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Abstract

Background. Amygdala and dorsal anterior cingulate cortex responses to facial emotions have
shown promise in predicting treatment response in medication-free major depressive disorder
(MDD). Here, we examined their role in the pathophysiology of clinical outcomes in more
chronic, difficult-to-treat forms of MDD.
Methods. Forty-five people with current MDD who had not responded to ⩾2 serotonergic
antidepressants (n = 42, meeting pre-defined fMRI minimum quality thresholds) were
enrolled and followed up over four months of standard primary care. Prior to medication
review, subliminal facial emotion fMRI was used to extract blood-oxygen level-dependent
effects for sad v. happy faces from two pre-registered a priori defined regions: bilateral amyg-
dala and dorsal/pregenual anterior cingulate cortex. Clinical outcome was the percentage
change on the self-reported Quick Inventory of Depressive Symptomatology (16-item).
Results. We corroborated our pre-registered hypothesis (NCT04342299) that lower bilateral
amygdala activation for sad v. happy faces predicted favorable clinical outcomes (rs[38] =
0.40, p = 0.01). In contrast, there was no effect for dorsal/pregenual anterior cingulate cortex
activation (rs[38] = 0.18, p = 0.29), nor when using voxel-based whole-brain analyses (voxel-
based Family-Wise Error-corrected p < 0.05). Predictive effects were mainly driven by the
right amygdala whose response to happy faces was reduced in patients with higher anxiety
levels.
Conclusions.We confirmed the prediction that a lower amygdala response to negative v. posi-
tive facial expressions might be an adaptive neural signature, which predicts subsequent symp-
tom improvement also in difficult-to-treat MDD. Anxiety reduced adaptive amygdala
responses.

Background

Only half of patients with major depressive disorder (MDD) respond to their initial treatment
and remission rates are even lower (Rush et al., 2006; Souery et al., 2007; Thomas et al., 2013).
Identifying prognostic markers of poor clinical outcomes could facilitate personalized treat-
ment algorithms and pathways, improving time to remission. In order to develop such mar-
kers, a deeper understanding of the pathophysiology of MDD is required.

As proposed by the tripartite model of anxiety and depression (Clark & Watson, 1991;
Watson, Clark, & Carey, 1988), MDD patients exhibit a proneness to experience negative
rather than positive emotions, which can be observed in aspects of memory, emotional percep-
tion and emotional processing (Bourke, Douglas, & Porter, 2010; Disner, Beevers, Haigh, &
Beck, 2011; Krause, Linardatos, Fresco, & Moore, 2021; Roiser, Elliott, & Sahakian, 2012;
Stuhrmann, Suslow, & Dannlowski, 2011). For example, people with depression tend to
respond more strongly to negative facial expressions than to positive ones, i.e. show a negative
perceptual bias (Bourke et al., 2010; Krause et al., 2021; Stuhrmann et al., 2011). These
perceptual biases have often been linked with hyper-activation of brain regions thought to
underpin initial stimulus appraisal, such as the amygdala, and hypo-activation of cortical
parts of the limbic system, such as the dorsal and pregenual anterior cingulate cortex
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(Beck, 2008; Disner et al., 2011; Phillips, Drevets, Rauch, & Lane,
2003; Phillips, Ladouceur, & Drevets, 2008; Pizzagalli, 2011).

Antidepressant treatment and psychotherapy are thought to
introduce a positive emotional processing bias, potentially
through effects on the fronto-limbic neural network and modula-
tion of initial appraisal and attentional processing of affective
stimuli (Browning, Holmes, & Harmer, 2010; Harmer, 2008;
Roiser et al., 2012). As both treatment approaches ameliorate dis-
torted emotional perception, neural response at baseline may pre-
dict treatment outcome. Indeed, neural signatures of these
negative biases have been associated with prognosis and response
to treatment (Dichter, Gibbs, & Smoski, 2015; Dunlop &
Mayberg, 2014; Fonseka, MacQueen, & Kennedy, 2018; Fu,
Steiner, & Costafreda, 2013). More specifically, baseline dorsal
anterior cingulate cortex and amygdala activation, two regions
thought to underpin the emotional perception biases often
observed in MDD, were relatively consistently associated with
clinical response across emotional processing tasks and imaging
modalities (Fu et al., 2013; Pizzagalli, 2011). However, most stud-
ies investigating imaging biomarkers related to emotional percep-
tion biases have been conducted in untreated patients or in a
secondary care setting.

In this pre-registered study (NCT04342299), we sought to
determine whether facial emotion perception fMRI measures
are prospectively associated with clinical outcomes after four
months of standard treatment in difficult-to-treat depression in
a primary care setting. Here, we defined difficult-to-treat depres-
sion as ‘depression that continues to cause significant burden des-
pite usual treatment efforts’ (McAllister-Williams et al., 2020), to
reflect the absence of formal episode and treatment response
metrics in primary care, as well as the more chronic nature. Of
particular interest were the neural signatures of pregenual anterior
cingulate cortex and amygdala activation, which have previously
been shown to predict response to treatment at the individual
level in medication-naïve and medication-free MDD patients
(Godlewska et al., 2018; Williams et al., 2015). More specifically,
we examined whether these neural signatures generalize to more
chronic, difficult-to-treat forms of MDD.

Williams et al. (2015) examined whether pre-treatment amyg-
dala activation could predict response to a range of commonly
prescribed antidepressants at an individual level. Participants
were shown a series of facial emotion expressions, presented
either subliminally or supraliminally. While the latter did not
show any prediction effects, subliminal presentation of happy
faces was associated with lower activation of the bilateral amyg-
dala in responders relative to non-responders at baseline.
Moreover, they found that responders to venlafaxine had lower
activation of the left amygdala to subliminal presentation of sad
faces at baseline. These findings were in keeping with a
meta-analysis that linked decreased amygdala activation to a
more favorable clinical response (Fu et al., 2013). Therefore, we
predicted (pre-registered Hypothesis 1) that decreased activation
of the amygdala for subliminal sad v. happy faces would be pro-
spectively associated with favorable clinical outcomes after receiv-
ing four months of standard care.

Similarly, Godlewska et al. (2018) investigated whether pre-
treatment pregenual anterior cingulate cortex activation could
predict response after six weeks of treatment with escitalopram.
Using an fMRI paradigm consisting of brief, masked presenta-
tions of facial expressions, the authors reported that responders
showed increased pre-treatment pregenual anterior cingulate cor-
tex activation to sad v. happy faces compared with non-

responders. Meta-analyses by Pizzagalli (2011) and Fu et al.
(2013), which included studies that investigated implicit and
explicit emotion processing and a range of neuroimaging modal-
ities, corroborated the finding that increased pre-treatment anter-
ior cingulate cortex activity is relatively consistently associated
with a higher likelihood of treatment response to commonly
used pharmacological and psychological therapies. Therefore, we
predicted (pre-registered Hypothesis 2) that increased activation
in the pregenual anterior cingulate cortex to subliminal sad v.
happy faces would be prospectively associated with favorable clin-
ical outcomes after receiving four months of standard care.

Lastly, we predicted (pre-registered Hypothesis 3) that patients
with anxious distress, commonly encountered in
treatment-resistant and chronic MDD populations and associated
with a poor prognosis (Dold et al., 2017; Domschke, Deckert,
Arolt, & Baune, 2010; Fava et al., 2004; Gaspersz et al., 2017),
would show increased activation of the amygdala for subliminal
sad v. happy faces. The neural response to subliminal emotional
faces can be modulated by anxiety (Etkin et al., 2004; Etkin &
Wager, 2007; Stein, Simmons, Feinstein, & Paulus, 2007).
Anxiety is often accompanied by irritability (Brown,
DiBenedetti, Danchenko, Weiller, & Fava, 2016) and feelings of
anger (Jaeckle, 2018; Jaeckle et al., 2021). Both anxiety and
anger are characterized by increased arousal (Alia-Klein et al.,
2020; Steimer, 2002), which can be observed as increased amyg-
dala activation during emotion processing (Alia-Klein et al.,
2018; Etkin & Wager, 2007; Stein et al., 2007). The amygdala,
heavily linked to sensory perception, is thought to assess the bio-
logical significance of emotional faces and coordinate subsequent
actions through its connectivity with frontal areas, like the dorsal/
pregenual anterior cingulate cortex (Adolphs, 2010; Browning
et al., 2010; Pessoa, 2010; Pessoa & Adolphs, 2010). Conversely,
heightened arousal may predispose an individual to anxiety
and/or feelings of irritability and anger, which has been associated
with poorer treatment outcomes (Dold et al., 2017; Domschke
et al., 2010; Fava et al., 2008; Gaspersz et al., 2017; Jaeckle
et al., 2021; Jha, Minhajuddin, South, Rush, & Trivedi, 2019).

Methods

Studies

This study was linked with a cluster-randomized trial, the
Antidepressant Advisor trial (ADeSS; NCT03628027), whose
design and clinical results have been published elsewhere
(Harrison et al., 2020; Harrison et al., 2023). In short, the
ADeSS trial assessed the feasibility of a novel computerized deci-
sion support algorithm to facilitate antidepressant medication
choices in MDD patients in primary care. Participants enrolled
in the trial were assigned to either (i) use of a computerized
decision-support tool by their general practitioner (GP) to assist
with antidepressant choices, or (ii) treatment-as-usual. Both
arms involved standard care as the decision-support tool
prompted GPs to follow National Institute for Health and Care
Excellence guidelines.

Most participants for the current observational prospective
pre-registered study (NCT04342299), however, were recruited
outside of the ADeSS main trial through online advertising and
participants received standard primary care (see Supplemental
Information). As part of the current study, participants were
invited to attend an optional MRI scan to examine candidate bio-
markers predictive of clinical outcomes after four months in
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primary care. We have published task-based and resting-state
functional imaging results from the same cohort previously
(Fennema et al., 2023, 2024), but here, we report on the facial
emotion perception fMRI data for the first time. The study
was approved by the NHS Health Research Authority and
National Research Ethics Service London – Camberwell St Giles
Committee (REC reference: 17/LO/2074). All participants pro-
vided written, informed consent and received compensation for
their time and for their travel expenses. The authors assert that
all procedures contributing to this work comply with the ethical
standards of the relevant national and institutional committees
on human experimentation and with the Helsinki Declaration
of 1975, as revised in 2008.

Participants

As previously described in Fennema et al. (2023), participants
aged ⩾18 were eligible if they had a current major depressive epi-
sode (MDE) and MDD according to the Structured Clinical
Interview (SCID) for the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-5) (First, Williams, Karg,
& Spitzer, 2015) and had Patient Health Questionnaire
(PHQ-9) scores ⩾15 (moderately severe, (Spitzer, Kroenke, &
Williams, 1999)). Additionally, they had not to have benefitted
from at least two serotonergic antidepressants from the following
list in current or previous episodes to be consistent with the
ADeSS trial: citalopram, fluoxetine, sertraline, escitalopram, par-
oxetine, venlafaxine, or duloxetine (Harrison et al., 2020). All par-
ticipants were encouraged to book an appointment with their GP
to review their treatment and were followed up after four months
in primary care. Before their GP visit, participants completed an
fMRI paradigm.

Age- and gender-matched control participants without a def-
inite first-degree family history of mood disorders and without
a history of major depressive episodes, with PHQ-9 scores <10,
but otherwise meeting the same exclusion criteria as the MDD
group were recruited through online advertising. After the initial
assessment, control participants completed the same fMRI para-
digm, allowing further interpretation and exploratory cross-
sectional comparisons with the MDD group (not pre-registered).
For more information about inclusion/exclusion criteria, recruit-
ment, clinical assessment, and measures collected, please see
Supplementary Methods.

We considered three samples for analysis. For the primary
imaging analysis, we included 38 participants with current
MDD. All met strict criteria for signal dropout (sufficient
coverage of the bilateral amygdala, bilateral subgenual cingu-
late, and frontopolar cortex) and pragmatic maximum move-
ment thresholds as in our previous paper (Fennema et al.,
2023) (translation <6 mm; rotation <2 degrees; less than 10%
censored volumes). For the secondary imaging analysis, we
additionally included four participants who did not meet the
strictest fMRI quality control threshold (‘reserve list’) to assess
how results generalize to a more pragmatic sample including
those with lower fMRI quality on the findings, giving a total
of 42 participants. Finally, for exploratory cross-sectional
analyses to help with interpretation, we compared the MDD
group with 19 control participants (15 of whom met the
strict criteria and four additional control participants who
did not meet the strictest criteria [‘reserve list’]; online
Supplementary Table S1).

Primary outcome

As stated in our pre-registered protocol (NCT04342299), we used
a continuous measure of clinical outcome rather than categorizing
participants into responders and non-responders using the stand-
ard definition of a 50% reduction (Nierenberg & DeCecco, 2001)
in Quick Inventory of Depressive Symptomatology – self-rated
(16-item; QIDS-SR16) (Rush et al., 2003) scores, due to an unba-
lanced split between the resulting groups (responders n = 10; non-
responders n = 32). The outcome was defined as the percentage
change from baseline to follow-up on our pre-registered primary
outcome measure, QIDS-SR16, where negative percentages corre-
sponded to a reduction in depressive symptoms.

fMRI acquisition

Image acquisition was carried out on an MR750 3 T MR system
(GE Healthcare, Chicago, USA), using a Nova Medical
32-channel head coil. Functional image acquisition was obtained
parallel to the anterior commissure – posterior commissure plane,
with slices running top to bottom, using a standard T2*-weighted
echo-planar imaging (blood-oxygen level-dependent; BOLD)
sequence (repetition time = 2000 ms; echo time = 30 ms; matrix
= 64 × 64; field-of-view = 240 mm; flip angle = 75 degrees; slice
thickness = 3mm, slice gap = 0.3mm, inter-slice distance = 3.3mm,
41 slices, 267 volumes). Shimming was automatically applied as
part of the scanner’s ‘pre-scan’ procedures, and four additional
volumes were acquired and automatically discarded at the start of
each fMRI run, allowing for T1 equilibration effects.

As demonstrated by measurements of the temporal
signal-to-noise, i.e. ‘the mean of a voxel’s BOLD signal over
time divided by its standard deviation over time’ (Welvaert &
Rosseel, 2013), overall signal quality was very good (online
Supplementary Fig. S1; Supplementary Table S2). For more
details on image acquisition, please see Supplementary Methods.

fMRI paradigm

During fMRI scanning, participants completed a backward mask-
ing task based on the fMRI paradigm outlined by Godlewska et al.
(2018). Participants were shown pairs of faces, with a first ‘target’
face (expressing a sad, happy, or neutral emotion), displayed for
34 milliseconds, and then immediately ‘masked’ by a face of neu-
tral expression, displayed for 66 milliseconds. This set-up has
been shown to interfere with the explicit perception of the first
‘target’ face, thus ensuring subliminal perception (Victor, Furey,
Fromm, Ohman, & Drevets, 2010).

The task followed a block design, with each participant being
shown four blocks with sad faces, four blocks with happy faces,
and nine blocks with neutral faces. Each block cycled through
10 target-mask pairs of faces, with the order varying for each
block. The neutral (N) blocks were interleaved with sad (S) and
happy (H) blocks, in one of two orders: N-S-N-H-N-S-H-N or
N-H-N-S-N-H-N-S-N. The order of blocks was determined by
pseudo-randomization, with an even split within the MDD and con-
trol groups and across the total sample. After each block, there was a
10-s block of baseline fixation. The total task time was 8min and 47
s. For more details, please see Supplementary Methods.

Image analysis

Following standard Statistical Parametric Mapping (SPM12;
http://www.fil.ion.ucl.ac.uk/spm12) pre-processing steps,
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additional motion correction was applied in the form of censor-
ing, i.e. identifying outliers based on framewise displacement
and regressing them from the fMRI timeseries (Power et al.,
2014; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), to
compensate for using fairly lenient translation and rotation cut-
offs given our patient population. To limit the impact of physio-
logical noise on the BOLD signal, functional images were
denoised using the MATLAB PhysIO toolbox ((Kasper et al.,
2017); version R2021a-v8.0.0, open-source code available as part
of the Translational Algorithms for Psychiatry-Advancing
Science [TAPAS] software collection (Frassle et al., 2021):
https://www.translationalneuromodeling.org/tapas). For more
details, please see Supplementary Methods. Voxel-based analyses
were thresholded at an uncorrected p = 0.005 for displaying our
results and we subsequently used peak-voxel-level-based
Family-Wise Error (FWE) correction at p = 0.05 over the whole
brain as well as using small-volume correction over our two pre-
registered a priori defined regions-of-interest (ROIs; further
described below).

To test our pre-registered hypotheses, BOLD effects were mod-
eled for each of the emotion blocks, i.e. sad, happy, and neutral.
Baseline fixation was not modeled to avoid overspecification of
the model. Nuisance regressors created by the PhysIO toolbox,
i.e. physiological noise regressors and motion-related regressors,
were included as covariates. Contrasts were created to examine
the relative activation of sad faces (sad v. neutral faces), happy
faces (happy v. neutral faces), and the subtraction-based differ-
ence between sad and happy faces (sad v. happy).

We conducted a one-sample t test at the second level on the
sad v. happy faces contrast maps to test whether the regression
coefficient for QIDS-SR16 change, modeled as a covariate, dif-
fered from zero. The question of prognosis was restricted to the
sad v. happy contrast only, as this relative difference was thought
to be more selective and relevant to the negative emotional bias
observed in MDD and to avoid multiple comparisons. The two
pre-registered a priori defined ROIs were used for extracting aver-
age regression coefficients for each individual using the MarsBaR
toolbox (Brett, Anton, Valabregue, & Poline, 2002) and for small
volume correction, i.e. bilateral amygdala (based on the
Automated Anatomical Labelling [AAL] atlas (Rolls, Joliot, &
Tzourio-Mazoyer, 2015) and used by Williams et al. (2015)),
and dorsal/pregenual anterior cingulate cortex, kindly shared by
Godlewska et al. (2018) (please note that upon visual inspection,
this shared ROI contained both dorsal and pregenual regions of
the anterior cingulate cortex). In addition, regression coefficient
averages were extracted for left and right amygdala separately,
based on the AAL atlas (Rolls et al., 2015), to help with the inter-
pretation of amygdala findings. These were further analyzed in
IBM SPSS Statistics 27.

Lastly, exploratory second-level BOLD analyses were con-
ducted to examine differences in emotional facial expression pro-
cessing between participants with MDD and controls, using small
volume correction over our pre-registered a priori defined ROIs to
support the interpretation of prognostic effects. For more details,
please see Supplementary Methods. All analyses were inclusively
masked with a grey matter mask as previously described in
Green, Lambon Ralph, Moll, Deakin, & Zahn (2012).

Behavioral data analysis

All data analyses were carried out using IBM SPSS Statistics 27,
using a significance threshold of p = 0.05, two-tailed. Correlation

analysis (Spearman’s rho) was used to investigate the association
between the pre-registered neural signatures and QIDS-SR16 per-
centage change, as well as standard clinical variables to investigate
their role as potential confounders.

Results

Subgroup characteristics

MDD and control groups were matched on demographic vari-
ables (online Supplementary Table S3), movement during fMRI,
response times, and accuracy (online Supplementary Table S4).
Clinical characteristics of participants with MDD are shown in
Table 1 (for control participants, see online Supplementary
Table S5). As part of the study, participants were encouraged to
book an appointment with their GP to review their antidepressant
medication, which often was a selective serotonin reuptake inhibi-
tor (SSRI; 81%; online Supplementary Table S6). Even though UK
care guidelines would recommend changing antidepressant med-
ications in non-responders, unexpectedly, more than half (52%)
did not change their medication and some even stopped their
medication (14%; online Supplementary Table S7). On average,
participants showed a reduction in depressive symptoms from
baseline to follow-up, both self- and observer-rated (Table 2).
The percentage change in QIDS-SR16 was consistent regardless
of medication status (i.e. no change in medication, minimal
change, or relevant change; F[2,35] = 1.11, p = 0.34), or any of
the other clinical measures at baseline (online Supplementary
Table S8). However, there was a positive association between cur-
rent MDE duration and percentage change in QIDS-SR16 (rs[38]
= 0.39, p = 0.02), showing that those with a longer current MDE
duration had less favorable clinical outcomes. Despite using rigor-
ous exclusion of bipolar spectrum diagnoses at baseline, two
patients had developed a hypomanic episode during follow-up
and so the diagnosis was switched to a bipolar II disorder.

fMRI findings

As predicted, the extracted cluster averages for the a priori defined
bilateral amygdala ROI fMRI responses to subliminal sad v. happy
faces (Hypothesis 1) showed a positive association with
QIDS-SR16 percentage change (rs[38] = 0.40, p = 0.01; Figure 1;
online Supplementary Fig. S2; Supplementary Findings). This
effect of negative biases in amygdala response predicting poor
subsequent outcomes remained when excluding potential outliers
(rs[37] = 0.37, p = 0.02) as well as when including the reserve list
(rs[42] = 0.45, p = 0.003). Additional exploratory analyses showed
that there was only a trend-wise association between QIDS-SR16
percentage change and the a priori defined bilateral amygdala
ROI fMRI responses to subliminal happy v. neutral (rs[38] =
−0.27, p = 0.10) and no association for subliminal sad v. neutral
faces (rs[38] = 0.21, p = 0.20). However, using a group compari-
son, patients with favorable outcomes had a stronger amygdala
response to subliminal perception of happy faces v. neutral
faces, when compared with patients with unfavorable outcomes
(online Supplementary Fig. 2, Supplementary Findings). There
was a significant association between the potential clinical con-
founder, current MDE duration, and the neural signature (rs-
[38] = −0.35, p = 0.03). However, whilst controlling for current
MDE duration, the association between a priori bilateral amyg-
dala ROI fMRI responses to subliminal sad v. happy faces and
QIDS-SR16 percentage change remained (rs[35] = 0.35, p = 0.03).
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Notably, the association between amygdala BOLD activation
for subliminal sad v. happy faces and QIDS-SR16 percentage
change was mostly driven by the right amygdala (rs[38] = 0.46,
p = 0.003; online Supplementary Fig. S3; Supplementary Findings)
rather than the left amygdala (rs[38] = 0.27, p = 0.10). There was
no effect for our other pre-registered ROI (Hypothesis 2), i.e.
dorsal/pregenual anterior cingulate cortex (rs[38] = 0.18, p = 0.29).
A supporting voxel-based analysis over the volume of the whole
brain revealed no significant associations with QIDS-SR16 percent-
age change (voxel-based FWE-corrected p = 0.05).

We were unable to determine whether patients with anxious
distress showed a more pronounced increased amygdala response,
and thus less favorable clinical outcomes (Hypothesis 3), due to

recruiting a predominantly anxious MDD sample. However,
interestingly, participants with higher baseline anxiety levels, as
measured on the Generalized Anxiety Disorder (7 items)
(Spitzer, Kroenke, Williams, & Lowe, 2006), displayed lower
right amygdala (rs[38] = −0.32, p = 0.05) and dorsal/pregenual
anterior cingulate cortex (rs[38] = −0.42, p = 0.01) responses to
subliminal happy faces v. neutral faces. Our main contrast of
interest, sad v. happy faces, did not show an association between
anxiety levels and bilateral amygdala activation (rs[38] = 0.11,
p = 0.53), although there was an association between anxiety levels
and dorsal/pregenual anterior cingulate cortex activation (rs[38] =
0.38, p = 0.02; online Supplementary Table S9).

The exploratory cross-sectional BOLD analysis probing group
(MDD v. control) and emotion condition effects (sad v. happy)
did not show main effects or interaction effects of group or emo-
tion condition within our a priori defined ROIs or at the whole-
brain level (Supplementary Findings).

Discussion

We corroborated our first pre-registered hypothesis (Hypothesis 1)
that decreased activation of the amygdala for sad v. happy faces
may be prospectively associated with favorable clinical outcomes.
Additional exploratory analyses suggest that this may be driven by
an increased response to subliminal perception of happy faces in
patients with favorable outcomes, which could point to a positive
perceptual bias. It has been proposed that treatment introduces
such a positive emotional processing bias, which allows individuals
to re-tune how they process socially relevant information and have a
more positive day-to-day emotional perspective (Browning et al.,
2010; Harmer, 2008). We speculate that traces of a positive percep-
tual bias while taking antidepressant medication imply that the
treatment had an implicit effect and could signal a higher likelihood
of subsequent symptom improvement. In contrast, the absence of a
positive perceptual bias in subsequent non-responders might indi-
cate that antidepressant treatment was less effective in restoring
function and thus predicts less favorable clinical outcomes.
Moreover, chronicity of depressive episodes reduces the adaptive
response of the amygdala to positive faces.

Even though similar patterns of activation were observed for
the right and left amygdala in response to subliminal facial emo-
tions, the association between amygdala activation and change in
depressive symptoms appeared to be mostly driven by the right
amygdala. It has been proposed that amygdala function is latera-
lized: while the left amygdala is thought to be more active in the
processing of language-related stimuli, the right amygdala appears
to be more involved in the processing of non-conscious stimuli
(Costafreda, Brammer, David, & Fu, 2008; Gläscher & Adolphs,
2003). Thus, subliminal presentation would be likely to result in
a more prominent neural response in the right amygdala relative
to the left amygdala, which might explain why the left amygdala
separately was not significantly associated with clinical outcomes.

Contrary to our second pre-registered hypothesis (Hypothesis
2), we found no association between dorsal/pregenual anterior
cingulate cortex activation in response to subliminal facial emo-
tions and clinical outcomes in current MDD. The lack of associ-
ation with symptom change might be explained by differences in
study set-up from that of Godlewska et al. (2018), who conducted
a controlled trial with treatment-free MDD participants who
underwent a six-week period of escitalopram treatment. In con-
trast, our study was designed as an observational study, with par-
ticipants taking a range of antidepressant medications and

Table 1. Clinical characteristics MDD (n = 42)

Characteristic
n (%) or mean ± s.d;

range

MDD modified DSM-5 subtype

Anxious distress only 8 (19%)

Melancholic features only 0 (0%)

Melancholic features + anxious distress 7 (17%)

Atypical features only 2 (5%)

Atypical features + anxious distress 18 (43%)

No specific subtype 7 (17%)

Age of depression onset (in years) 18.2 ± 9.0; 4–42

Current MDE duration (in months) 25.0 ± 44.1; 1–176

Number of MDEs 6.4 ± 4.8; 1–20

Illness duration (in years) 24.0 ± 15.9; 2–56

Number of suicide attempts 0.5 ± 1.3; 0–6

Maudsley staging method

Mild 19 (45%)

Moderate 23 (55%)

Severe 0 (0%)

Life-time axis-I co-morbidity

Posttraumatic stress disorder 18 (43%)

Other anxiety disorder 17 (40%)

Obsessive-compulsive disorder 4 (10%)

Eating disorder 14 (33%)

None 5 (12%)

Family history

First degree relative with MDD 14 (33%)

First degree relative with bipolar
disorder

2 (5%)

No family history of MDD 21 (50%)

Outcomes

Respondera 10 (24%)

QIDS-SR16, Quick Inventory of Depressive Symptomatology – self-rated (16-item); MDD,
major depressive disorder; DSM-5, Diagnostic and Statistical Manual for Mental Disorders 5th

edition; MDE, major depressive episode; S.D., standard deviation.
aResponder was defined as participants who showed at least a 50% reduction in depressive
symptoms as measured on the QIDS-SR16.
Percentages may not add up to 100 due to rounding.
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followed up after four months. As a result, the neural signature
described by Godlewska et al. (2018) may be more relevant for
prognosis in early treatment-resistant MDD rather than the
more chronic forms of MDD seen in our sample.

We were unable to investigate our third pre-registered hypoth-
esis (Hypothesis 3) that patients with anxious distress showed a
more pronounced increased amygdala response, and thus poorer
clinical outcomes, because our sample predominantly consisted of
anxious MDD. However, exploratory analyses showed that
participants with higher baseline anxiety levels displayed lower
amygdala reactivity to subliminal presentation of happy v. neutral
faces, but there was no effect for our main contrast of interest sad
v. happy faces, thus requiring further replication. We speculate
that this reduced amygdala reactivity to subliminal facial expres-
sions of happiness implies a reduced positive perceptual bias,
which was also associated with poorer clinical outcomes. It has
been suggested that anxiety symptoms might contribute more
strongly to patterns of amygdala responses to facial emotions,

compared with depressive symptoms (van den Bulk et al.,
2014). More research is needed to determine what role
(co-morbid) anxiety plays in modulating response to subliminal
emotional faces and how this might inform clinical outcomes
by allowing stratification of patients.

Supporting voxel-based analyses showed no significant effects
between neural responses to subliminal facial emotions and symp-
tom change. This is likely due to the reduced statistical power of
voxel-based analyses because of the need for multiple comparison
correction for the number of voxels within an ROI or across the
whole-brain. If the activation is relatively homogeneous across
the ROI, likely with small ROIs such as the amygdala, extracting
the average effect from the ROI increases the statistical power of
one’s analysis, which is why our primary analysis approach is
preferable for clinical applications and reproducibility studies.

Lastly, we found no evidence of differences in neural responses
to subliminal facial expressions between the MDD group and the
control group. The lack of cross-sectional findings might be

Table 2. Descriptive statistics for clinical symptom measures at baseline and follow-up MDD (n = 42)

Baseline (mean ± S.D.; min – max) Follow-up (mean ± S.D.; min – max) Difference (95% CI)

QIDS-SR16 17.3 ± 3.5; 10–23 13.0 ± 5.7; 2–24 −4.3 (−6.1 to −2.5)

MM-PHQ-9 18.7 ± 4.5; 8–27 13.7 ± 8.0; 0–27 −5.0 (−7.2 to −2.7)

GAD-7a 11.7 ± 4.2; 1–21 10.1 ± 5.9; 0–21 −1.6 (−3.5 to 0.4)

MADRS 31.6 ± 4.8; 22–42 23.4 ± 11.3; 3–44 −8.2 (−11.3 to −5.1)

SOFASa 53.6 ± 5.3; 33–61 58.3 ± 11.0; 33–85 4.8 (2.0–7.5)

YMRSb 1.3 ± 1.3; 0–5 1.1 ± 1.5; 0–5 −0.3 (−0.7 to 0.2)

MDD, major depressive disorder; CI, confidence interval; QIDS-SR16, Quick Inventory of Depressive Symptomatology – self-rated, 16 items; MM-PHQ-9, Maudsley Modified Personal Health
Questionnaire, 9 items; GAD-7, Generalized Anxiety Disorder, 7 items; MADRS, Montgomery-Åsberg Depression Rating Scale; SOFAS, Social and Occupational Functioning Assessment Scale;
YMRS, Young Mania Rating Scale; M, mean; S.D., standard deviation; min, minimum; max, maximum.
aMissing follow-up data for one participant.
bMissing baseline and follow-up data for eight participants.

Figure 1. Association between amygdala responses to facial emotions and change in depressive symptoms. (a) shows the a priori AAL bilateral amygdala ROI, from
which the averages were extracted. (b) shows that there was a positive association between bilateral amygdala BOLD activation for sad v. happy faces and
QIDS-SR16 percentage change from baseline to follow-up, using the extracted a priori defined bilateral amygdala ROI averages (i.e. stronger amygdala-responses
to sad v. happy faces predicting poorer subsequent outcomes). AAL, Automated Anatomical Labeling; BOLD, blood-oxygen level-dependent; QIDS-SR16, Quick
Inventory of Depressive Symptomatology – self-rated, 16-items; rs, Spearman correlation; ROI, region-of-interest.
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explained by our small, heterogenous control group which
allowed for mild anxiety or depressive symptoms, as well as anx-
iety disorders and subthreshold levels of PTSD. Even though this
approach may have limited cross-sectional comparisons, it pro-
vides a more representative reference group for the prognostic
findings in MDD. Moreover, the null finding is in keeping with
other studies reporting no amygdala activation differences
between MDD patients taking antidepressant medications com-
pared with healthy controls (Almeida, Versace, Hassel, Kupfer,
& Phillips, 2010; Demenescu et al., 2011; Gotlib et al., 2005).

Limitations

As expected in difficult-to-treat MDD, a high proportion of our
participants had co-morbid anxiety and trauma-related disorders.
It is important to note that negative emotion perception biases are
not unique to MDD and are commonly reported in anxiety and
trauma-related disorders (Etkin & Wager, 2007; Killgore et al.,
2014; Lee, Kim, & Lee, 2016; Stein et al., 2007). Notably, some
studies have reported that depression groups with and without
early-life trauma may differ in their neural response to sad and
neutral faces (Grant, Cannistraci, Hollon, Gore, & Shelton,
2011), as did MDD patients with or without co-morbid anxiety
(Demenescu et al., 2011), which could be suggestive of distinct
subtypes of depression with regard to facial emotion perception.
Therefore, it is possible that the observed negative perceptual
biases could have resulted from co-morbid anxiety or
trauma-related disorders rather than being specific to MDD.

Another limitation is our relatively modest sample size, which
limits our power for identifying significant effects, but is never-
theless sufficient for estimating effect sizes (Teare et al., 2014;
Turner, Paul, Miller, & Barbey, 2018). Moreover, treatment in
our observational study was not standardized and included a
range of treatment approaches, which means that treatment
effects may have introduced variability in the observed neural
responses. However, this reflects standard care in a primary care
setting, and it allowed to test whether the previously identified
neural signatures would generalize to a pragmatic sample of
patients encountered in clinical settings. Non-specific beneficial
effects of being enrolled in our study could in theory have
improved clinical outcomes, but we think that these are unlikely
to have played a significant role, given the absence of psychiatric
or psychosocial advice provided.

Conclusion

Here, we confirmed the prediction that neural correlates of posi-
tive emotional perception biases may be prospectively associated
with favorable clinical outcomes in difficult-to-treat MDD. We
speculate that those patients with favorable clinical outcomes
showed neural correlates of an antidepressant medication-
mediated restoration of positive perceptual biases, potentially
through implicit stimulus appraisal by the amygdala, preceding
their subsequent symptom improvement. This indicates that
enhancing amygdala responses to positive stimuli should be fur-
ther investigated as neuromodulation treatment targets in
difficult-to-treat MDD. Initial fMRI neurofeedback evidence for
reinforcing amygdala responses to positive memories in MDD
is promising (Young et al., 2019).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291724001144.
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