimensions
(αB : median = 0.35, 95% HDI = [0.31, 0.39]; αD

λ : median = 0.35, 95% HDI = [0.32, 0.38];
αD

ε : median= 0.38, 95% HDI = [0.34, 0.42]). This is due to the structural similarity of the BRM
and the DDRM location dimension, which is further validated in the next section.

5.4.4. Convergent Validity of Location Estimates Across Response Formats Concerning mani-
fest responses, the correlation between the RS2 response-interval locations and the RS1 responses
was high (r = .81, 95% CI = [.76, .85]), which supports the convergent validity of the RS1 and
RS2 response formats. Similar to the raw mean scores, the person parameters θi of the BRM and
the DDRM, respectively, were also highly correlated (median = .87, 95% HDI = [.82, .91]),
supporting the convergent validity of these parameters. The high correlation is especially infor-
mative given that the items of the two Extraversion scales differed, and only had an overlap with
respect to a subset of facets. Hence, our results provide strong evidence that, for personality ques-
tionnaires, the RS2 format can be used in place of the RS1 format to measure the overall strength
of agreement or disagreement. Moreover, the use of the IRT models (i.e., both the BRM and
the DDRM) considerably increased the degree of convergent validity (roughly 10% additionally
explained variance).

5.4.5. De-Correlating the Location and Expansion Dimension The simulation study showed
that rawmean scores for the RS2 (i.e., interval locations andwidths) are necessarily correlated due
to the bounded response scale. In contrast, the DDRM is able to recover the correlation structure
of the latent location and expansion parameters, even if the true correlation is zero. To investigate
these issues empirically, we computed the correlations of interest for raw mean scores and for the
latent DDRM parameters. In the case of manifest responses, again, we computed the correlation
between the mean scores for absolute deviance from the scale midpoint (YADSM = |0.5− YL+YU

2 |)
and the mean scores for the interval widths, which was r = −.53 (95% CI = [−.55,−.51]).
While this correlation is large, it is still smaller than the average correlation in the simulation
study (r = −.74). This difference is probably caused by the relatively large scaling parameter in
the simulation study, which pushes the response intervals more towards the bounds of the response
scale and thereby exacerbates the scale-inherent correlation described above.

Compared to the correlation of manifest scores, the dependence of the absolute location
parameter and the expansion parameter of theDDRM(i.e., |θ D| and η, respectively)was estimated
to be less strong with a posterior median of r = −.18 (95% HDI = [−.24,−.13]). Since the
simulation showed that the DDRM can even recover zero correlations on the latent scale, the
estimated negative correlation provides some evidence for a non-linear relationship of location
and expansion. Substantively, this would indicate that respondents generally prefer to provide
either smaller intervals at the boundary of the response scale or larger intervals at the center
of the response scale, and that this correlation is not merely due to the bounded nature of the
scale. Overall, the empirical example thus confirms our findings in the simulation study that using
the DDRM substantially reduces the scale-inherent dependence of the manifest mean scores. It
therefore helps to identify artifacts caused by the bounded scale that could otherwise mask the
true structure of the latent constructs and obstruct the analysis of correlations.
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6. General Discussion

Our first aimwas to develop and evaluate a suitable IRTmodel for the dual-range slider (RS2)
response format in terms of parameter recovery and model fit. The simulation study demonstrated
a good recovery of the DDRM’s parameters. However, the precision of the estimated person
expansion parameters ηi was significantly lower than that of the remaining parameters. This lack
of precision on the expansion dimension is also illustrated by the item-information curves for the
person parameters and can be explained by themodel’s asymmetrical latent parameterization of the
Dirichlet distribution (i.e., two tandem parameters working in opposite directions for the location
dimension, but only a single parameter for the expansion dimension). For applications with a
focus on the expansion or variability dimension (which corresponds to the interval width), one
may consider re-parameterizations of the DDRMwith higher item information for this dimension
in the future.

Regarding model fit in our empirical example application, the results for the DDRM were
ambiguous. Model-performance statistics (LOO) were unproblematic while the graphical model
checks revealed some misfit. The posterior-predicted distributions for the lower and upper bound
of the response interval showed a satisfactory fit, but the DDRM predicted too many narrow
intervals in the middle of the response scale. Thus, the model seemed to be lacking flexibility
regarding the response-interval widths. However, to our knowledge, there is no competitor model
against which our model could have been tested. By developing the DDRM, we proposed a first
IRTmodeling approach for interval responses, which can be further refined for future applications.

As a second aim, we focused on the convergent validity of the two response formats single-
range slider (RS1) and RS2 and the corresponding models. For this purpose, we assessed the
correlation of person location parameters estimated by the BRM and the DDRM. This correlation
was very high, which provides evidence for the convergent validity of the BRM and DDRM
location parameters, and consequently, also of the RS1 and RS2 formats. Hence, the RS2 format
may be used in place of the RS1, especially if not only the location dimension but also the
expansion dimension is of interest. Thereby, our study contributes to the literature by providing
partial evidence for the validity of the interval-response format through direct comparison to a
well-established response format (i.e., the visual analogue scale; see Ellerby et al., 2022).

Third, we investigated possible benefits of fitting the DDRM compared to using raw mean
scores. Concerning convergent validity, the correlation of location estimates was larger for the
latent parameters of the BRM and the DDRM than for the raw mean scores (i.e., the correlation
of RS1 responses with RS2 interval locations). Concerning scale-inherent dependencies, the two
person parameters of the DDRM for the location and the expansion dimension were less corre-
lated than the corresponding raw mean scores (i.e., interval location and width). This provides
evidence for the discriminant validity of the DDRM person estimates on the two dimensions.
Thus, we provide a model-based alternative to correction methods that aim at compensating for
the detrimental effects of the bounds of a response scale (seeMestdagh et al., 2018, for an example
of a correction method for single-response formats). The DDRMmight also be useful for improv-
ing estimates of the test-retest reliability of interval responses, and thus, to investigate research
questions regarding the temporal stability of individual differences in the variability of behaviors
and states (Fleeson, 2001).

6.1. Limitations and Future Research

In the present article, we assumed that the interval widths of the RS2 format and, respectively,
the expansion dimension of theDDRMrepresent the variabilitywith respect to the same latent trait
measured by the location dimension. A potential problemwith this assumption is that respondents
might use theRS2 format to describe their subjective uncertainty about the central tendency. In this
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case, the expansion parameter ηi would rathermeasure respondents’ level of uncertainty instead of
the variability of the latent trait across time. Ambiguous interpretations of the task or the item text
might further influence how respondents set the width of an response interval. Thus, variability of
the trait could be confounded with subjective uncertainty and ambiguity, which might in turn bias
model-based inferences about the central tendency and variability of the trait. This is of course
an issue that cannot be addressed merely by modeling but rather by further empirical validation
studies testing the assumption that the expansion dimension actually measures variability in the
latent trait. First, it should be tested whether response intervals and the DDRM parameters are
stable across time, both with respect to the location and the expansion dimension. A follow-up
study could then combine the RS2 format with experience sampling of the latent trait across a
longer time period (Fleeson, 2001). Based on the correlation of the DDRM’s expansion dimension
with the individual variance of the behavioral distribution across time, one could test whether the
RS2 is actually suitable for measuring variability in behavior.

The RS2 format might also introduce new types of response styles. A plausible and problem-
atic response style concerns the preference for minimum-width intervals because it can potentially
occur in combination with extreme interval locations (i.e., extreme response style; see Baumgart-
ner & Steenkamp, 2001, for an overview), but also with intervals that are located in the middle
of the scale (i.e., midpoint-response style). In contrast, a response style that is associated with
maximum-width intervals will always yield a midpoint-response for the interval location (i.e.,
midpoint-response style). Such response biases would affect both the location parameter θi as
well as the expansion parameter ηi . A possibility to better handle these extreme responses could
be an extension of the DDRM to a zero–one-inflated model (see Molenaar et al., 2022, for exam-
ples ofmodel extensions to uni-dimensionalmodels). Even thoughwe only found a low proportion
of responses at the boundaries (see Sect. 5.4.1), one could improve model fit by extending the
model by a mixture distribution with a certain probability of responses at the boundaries. More-
over, future research should assess discriminant validity of the expansion dimension, namely, that
it actually differs from a mere response preference for a certain interval width. This could be
done via multidimensional modeling (Wetzel and Carstensen, 2017) of multiple traits (e.g., the
big five). In such a model, a strong common factor in the expansion dimension that loads on all
items would indicate the presence of an interval-width response style. This would mean that the
interval width is governed by a respondent’s personal preference for a certain width instead of
the different constructs of interest. Given that we fitted the DDRM as a Bayesian model, another
direction for future research concerns its implementation in a frequentist framework.

Our empirical example also had some limitations. We used an unbalanced design with a
larger number of items for the RS2 format than for the RS1 format. Whereas this is beneficial for
model development of the DDRM, which was our foremost intent, the use of different content and
number of itemsmeans that we could not directly compare responses and item parameters between
the BRM and the DDRM. Another limitation concerns the response scales that were displayed
to the respondents. These scales showed the exact numerical values above the visual adjustable
sliders, which led to response modes for round figures (e.g., 10, 20, 30, etc.). Hence, future studies
should avoid showing exact numerical values or anchors for round figures. Furthermore, we did
not control for the type of digital device used by the respondents, which might have influenced
response behavior.

6.2. Conclusion

We developed a new IRT model for interval responses, the Dirichlet dual response model
(DDRM), as an extension to the beta response model (BRM; Noel & Dauvier, 2007), which pro-
vides estimates of the central tendency and the variability of a latent trait. We demonstrated the
convergent validity of the location dimension both for manifest responses and the latent parameter
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estimates of the DDRM and the BRM. Moreover, we showed that the estimation of latent param-
eters reduces the scale-inherent dependence of interval locations and widths. Overall, parameter
recovery and model fit of the DDRM were satisfactory while there was some misfit regarding the
RS2 interval widths. Also, the latent person parameters for the expansion dimension showed a
lower precision of parameter recovery, while the variance in empirical parameter estimates was
still sufficient for measuring differences between respondents. Dual range sliders could thus be
of great utility for applications where both the central tendency and the variability or uncertainty
regarding a latent trait, attitude, or attribute is of primary interest.
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Appendix A

Abbreviations and Parameter Interpretations

• RS1: single-range slider
• RS2: dual-range slider
• IRT: item response theory
• BRM: beta response model
• DDRM: Dirichlet response model
• MCMC / HMC: Markov Chain Monte Carlo / Hamiltonian Monte Carlo
• HDI: highest density interval (for a given posterior distribution; Bayesian)
• CI: confidence interval (frequentist)
• LOO: leave-one-out cross validation
• R̂: Statistic for the diagnosis of MCMC convergence
• ESS: effective sample size
• RMSE: root mean square error
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• ADSM: absolute deviance from scale midpoint
• Model Parameters:

– θi : person location (central tendency)
– δ j : item difficulty
– ηi : person expansion (i.e., variability, uncertainty etc.)
– γ j : item expansion
– τ j : item precision
– α, αλ, αε : scaling (λ: location dimension, ε: expansion dimension)
– Parameter superscripts θ B and θD: Parameter belongs to theBRMorDDRM, respec-

tively

Appendix B

Log-Likelihood, Derivatives, and Item Information

Log-Likelihood

The log-likelihood of the DDRM is

L(�;Y) =
I∑

i=1

J∑
j=1

ln�(ai j + ei j + di j )

−
[
ln�(ai j ) + ln�(ei j ) + ln�(di j )

]

+
[
(ai j − 1) ln(yi j1) + (ei j − 1) ln(yi j2) + (di j − 1) ln(yi j3)

]
. (B1)

First Derivatives

In the following, we derive the first partial derivatives of the log-likelihood function for a fixed
item j . Note that ψ(x) = ∂ ln�(x)/∂x is the digamma function. The first partial derivative of
the person location parameter θi is obtained via the chain rule of the total derivative,

∂L(�;Y)

∂θi
= ∂L(�;Y)

∂ai j

dai j
dθi

+ ∂L(�;Y)

∂di j

ddi j
dθi

=
[
ψ(ai j + ei j + di j ) − ψ(ai j ) + ln(yi j1)

]
αλai j

+
[
ψ(ai j + ei j + di j ) − ψ(di j ) + ln(yi j3)

]
(−αλ)di j . (B2)

The first partial derivative of the person expansion parameter ηi is

∂L(�;Y)

∂ηi
= ∂L(�;Y)

∂ei j

dei j
dηi

=
[
ψ(ai j + ei j + di j ) − ψ(ei j ) + ln(yi j2)

]
αεei j . (B3)
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Second Derivatives and Item Information

In the following, we derive the second partial derivatives of the log-likelihood function. In doing
so, ψ ′(x) = ∂ψ(x)/∂x is the trigamma function. The second partial derivative of the person
location parameter θi is obtained by another application of the chain rule of the total derivative,

∂2L(�;Y)

∂θ2i
=

(
∂L(�;Y)

∂θi

/
∂ai j

)
dai j
dθi

+
(

∂L(�;Y)

∂θi

/
∂di j

)
ddi j
dθi

=
[
(ζ (a)

a αλai j + ζaαλ) + (−ζ
(a)
d αλdi j )

]
αλai j

+
[
(ζ (d)

a αλai j ) + (−ζ
(d)
d αλdi j − ζdαλ)

]
(−αλ)di j (B4)

with

ζa =
[
ψ(ai j + ei j + di j ) − ψ(ai j ) + ln(yi j1)

]
,

ζd =
[
ψ(ai j + ei j + di j ) − ψ(di j ) + ln(yi j3)

]
,

ζ (a)
a = ∂ζa

∂ai j
= ψ ′(ai j + ei j + di j ) − ψ ′(ai j ),

ζ
(d)
d = ∂ζd

∂di j
= ψ ′(ai j + ei j + di j ) − ψ ′(di j ),

ζ (d)
a = ∂ζa

∂di j
= ψ ′(ai j + ei j + di j ),

ζ
(a)
d = ∂ζd

∂ai j
= ψ ′(ai j + ei j + di j ). (B5)

Since the second derivative is a linear combination of ln(yi j1) and ln(yi j3) (see (B4) and (B5)), the
expectation of the second derivative of the joint log-density can be obtained by replacing ln(yi j1)
and ln(yi j3) with their expected valuesψ(ai j )−ψ(ai j +ei j +di j ) andψ(di j )−ψ(ai j +ei j +di j ),
respectively. Hence, the item information for θi is

Iθ = −E

[
∂2L(�;Y)

∂θ2i

]

= −[
(ζ (a)

a αλai j ) + (−ζ
(a)
d αλdi j )

]
αλai j

− [
(ζ (d)

a αλai j ) + (−ζ
(d)
d αλdi j )

]
(−αλ)di j . (B6)

The second partial derivative of the person expansion parameter ηi is

∂2L(�;Y)

∂η2i
=

(
∂L(�;Y)

∂ηi

/
∂ei j

)
dei j
dηi

=
[
ζ (e)
e αεei j + ζeαε

]
αεei j

= ζ (e)
e α2

ε e
2
i j + ζeα

2
ε ei j (B7)
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with

ζe =
[
ψ(ai j + ei j + di j ) − ψ(ei j ) + ln(yi j2)

]
,

ζ (e)
e = ∂ζe

∂ei j
= ψ ′(ai j + ei j + di j ) − ψ ′(ei j ). (B8)

The item information of ηi is thus

Iη = −E

[
∂2L(�;Y)

∂2ηi

]

= −E
[
ζ (e)
e α2

ε e
2
i j + ζeα

2
ε ei j

]

= −[
ζ (e)
e α2

ε e
2
i j + E(ζe)α

2
ε ei j

]

= −(ζ (e)
e α2

ε e
2
i j ). (B9)

The cross partial derivative for the person location parameter θi and the person expansion param-
eter ηi is

∂2L(�;Y)

∂ηi∂θi
= ∂

∂η j

∂L(�;Y)

∂θi
=

(
∂L(�;Y)

∂θi

/
∂ei j

)
dei j
dηi

=
[[

ψ ′(ai j + ei j + di j )αλai j )
] + [

ψ ′(ai j + ei j + di j )(−αλ)di j
]]

αεei j . (B10)

The corresponding Fisher information is

Iηθ = −E

[
∂2L(�;Y)

∂ηi∂θi

]

= −[
ψ ′(ai j + ei j + di j )(αλai j − αλdi j )

]
αεei j

= −ψ ′(ai j + ei j + di j )αεαλei j (ai j − di j ). (B11)

References

Barnard, J., McCulloch, R., & Meng, X. L. (2000). Modeling covariance matrices in terms of standard deviations and
correlations, with application to shrinkage. Statistica Sinica, 10(4), 1281–1311.

Baumgartner, H., & Steenkamp, J.-B.E. (2001). Response styles in marketing research: A cross-national investigation.
Journal of Marketing Research, 38(2), 143–156. https://doi.org/10.1509/jmkr.38.2.143.18840

Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte Carlo. arXiv. https://doi.org/10.48550/arXiv.
1701.02434

Bijur, P. E., Silver, W., & Gallagher, E. J. (2001). Reliability of the visual analog scale for measurement of acute pain.
Academic Emergency Medicine, 8(12), 1153–1157. https://doi.org/10.1111/j.1553-2712.2001.tb01132.x

Chalmers, R. P. (2012). Mirt: A multidimensional item response theory package for the R environment. Journal of
Statistical Software, 48(1), 1–29. https://doi.org/10.18637/jss.v048.i06

Couso, I., & Dubois, D. (2014). Statistical reasoning with set-valued information: Ontic vs. epistemic views. International
Journal of Approximate Reasoning, 55(7), 1502–1518. https://doi.org/10.1016/j.ijar.2013.07.002

Danner, D., Rammstedt, B., Bluemke, M., Lechner, C., Berres, S., Knopf, T., Soto, C. J., & John, O. P. (2019). Das big five
inventar 2: Validierung eines Persönlichkeitsinventars zur Erfassung von 5 Persönlichkeitsdomänen und 15 Facetten.
Diagnostica, 65(3), 1–12. https://doi.org/10.1026/0012-1924/a000218

Deonovic, B., Bolsinova, M., Bechger, T., &Maris, G. (2020). A Rasch model and rating system for continuous responses
collected in large-scale learning systems. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2020.500039

Ellerby, Z.,Wagner, C., &Broomell, S. B. (2022). Capturing richer information: On establishing the validity of an interval-
valued survey response mode. Behavior Research Methods, 54(3), 1240–1262. https://doi.org/10.3758/s13428-021-
01635-0

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 06:53:46, subject to the Cambridge Core terms of use.

https://doi.org/10.1509/jmkr.38.2.143.18840
https://doi.org/10.48550/arXiv.1701.02434
https://doi.org/10.48550/arXiv.1701.02434
https://doi.org/10.1111/j.1553-2712.2001.tb01132.x
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1016/j.ijar.2013.07.002
https://doi.org/10.1026/0012-1924/a000218
https://doi.org/10.3389/fpsyg.2020.500039
https://doi.org/10.3758/s13428-021-01635-0
https://doi.org/10.3758/s13428-021-01635-0
https://www.cambridge.org/core


M. KLOFT ET AL. 915

Ferrando, P. J. (2001). A nonlinear congeneric model for continuous item responses. British Journal of Mathematical and
Statistical Psychology, 54(2), 293–313. https://doi.org/10.1348/000711001159573

Ferrando, P. J. (2011). A linear variable-theta model for measuring individual differences in response precision. Applied
Psychological Measurement, 35(3), 200–216. https://doi.org/10.1177/0146621610391649

Ferrando, P. J. (2014). A general approach for assessing person fit and person reliability in typical-response measurement.
Applied Psychological Measurement, 38(2), 166–183. https://doi.org/10.1177/0146621613497532

Fleeson,W. (2001). Toward a structure- and process-integrated view of personality: Traits as density distributions of states.
Journal of Personality and Social Psychology, 80(6), 1011–1027. https://doi.org/10.1037/0022-3514.80.6.1011

Fleeson, W., & Jayawickreme, E. (2015). Whole trait theory. Journal of Research in Personality, 56, 82–92. https://doi.
org/10.1016/j.jrp.2014.10.009
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