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Abstract

Automatic precision herbicide application offers significant potential for reducing herbicide use
in turfgrass weed management. However, developing accurate and reliable neural network
models is crucial for achieving optimal precision weed control. The reported neural network
models in previous research have been limited by specific geographic regions, weed species, and
turfgrass management practices, restricting their broader applicability. The objective of this
research was to evaluate the feasibility of deploying a single, robust model for weed classification
across a diverse range of weed species, considering variations in species, ecotypes, densities, and
growth stages in bermudagrass turfgrass systems across different regions in both China and the
United States. Among the models tested, ResNeXt152 emerged as the top performer,
demonstrating strong weed detection capabilities across 24 geographic locations and effectively
identifying 14 weed species under varied conditions. Notably, the ResNeXt152 model achieved
an F1 score and recall exceeding 0.99 across multiple testing scenarios, with a Matthews
correlation coefficient (MCC) value surpassing 0.98, indicating its high effectiveness and
reliability. These findings suggest that a single neural network model can reliably detect a wide
range of weed species in diverse turf regimes, significantly reducing the costs associated with
model training and confirming the feasibility of using one model for precision weed control
across different turf settings and broad geographic regions.

Introduction

Turfgrass is ubiquitously grown in various landscapes, including home lawns, golf courses,
parks, school playgrounds, and sports fields (Stier et al. 2013). Weed control is a constant task
for turf management, as weeds compete with turfgrasses for essential nutrients, sunlight, and
water, potentially compromising both aesthetics and functionality of the turf. Implementing
cultural practices, such as mowing and irrigation, can reduce weed infestation but rarely
achieves complete weed control (Busey 2003; Neal 2020). Currently, the most effective way to
control weeds is the application of various preemergence and postemergence herbicides
(Kraehmer et al. 2014). However, weeds in natural environments are often unevenly distributed,
leading to the broadcast application of herbicides across entire areas, including those without
weed presence. Moreover, many commonly used herbicides, such as atrazine (photosystem II
inhibitor) and monosodium methanearsonate (MSMA, arsenical herbicide), are classified as
restricted-use pesticides due to their potential environmental impact (Kudsk and Streibig 2003;
McElroy and Martins 2013; USEPA 2023a, 2023b; WSSA 2023). While manual spot spraying
can significantly reduce herbicide inputs compared with broadcast applications by targeting
only weed-infested areas, it is labor-intensive, time-consuming, and impractical for large-scale
applications. Broadcast applications, on the other hand, are more efficient for large areas but
often result in excessive herbicide use and environmental risks (Kudsk and Streibig 2003; Yu and
McCullough 2016).
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Computer vision–based automated weed detection and
precision spraying technology is a promising solution for
significantly reducing herbicide input and weed control costs
(Bhakta et al. 2019; Gerhards et al. 2022; Jin et al. 2023b). Deep
learning, a subfield of machine learning, employs multi-layered
neural networks to simulate the way the human brain connects and
transmits information between neurons (LeCun et al. 2015).
Neural networks are a core component of deep learning and
consist of a mathematical model composed of many artificial
neurons, also known as nodes or units. Each neuron receives inputs
from other neurons, weights and processes these inputs through an
activation function, and then passes the result to the neurons in the
next layer (Yang and Wang 2020). Deep convolutional neural
networks (DCNNs) have achieved remarkable success in many
applications, such as facial recognition (Singh et al. 2020), natural
language processing (Chowdhary 2020), self-driving cars
(Maqueda et al. 2018), and automated detection of structural
flaws (Luo et al. 2019).

In recent years, the application of DCNNs in agriculture has
grown exponentially. For example, Zhao et al. (2023) developed a
neural network capable of detecting the germination status and
estimating the total number of germinated rice (Oryza sativa L.)
seeds. Ahmad Loti et al. (2021) documented a neural network that
effectively identifies and differentiates various diseases in pepper
(Piper aduncum L.). Additionally, previous studies have demon-
strated the efficacy of DCNNs for detecting weeds in a variety of
cropping systems (Dang et al. 2023; Sharpe et al. 2020; Yu et al.
2020). For example, researchers developed a neural network to
detect weeds growing in soybean [Glycine max (L.) Merr.] (dos
Santos Ferreira et al. 2017). Andrea et al. (2017) developed a neural
network that accurately and reliably classifies weeds in corn (Zea
mays L.) stands. Osorio et al. (2020) successfully employed a neural
network to detect weeds in lettuce (Lactuca sativa L.). Moreover,
You et al. (2020) proposed a neural network–based semantic
segmentation method to distinguish weeds from crops in complex
agricultural settings.

DCNNs have also demonstrated great performance in detecting
weeds growing in bermudagrass [Cynodon dactylon (L.) Pers.] turf
(Jin et al. 2022a; Xie et al. 2021; Yu et al. 2019a, 2019b). The use of
DCNNs to detect weeds in both dormant and actively growing
bermudagrass was first reported by Yu et al. (2019a), who
compared three image classification neural networks, including
DetectNet (NVIDIA, 2016), VGGNet (Simonyan and Zisserman
2014), and GoogLeNet (Szegedy et al. 2015). These neutral
networks were evaluated for their ability to detect and classify
several broadleaf weed species, including dollar weed (Hydrocotyle
spp.), Florida pusley (Richardia scabra L.), and old world
diamond-flower (Oldenlandia corymbosa L.), in actively growing
bermudagrass turf. It was found that DetectNet achieved an
excellent F1 score of 0.99, outperforming the other two neural
networks. In a subsequent study, Yu et al. (2020) documented that
VGGNet achieved excellent performance, surpassing AlexNet and
GoogLeNet in detecting dallisgrass (Paspalum dilatatum Poir.),
doveweed [Murdannia nudiflora (L.) Brenan], smooth crabgrass
[Digitaria ischaemum (Schreb.) Schreb. ex Muhl.], and tropical
signalgrass [Urochloa adspersa (Trin.) R. Webster] in actively
growing bermudagrass.

To develop a commercially viable smart sprayer employing a
neural network model, the spray system must detect various weed
species across different turfgrass regimes, irrespective of species,
ecotypes, densities, growth stages, and geographic locations.
However, detecting and differentiating weeds from turfgrass can

be challenging, particularly when dealing with grass weeds that
share similar morphological characteristics with turfgrass species.
In contrast, broadleaf weeds often exhibit distinct features that
facilitate their identification. Previous neural networks were
typically designed to identify a single or a limited number of
weed species in specific geographic areas (Jin et al. 2022a, 2022b,
2023a). In addition, due to phenotypic plasticity, significant
morphological variations may occur among the weed ecotypes
from different turfgrass management regimes or geographic areas
(Kerr et al. 2019). For example, a dwarf ecotype of goosegrass
[Eleusine indica (L.) Gaertn.], with an average internode length of
only 0.2 cm, has been found in a golf course in Florida (Kerr et al.
2019), in contrast to wild ecotypes with an average internode
length of 7 cm (Saidi et al. 2016). Consequently, these networks
may struggle to detect different weed ecotypes, species, or those
growing in mixed stands at varying growth stages and densities
across diverse turf regimes and geographic regions. Moreover,
bermudagrass is widely utilized in various turf sites, including
home lawns, golf courses, school playgrounds, and sport fields.

Research has shown that training image size and quantity
significantly influence the performance of neural networks in weed
detection. Zhuang et al. (2022) evaluated multiple neural networks,
including AlexNet and VGGNet, for the detection and classification
of broadleaf weed seedlings in wheat (Triticum aestivum L.) and
found that, for a small training dataset (5,500 negative and 5,500
positive images), increasing the size of the training images from 200
× 200 pixels to 300× 300 or 400× 400 pixels resulted in a decrease in
the F1 scores of both networks. However, for larger training datasets
(11,000 negative and 11,000 positive images), increasing the image
size improved the performance of all studied networks, regardless of
the image sizes. Therefore, the objectives of this research were (1) to
assess the ability of image classification neural networks trained on
datasets from limited geographic regions to generalize weed
detection performance across diverse bermudagrass turf regimes
and locations and (2) to examine how varying the size of training
datasets impacts the performance of eight different neural network
models.

Materials and Methods

Neural Network Models

This study evaluated eight neural network models for weed
detection in turfgrass systems. These included AlexNet
(Krizhevsky et al. 2012), a pioneering DCNN with five convolu-
tional layers; GoogleNet (Szegedy et al. 2015), which employs an
Inception architecture for efficient feature extraction; and
VGGNet (Simonyan and Zisserman 2014), known for its deeper
structure with multiple 3 × 3 convolution kernels. Additionally,
ResNet101 and ResNet152 (He et al. 2016), which utilize residual
learning, were assessed to enhance deep network training. To
improve multi-scale feature extraction, Res2Net and ResNeXt
(Gao et al. 2019) were also included. Finally, PoolFormer, a
transformer-based model with a simplified MetaFormer archi-
tecture (Yu et al. 2022), was tested for its ability to generalize weed
detection across diverse conditions. A summary of each model’s
architecture and advantages is provided in Table 1.

Image Acquisition

The training, validation, and testing dataset images were mainly
captured in four cities in Florida and Georgia in the United States,
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covering various turf regimes infested with a variety of broadleaf,
grass, and sedge weeds, as detailed in Table 2 and Figure 1.

In Bradenton, FL, USA (27.4963, -82.5745), images were
captured multiple times at a golf course between October and
November 2018, predominantly featuring annual grass weeds such
as E. indica, D. ischaemum, and U. adspersa, with visually
estimated turf cover exceeding 90% and bare soil cover below 10%.

In Tampa, FL, USA (27.9473, -82.4584), images were captured
multiple times between July and December 2018 from golf courses,
roadsides, and sports fields, primarily featuring M. nudiflora,
R. scabra, E. indica, and D. ischaemum.

In Riverview, FL, USA (27.8139, −82.4167), images were
collected from the rough of a golf course between July 2018 and
February 2019. These images included broadleaf weeds such as
Hydrocotyle spp. and O. corymbosa, along with grasses like
E. indica, D. ischaemum, and U. adspersa. Additionally, low-
density pre-flowering purple nutsedge (Cyperus rotundus L.) was
present. Turfgrass cover ranged from 70% to 80%, while bare
ground covered 20% to 30%.

In Georgia, USA, images were captured in July and October
2018 at the turfgrass research facility at the University of Georgia
Griffin Campus (33.2608, -84.2521). These images featured low-
density, pre-flowering annual sedges (Cyperus compressus L.)
exhibiting a clump growth habit, as well as broadleaf weeds,
grasses, and fragrant kyllinga (Kyllinga odorata Vahl). The
broadleaf weeds included spotted spurge [Chamaesyce maculata
(L.) Small; syn.: Chamaesyce maculata L.], Virginia buttonweed
(Diodia virginiana L.), and white clover (Trifolium repens L.), while
the grasses included P. dilatatum, E. indica, and D. ischaemum.

Regarding model robustness testing, this study constructed an
additional robustness testing dataset. These data were collected
from 24 different locations across the United States and China, as

shown in Figures 2 and 3. Each test scenario in the dataset consists
of 100 turfgrass images without weeds and 100 images contain-
ing weeds.

All images used in this study were captured using a Sony®
Cyber-Shot camera (Sony, Minato, Tokyo, Japan) with a resolution
of 1,920× 1,080 pixels. They were captured between 0900 and 1700
hours under various weather and outdoor lighting conditions,
including clear, cloudy, and partly cloudy conditions.

Training and Testing

To align with the input requirements and maintain compatibility
across the deep learning model architectures evaluated in this
study, the original images were resized to 480 × 480 pixels. These
resized images were then divided into two datasets. The small
training dataset contained 10,000 positive images (with weeds) and
10,000 negative images (without weeds). To construct the large
training dataset, an additional 40,000 images were added—20,000
positive and 20,000 negative—resulting in 30,000 positive and
30,000 negative images. Both the validation and the testing datasets
contained 1,000 positive and 1,000 negative images each.

In this study, eight DCNNs were trained on the small and large
training datasets for 100 epochs each. After the optimal weights for
each model were obtained, model performance was evaluated on
the testing dataset. The best-performingmodel was then selected to
undergo final robustness testing on the testing dataset. Jin et al.
(2022b) employed a classification-based approach for weed
detection, wherein images were segmented into grid cells and
classified based on the presence of weeds. This method enables
both detection and localization, with classification evaluation
metrics effectively reflecting the model’s performance in weed
detection.

Table 1. Eight neural networks evaluated in the study.

Model name Key features Notable advantagesa

AlexNet 5 convolutional layers, 3 fully connected layers First deep CNN using GPUs, ILSVRC 2012 winner
GoogleNet Inception architecture, 22 layers Efficient computation, ILSVRC 2014 winner
VGGNet 16 layers, 3 × 3 convolution kernels Deeper architecture, improved feature extraction
ResNet101/152 Residual learning framework, 101/152 layers Mitigates vanishing gradient, ILSVRC 2015 winner
Res2Net Multi-scale feature representation Enhanced hierarchical feature extraction
ResNeXt Aggregated residual transformations Improved multi-scale feature extraction
PoolFormer MetaFormer with Transformer structure Simplified design, strong generalization

aAbbreviations: CNN, convolutional neural network; GPU, graphics processing unit; ILSVRC, ImageNet Large Scale Visual Recognition Challenge.

Table 2. Details of training, validation, and testing dataset images.a

Location
GPS
coordinates Turfgrass sites

Photo
acquisition
dates Broadleaf weeds Grasses Sedges

Bradenton,
FL, USA

(27.4963,−82.5745) Golf courses Oct.–Nov. 2018 None Eleusine indica,
Digitaria
ischaemum,

Urochloa adspersa

None

Tampa, FL,
USA

(27.9473,−82.4584) Golf courses, roadsides, and
sport fields

Jul.–Dec. 2018 Murdannia nudiflora,
Richardia scabra

E. indica,
D. ischaemum

None

Riverview,
FL, USA

(27.8139,−82.4167) Golf courses Jul. 2018–Feb.
2019

Hydrocotyle spp.,
Oldenlandia
corymbosa

D. ischaemum,
E. indica,

U. adspersa

Cyperus
rotundus

Griffin, GA,
USA

(33.2608,−84.2521) Turfgrass research facility on
the University of Georgia
Griffin campus

Jul. 2018, Oct.
2018

Paspalum dilatatum,
Diodia virginiana,
Chamaesyce maculata,
Trifolium repens

D. ischaemum,
E. indica

Cyperus
compressus,
Kyllinga
odorata

aTraining, validation, and testing dataset images collected from four locations in Florida and Georgia, USA.
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A confusion matrix was employed to evaluate the performance
of each model. This matrix compares the predicted results of a
classifier with the true labels, categorizing them into four
categories: true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN).

In the confusion matrix:

• TP represents the number of instances correctly predicted as
positive.

• FN represents the number of instances incorrectly predicted
as negative when they are actually positive.

• FP represents the number of instances incorrectly predicted
as positive.

• TN represents the number of instances correctly predicted as
negative.

In the present research, TP represents the model correctly
identified the target weed; TN represents the model correctly

Figure 1. Image examples from the training dataset. The dataset includes Digitaria ischaemum and Paspalum dilatatum at the 3- to 5-tiller stage and Murdannia nudiflora and
Oldenlandia corymbosa at full maturity before flowering.

Figure 2. Images of weed species and their respective turf sites in the United States used for neural network robustness testing.
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identified images without the target weed; FP represents the model
incorrectly predicted the target weed; and FN refers to instances
where the model failed to predict the presence of the actual
target weed.

The confusion matrix was used to calculate various perfor-
mance metrics of a classification algorithm. In this study, precision
(Equation 1), recall (Equation 2), F1 score (Equation 3), and
Matthews correlation coefficient (MCC) (Equation 4) were
calculated using the results from the confusion matrix.

Precision measures the ability of the developed neural network
to correctly identify the targets and was calculated using the
following formula:

Precision ¼ TP
TP þ FP

[1]

Recall provides an estimation of the developed neural network’s
ability to identify its targets and was calculated using the following
formula:

Recall ¼ TP
TP þ FN

[2]

The F1 score, defined as the harmonic mean of precision and
recall, was calculated using the following formula:

F1 ¼
2 � Precision � Recall

Precision þ Recall
[3]

MCC is a universal evaluation metric used to assess the
performance of classification models, measuring the correlation
between predicted and actual labels. It applies to both binary and
multiclass classification tasks. In this study, we applied MCC to

evaluate the performance of binary classification models,
specifically distinguishing between weed (presence) and non-weed
(absence) in turfgrass images (Sokolova and Lapalme 2009). It was
calculated using the following equation:

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þp

[4]

Experimental Configuration

The experiments were conducted using the PyTorch (Meta) deep
learning framework (v. 1.13.0) with CUDA 11.6 (NVIDIA). To
ensure fairness of the experiments, none of the models were
initialized with pretrained weights. All training and testing
procedures were executed on a workstation equipped with an
Intel® Core™ i9-10920X CPU @ 3.50 GHz, an NVIDIA RTX 3080
Ti GPU, and 128 GB of memory. The operating system used was
Ubuntu 20.04.1.

The hyperparameter settings were as follows: the image size for
the training process was set to 480 × 480 pixels, with stochastic
gradient descent as the optimizer. The base learning rate was set to
0.1, and weight decay was applied with a value of 0.0001. The batch
size was 16, and the learning rate policy was set to “step.”
Momentum was set to 0.9, and the model was trained for 100
epochs. The output layer was configured with two nodes,
corresponding to the binary classes (weed vs. non-weed), using
a softmax activation function. This configuration ensured a
controlled and consistent setup for evaluating the model’s
performance.

Figure 3. Images of weed species and their respective turf sites in China used for neural network robustness testing.
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Result and Discussion

Model Evaluation

Among the evaluated neural networks, VGGNet16, trained with
20,000 images, achieved the highest precision in the testing dataset,
reaching 0.9990 (Table 3). It also exhibited the highest recall and F1
score and an MCC value exceeding 0.9960. Res2Net and
ResNeXt152 also performed well, with accuracies of 0.9950 and
0.9970, respectively. Notably, ResNeXt152 had a recall of 0.9990,
slightly surpassing VGGNet16, with similar F1 and MCC scores.

Initially, AlexNet and GoogleNet showed lower performance,
with precision of 0.8801 and 0.7897 and MCC values below 0.9.
However, their performance improved significantly when trained
with 60,000 images. AlexNet’s precision increased to 0.9980,
surpassing VGGNet16, and its MCC reached 0.9940. GoogleNet
achieved a perfect recall (1.0), a precision of 0.9950, and the highest
MCC among all models.

ResNet152 and Poolformer achieved a recall of 1.0 with a
precision of 0.9921 and 0.9940, respectively. While ResNet101 and
ResNet152 showed further improvements, VGGNet16, Res2Net,
and ResNeXt152 experienced overall performance declines,
possibly due to their simpler architectures and limited learning
capacities (Chollet 2021; Hastie et al. 2009). Models with complex
structures excelled on smaller datasets but faced overfitting risks on
larger datasets (Szegedy et al. 2015).

VGGNet16 and ResNeXt152 consistently demonstrated excellent
performance across all metrics, withMCC values>0.98 and F1 scores
>0.99. ResNeXt152 outperformed all models in recall and showed the
best performance in confusion matrices (Figures 4 and 5). Therefore,
this study selected the top two weights of ResNeXt152 for weed
classification in various turfgrass regimes.

Single Weed Species Classification

Weed classification in turfgrass systems has been identified as a
critical component of precision agriculture, with recent advance-
ments in deep learning offering promising solutions for reducing
herbicide use and improving management efficiency (Beckie et al.
2019; Bhakta et al. 2019). Previous studies have often been confined

to collecting data from specific regions for training neural networks
and subsequently evaluating them within the same geographic
locations (Jin et al. 2022c; Xie et al. 2017; Yu et al. 2019a, 2019b).
Although these studies have demonstrated effective weed detection,
the testing datasets in these works were limited to specific turfgrass
management regimes and geographic locations. In this study, we
tested model performance across 24 diverse scenarios in China and
the United States, encompassing various weed species, ecotypes,
densities, and growth stages, as detailed in Table 4.

Themodels trained with large datasets demonstrated consistent
precision exceeding 0.97 across all classifications for D. ischae-
mum. They achieved F1 scores ranging from 0.988 to 0.998, with
perfect recall of 1.0 for the first five scenarios. Even small datasets
yielded strong performance, with MCC values above 0.81 across
the same five scenarios. However, the classification of D.
ischaemum in commercial landscapes was less effective, likely
due to lower recall (below 0.58). These results confirm that
ResNeXt152, when trained on large datasets, can accurately classify
D. ischaemum at different growth stages in various turfgrass
settings.

For P. dilatatum classification in Auburn, AL, USA, the model
trained on a small dataset showed acceptable recall but lower
precision (0.7333). In contrast, the model trained on the large
dataset achieved a precision of 0.9686, emphasizing the importance
of dataset size in minimizing false detections. Both models trained
with large datasets performed well in other scenarios, with MCC
exceeding 0.95, and the neural network maintained excellent
performance even with low-density P. dilatatum, indicating that
ResNeXt152 can accurately classify P. dilatatum in various turf
conditions.

For M. nudiflora classification, tests were conducted at
locations in Miami, FL, and Tifton, GA, USA. Both small and
large datasets yielded robust results, with precision consistently
above 0.97 and F1 scores not falling below 0.96. Recall rates were
optimal in three out of four scenarios, further affirming the efficacy
of ResNeXt152 in M. nudiflora classification.

Testing on single weed species at additional locations revealed
that the model trained with a large dataset achieved near-perfect
classification (precision and recall exceeding 0.99,MCC> 0.98) for
species including Hydrocotyle spp., R. scabra, green kyllinga
[Kyllinga brevifolia Rottb.], O. corymbosa, D. virginiana, and
T. repens.

Finally, experiments with U. adspersa at two Florida golf
courses demonstrated that the model trained on a small dataset
performed well in low-density scenarios (precision: 0.9745, MCC:
0.9696), while the model trained on a large dataset achieved
consistent excellence (all metrics > 0.99). These results highlight
ResNeXt152’s ability to classify weeds across varying densities in
bermudagrass regimes.

Mixed Weed Species Classification

After confirming the accuracy of ResNeXt152 in single weed
species classification, the study extended its evaluation to complex
scenarios involving the coexistence of multiple weed species. As
previously reported, multiple classifier neural network models,
including DenseNet, EfficientNetV2, ResNet, RegNet, and
VGGNet, are capable of effective weed detection and classification
(Jin et al. 2022b). These models achieved high accuracy, with F1
scores of at least 0.946 on the test dataset. However, the training
and test images used in this study were collected from
geographically proximate areas, which may limit generalizability.

Table 3. Testing results of neural networks for classification of weeds while
growing in turfgrasses.

Training
dataseta

Neural
network Precision Recall

F1
score MCCb

Small
dataset

AlexNet 0.8801 0.9840 0.9292 0.8560
GoogleNet 0.7897 0.9800 0.8746 0.7408
VGGNet16 0.9990 0.9970 0.9980 0.9960
ResNet101 0.9740 0.9799 0.9769 0.9540
ResNet152 0.9813 0.9980 0.9896 0.9791
Res2Net 0.9950 0.9970 0.9960 0.9920
ResNeXt152 0.9970 0.9990 0.9980 0.9960
Poolformer 0.9549 0.9950 0.9745 0.9488

Large
dataset

AlexNet 0.9980 0.9960 0.9970 0.9940
GoogleNet 0.9950 1.0000 0.9975 0.9950
VGGNet16 0.9872 1.0000 0.9935 0.9871
ResNet101 0.9921 0.9990 0.9955 0.9910
ResNet152 0.9921 1.0000 0.9960 0.9920
Res2Net 0.9794 1.0000 0.9896 0.9792
ResNeXt152 0.9842 1.0000 0.9921 0.9841
Poolformer 0.9940 1.0000 0.9970 0.9940

aThe small training dataset contained 10,000 positive images (with weeds) and 10,000
negative images (without weeds), while the large training dataset contained 30,000 positive
and 30,000 negative images.
bMCC, Matthews correlation coefficient.
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In the present study, the test locations for evaluating the model’s
performance in classifying different weed species growing in
turfgrass across multiple states in the United States and provinces
in China were selected. The model performed exceptionally well in
scenarios featuring multiple weed species. It achieved a precision
and recall of 1.0000 and 0.9732 forD. ischaemum andO. corymbosa
on a golf course and roadside when trained on the small dataset, and
0.9946 and 1.0000 when trained on the large dataset. In a sod farm
with K. brevifolia, C. rotundus, and D. ischaemum, the large dataset
model outperformed the smaller dataset model. In a city park with
C. maculata and D. ischaemum, both models demonstrated
outstanding performance, with evaluation metrics exceeding 0.99.
In conclusion, ResNeXt152 proves effective in accurately classifying
multiple weed species across turf management regimes. The

experimental results demonstrate that data collected from a limited
geographic area can be used to train a neural network capable of
effectively classifying a wide variety of weed species in bermudagrass
across different locations. While this study focused on bermuda-
grass, the methodology is potentially applicable to other cool- and
warm-season turfgrass species. Future work will investigate its
effectiveness for weed classification in these turfgrass types.

In summary, this study assessed the performance of eight
classification neural networks trained with varying numbers of
images. Through a comparative analysis, ResNeXt152 emerged
as the most effective model among those evaluated.
Additionally, this research highlights the practicality of utilizing
a single neural network model for weed classification in
turfgrass regimes with diverse uses across diverse geographic

Figure 4. Confusion matrices of models trained on the small dataset and tested on the robustness testing dataset.

Figure 5. Confusion matrices of models trained on the large dataset and tested on the robustness testing dataset.
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Table 4. Robustness testing results of ResNeXt152 for classification of weeds while growing in turfgrasses.a

Testing resultsc

Small dataset Large dataset

Weed speciesb Turfgrass site Location
GPS
coordinates

Photo acquisition
dates Precision Recall

F1
score MCC Precision Recall

F1
score MCC

Digitaria ischaemum Roadsides Hefei, Anhui, CHN (31.8611,
117.2808)

Jul. 2019 0.9926 1.0000 0.9963 0.9925 0.9824 1.0000 0.9911 0.9822

Parks Hefei, Anhui, CHN (31.8611,
117.2808)

Aug. 2019 0.8343 1.0000 0.9097 0.8190 0.9932 1.0000 0.9966 0.9932

Sod farms Shuyang, Jiangsu,
CHN

(34.1297,
118.7969)

Jun. 2019 0.9968 1.0000 0.9984 0.9968 0.9968 1.0000 0.9984 0.9968

Sod farms Shuyang, Jiangsu,
CHN

(34.1297,
118.7969)

May 2021 0.8852 0.9585 0.9204 0.8380 1.0000 1.0000 1.0000 1.0000

Roadsides Nanjing, Jiangsu,
CHN

(32.0603,
118.7969)

May 2021 0.8737 1.0000 0.9326 0.8693 0.9774 1.0000 0.9886 0.9771

Commercial landscapes Nanjing, Jiangsu,
CHN

(32.0603,
118.7969)

May 2021 0.4167 0.3509 0.3810 0.3136 1.0000 0.5800 0.7342 0.6391

Paspalum dilatatum Commercial landscapes Auburn, AL, USA (32.6097,
−85.4808)

Oct. 2018 0.7333 0.9894 0.8423 0.6751 0.9686 0.9893 0.9788 0.9574

Golf courses Atlanta, GA, USA (33.7490,
−84.3880)

Oct. 2018 0.9520 1.0000 0.9754 0.9510 0.9958 1.0000 0.9979 0.9958

P. dilatatum (low weed density) Commercial landscapes and
roadsides

Tifton, GA, USA (31.2304,
−83.5237)

Aug. 2018 0.9867 1.0000 0.9933 0.9867 0.9733 0.9865 0.9799 0.9595

Murdannia nudiflora Golf courses Miami, FL, USA (25.7617,
−80.1918)

Oct. 2018 0.9901 1.0000 0.9950 0.9900 0.9756 1.0000 0.9877 0.9753

Roadsides Tifton, GA, USA (31.2304, -
83.5237)

Oct. 2018 1.0000 0.9304 0.9639 0.9338 0.9936 1.0000 0.9968 0.9936

Oldenlandia corymbosa Golf courses and roadsides Orlando, FL, USA (28.5384,
−81.3789)

Oct. 2018 1.0000 0.9039 0.9495 0.9091 0.9913 0.9913 0.9913 0.9825

Kyllinga brevifolia City parks and roadsides Nanjing, Jiangsu,
CHN

(32.0603,
118.7969)

Jun. 2019 0.8272 0.9437 0.8816 0.7578 1.0000 1.0000 1.0000 1.0000

Diodia virginiana Golf course Griffin, GA, USA (33.2608,
−84.2521)

Oct. 2018 1.0000 0.9531 0.9760 0.9543 1.0000 0.9950 0.9975 0.9950

Trifolium repens Roadsides and parks Shanghai, CHN (31.2304,
121.4737)

May 2019 0.9751 0.9800 0.9776 0.9550 0.9950 1.0000 0.9975 0.9950

Hydrocotyle spp. Golf courses Lavaca County, TX,
USA

(29.7536,
−96.7143)

Sept. 2018 0.9005 0.8805 0.8904 0.7874 0.9955 0.9933 0.9944 0.9889

Richardia scabra Golf courses Miami, FL, USA (25.7617,
−80.1918)

Oct. 2018 1.0000 0.9898 0.9949 0.9897 1.0000 1.0000 1.0000 1.0000

Urochloa adspersa (high weed
density)

Golf courses Alafaya, FL, USA (28.6039,
−81.2074)

Sept. 2018 1.0000 1.0000 1.0000 1.0000 0.9949 1.0000 0.9975 0.9949

U. adspersa (low weed density) Golf course Alafaya, FL, USA (28.6039,
−81.2074)

Sept. 2018 0.9745 0.9948 0.9845 0.9696 1.0000 0.9948 0.9974 0.9948

U. adspersa (high weed density) Golf course Lakeland, FL, USA (28.0394,
−81.9516)

Sept. 2018 1.0000 0.9901 0.9950 0.9900 1.0000 1.0000 1.0000 1.0000
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regions in both China and the United States. The study
demonstrated that ResNeXt152 achieved robust classification
performance across 24 different locations, covering 6 turf sites
with distinct uses and 14 weed species with varying densities and
growth stages—all using a single training session. Future
research will focus on expanding testing and validation to
additional global locations and integrating the developed neural
models into the machine vision subsystem of a smart sprayer
prototype.
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