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Equicontinuous Delone Dynamical
Systems

Dedicated to Robert V. Moody on the occasion of his 70th birthday

Johannes Kellendonk and Daniel Lenz

Abstract. We characterize equicontinuous Delone dynamical systems as those coming from Delone

sets with strongly almost periodic Dirac combs. Within the class of systems with finite local complex-

ity, the only equicontinuous systems are then shown to be the crystallographic ones. On the other

hand, within the class without finite local complexity, we exhibit examples of equicontinuous mini-

mal Delone dynamical systems that are not crystallographic. Our results solve the problem posed by

Lagarias as to whether a Delone set whose Dirac comb is strongly almost periodic must be crystallo-

graphic.

Introduction

The study of disordered systems is one of the most prominent issues in mathemat-

ics and physics today. A special focus concerns aperiodic order i.e., a special class

of highly ordered structures (see e.g., the monographs and conference proceedings

[6, 20, 34, 41, 45]). This topic is particularly relevant for two reasons: On the one

hand, the actual discovery of physical substances [19, 46], later called quasicrystals,

exhibiting this form of order has triggered enormous research activities in the exper-

imental and theoretical description of low complexity systems. On the other hand,

aperiodic order has come up in disguise in various contexts in purely conceptually

motivated studies.

As for such conceptual studies of almost periodic order (in disguise), we mention

the work of Hedlund and Morse on Sturmian systems and on complexity of non peri-

odic sequences [38, 39]. Geometric analogues have recently been studied by Lagarias

[24,25] and Lagarias and Pleasants [27,28]. Very loosely speaking, the corresponding

results show that in terms of suitable complexity notions there is a gap between the

ordered world and the disordered world. Another approach to (dis)order in a spirit

of Fourier analysis has been given in Meyer’s work on harmonious sets [33]. There,

a basic aim is to find and study a class of sets allowing for a Fourier type expansion.

Meyer’s considerations have been taken up by Moody [35,36]. The corresponding re-

sults have become a cornerstone in the study of diffraction aspects of aperiodic order

initiated by Hof [18].

Of course, there are connections between the geometry and complexity based ap-

proach to aperiodic order and the Fourier analytic viewpoint. For example, pure
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pointedness on the Fourier side implies zero entropy [5]. A crucial link is provided

by concepts of almost periodicity. On the one side almost periodicity is by its very

definition a geometric concept about how a system “repeats itself”. On the other side,

it is an important ingredient in all Fourier analytic considerations concerning pure

point measures. Almost periodicity has always played a role in the theory, see e.g.,

Solomyak [48] and Queffelec [43]. Still, it seems that only recently with the work of

Baake and Moody [7] and subsequent work, e.g., [16, 17, 30, 32, 37, 49], that the role

of almost periodicity in diffraction theory has begun to be properly ascertained.

A most basic question in this context is whether it is possible to characterize order

by suitably strong forms of almost periodicity. An affirmative answer to one version

of this question is given in the so-called Córdoba Theorem [13] (see [26] for a gen-

eralization as well). Another version of this question was posed by Lagarias in [26].

More precisely (with notions to be explained later), [26, Problem 4.4] asks whether

a Delone set whose associated Dirac comb is strongly almost periodic is necessarily

completely periodic.

The main aim of this paper is to answer this question. More specifically, we will

show the following two points:

• For Delone sets with finite local complexity, complete periodicity is indeed equiv-

alent to strong almost periodicity of the associated Dirac comb (Corollary 5.6).
• There exist Delone sets (without finite local complexity) that are strongly almost

periodic but not completely periodic (Corollary 6.1).

So, in some sense, we show that the answer to the problem is both yes and no.

In order to avoid confusion let us mention that our notation differs from the no-

tation of [26] in the following way. In line with [15] and recent work on almost pe-

riodicity such as [7, 30, 32, 37] we use the term strongly almost periodic measure for

measures called uniformly almost periodic in [26]. We use the term crystallographic

or completely periodic for what is called ideal crystal in [26].

The result given in the second point above is treated in Section 6 by providing a

class of models based on the Kronecker flow on the two dimensional torus (Corollary

6.1).

As for the result given in the first point, it is quite clear that complete periodicity

implies both finite local complexity and strong almost periodicity of the associated

Dirac comb. Thus, the main work is to show the converse. Under the stronger as-

sumption of Meyer property (instead of only finite local complexity) the result is

already known. It can be found in the recent work [50] and could also rather directly

be inferred from the earlier [4] (see [30] as well for results in a very similar spirit).

As mentioned already the starting point for our investigation is the question

whether order can be characterized by suitable forms of almost periodicity. To shed

further light on this question it might be worthwhile to compare our results with cor-

responding results for an even stronger notion of almost periodicity viz norm almost

periodicity (see, e.g., [7] for a discussion of this notion in the context of aperiodic

order). Within the class of unweighted Dirac combs, the completely periodic ones

are actually the only ones that are norm almost periodic (as can easily be seen). In

this sense norm almost periodicity cannot be used to characterize non-trivial forms

of order. Our main result essentially shows that strong almost periodicity together
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with finite local complexity can also not be used for this purpose.

However, in this context our results can still be understood to illuminate the dif-

ference between norm almost periodicity and strong almost periodicity. First, they

say that the strongly almost periodic Dirac combs with finite local complexity are

exactly the norm almost periodic Dirac combs and that secondly there exist strongly

almost periodic Dirac combs, which are not norm almost periodic. This should be

compared with results of [7] showing that within the class of weighted Dirac combs

coming from Meyer sets, strong almost periodicity actually implies norm almost pe-

riodicity without forcing complete periodicity.

Our approach to the first point relies on three ingredients. The first ingredient is

the theory of equicontinuous systems discussed in Section 2. We say that a Delone set

is equicontinuous if its associated dynamical system is equicontinuous. Equicontinu-

ity of a dynamical system is equivalent to the system being a rotation on a compact

abelian group (Ellis theorem, see Theorem 2.4). The second ingredient is the results

of [30] discussed in Section 3 giving that a measure dynamical system is a rotation

on a compact abelian group if and only if the measures are strongly almost periodic

(Theorem 3.3). Combining these two pieces for Delone dynamical systems, we find

that strong almost periodicity of the associate Dirac comb is equivalent to equiconti-

nuity of the system (Theorem 4.2). Now, the third ingredient is a variant of a recent

reasoning of Barge and Olimb [10] presented in Section 5. It gives that equiconti-

nuity of a Delone dynamical system with finite local complexity is in fact equivalent

to complete periodicity (Theorem 5.5). Put together, these considerations easily give

the desired result.

We present both the theory of equicontinuous systems as well as the considera-

tions on strongly almost periodic Delone dynamical systems in somewhat more de-

tail than needed for the actual answer to the question of Lagarias. The reason is that

we believe that these considerations may be of importance for future study as well.

Note added in proof. After this work was submitted we learned about recent investi-

gations of S. Favorov entitled “Bohr and Besicovitch almost periodic discrete sets and

quasicrystals”, to appear in Proc. Amer. Math. Soc. (see arxiv:1011.4036 as well)

giving similar results as ours based in the theory of almost periodic functions.

1 Preliminaries on Dynamical Systems

We deal with compact dynamical systems whose acting group is locally compact

abelian. An important special case are dynamical systems consisting of measures

on the group. The necessary notation is introduced in this section.

The space of continuous functions on a topological space X is denoted by C(X);

the subspace of continuous functions with compact support is denoted by Cc(X),

and the space of continuous bounded functions is denoted by Cb(X). We will deal

with spaces X that are locally compact σ-compact Hausdorff spaces. Then X carries

the Borel σ-algebra generated by all closed subsets of X and by the Riesz–Markov

representation theorem (see e.g., [42]); the set M(X) of all complex regular Borel

measures on X can be identified with the dual space Cc(X)∗ of complex valued, linear

functionals on Cc(X) that are continuous with respect to a suitable topology (see,
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e.g., [42, Ch. 6.5] for details). We then write

∫

X

f dµ = µ( f )

for f ∈ Cc(X). The space M(X) carries the vague topology, which is the weakest

topology that makes all functionals µ 7→ µ(ϕ), ϕ ∈ Cc(X), continuous.

The group operation of an locally compact abelian group will mostly be written

additively as +. The neutral element will be denoted by e. Now, let G be a σ-compact

locally compact abelian group. Whenever G acts on the compact space X by a con-

tinuous action

α : G × X −→ X, (t, ω) 7−→ αtω,

where G × X carries the product topology, the pair (X,G) is called a topological dy-

namical system over G. We will mostly suppress the action α in our notation and

write t ·ω := αtω. Note that we use the notation with the dot to denote the action of

the group, while the addition on (abelian) groups is written additively. A dynamical

system (X,G) is called minimal if, for all ω ∈ X, the G-orbit {t · ω : t ∈ G} is dense

in X.

Definition 1.1 (Factor) Let two topological dynamical systems (X,G) and (Y,G)

under the action of G be given. Then (Y,G) is called a factor of (X,G), with factor

map ̺, if ̺ : X → Y is a continuous surjection with ̺(t ·ω) = t · (̺(ω)) for all ω ∈ X

and t ∈ G.

We will be concerned with special dynamical systems in which X is a compact

group. In order to simplify the notation, we introduce the following notation for

these systems.

Definition 1.2 (Rotation on a compact abelian group) A dynamical system (X,G)

is called a rotation on a compact abelian group if X is a compact abelian group and the

action of G on X is induced by a homomorphism ι : G → X such that t · x = ι(t) + x

for all t ∈ G and x ∈ X.

2 Equicontinuous Systems and Proximality

In this section we recall some aspects of the theory of equicontinuous systems and

proximality. The importance of the proximality relation for the dynamical systems

defined by tilings or Delone sets seems only to have recently been emphazised. In [8]

it was shown that topological closure of the proximality relation is a necessary and

sufficient condition for (strong) Pisot substitution tilings to have pure point dynam-

ical spectrum. This was generalized in [9]. Related to proximality are the notions

of asymptotic tilings and augmentation that have led to finer topological invariants

for substitution tilings [11]. Whereas the above mentioned work concerns the case

in which the proximality relation is non-trivial, we consider the opposite case here,

namely when this relation is trivial.
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We refer the reader to Auslander’s book [1] for more detailled information. The

theory is cast within the framework of uniform structures instead of more conven-

tional (but more restrictive) metric topologies.

A uniform structure U (see [23] for details) is a family of subsets of X × X satisfy-

ing:

(1) the diagonal ∆ = {(x, x) : x ∈ X} is contained in all U ⊂ U;

(2) with U any superset V ⊃ U is contained in U;

(3) with U and V also U ∩V belong to U;

(4) with U also {(y, x) : (x, y) ∈ U} belongs to U;

(5) for all U ∈ U exists V ∈ U such that, if (x, y), (y, z) ∈ V , then (x, z) ∈ U .

A uniform structure U generates a unique toplogy such that for each x ∈ X the sets

Vx := {y : (x, y) ∈ V} (for V ∈ U) are a neighborhood basis for x. A base of

a uniformity structure U is any subfamily U ′ ⊂ U such that all members of U are

supersets of some menber of U ′.

Uniform structures have already been used in tiling theory. In fact, Schlottmann

develops a basic theory of points sets (with finite local complexity) on locally compact

abelian groups in the framework of uniform structures in [44] (see recent work of

Müller and Richard [40] for related material). For arbitrary point sets a discussion

can be found in [2] (see [4] as well). Note also that the construction of a cut and

project scheme out of a suitable autocorrelation measure in [7] is based on uniform

structures.

The reader who is not familiar with uniform structures may at first consider the

case of a metric space whose uniformity structure has a base given by the ǫ-diagonals

∆ǫ := {(x, y) ∈ X × X : d(x, y) < ǫ}. A map f : X → X is uniformly continuous

(with respect to a given uniformity structure U of X) if for all V ∈ U, we find U ∈ U

such that ( f × f )(U ) ⊂ V . A family of maps F from X to itself is called equicon-

tinuous if for all V ∈ U, we find U ∈ U such that for all f ∈ F: ( f × f )(U ) ⊂ V .

These notions reduce to the conventional ones in a metric space provided one uses

the fundamental system given by the ǫ-diagonals. On a compact space all uniformity

structures coincide.

Consider a minimal dynamical system (X,G) where X is a compact Hausdorff

space and G is a locally compact abelian group acting by α on X. If the action is free,

then X can be seen as a compactification of G: it is the completion of one orbit and

this orbit is a copy of G. One might ask when is X a group compactification; that is,

when does X carry a group structure such that the orbit is a subgroup isomorphic

to G, or, in other words, when is (X,G) a rotation on a compact abelian group? The

question of when this happens is to the equicontinuity of the action.

Definition 2.1 The dynamical system (X,G, α) is called equicontinuous if the family

of homeomorphisms {αt}t∈G is equicontinuous.

This reduces to the usual definition if (X, d) is a metric space:

∀ǫ > 0∃δ > 0∀x, y ∈ X : d(x, y) < δ =⇒ ∀t ∈ G : d
(
αt (x), αt (y)

)
< ǫ.

An equicontinuous metrizable system always admits an invariant metric that induces
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the same topology. Indeed one can just take

d(x, y) := sup
t∈G

d(t · x, t · y).

Likewise, any compact metrizable abelian group T admits a left invariant metric.

Whenever d is a metric, d(x, y) := supt∈T
d(x + t, y + t) is a metric on T that induces

the same topology and is G-invariant.

We next provide a useful necessary condition for a system to be equicontinuous.

Definition 2.2 (Proximality) Consider a G action on a compact Hausdorff space

X. Two points x, y ∈ X are proximal if for all U ∈ U, there exists a t ∈ G such that

(t · x, t · y) belongs to U .

In the context of compact metric spaces (X, d) this translates into saying that x, y

are proximal whenever

inf
t∈G

d(t · x, t · y) = 0.

Corollary 2.3 If (X,G) is equicontinuous, then the proximal relation is trivial.

Moreover, a system with non-trivial proximality relation cannot carry an invariant

metric that is compatible with the topology.

Remark Within the class of model sets the phenomenon of proximality is also

studied under the name of singular elements of the hull. That this is actually the

same seems to be folklore. It can be infered together with much stronger statements

from [9].

An equicontinuous dynamical system need not be minimal, but a transitive

equicontinuous dynamical system is always minimal. So, in the context of Delone

and tiling dynamical systems, equicontinuous systems are always minimal. The fol-

lowing theorem due to Ellis is of great importance for our results. Recall that we

suppose that (X,G) is minimal.

Theorem 2.4 (X,G) is conjugate to a minimal rotation on a compact abelian group

if and only if it is equicontinuous.

If (X,G) is equicontinuous, the group structure on X arises as follows: given any

point x0 ∈ X the operation t1 · x0 + t2 · x0 := (t1 + t2) · x0 extends to an addition in X

so that X becomes a group with x0 as neutral element. Conversely any rotation on a

compact abelian group is obviously equicontinuous.

To present the following characterization of equicontinuity in the context of

metrizable dynamical systems we need some further notation. Let (X,G) be a dy-

namical system and d a metric on X. Then the ǫ-ball around x ∈ X is denoted by

Bǫ(x). The elements of R(x, ǫ) := {t ∈ G : t · x ∈ Bǫ(x)} are called return vectors to

Bǫ(x). Now, (X,G) is called uniformly almost periodic if, for any ǫ > 0, the joint set

of return vectors to ǫ-balls, given by

A =
⋂

x∈X

R(x, ǫ),
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is relatively dense (i.e., there exists a compact K with A + K = G).

Theorem 2.5 ([1]) (X,G) is equicontinuous if an only if it is uniformly almost peri-

odic.

3 Almost Periodic Measures on Locally Compact Abelian Groups

We will be concerned with dynamical systems built from measures. We will show

that equicontinuity of such a system is equivalent to almost periodicity of the under-

lying measure (Theorem 3.3). This provides a characterization of equicontinuity in

this framework. The considerations of this section can be understood as a (slight)

reformulation of results obtained in [30]. Alternatively, they could, at least in part,

be based on Theorem 2.5. A thorough study of measure dynamical systems in the

framework of aperiodic order and diffraction can be found in [2, 3, 29] to which we

refer the reader for further details.

Let G be a locally compact σ-compact abelian group. A measure ν ∈ M(G) is

translation bounded if for some (and then all) open non empty relatively compact set

V in G there exists a C = CV ≥ 0 with |ν|(t +V ) ≤ C for every t ∈ G. Here, |ν| is the

total variation measure of ν. The set of all translation bounded measures is denoted

by M∞(G). As a subset of M(G), it carries the vague topology. There is an obvious

action of G on M∞(G), given by

G ×M
∞(G) −→ M

∞(G), (t, ν) 7→ αt ν with (αt ν)(ϕ) := ν(δ−t ∗ ϕ)

for ϕ ∈ Cc(G). Here, δt denotes the unit point measure at t ∈ G, and the convolution

ω ∗ ϕ between ϕ ∈ Cc(G) and ω ∈ M∞(G) is defined by

ω ∗ ϕ(s) :=

∫
ϕ(s − u)dω(u).

It is not hard to see that this action is continuous when restricted to a compact

subset of M∞(G) (see, e.g., [2]).

Definition 3.1 (X,G) is called a dynamical system on the translation bounded

measures on G (TMDS) if X is a compact α-invariant subset of M∞(G).

Every translation bounded measure ν gives rise to a (TMDS) (X(ν),G), where

X(ν) := {αtν : t ∈ G}.

In fact, if ν satisfies the inequality |ν|(t + V ) ≤ C for some nonempty open relatively

compact V in G and all t ∈ G, this inequality will be true for all µ ∈ X(ν), and this

shows the desired compactness by [2, Theorem 2].

As usual ϕ ∈ Cb(G) is called almost periodic (in the sense of Bohr) if, for every

ǫ > 0, the set of t ∈ G with ‖δt ∗ ϕ− ϕ‖∞ ≤ ǫ is relatively dense in G. By standard

reasoning this is equivalent to {δt ∗ϕ : t ∈ G} being relatively compact in Cb(G) (see

e.g., [51]).
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Definition 3.2 A translation bounded measure ν is called strongly almost periodic

if ν ∗ ϕ is almost periodic (in the Bohr sense) for every ϕ ∈ Cc(G).

To deal with almost periodic functions it is useful to introduce the strong topology.

To do so, we recall that for ν ∈ M∞(G) and ϕ ∈ Cc(G), the convolution ν ∗ ϕ
belongs to Cb(G). The space Cb(G) is equipped with the supremum norm. The

strong topology is the weakest topology on M∞(G) such that all maps

M
∞(G) −→ Cb(G), ν 7−→ ν ∗ ϕ,

are continuous.

Theorem 3.3 Let G be a locally compact σ-compact abelian group. Let ν ∈ M∞(G)

be given. The following assertions are equivalent:

(i) The measure ν is strongly almost periodic (i.e., ν ∗ ϕ is Bohr almost periodic for

every ϕ ∈ Cc(G)).

(ii) {αtν : t ∈ G} is relatively compact in the strong topology.

(iii) The topological space X(ν) is a topological group with addition ∔ satisfying αsν∔
αtν = αs+tν for all s, t ∈ G.

(iv) The dynamical system (X(ν),G) is a rotation on a compact abelian group.

(v) The hull (X(ν),G) is an equicontinuous dynamical system.

Proof The equivalence of (i), (ii), and (iii) is shown in [30, Lemma 4.2]. The equiv-

alence of (iii) and (iv) is immediate from the definition of rotation on a compact

abelian group. The equivalence of (iv) and (v) is Theorem 2.4.

Factors of equicontinuous dynamical systems are equicontinuous as well. In our

context the following variant will be of use in Section 6.

Corollary 3.4 Let ν be a translation bounded measure on G. Then, the following

assertions are equivalent:

(i) The measure ν is strongly almost periodic.

(ii) There exists a rotation of a compact abelian group (T,G) together with a contin-

uous map π : T → M∞(G) with π(e) = ν and π(t · ξ) = t · π(ξ) for all ξ ∈ T

and t ∈ G.

In this case π(T) = X(ν) and π is a factor map as well as a group homomorphism.

Proof In the situation of (ii) we must have that π is a factor map with π(T) = X(ν)

as T is compact and π is continuous. Now the equivalence of (i) and (ii) follows from

[30, Theorem 5.1]. The fact, that π is a group homomorphism now follows from

[30, Lemma 5.2].

Remark The almost periodic measure dynamical systems considered above are

of interest in the study of diffraction. In fact, they exhibit pure point diffraction

and pure point dynamical spectrum with continuous eigenfunctions. Details can be

found in [30] (see [4, 29, 32] for related arguments on diffraction as well).
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4 Application to Delone Dynamical Systems

The previous sections dealt with first general dynamical systems and then measure

dynamical systems. In this section we specialize even further and consider Delone

dynamical systems. These systems are made of suitable uniformly discrete subsets

of the underlying group. Such subsets can be considered as translation bounded

measures in a canonical way. We will introduce the necessary notation to deal with

these systems and to state Lagarias’ question. We will then go on to characterize what

it means for such a system to be equicontinuous in Theorem 7.1. This provides a

main step in our dealing with the Lagarias question. Our strategy to view Delone

sets as measures has the advantage of allowing us to treat colored Delone sets with no

extra effort. This is discussed at the end of the section.

Let G be a locally compact abelian group. We will deal with subsets L of G. A

subset L of G is called uniformly discrete if there exists an open neighborhood U of

the identity in G such that (x + U ) ∩ (y + U ) = ∅ for all x, y ∈ L with x 6= y. A

subset L of G is called relatively dense if there exists a compact neighborhood K of

the identity of G such that

G =
⋃

x∈L

(x + K).

A subset L of G is called a Delone set if it is both uniformly discrete and relatively

dense. Any uniformly discrete set L (and hence any Delone set) in G can naturally be

identified with the translation bounded measure

δL :=
∑

x∈L

δx,

where δx denotes the unit point may at x ∈ G. The measure δL is then referred to as

the Dirac comb of L. The hull of X(δL) in the vague topology then consists of measures

of the form δM with M ⊂ G uniformly discrete. In the sequel we will identify such

measures with the underlying sets and then also write X(L) instead of X(δL). We call

(X(L),G) a Delone dynamical system if L is a Delone set. As discussed, e.g., in [2],

the topology on X inherited in this way from the vague topology on the measures can

also be obtained from a uniform structure on the set P of all uniformly discrete point

sets on G. Namely, for K ⊂ G compact and V a neighbourhood of e in G, we set

UK,V :=
{

(L1,L2) ∈ P× P : L1 ∩ K ⊂ L2 + V and L2 ∩ K ⊂ L1 + V
}
.

Then, the set U consisting of all UK,V with K ⊂ G compact and V a neighborhood

of e ∈ G, will provide a uniform structure. The induced topology is called the local

rubber topology in [2] and is shown to agree with the topology induced by the vague

topology on measures (see [12] as well).

Besides the hull of L we will also need the canonical transversal given by

Ξ(L) = {L ′ ∈ X : e ∈ L}.

This set can easily be seen to be the closure of the set {L−x : x ∈ L}. For this reason

it is also sometimes denoted as the discrete hull of L. Of course, the discrete hull of L

is a subset of the hull X and as such inherits a topology.
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Whenever L is a subset of G, a set of the form (−x + L) ∩ K with x ∈ L and K

compact is called a patch of L. A set L in G is said to have finite local complexity (FLC)

if, for any compact K in G, the set

{
(−x + L) ∩ K : x ∈ L

}

is finite. This just means that there are only finitely many patches for fixed “size”

K. An alternative characterization of finite local complexity is that L − L is locally

finite [44].

The relevance of sets with finite local complexity in our setting comes from the

following feature of the topology.

Lemma 4.1 Let G be a locally compact abelian group. Let L be a Delone set with finite

local complexity in G, X = X(L) its hull, andΞ(L) its discrete hull. The unique uniform

structure on the discrete hull compatible with the relative topology has a fundamental

system given by the subsets

UC :=
{

(L ′ ′,L ′) ∈ Ξ× Ξ : L ′ ′ ∩C = L
′ ∩C

}

for C ⊂ G compact. In particular, if (Lι) is a net in Ξ and L
′

belongs to X, then the

following assertions are equivalent:

(i) Lι → L
′

.

(ii) For any compact C in G there exists an ιC with Lι ∩C = L
′ ∩C for all ι > ιC .

Proof This is well known and appears, at least implicitly, in e.g., [4, 7, 44]. It can

be seen as the statement that the local rubber topology introduced above agrees with

the so called local topology in the case of finite local complexity. We sketch a proof

for completeness: Let a compact C in G be given. By the definition of Ξ, we can

assume without loss of generality that C contains the point e. Then, by finite local

complexity, there are only finitely many possibilities for L
′ ∩ C (for L

′ ∈ Ξ). This

implies that for any sufficiently small neighbourhood V of e ∈ G, the inclusions

L1 ∩C ⊂ L2 + V and L2 ∩C ⊂ L1 + V

can only hold if L1 ∩ C = L2 ∩ C. This shows that the UC , C ⊂ G compact, indeed

form a basis of the uniformity. Now, the last statement characterizing convergence is

immediate.

An occurrence of the patch (−x + L) ∩ K in a Delone set L is an element of

{
y ∈ L : (−x + L) ∩ K ⊂ (−y + L)

}
.

A Delone set L is called repetitive if for any patch the set of occurrences is rela-

tively dense. For FLC Delone sets this condition is equivalent to minimality of the

associated system (X(L),G), but for non-FLC this is no longer the case.

For any uniformly discrete subset L of G and any ϕ ∈ Cc(G), we can define the

function

fL,ϕ : G −→ C, fL,ϕ(t) =
∑

x∈L

ϕ(t − x).
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From these definitions and Theorem 3.3, we immediately obtain the following

theorem.

Theorem 4.2 Let L be a Delone set in the locally compact σ-compact abelian group

G. Then the following assertions are equivalent:

(i) The function fL,ϕ is Bohr-almost periodic for any ϕ ∈ Cc(G).

(ii) The measure δL is strongly almost periodic.

(iii) The hull (X(L),G) is a compact abelian group with neutral element L and group

addition satisfying (t + L) + (s + L) = (s + t + L) for all t, s ∈ G.

(iv) The dynamical system (X(L),G) is equicontinuous.

We finish this section by discussing how the above above considerations can be

carried over to colored subsets of groups.

Fix a finite set C. We think of elements of C as colors. A colored set (with colors

from C) on the locally compact abelian group G is a pair (L, c) consisting of a subset

L of G and a map c : L → C. The set L is called the support of the colored set.

A colored set is called uniformly discrete, relatively dense, and Delone respectively if

and only if its support has the corresponding property. A colored patch (with colors

from C) in a colored set (L, c) is a pair (P, cP) consisting of a patch P in L and the

restriction cP of c to P. The notion of finite local complexity then carries directly over

to colored sets. As there are only finitely many colors, a colored set (L, c) has finite

local complexity if and only if L has finite local complexity. A colored set whose

support is uniformly discrete can be identified with a translation bounded measure

on the following way. Chose an injective function f : C → C. Then we can associate

with (L, c) the measure

δ(L,c) :=
∑

x∈L

f (c(x))δx.

This allows one to transfer results from measures to colored Delone sets in the same

way as they were transferred from measures to Delone sets. In particular, the direct

analogue of Theorem 4.2 for colored Delone sets can be shown in this way. We refrain

from an explicit statement.

5 An Affirmative Answer to the Question of Lagarias in the Case of
Finite Local Complexity

For tilings of Euclidean space, Barge and Olimb have given a beautiful argument

showing that in any FLC repetitive tiling system that is not completely periodic there

exist two distinct tilings that are proximal, and hence their dynamical systems are not

equicontinuous. We will present (a variant of) their reasoning for Delone sets on

rather general locally compact abelian groups.

In short, the argument of Barge and Olimb contains two steps: First they show that

failure of complete periodicity and repetitivity imply that no finite patch of a tiling

can uniquely determine this tiling. We reproduce this step literally in Lemma 5.2.

From this it is concluded that there exist distinct tilings that agree on arbitrarily

large patches and hence are proximal. We will follow a somewhat different argumen-

tation that applies to Delone sets on compactly generated locally compact abelian
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groups (Lemma 5.3 and Corollary 5.4). This will allow us to give a characteriza-

tion of equicontinuous Delone dynamical systems that have finite local complexity

(Theorem 5.5) and yield an affirmative answer to a question of Lagarias for Delone

dynamical systems with finite local complexity (Corollary 5.6).

Definition 5.1 Let G be a locally compact abelian group and L a Delone set in G.

The elements of P := {t ∈ G : t + L = L} are called periods of L. The Delone set

L is called completely periodic or crystallographic if the set of its periods is relatively

dense in G.

We say that a patch of a Delone set forces the whole Delone set if any Delone set in

its hull that contains the patch at the same place is equal to the original Delone set.

Lemma 5.2 Let L be a repetitive Delone set in a locally compact abelian group G,

which is not completely periodic. Then it is not forced by any of its patches.

Proof Assume the contrary. Then there exists a patch forcing the Delone set L. This

means that all occurrences of this patch are periods of the Delone sets. As the Delone

set is repetitive, this means that the set of its periods is relatively dense. This is a

contradiction (as L is not completely periodic).

So far, we have not needed any restrictions on the geometry of the underling

group. For the next lemma we will need a further restriction viz the group G needs

to be compactly generated. This means that there exists a compact neighborhood W

of the identity such that the smallest subgroup of G containing W is in fact G. This

condition is clearly met for G = R
n. Obviously, any compactly generated group is

σ-compact.

Lemma 5.3 Let G be a locally compact, compactly generated group. Let L be a Delone

set in G. Then there exists a compact set C in G with the following property. For all

L1,L2 in X(L) with e ∈ L1 ∩ L2 and L1 6= L2 there exists an v ∈ L1 ∩ L2 with

(−v + L1) ∩C 6= (−v + L2) ∩C.

Proof By the main structure theorem on locally compact, compactly generated abe-

lian groups, the group G has the form G = R
n × Z

f × H with a compact group H

and non-negative integers n and f . For r ≥ 0 let Br and Ur be the closed and open

balls respectively with radius r around the origin in R
n×Z

f (with respect to the usual

Euclidean distance). As L is a Delone set, there exists an R > 0 such that

L
′ ∩

(
(t + BR) × H

)
6= ∅

for any t ∈ R
n × Z

f and L
′ ∈ X(L).

To L1 6= L2 in X(L) with e ∈ L1 ∩ L2 we can now define

rM := inf
{

r ≥ 0 : L1 ∩ (Br × H) 6= L2 ∩ (Br × H)
}
.

From L1 6= L2 we obtain rM < ∞.
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We distinguish two cases:

Case 1: rM = 0: Then L1 ∩ ({0} × H) 6= L2 ∩ ({0} × H). Here, 0 is the origin

of R
n × Z

f . Thus, any compact set C containing {0} × H will do in this case (with

v = e ∈ G).

Case 2: rM > 0: In particular, n or f are non-zero. Without loss of generality we

can assume rM > 2R + ǫ for some ǫ > 0 that we determine later (as otherwise, any

compact C containing B2R+ǫ × H will do (with v = e ∈ G)). Now, by definition of

rM we can find a t = (s, h) ∈ (BrM
\ UrM

) × H that belongs to only one of L1 and

L2. Without loss of generality we assume that t belongs to L1 but not to L2. On the

other hand, (UrM
× H) ∩ L1 = (UrM

× H) ∩ L1 ∩ L2. So the idea is to find a point

v = (s ′, h ′) ∈ (UrM
× H) ∩L1 such that the distance between s and s ′ is bounded by

a constant c that depends only on R, n and f and then choose C = Bc × H.

To see that this is possible suppose first that f = 0. Let ŝ be the unit vector in the

direction of s. The R ball around x = (rM − R − ǫ)ŝ lies in UrM
. By definition of R it

contains a point s ′ such that v = (s ′, h ′) ∈ L1. Clearly ‖s − s ′‖ ≤ 2R + ǫ, and so we

can take any ǫ > 0.

Now if f 6= 0, then (rM − R − ǫ)ŝ might not lie in R
n × Z

f . So we take the nearest

point to it in R
n × Z

f such that its R-ball is contained in UrM
. This requires ǫ to be

larger than
√

f .

The above considerations show that we can choose

C = B
2R+

√
f +1

× H.

This finishes the proof.

Remark Note that the preceding lemma assumes neither that the Delone set in

question in repetitive nor that it has finite local complexity.

Corollary 5.4 Let G be a compactly generated group and L a repetitive not completely

periodic Delone set in G with finite local complexity. Then (X(L),G) is not equicontin-

uous.

Proof Assume the contrary, i.e., assume that (X(L),G) is equicontinuous. Then the

induced partial action of G on Ξ(L) is equicontinuous.

By Lemma 4.1 this means that for any compact C ⊂ G there exists a compact C ′

such that for all L1,L2 in Ξ(L), L1 ∩C ′
= L2 ∩C ′ implies

(−v + L1) ∩C = (−v + L2) ∩C

for all v ∈ L1 ∩ L2. Thus, if we chose C as in the previous lemma, we obtain that

L1 = L2 whenever L1 ∩C ′
= L2 ∩C ′. In particular, the patch P := L1 ∩C ′ forces

the Delone set L. By Lemma 5.2, we then obtain that L is completely periodic. This

is a contradiction.

As a consequence of this corollary, we obtain the following characterization of

equicontinuous Delone dynamical systems with finite local complexity.
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Theorem 5.5 Let G be a compactly generated group and L a Delone set in G with

finite local complexity. Then, the following assertions are equivalent:

(i) L is completely periodic.

(ii) (X(L),G) is equicontinuous.

Proof The implication (i) ⇒ (ii) is clear (and does not depend on FLC). It remains

to show the implication (ii) ⇒ (i). By Corollary 5.4, it suffices to show that L is repet-

itive. This, in turn, follows from general principles as each transitive equicontinuous

system must be minimal. We include a short proof for the convenience of the reader.

By general principles, there will exist a minimal component (Y,G) of (X(L),G). Let

L
′

be an element of Y . Now, as L
′

belongs to the hull of L, there exists a net (ti)

in G with ti + L converging to L
′

. By the equicontinuity assumption (ii), we infer

that then −ti + L
′

must converge to L. This shows that L belongs to Y and hence is

repetitive.

Remarks (a) The theorem can also be phrased in terms of the proximality relation.

(b) The preceding theorem can be combined with Theorem 4.2 to give various

further characterizations of complete periodicity of a Delone set with finite local

complexity. We single out one of these in the next corollary.

The previous theorem allows us to give an affirmative answer to a question of

Lagarias (under the additional assumption of finite local complexity).

Corollary 5.6 Let G be a compactly generated group and L a Delone set in G with

finite local complexity. Then, the following assertions are equivalent:

(i) L is completely periodic.

(ii) δL is strongly almost periodic.

Proof Combine the previous theorem with Theorem 4.2.

Remark It is not difficult to see that Lemmas 5.2 and 5.3 remain true for colored

Delone sets. This allows one to obtain an analogue of the preceding corollary for

colored Delone sets. We leave the details to the reader.

6 A Negative Answer to the Question of Lagarias for Systems
Without Finite Local Complexity

In this section we show that Lagarias’ question does not have an affirmative answer

if the assumption of finite local complexity is dropped. More precisely, we provide

examples of strongly almost periodic Delone sets that are not crystallographic. They

have a significance in solid state physics too; namely, they can be used to describe

incommensurable crystal phases [22] as we will recall below. In fact, such a Delone

set can be described as a perturbation of a completely periodic set by displacements

that are themselves periodic but with a period that is incommensurate with the first

one [21]. We provide examples on the real line only, but it is quite clear that this de-

scription can be generalized to arbitrary Euclidean spaces (and even to more general

locally compact abelian groups).
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Our examples arise as factors of the Kronecker flow on the two-dimensional torus.

By Corollary 3.4 such a factor automatically yields strongly almost periodic measures.

These measures will be given by Dirac combs of certain Delone sets. Thus, it suffices

to show that the Delone sets in question are not crystallographic. This will be clear

from the construction.

Let T : R
2/Z

2 be the two dimensional torus and let

p : R
2 −→ T, p((x, y)) := (x, y) + Z

2

be the canonical projection. Fix an irrational θ ∈ (0, 1) and define

h = hθ : R −→ R
2, h(t) = (t, θt) and ι = ιθ : R −→ T, ι = p ◦ hθ.

Then, ι induces an action of R on T via t ·ξ := ι(t)+ξ, and in this way (T,R) becomes

a rotation on a compact abelian group, known as Kronecker flow (with slope θ). Now

let g : [0, 1] → R
2 be a continuous curve with the properties:

(1) g is everywhere transversal to the direction defined by the line im(h). More pre-

cisely, there exists ǫ > 0 such that for all (x, y) ∈ im(g) we have (x, y) + h(t) ∈
im(g) only if t = 0 or |t| > ǫ.

(2) g(1) − g(0) ∈ Z
2.

In particular, Γ := Z
2 + im(g) is the image of a closed connected curve on the torus

that is transversal to the Kronecker flow. We also suppose that

(3) Γ does not intersect itself.

For example, any continuous strictly monotone g : [0, 1] → [0, 1] with g(0) = 1 and

g(1) = 0 will satisfy these assumptions (1), (2), and (3). Now, we define the set

LΓ ,θ =
{

t ∈ R : (t, θt) ∈ Γ
}
= h−1(Γ ).

Corollary 6.1 Let g be non-linear and let θ ∈ (0, 1) be irrational. Then LΓ ,θ is a

Delone set with a strongly almost periodic Dirac comb that is not completely periodic.

Proof The construction gives directly that LΓ ,θ is a Delone set. Since Γ is a closed

curve transversal to the Kronecker flow, the set LΓ ,θ is relatively dense, and since Γ
does not intersect itself, LΓ ,θ is uniformly discrete.

We now show that complete periodicity of LΓ ,θ implies that g is linear. Assume

without loss of generality that 0 belongs to LΓ ,θ. Then the orbit P of 0 under the set

of periods of LΓ ,θ is just this set of periods and hence a group. Let S
′

be the image

of P under the map ι. Then S
′

is a subgroup of T. Furthermore, by construction, S
′

is contained in the compact image of im(g) under p. Denote the closure of S
′

by S.

Then S is again is a subgroup and contained in the image of im(g) under p. Hence, S

cannot be T. On the other hand, as θ is irrational, the subgroup S of T must contain

an accumulation point. Thus, S cannot be discrete. Thus, S must be a circle. The

image of g under p must then contain this circle. As this image is connected it must

then agree with this circle. Hence, g is linear.
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It remains to show the claim on strong almost periodicity. Define the map π̃ from

R
2 to the measures on R via

π̃(x, y) :=
∑

t :(x,y)+h(t)∈Γ

δt .

In particular, π̃(0, 0) = δLΓ ,θ
. Then π̃ can easily be seen to have the following four

properties:

• π̃(x, y) is translation bounded (as Γ is transversal to the Kronecker flow);
• π̃ is continuous (as Γ is a continuous closed curve);
• π̃((x, y)) = π̃((x, y) + (n,m)) for all (x, y) ∈ R

2 and (n,m) ∈ Z
2 (as our con-

struction is invariant under shifts by Z
2);

• π̃(h(t) + (x, y)) = α−t π̃(x, y) (as follows from a direct computation).

Thus, π̃ induces a continuous map π : T → M∞(R) with π(t · ξ) = α−tπ(ξ) for

all ξ ∈ T and t ∈ R. By Corollary 3.4, the measure π((0, 0) + Z
2) = δLΓ ,θ

is then

strongly almost periodic. In this way, we have constructed a Delone set LΓ ,θ whose

Dirac comb is strongly almost periodic.

As mentioned, the sets LΓ ,θ arise as models of (one-dimensional) incommensu-

rate crystal phases (with one modulating period). In fact, [21] shows how to obtain

a description of such a crystal phase in terms of a Delone set of the type LΓ ,θ. Let

us explain in our framework how to view LΓ ,θ as a pertubation of a periodic set by a

displacement function that is periodic but with incommensurate period.

Let (m, n) ∈ g(1)− g(0), which is a point in Z
2. For simplicity we exclude the case

that m = 0 that could be handled in a similar way. Now consider the linear function

g0(t) = m(t, n
m

t) ∈ R
2 and the curve Γ0 on the torus defined by it. It then follows

that LΓ0,θ is a periodic Delone set, but which has an irrational period when compared

to the length of the cycle corresponding to the x-axis modulo Z
2. This simply comes

from the fact that θ is irrational. Note that g(1)−g(0) = g0(1)−g0(0) and that we may

suppose without loss of generality g(0) − g0(0) ∈ im(h). Due to the transversality

condition there must exist a continuous function κ : [0, 1] → R satisfying κ(1) =

κ(0) such that g(t) = g0(t) + (κ(t), θκ(t)). Extend κ to a 1-periodic function on R.

Then t ∈ LΓ0,θ whenever (t, θt) − g0(t) ∈ Z
2 (her we view g0 as a linear function on

all of R) and hence t + κ(t) ∈ LΓ ,θ. This defines a map LΓ0,θ → LΓ ,θ : t 7→ t + κ(t),

which is, in fact, a bijection. Thus LΓ ,θ is a perturbation of LΓ0,θ with deplacement κ.

Since κ has rational period when compared to the length of the cycle corresponding

to the x-axis modulo Z
2, its period is incommensurable with the period of LΓ0,θ.

To complete the above discussion we determine the dynamical system (X,R) of

LΓ ,θ, or, equivalently, δLΓ ,θ
. By Corollary 3.4 π is a group homomorphism onto its

image, and this image is X. Let K = kerπ. Then (X,R) is the rotation on T/K

induced by the Kronecker flow.

Clearly π((x, y) + (k1, k2)) = π((x, y)) if and only if (k1, k2) + Γ = Γ ; i.e., K is

the stabiliser of Γ . Given that K is a closed subgroup of T
2, we can distinguish two

possibilities depending on whether it is discrete or not. As Γ is connected and non

intersecting, K must be a cyclic sub-group of the torus in the discrete case, or a circle

in the other case.
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If K is not discrete, it actually coincides with a translate of Γ . It must then intersect

the line im(h) more then once. It follows that the restriction of π to the line (which

corresponds to the orbit of ν) is not injective. This implies that ν (and LΓ ,θ) are

completely periodic and so π maps its orbit to S1. Since S1 is closed, X = S1 in this

case. If K is discrete, then X is a two dimensional torus again, and consequently ν is

not completely periodic.

Remarks (a) Since the Kronecker flow is dense in T
2, distinct subgroups K yield

systems that are not topologically conjugate. The finite cyclic sub-groups of T
2 thus

classify the possible hulls of Delone dynamical systems up to conjugacy that are not

completely periodic and arise as factors of the Kronecker flow in the above manner.

Likewise, this classification is given for periodic Delone sets by the sub-groups of T
2

that are circles.

(b) If one drops the requirement that g be continuous or allows for g(1)− g(0) 6=
Z

2, then the above analysis completely breaks down. In fact, the Sturmian sequences

associated with θ are obtained if one takes im(g) to be the closed interval in the or-

thocomplement of im(h), which is obtained by projecting (orthogonally) the unit

cube onto that orthocomplement. The resulting Delone set is not periodic and has

FLC, and is thus not uniformly almost periodic!

7 A Further Look at Delone Sets in Euclidean Space

Delone sets of Euclidean spaces are of particular importance for the theory both from

the point of view of geometry and of physics. Thus, we have a closer look at these

in this section. The main advantage is that the space of all Delone sets of a given

Euclidean space carries a well-known metric, and with the help of this metric we can

formulate more directly what it means for such a Delone set to be equicontinuous.

Let ρ be the standard Euclidean metric on R
n, i.e.,

ρ(x, y) =

( n∑

j=1

|x j − y j |2
) 1/2

.

Denote the closed ball (with respect to this metric) around the origin with radius r

by Br and the open ball with Ur. Then a subset L of R
n is a uniformly discrete if there

exists an r > 0 with

(x + Ur) ∩ (y + Ur) = ∅

for all x, y ∈ L with x 6= y. The largest such r is denoted by rmin and called the

packing radius of L. A subset L of R
n is relatively dense if there exists an r > 0 with

R
n
=

⋃
x∈L

(x + Br).

The smallest such r is denoted by rmax and called the covering radius of L.

The intersection of Br with a set L is denoted by Br[L] and called an r-patch. The

Hausdorff distance on compact subsets of R
n is denoted by dH . It is not hard to see
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that

(7.1) d(L1,L2) := sup
{

r > 0 : dH

(
Br[L1] ∪ ∂Br,Br[L2] ∪ ∂Br

)
≤ 1

r

}

then gives a metric on the set of all Delone sets and that the induced topology agrees

with the topology induced by considering the Delone sets as measures [2,3,12,14,31].

We will be concerned with dynamical systems (X,R
n) with X = X(L) arising as

the hull of a Delone set L. Recall from Section 4 that the canonical transversal or

discrete hull of L denoted by Ξ := Ξ(L) is defined by

Ξ := {L ′ ⊂ X(L) : 0 ∈ L
′}.

The metric d allows us now to use some notions introduced in Section 2 for such

dynamical systems (X(L),R
n). This is discussed next. For a Delone set L, the set of

r return vectors is given by

R(L, r) =
{

a ∈ R
n : d(L,−a + L) ≤ 1

r

}

=

{
a ∈ R

n : dH

(
Br[L] ∪ ∂Br,Br[L− a] ∪ ∂Br

)
≤ 1

r

}
.

(If the set R(L, r) is is relatively dense for all r > 0, the set L is called rubber repetitive.

For Delone sets with finite local complexity, of course, rubber repetitivity coincides

with repetitivity. In general, rubber repetitive is equivalent to minimality of the dy-

namical system.) A Delone set L is now uniformly almost periodic if for all r > 0 the

set

A :=
⋂

L
′
∈X(L)

R(L ′, r)

is relatively dense.

Theorem 7.1 Let L be a Delone set in R
n. Then the following assertions are equiva-

lent:

(i) L is uniformly almost periodic;

(ii) for all r > 0 the set
⋂

L ′∈Ξ(L) R(L ′, r) is relatively dense;

(iii) for all r > 0 the set
⋂

x∈L
R(L− x, r) is relatively dense;

(iv) for all ǫ > 0 the set

⋂
x∈L

(
L− x + Bǫ(0)

)
∩

⋂
x∈L

(
− L + x + Bǫ(0)

)

is relatively dense;

(v) For all ǫ > 0 there exists a relatively dense set A such that for all a ∈ A there is a

bijection fa : L → L satisfying | fa(x) − (x + a)| ≤ ǫ.
(vi) The dynamical system (X(L),R

n) is equicontinuous.
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Proof Denote the covering radius of L by rmax and the packing radius by rmin.

The equivalence (i) ⇔ (vi) is just Theorem 2.5.

(i) ⇔ (ii) Clearly it suffices to consider large r. If |x| ≤ rmax and r is large, then

R(L − x, r) ⊂ R(L, r − rmax). It follows that
⋂

L ′∈X(L) R(L ′, r) is relatively dense

(for all r > 0) if and only if
⋂

L ′∈Ξ(L) R(L ′, r) is relatively dense (for all r > 0).

(ii) ⇒ (iii) This is clear, since {L− x : x ∈ L} is a subset of Ξ(L).

(iii) ⇒ (ii) As the discrete hull Ξ(L) is the closure of the set {L− x : x ∈ L}, we

can find for any r > 0, L ′ ∈ Ξ(L) and c > 1 an x ∈ L with

dH

(
Bcr[L− x],Bcr[L

′]
)
≤ 1

cr
.

Let a ∈ R(L− x, r) and |a| ≤ (c − 1)r. Then, for L ′ and x as above,

dH

(
Br[L

′ − a],Br[L
′]
)
≤ dH

(
Br[L

′ − a],Br[L− x − a]
)

+ dH

(
Br[L− x − a],Br[L− x]

)

+ dH

(
Br[L− x],Br[L

′]
)

≤ 3

r
.

Thus a ∈ R(L ′, r
3
). It follows that

⋂
x∈L

R(L − x, r) ∩ B(c−1)r(0) is contained in⋂
L ′∈Ξ(L) R(L ′, r

3
). Letting c → ∞ allows us to conclude the desired statement.

(iii) ⇒ (iv) Let a ∈ R(L, r), that is d(L − a,L) ≤ 1
r
. From (7.1) we conclude

that a ∈ L + B 1
r
(0) and hence R(L, r) ⊂ L + B 1

r
(0). In particular there exists an

ã ∈ L such that |a − ã| < 1
r
. From d(L− a,L) ≤ 1

r
we then obtain

d(L− ã + a,L− ã) ≤ |ã − a| + d(L,L− a) ≤ 2

r
.

Thus, a ∈ R(L, r) implies −a ∈ R(L− ã, r
2
). Hence,

⋂
x∈L

R(L− x, r) ⊂ ⋂
x∈L

(
L− x + B 1

r
(0)

)
∩ ⋂

x∈L

(
− L + x + B 2

r
(0)

)

holds, and the desired statement (iv) follows.

(iv) ⇒ (v) We show that

A :=
⋂

x∈L

(
L− x + Bǫ(0)

)
∩

⋂
x∈L

(
− L + x + Bǫ(0)

)

has the desired properties. Let a ∈ A be given. Then, for each x ∈ L there exists an

y ∈ L such that a + x ∈ y + Bǫ(0). If ǫ > 0 is small enough, for instance smaller than
rmin

2
, then this y is unique and this defines a function fa : L → L, fa(x) = y with

| fa(x) − (a + x)| ≤ ǫ. Clearly, for small enough ǫ > 0, such as e.g., 0 < ǫ < rmin

3
, the

function fa is injective. Since A = −A, we can also construct f−a which is easily seen

to be the inverse of fa.
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(v) ⇒ (iii) Let ǫ > 0. Given any r-patch P ⊂ L we have

fa(P) ⊂ L and dH

(
(P + a) ∩ ∂Br(0), fa(P) ∪ ∂Br(0)) ≤ ǫ.

It follows that, if P is an r = 1
ǫ -patch of L at x, then

dH

(
(P − x) ∩ ∂Br(0), ( fa(P) − x − a) ∪ ∂Br(0)

)
≤ 1

r
.

Now since fa is bijective and ǫ-close to the translation by a, it is, perhaps up to an

irrelevant difference near ∂Br( fa(x)), the r-patch of L at fa(x), so we have

dH

(
( fa(P) − x − a) ∪ ∂Br(0),Br[L− x − a] ∪ ∂Br(0)

)
≤ 1

r

and thus a ∈ R(L− x, r
2
).

Remarks (a) Note that the theorem above has some overlap with Theorem 4.2.

Indeed, (v) of the above theorem easily gives the uniform almost periodicity of all

functions of the form
∑

x∈L
ϕ(· − x) with ϕ ∈ Cc(R

n), and this is Theorem 4.2(i) in

the more restrictive case G = R
n.

(b) The theorem can be used to provide a weak version of the so-called Córdoba

theorem [13]. This theorem states that for a uniformly discrete set L of the form

L = ∪m
j=1Lm, and w1, . . . ,wm ∈ C the Fourier transform (taken in the sense of tem-

pered distributions) of the generalized Dirac comb
∑m

j=1

∑
x∈L j

w jδx is a translation

bounded pure point measure if and only if each L j is a lattice. In our context, we can

show that for L with finite local complexity the Fourier transform of δL (taken as a

tempered distribution) is a pure point measure if and only if L is completely peri-

odic. Here, the “if” part is clear from the Poisson summation formula and the “only

if” part follows from the theorem, as pure pointedness of the Fourier transform of a

measure implies almost periodicity of the measure [15].
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[13] A. Córdoba, La formule sommatoire de Poisson. C. R. Acad. Sci. Paris, Sér. I Math. 306(1988), no. 8,
373–376.

[14] A. H. Forrest, J. R. Hunton, and J. Kellendonk, Topological invariants for projection method patterns.
Mem. Amer. Math. Soc. 159(2002), no. 758.

[15] J. Gil de Lamadrid and L. N. Argabright, Almost periodic measures. Mem. Amer. Math. Soc.
85(1990), no. 428.
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