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Flutter in lightweight airfoils under unsteady flows presents a critical challenge in
aeroelastic stability and control. This study uncovers phase-dependent effects that drive
the onset and suppression of flutter in a freely pitching airfoil at low Reynolds number.
By introducing targeted impulsive stiffness perturbations, we identify critical phases
that trigger instability. Using phase-sensitivity functions, energy-transfer metrics and
dynamic mode decomposition, we show that flutter arises from phase lock-on between
structural and fluid modes. Leveraging this insight, we design an energy-optimal, phase-
based control strategy that applies transient heaving motions to disrupt synchronisation
and arrest unstable growth. This minimal, time-localised control suppresses subharmonic
amplification and restores stable periodic motion.
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1. Introduction
Aeroelastic flutter is a critical instability in lightweight and flexible structures that interact
with unsteady flows, characterised by self-excited limit-cycle oscillations (LCOs) that can
compromise structural integrity (Dowell 2021). Controlling these oscillations is essential
to improve aerodynamic performance and prevent undesirable responses (Jonsson et al.
2019). However, predicting stability transitions remains challenging due to the nonlinear
nature of fluid–structure interactions and their sensitivity to flow separation and vortex
shedding (Schuster, Liu & Huttsell 2003).

Classical theories assume thin airfoils and inviscid, attached flows (Theodorsen 1935;
Bisplinghoff, Ashley & Halfman 2013), limiting their applicability in regimes dominated
by unsteady separation. In such conditions, laminar separation flutter and stall-induced
LCOs can emerge from nonlinear interactions between separated flow and structural
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Figure 1. Overview of the present work. (a) Direct numerical simulations (DNS) of the baseline free-pitching
dynamics of a NACA0015 airfoil. (b) Phase-localised stiffness perturbations are applied, and the resulting
pitch displacement trajectories are recorded. (c) The phase-sensitivity function is computed, revealing critical
phases associated with flutter. (d) A PBC strategy is designed based on heave phase-sensitivity function and its
gradient. (e) The control input is implemented in DNS, demonstrating suppression of flutter.

motion (Lee, Price & Wong 1999; Barnes & Visbal 2019). Recent advances in flutter
prediction include multi-fidelity models (Thelen, Leifsson & Beran 2020), frequency-
domain identification (Simiriotis & Palacios 2023) and data-driven techniques (Hickner
et al. 2023; Guo et al. 2025). Complementary efforts in active flutter suppression employ
high-bandwidth actuators and adaptive controllers to stabilise flutter-prone modes and
mitigate LCOs (Li, Xiang & Guo 2011; Livne 2018; Chai et al. 2021).

However, the impact of localised structural variations remains poorly understood,
particularly in systems exhibiting subcritical bifurcations, where small changes can trigger
instability (Castravete & Ibrahim 2008; Khodaparast, Mottershead & Badcock 2010;
Beran, Stanford & Schrock 2017). Energy maps have proven useful for understanding
the nonlinear aeroelastic response to gusts (Menon & Mittal 2019, 2020); however,
their dependence on steady-state responses from forced simulations across a range of
parameters limits their utility for real-time flutter characterisation.

To address these limitations, phase reduction offers a low-dimensional tractable
framework by modelling unsteady periodic flows as nonlinear oscillators (Taira & Nakao
2018; Monga et al. 2019). Recent advances include timing control of vortex-shedding
dynamics (Nair et al. 2021), adjoint-based formulations for rapid wake synchronisation
(Godavarthi, Kawamura & Taira 2023) and data-driven latent manifold approaches for
suppressing transient gust responses (Fukami, Nakao & Taira 2024).

Unlike canonical oscillators, aeroelastic systems can exhibit abrupt transient instabilities
that lead to flutter, often before reaching a stable periodic orbit. In this study, we apply
phase-based methods to characterise and control the onset of such instabilities. Using two-
dimensional incompressible flow over a NACA0015 airfoil at a low Reynolds number,
we introduce time-localised perturbations during the free-response oscillation cycle and
show that their impact is highly phase-dependent. We demonstrate how this sensitivity
can be exploited to suppress flutter through targeted, phase-based control (PBC) strategies.
Notably, despite the fluid and structural modes exhibiting distinct frequencies, a single-
oscillator phase-based model grounded in structural observables was sufficient to capture
and control the instability.

While the underlying methods such as phase reduction, energy-transfer metrics and
dynamic mode decomposition (DMD) are well established, our study uniquely applies
them to uncover and exploit phase-dependent flutter sensitivity in an aeroelastic system.
In particular, we integrate stiffness-triggered instability diagnostics with heaving-based
actuation to design an energy-optimal control strategy that disrupts phase synchronisation
and suppresses aeroelastic flutter. An overview of the present work is shown in figure 1.
Through direct numerical simulations, phase-sensitivity analysis and targeted perturbation
tests, we design a PBC strategy that suppresses the flutter instability.
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Figure 2. Free-pitching dynamics of a NACA0015 airfoil. (a) Schematic of the computational set-up showing
the airfoil mounted at an elastic axis located at xe = 0.33c from the leading edge. (b) Nested multi-domain
mesh layout used for simulations, with finest resolution near the airfoil. (c) Validation of gust-induced LCOs
in pitch angle θ(t), reproducing aeroelastic responses consistent with Menon & Mittal (2020).

2. Methodology
We perform two-dimensional simulations of the aeroelastic response of a NACA0015
airfoil immersed in an incompressible flow using the immersed boundary projection
method (Taira & Colonius 2007; Goza & Colonius 2017). The fluid motion is governed by
the incompressible Navier–Stokes equations in non-dimensional form:

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, ∇ · u = 0, (2.1)

where u is the velocity field, p is pressure and Re = ρU∞c/μ is the Reynolds number,
with U∞, ρ, c and μ denoting the free-stream velocity, density, chord length and
dynamic viscosity, respectively. The immersed boundary projection method discretises
these equations on a staggered Cartesian grid, employing a Crank–Nicolson scheme for
viscous terms and a second-order Adams–Bashforth scheme for convective terms. No-
slip boundary conditions are enforced via Lagrange multipliers applied at Lagrangian
boundary points, with interpolation and spreading handled via regularised delta functions.
A nested multi-domain grid with a fast Poisson solver (Colonius & Taira 2008) is used to
efficiently resolve near- and far-field interactions.

The airfoil is free to pitch about an elastic axis located at xe = 0.33c, corresponding
to 33 % of the chord length from the leading edge (figure 2a). Its structural dynamics is
modelled as a single-degree-of-freedom linear torsional oscillator governed by

I ∗θ̈ + k∗(θ − θ0) = CM , (2.2)

where θ is the pitch angle, θ0 is the equilibrium angle, CM is the dimensionless
aerodynamic moment and I ∗ and k∗ are the non-dimensional moment of inertia and
stiffness, respectively.

We adopt parameter values consistent with those used by Menon & Mittal (2020), who
identified an aeroelastic regime exhibiting strong nonlinear fluid–structure coupling and
the onset of gust-induced flutter. These choices are further supported by the extensive
parametric studies conducted in Menon & Mittal (2019). The selected parameter values
and their rationale are summarised in table 1.

The structural natural frequency of the aeroelastic system is given by fs =
(1/2π)

√
k∗/I ∗ ≈ 0.19, with a corresponding time period T and reduced velocity U∗ =

1/ fs ≈ 5.26. Prior studies (Menon & Mittal 2019) have shown that a lower structural
natural frequency, along with a more aft location of the elastic axis, increases the system’s
susceptibility to flutter onset by enhancing fluid–structure coupling.
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Parameter Value Rationale

θ0 15◦ Strongly nonlinear yet phase-coherent dynamics
Re = ρU∞c/μ 1000 Robust vortex-shedding regime
I ∗ = 2I/(ρc4) 4.1 Solid-to-fluid density ratio ≈ 120
k∗ = 2k/(ρU 2∞c2) 5.96 Places system near flutter onset
xe/c 0.33 Ensures stability in the unforced baseline response

Table 1. Summary of selected parameters and rationale.

The computational domain spans x/c ∈ [−16, 16] and y/c ∈ [−16, 16]. The finest grid
near the airfoil has a uniform spacing �x = �y = 0.0055c, and a fixed time step �t =
0.001 is used for time integration. The near-body mesh and nested multi-domain layout are
shown in figures 2(a) and 2(b), respectively. The set-up is validated by reproducing gust-
induced LCO responses as seen in figure 2(c), consistent with Menon & Mittal (2020),
confirming the nonlinear amplification behaviour near the onset of flutter.

To investigate the timing-dependent sensitivity of the aeroelastic system, we adopt the
observable-based phase-reduction framework of Taira & Nakao (2018), which projects
the high-dimensional fluid–structure dynamics onto a scalar phase variable defined
along the periodic orbit. Specifically, we define the phase φ on the θ̇–θ plane, where
θ denotes the airfoil pitch angle and θ̇ is the angular velocity. This observable-based
representation traces the aeroelastic limit cycle with period T and provides a smooth,
monotonically increasing phase coordinate over the oscillation cycle, as shown in the
polar plot of figure 3(a). The bottom panel of figure 3(a) shows the corresponding
time series of the aerodynamic moment coefficient CM , with vertical red lines marking
the bounds of one period of the pitch oscillation T . Within this interval, CM exhibits
higher-frequency oscillations compared with θ , with a dominant frequency of f ≈ 0.67,
which is also observed when the airfoil is held static. This frequency mismatch between
θ and CM in the free response indicates a lack of synchronisation between structural
motion and aerodynamic forcing, thereby preventing sustained energy transfer and
averting flutter in the baseline configuration. As a result, although CM (t) exhibits high-
frequency fluctuations and is not strictly periodic, the phase definition based on structural
observables (θ, θ̇) remains consistent for characterising phase sensitivity. Figure 3(b)
presents representative vorticity fields at two characteristic phases, revealing the evolution
of coherent vortical structures around the airfoil as it traverses the limit cycle.

Under an external perturbation applied at time t0, the phase dynamics evolves as

φ̇(t) = 2π fs + εZ(φ)δ(t − t0), (2.3)

where Z(φ) is the phase-sensitivity function, ε is the perturbation magnitude and δ is
the Dirac delta function centred at the impulse time t0 (Nakao 2016). Following the
impulse-response method of Taira & Nakao (2018), we apply Gaussian-shaped impulses
at uniformly spaced phases across the oscillation cycle as

εδ(t − t0) ≈ β√
2πσ

exp

[
−1

2

(
t − t0

σ

)2
]

, (2.4)

where β and σ = 0.0019T are the strength and width of the impulse introduced at time t0,
respectively.

These impulses are introduced by perturbing structural parameters (e.g. stiffness) or
by imposing surging/heaving velocity impulses on the airfoil. In this study, stiffness
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Figure 3. Phase-based analysis of aeroelastic response to impulsive stiffness perturbations. (a) Definition of
phase φ on the θ̇–θ plane (top) and time series of the aerodynamic moment coefficient CM (bottom), with
red vertical lines indicating one period of pitch oscillation. (b) Instantaneous vorticity fields at representative
phases. (c,d) Phase-sensitivity function Z(φ) estimated from asymptotic pitch-angle shifts following negative
(decrease in k∗) and positive (increase in k∗) stiffness impulses, with impulses of different strengths applied
in the positive stiffness case. Dashed lines mark phases where perturbations lead to divergent flutter-like
behaviour. (e) Normalised energy extraction E computed over 18 post-perturbation cycles, showing increased
energy transfer at critical phases. (f ,g) Exponential growth rate λ of the envelope of CM (t), with positive values
indicating instability. Also shown are the Arnold tongue lock-on regimes (highlighted in pink) corresponding
to negative and positive stiffness phase-sensitivity functions in insets of (f ) and (g), respectively.

perturbations are used to probe phase-based flutter sensitivity due to their direct relevance
to structural degradation under cyclic loading. Stiffness variations, arising naturally
from material fatigue or geometric non-uniformities, directly affect the system’s natural
frequency fs , making them effective triggers for phase-dependent stability transitions.
The impulse strength β for stiffness perturbations is selected such that the relative elastic
energy input (REI),

REI =
∫ T

0
1
2�K (t) · θ(t)2 dt∫ T

0
1
2 K0 · θ(t)2 dt

, (2.5)

remains sufficiently small to preserve linearity and uphold the assumptions of the phase-
reduction framework. For the perturbation amplitude used in this study, REI ≈ ±0.00175.

The phase change induced by each perturbation is evaluated relative to the unperturbed
baseline by tracking the observable θ(t). The phase-sensitivity function is then
approximated as Z(φ) ≈ �φ/β, where �φ denotes the asymptotic phase difference
between the baseline and the perturbed trajectories. A positive value of Z(φ) implies a
phase delay (i.e. the perturbed trajectory lags the baseline), while a negative value indicates
a phase advance. This observable-based formulation bypasses the need for full-state
measurements and provides an experimentally feasible way to quantify phase sensitivity
in high-dimensional aeroelastic systems.

Once Z(φ) is known, we design an optimal open-loop control input u(t) to advance
or delay the oscillation phase over a finite time horizon. This strategy leverages the
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observable-based phase-reduction model to implement timing-sensitive actuation without
requiring full-state feedback. The controlled phase dynamics is

φ̇(t) = 2π fs + u(t)Z(φ), (2.6)

with the objective of achieving a prescribed phase shift �φ while minimising control
effort. This leads to a two-point boundary-value problem, which can be solved using
standard calculus of variations techniques (Monga et al. 2019; Nair et al. 2021). We assess
the effectiveness of this strategy in suppressing the onset of flutter-like instability.

3. Results
We first examine the effect of impulsive stiffness perturbations across the free-response
oscillation cycle. Gaussian-shaped impulses are applied to the stiffness parameter k∗
in (2.2) at 32 uniformly spaced phases, and the resulting system evolution is monitored.
Figures 3(c) and 3(d) show the estimated phase-sensitivity function Z(φ) for negative
(decrease in k∗ making it less stiff impulsively) and positive (increase in k∗) stiffness
perturbations, respectively, computed from asymptotic shifts (after 19 fundamental
oscillation cycles) in pitch-angle trajectories as detailed in § 2.

The sensitivity functions reveal distinct regions of phase advance (Z(φ) < 0) and
phase delay (Z(φ) > 0), reflecting how timing of perturbation affects the flow–structure
coupling. For negative stiffness perturbations (figure 3c), four specific phases, φ ≈
0.353π , 1.410π , 1.472π and 1.526π , lead to divergent responses and trigger flutter
onset. Similarly, in the case of positive perturbations (figure 3d), flutter is initiated when
impulses are applied at φ ≈ 1.472π , 1.656π , 1.712π and 1.768π . These critical phases
are marked with vertical dashed lines and are associated with sharp variations in Z(φ).
For the positive stiffness perturbation case (figure 3d), we also assess robustness by
varying the perturbation magnitude. For REI = 0.00084, all phases remain stable, while
the primary case (REI = 0.00175) exhibits instability only at the identified phases above.
Error bars for these two cases represent the relatively small standard deviation in the phase-
sensitivity function values. Increasing to REI = 0.0026 introduces additional instability
points, indicating a critical perturbation threshold between 0.00084 and 0.00175 beyond
which flutter onset becomes more widespread.

The observed asymmetry between sensitivity functions for positive and negative
perturbations stems from stiffness being a material property. Unlike velocity-based
actuation, stiffness perturbations directly alter the natural frequency fs , leading to
inherently nonlinear and directionally biased responses. This contrasts with prior studies
(Taira & Nakao 2018), where momentum-based impulses yielded symmetric Z(φ). This
directional asymmetry leads to biased synchronisation behaviour, as seen in the Arnold
tongue structures in the insets of figure 3( f ,g). The Arnold tongue is constructed by
evaluating the phase-coupling function Γ (φ) as the convolution of the phase-sensitivity
function Z(φ) with a sinusoidal forcing input over one period, following the averaging
method described in Taira & Nakao (2018). Specifically, lock-on regions (highlighted in
pink) appear more pronounced for forcing frequencies higher than the structural natural
frequency fs . This suggests that the aeroelastic system is more susceptible to phase
synchronisation under faster periodic inputs.

The structure of Z(φ) further reveals distinct phase-dependent regimes that align
with the dynamics in the θ̇–θ phase plane (figure 3a). In the case of negative stiffness
perturbations (figure 3c), four alternating intervals are observed: Z(φ) < 0 from 0 to π/2
and again from π to 3π/2, indicating phase advance during upstroke and downstroke,
respectively; and Z(φ) > 0 from π/2 to π and from 3π/2 to 2π , indicating phase delay
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near the turning points of pitch motion. These transitions reflect how structural input
interacts with unsteady aerodynamic loads depending on the direction of motion. In
contrast, the positive perturbation case (figure 3d) displays two broad lobes of phase delay,
peaking near φ = π/2 and 3π/2, where pitch angle θ reaches its maxima. Although the
precise locations of instability differ, both cases demonstrate that flutter onset is strongly
localised in phase. For both perturbations, Z → 0 at φ = 0 and π as θ = 0 at these phases
and thus the stiffness perturbation does not modify the structural dynamics of (2.2) as
much. We note that the flutter-sensitive phases generally occur during the portion of
the oscillation cycle where the airfoil is returning from its peak angle of attack towards
equilibrium.

To evaluate the response of the aeroelastic system following impulsive stiffness
perturbations, we compute the normalised energy extraction coefficient E over a transient
window starting immediately after the period in which the impulse is applied and spanning
18 fundamental oscillation cycles. This energy metric, adapted from Menon & Mittal
(2020), is

E = 1
(T f − Ti )

∫ T f

Ti

CM(t) θ̇(t) dt, (3.1)

where CM(t) is the aerodynamic moment coefficient, θ̇ (t) is the pitch rate, Ti = T is
the initial time and T f = 19T is the final time. The sign and magnitude of E indicate
whether the fluid imparts energy into the structure (positive E) or extracts energy from
it (negative E) over the transient evolution. As shown in figure 3(e), negative stiffness
perturbations (circles) and positive perturbations (triangles) yield large positive E values
at specific phases, aligning with those identified in figure 3(c,d) as prone to flutter onset.
These high-energy-extraction phases mark the system’s transition from stable periodic
motion to divergent, flutter-like growth. To assess the sensitivity of E to the chosen
evaluation duration, we repeated the calculation with shorter windows with final times
of 12T , 14T , 16T and 18T . The standard deviation across these cases is shown as error
bars in figure 3(e). The results confirm that the identified high-energy-extraction phases
are robust to changes in window length, with variations in E remaining small.

To quantify the instability, we fit an exponential envelope to the pitch moment
coefficient CM(t) using max(CM )(t) ∼ C0eλt , where λ is the instantaneous growth rate.
Figures 3(f ) and 3(g) show λ for negative and positive stiffness perturbations, respectively.
Positive values of λ indicate exponential growth and align with phase regions exhibiting
high energy E and sharp variations in Z(φ), while negative values reflect damping and
return to periodic behaviour. The consistency across λ, Z(φ) and E confirms that flutter
onset is phase-dependent and can be predicted using phase-based metrics. To assess
robustness, the growth rate estimation was repeated with varying fitting windows; the
resulting standard deviations, shown as error bars in figure 3(f ,g), confirm the relative
insensitivity of λ to window selection.

To visualise the transient response to stiffness perturbations, we compare three represen-
tative cases in figure 4: (i) the unperturbed baseline (figure 4a,d,g,j), (ii) a stable response
to a perturbation applied at φ = 0.29π (figure 4b,e,h,k) and (iii) an unstable (flutter)
response resulting from a perturbation at φ = 0.353π (figure 4c,f ,i,l). Figure 4(a–c)
shows phase portraits in the θ̇–θ plane, with the baseline trajectory in blue and the
perturbed trajectory in red. For the stable case, the perturbed trajectory initially deviates
but gradually converges back to the baseline limit cycle, demonstrating recovery to the
original periodic motion. In contrast, the flutter case exhibits sustained divergence and
expanding amplitude, indicating exponential growth and onset of instability. Overlaid
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Figure 4. Transient response to impulsive stiffness perturbations at selected phases. (a,d,g,j) Baseline
(unperturbed) response; (b,e,h,k) stable response to perturbation at φ = 0.29π ; (c,f ,i,l) unstable (flutter)
response to perturbation at φ = 0.353π . (a–c) Phase portraits in the θ̇–θ plane with unperturbed (blue) and
perturbed (red) trajectories, overlaid with instantaneous vorticity fields. (d–f ) Time series of pitch angle θ(t)
and aerodynamic moment coefficient CM (t). Time–frequency spectrograms (g–i) of θ(t) and (j–l) of CM (t),
computed using continuous wavelet transforms to capture joint temporal and spectral features.

instantaneous vorticity fields at representative instants capture the evolution of the flow
structures. In the baseline and stable cases, the flow remains largely periodic with limited
fluctuation in vortex strength. However, in the flutter case, the larger structural amplitude
leads to intensified vortex shedding.

Figure 4(d–f ) presents the corresponding time histories of pitch angle θ(t) and
aerodynamic moment coefficient CM (t). The stable case reveals bounded oscillations that
settle after the transient, whereas the flutter case displays an exponential increase in both
θ and CM , consistent with the positive growth rate λ observed in figure 3(f ).

The bottom two rows present time–frequency spectrograms of θ(t) (figure 4g–i)
and CM (t) (figure 4j–l), obtained using continuous wavelet transforms to capture both
temporal and spectral dynamics. All three cases exhibit a consistent dominance of
structural natural frequency fs in θ , validating the robustness of the structural response.
However, the spectrograms of CM provide more nuanced insights into the flow–structure
interaction. For the baseline case, CM exhibits a persistent high-frequency content around
fCM ≈ 0.67, associated with vortex-shedding dynamics. In the stable perturbed case, a
transient amplification of low-frequency components at fCM ≈ 0.19 (matching fs) and its
harmonic at fCM ≈ 0.38 is observed, but these decay over time. In contrast, the flutter
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Figure 5. The DMD of the flow field for stiffness perturbations at (a–c) φ = 0.353π (flutter-prone) and (d–f )
φ = 0.29π (stable). (a,d) The DMD eigenvalues plotted in terms of growth rate versus frequency, with colours
indicating mode amplitudes |b|. (b,e) The DMD spatial mode at fΦ ≈ 0.19 (structural frequency). (c,f ) The
DMD spatial mode at fΦ ≈ 0.38 (first harmonic) for flutter-prone case and spatial mode at f ≈ 0.67 for stable
case. The DMD is performed in the laboratory frame aligned with airfoil pitching motion. In (a,d), the red
circle indicates the DMD mean mode.

case shows a continuous and growing amplification of these low-frequency components
post-perturbation, indicating sustained energy transfer from the flow to the structure.
This progressive emergence and amplification of the dominant instability fCM ≈ 0.38 and
its subharmonic fCM ≈ 0.19 (matching fs) in CM reflect a phase lock-on phenomenon
between the aerodynamic forcing and the structural motion. This lock-on effectively
channels energy into the structural mode, resulting in flutter.

To further examine the underlying flow structures contributing to stability and
instability, we apply DMD (Schmid 2022) to the unsteady flow fields following
impulsive stiffness perturbations. Specifically, we compare the flutter-prone unstable case
(φ = 0.353π ) and the stable case (φ = 0.29π) discussed in figure 4. Dynamic mode
decomposition is performed in a body-fixed frame to isolate flow oscillations associated
with the airfoil’s pitching motion. The exact DMD analysis uses 1872 snapshots collected
over 18 oscillation cycles with a time interval between snapshots of �t/T = 0.0095.

Dynamic mode decomposition approximates the system’s evolution using a linear
operator A such that ωk+1 ≈ Aωk , where ωk denotes the vorticity field at time tk .
The discrete-time eigenvalues λ j of A encode the growth rate and frequency of the
corresponding DMD modes Φ j . The continuous time spectra are obtained as Λ j =
log(λ j )/�t , where Re(Λ j ) gives the modal growth rate and fΦ = Im(Λ j )/2π gives the
oscillation frequency. The mode amplitudes b j are computed by projecting the initial
state ω0 onto the DMD modes via b = Φ†x0, where † denotes the Moore–Penrose
pseudoinverse.

Figure 5(a–c) shows results for the flutter-prone unstable case. Figure 5(a) presents the
DMD eigenvalues projected in the complex plane, with the growth rate Re(Λ j ) on the
x axis and frequency fΦ on the y axis. The markers are coloured by modal amplitude
|b j |. The dominant modes appear at fΦ ≈ 0.38 and its subharmonic fΦ ≈ 0.19. The
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subharmonic mode with fΦ ≈ 0.19 has a positive growth rate, which confirms it as the
driver of flutter. The corresponding spatial structures, shown in figures 5(b) and 5(c),
exhibit strong vortex shedding from the trailing edge and large-scale separation from
the suction surface. Figure 5(d–f ) presents results for the stable case. In figure 5(d), all
eigenvalues lie in the left-half complex plane, confirming that the dynamics is stable.
The dominant modes, shown in figures 5(e) and 5(f ), correspond to frequencies fΦ ≈
0.19 and fΦ ≈ 0.67 (associated with moment coefficient oscillations). Repeating the
analysis with a larger snapshot interval (�t/T = 0.019) yielded similar dominant modes,
confirming insensitivity to chosen parameters for DMD analysis. These findings support
the conclusion that flutter is driven by phase lock-on between structural and fluid modes,
resulting in selective energy amplification of low-frequency DMD modes. In the stable
case, this coupling remains limited, preventing instability.

To suppress the flutter-prone instability triggered by negative stiffness perturbation at
φ = 0.353π , we introduce a PBC strategy through transient heaving motion of the airfoil.
Although the instability is induced via stiffness perturbations, stiffness itself is not easily
actuated in practice. Heaving motion, on the other hand, can be implemented more readily
through control surfaces, making it a physically realisable control input.

Following the PBC framework described in § 2, we compute the phase-sensitivity
function Zh(φ) and its gradient dZh/dφ by applying Gaussian-shaped (downward)
heaving impulses at different phases of the oscillation cycle with impulse strength
β = −0.01. The resulting sensitivity profile, shown in figure 6(a), reveals alternating
regions of phase advance and delay, identifying windows of high control effectiveness.

With this phase sensitivity, we formulate a control problem to compute an energy-
optimal input u(t) that induces a prescribed phase shift �φ over a finite time horizon. The
underlying rationale is that by advancing the phase trajectory to reach the same oscillatory
position slightly ahead of its natural timing, we disrupt the temporal coherence between
structural motion and unsteady aerodynamic forcing. This intentional desynchronisation
weakens the feedback loop responsible for energy transfer and flutter amplification. The
control input is obtained by minimising the cost function

C = min
u(t)

∫ T ∗

0

[
1
2

u2(t) + λ(t) (
φ̇(t) − 2π fs − Zh(φ)u(t)

)]
dt, (3.2)

where λ(t) is the Lagrange multiplier enforcing the phase evolution constraint and T ∗ =
0.9T is the reduced target period. The resulting optimal control signal u(t), shown in
figure 6(c), is localised in time and requires minimal energy. While the present approach
targets phase manipulation, in theory, the same framework could be extended to suppress
specific unstable modes by directly shaping the modal energy growth through adjoint-
informed or data-driven controllers. To evaluate robustness of the control design, we also
introduce additive Gaussian noise to the phase-sensitivity function and its gradient and
recompute the PBC signal. The resulting control waveform under a 20 dB signal-to-noise
ratio (SNR) is shown as a dashed grey line in figure 6(c). Despite the noisy sensitivity
function and its gradient, the control retains its overall structure, indicating robustness of
the controller design to moderate levels of modelling noise.

For comparison, we also consider two sinusoidal reference actuations with identical
input power as PBC: one with frequency f1 = fs/0.9 (shown in red) and the other with
f2 = fs/0.18 = 1.05 (shown in blue). Here, f2 is obtained by selecting the dominant
frequency of PBC. Interestingly, the dominant frequency of PBC lies in the high-frequency
regime. This aligns with the asymmetry observed in the Arnold tongue computed for heave
phase-sensitivity function in figure 6(d) (inset), where stronger lock-in behaviour occurs at
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Figure 6. The PBC of flutter instability via heaving actuation. (a) Phase-sensitivity function and its gradient
for heaving input; negligible deviations at reduced impulse strength of β = −0.005 are shown with error bars
for characteristic phases. (b) Schematic of the energy-optimal phase-control framework targeting a prescribed
phase shift. (c) Control inputs: optimal phase-based actuation (black), low-frequency sinusoid ( f1 = fs/0.9)
and high-frequency sinusoid ( f2 = fs/0.18). (d) Resulting pitch angle θ(t) and moment coefficient CM (t). (e)
Spectrograms of CM (t) for each actuation. (f ) The DMD eigenvalues and dominant modes for the PBC case.
Also shown is the Arnold tongue lock-on regime (highlighted in pink) corresponding to heave phase-sensitivity
function in the inset of (d).

frequencies higher than the structural natural frequency. The heaving actuation is turned
off after T ∗, allowing the system to evolve freely. We note that negative control input refers
to downward heave motion of the airfoil. The corresponding pitch angle and moment
coefficient responses are shown in figure 6(d). Only the PBC successfully stabilises
the dynamics and suppresses flutter growth. In contrast, the low-frequency sinusoid
accelerates divergence, while the high-frequency sinusoid delays instability but fails to
prevent it. This comparison highlights the advantage of PBC in generating waveform-
timed actuation aligned with the system’s intrinsic dynamics. However, its effectiveness
in practice depends on precise timing. Delays in phase estimation or actuation due to
bandwidth limits, mechanical lag or sensor inaccuracies can degrade performance. These
constraints underscore the need for delay-compensated control schemes to account for
actuator and sensing lags in experimental settings.

Spectrograms of CM (t) (figure 6e) reveal that only the phase-based controller
suppresses the subharmonic growth at f ≈ 0.19, while the sinusoidal inputs result in
lock-on to the structural frequency. This underscores the importance of actuation timing
and supports the role of phase-specific control in interrupting energy transfer to unstable
modes. The DMD analysis of the vorticity field under PBC (figure 6f ) shows all modal
eigenvalues (with the dominant spatial modes shown below) in the left-half complex plane,
indicating fully stabilised dynamics.
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4. Conclusion
This study demonstrates a phase-based framework for characterising and controlling flutter
instabilities in a freely pitching airfoil. By applying localised stiffness perturbations across
oscillation phases, we uncover critical phase regions that trigger instability, supported by
transient energy growth, exponential amplification and spectral signatures. Dynamic mode
decomposition further reveals low-frequency mode lock-on as the underlying mechanism
of flutter onset. Building on these insights, we design an energy-optimal phase-control
strategy using transient heaving motion. The proposed controller successfully suppresses
flutter by preventing phase lock-on and inhibiting subharmonic amplification. Our findings
highlight the critical role of phase in nonlinear aeroelastic interactions and for controlling
flow-induced instabilities. This phase-based framework can be extended to investigate a
wide range of flow-induced phenomena across large parameter spaces, including gust-
driven and transonic flutter and aeroacoustic instabilities. At higher Reynolds numbers,
turbulent flows exhibit greater modal complexity and diminished global coherence,
making PBC more challenging. Nonetheless, recent work by Godavarthi et al. (2025)
demonstrates that the phase dynamics of dominant coherent structures can still be
extracted using modal decomposition techniques combined with phase reduction. This
indicates that phase-based strategies may remain effective when applied to these structures
through a reduced-order control framework.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10721.
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